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In this paper, we give a complete description of the finite groups which can act on 2-
dimensional Z-acyclic complexes without fixed points. One example of such an action
(by the group As) has been known for a long time, but as far as we know it is the only
such action constructed earlier. In fact, we construct here actions of this type for many

different finite simple groups.
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More precisely, our main theorem is the following.

THEOREM A. For any finite group G, there is an essential fized point free 2-
dimensional (finite) Z-acyclic G-complex if and only if G is isomorphic to one of the
simple groups PSL4(2%) for k>2, PSLy(q) for ¢q=+3 (mod 8) and ¢>5, or Sz(2%) for
odd k>3. Furthermore, the isotropy subgroups of any such G-complez are all solvable.

Here “G-complex” means a G-CW complex; but the same result holds if one in-
stead uses simplicial complexes with admissible G-action in the sense of [S1] or [AS]
(see Proposition A.4 in the appendix). The word “finite” is in parentheses because the
theorem holds whether or not this condition is included.

Before we give our definition of essential action, we make precise the relationship

between essential actions and arbitrary actions on Z-acyclic 2-complexes.

THEOREM B. Let G be any finite group, and let X be any 2-dimensional Z-acyclic
G-complex. Let N be the subgroup generated by all normal subgroups N'<iG such that
XN'4@. Then XN is Z-acyclic; X is essential if and only if N=1; and the action of
G/N on XV is essential.

Thus, the condition in Theorem A that the action be essential was included to
insure that for a normal subgroup N<G@G, an action of a quotient group G/N does not
automatically produce (via the quotient map G—G/N) an action of G. If X is a G-
complex, and N<G is such that for each HCG, the inclusion X¥ Y = X# induces an
isomorphism on integral homology, then the G-action on X is “essentially” the same as
the G-action on XV, which factors through the G/N-action. This motivates the following

definition.

Definition. A G-complex X is essential if there is no normal subgroup 1#N<G
with the property that for each HCG, the inclusion X7 = X induces an isomorphism

on integral homology.

The proofs of Theorems A and B rely on the earlier works [O1], [02], [S1] and [AS],
as well as on the classification theorem for finite simple groups. In [S1], Y. Segev proved
that if a finite group G acts on a Z-acyclic 2-complex X, the fixed point set X% is
either Z-acyclic or empty, and is Z-acyclic if G is solvable or G A,, for n>6. Later,
in [AS], Aschbacher and Segev extended these results, and proved that X¢#g if G is
simple, except perhaps when G is of Lie type and Lie rank 1, or the first Janko group Jy
(a sporadic group).

Techniques for constructing fixed point free actions of finite groups on finite acyclic or
contractible complexes (without restrictions on dimension) were developed by B. Oliver
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in several earlier papers such as [O1] and [O2]. In particular, in [O2], actions for which
the fixed point set of each subgroup is contractible or empty are studied.

The proof of Theorem A—both when constructing actions of G and when proving
their nonexistence—is based on refinements of the techniques developed in these earlier
papers of both authors. The main new input comes from a more detailed analysis of
the subgroup lattice of G and its orbit space. In particular, necessary and sufficient
conditions for the existence of actions are stated in terms of this lattice in Proposition 1.9.
Afterwards, the proofs of nonexistence of actions of particular groups require identifying
homology in certain “pieces” of the subgroup lattice of G.

In fact, relatively few solvable subgroups need occur as isotropy groups for the actions
we construct when proving Theorem A, and those which do occur are listed explicitly. It
is possible that these and similarly constructed G-complexes can give new information
about decompositions of BG, and about the cohomology of G.

Theorem A leaves open the question as to whether or not it is possible for a finite
group to act on a 2-dimensional contractible complex without fixed points. Understanding
actions on acyclic 2-complexes is clearly a first step towards investigating this question,
but the first author feels that any serious attempt to answer it will require some very
different methods than those used here.

This paper is intended for both group theorists and topologists, and we have at-
tempted to write it in a way which will be appealing and readable for both. In particular,
more background material has been included than might normally be the case, although
we have tried to put most of that in the appendix at the end of the paper.

The paper is organized as follows. In §1, conditions are established, in terms of
homological properties of the subgroup lattice of G, which determine the minimal di-
mensions of certain “universal” G-complexes. In particular, this section includes the
general machinery for constructing G-complexes with certain prescribed properties. Af-
ter proving some technical results in §2, the constructions of the G-complexes described
in Theorem A are carried out in §3. In §4, we show that any finite group G which acts
essentially on a 2-dimensional acyclic complex must be almost simple (i.e., there is a
nonabelian simple group L such that LCGCAut{L)). In §5, we develop machinery to
show the nonexistence of actions on acyclic 2-complexes; and this is applied in §6 to
prove Theorem A for simple groups of Lie type and Lie rank 1. The sporadic groups are
dealt with in Theorem 7; except for the first Janko group Ji this repeats results already
shown in [AS]. Theorem B is proven in §4, and Theorem A in §8. All of this is pre-
ceded by a preliminary “§0” where we present some general results about G-posets and
construction of G-complexes; and is followed by an appendix which includes background
material about G-complexes, Z[G]-modules, and simple groups of Lie type, as well as a
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sketch of the proofs in [S1] and [AS] of certain cases of Theorem A. References of the
form A.x, B.x, etc. all refer to the appendix. After the appendix, we attach a list of the
notation used throughout the paper.

The first author would like to thank the Hebrew University for the hospitality during
his visit in 1997. This visit, and the visit of the second author to Aarhus University
in 1992, played an important role in starting our collaboration. We would also like
to thank Jean-Pierre Serre for his letters, which also helped revive our interest in this

problem.

0. G-complexes and G-posets

Posets, and in particular families of subgroups considered as posets, will play an impor-
tant role as “bookkeeping” devices for controlling dimensions of certain acyclic complexes.
For any poset S, we let A'(S) denote its nerve: the simplicial complex with one vertex
for each element of S, and one n-simplex for each chain ag<a;<...<a, of elements of S.
By a G-poset is meant a poset with G-action which preserves the ordering. A terminal
subposet of a poset S is a subset S'C S such that 3>a€ S’ implies $€S5’. For any element
a in a poset S, we set Sy,={8€S5|3>a}. The next lemma provides a general setting
for comparing G-complexes with coverings to the nerves of the coverings.

LEMMA 0.1. Let X be a G-complez, let S be a finite G-poset, and let {Xa}acs be
a covering of X by subcomplexes which satisfies the following conditions:

(a) a<B implies X, 2 Xp.

(b) For all z€X, the set {a€S|xeX,} has a largest element.

(€) Xy(y=9(Xa) for all a€S, g€G.
Then there is a G-map fx: X >N (8S) with the property that

fX(X(x)gN(SZH) fOT all a€S. (1)

If, furthermore, X, is acyclic (contractible) for each a, then for any map f: X 5N (S)
which satisfies (1), and any terminal subposet S'C S, f restricts to a homology equiva-
lence (homotopy equivalence) fsi: Xs'={J,cg Xa—=N(S').

Proof. For eachn>0, let J,, denote the G-set of n-cells of X, and let ,,: J,, x D" > X
denote the characteristic map for the n-cells (see Appendix A). Let 8: J,, — S be the map
which sends j€J, to the largest element in the set {a€S|¢n(J,0)€X,}; this is well
defined by (b) and equivariant by (c). For each a€S, we let [a] denote the corresponding
vertex in N (S).
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First define fo: XD 5 A(S) by setting fo(po(4,0))=[8(4)] for each jeJ,. This
clearly satisfies condition (1) (with respect to the covering {XC(,O)}).

Now assume that f,_;: X(»~Y 5 A(S) has been defined, satisfying (1). For any
j€J, and any ve€S™!, ¢, (4,0)€ Xy, by construction, and so ¢, (j,v)€Xg(; since
Xo(j) is a subcomplex of X. So fn_1(¢n(4,v)) EN(Sse(;)) by (1), hence it is in some
simplex which contains the vertex [6(7)], and the segment from f,,_1(¢n(j,v)) to [6(5)]
lies in M(S). So we can define

fr: XMW 5 N(S)

by setting f,,(z)=fn_1(z) for z€ X"~V and
Fal@n(G,t0)) =t fuc1(pn(G,0)) +(1—1)-[0(5)] for j€J,, veS" !, te0,1].

This is well defined as a map of sets, since the two definitions agree on @, (J, x S"1)C
X=1 8o it is continuous by Lemma A.3 (f,]x=—1 and f.o, are both continuous).
Condition (1) still holds for f,,, since for all j€J,, and v€int(D™}, and all «€ S,

<Pn(j,v)€Xa ~ ‘Pn(jaO)EXa = ag()(j) = fn(son(jav))EN(SZNj))QN(SZOL)'

And f, is equivariant since @ is equivariant, since f, _; is equivariant (by induction), and
since the G-action on N (S) is affine.

Finally, define fx: X —A(S) to be the union of the f,; this is again continuous by
Lemma A.3, and condition (1) holds since it holds for each f,,.

Now let f be any map which satisfies (1), and assume that X, is acyclic (con-
tractible) for each a€S. We want to show that f is a homology (homotopy) equivalence.
The group action no longer plays a role here, so we can assume G=1. We can assume
inductively that for any properly contained terminal poset S’¢ S, f restricts to an equiv-
alence | J,cg Xa—N(S') (since the subspace and subposet still satisfy conditions (a)
and (b) above). If S has a smallest element o, then X =X, is acyclic {contractible) and
N(S) is contractible, so any map f: X -N(S) is a homology (homotopy) equivalence,
and we are done.

Assume now that S contains no smallest element. In this case, we can write S=
S1US3, where S) and Sy are proper terminal subposets of S. Set Sy=51NSs, and set
Xi=Uqyes, Xo for each i=0,1,2. Clearly, N(So)=N(S1)NN(S2), and condition (b)
implies that Xo=2X,NX,. By the inductive assumption, f restricts to homology (homo-
topy) equivalences f;: X;—N(S;), and so f is a homology (homotopy) equivalence by
Proposition B.3. O

By a family of subgroups of G will here be meant any subset FCS(G) which is
closed under conjugation. We do not assume here that subgroups of elements of the
family are also in the family.
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For any family F of subgroups of G, a (G, F)-complez will mean a G-CW complex
all of whose isotropy subgroups lie in F. A (G, F)-complex is universal if the fixed point
set of each subgroup in F is contractible. (The “universality” property of such spaces
is explained in Proposition A.6.) One can, in fact, construct universal (G, F)-complexes
for any family F of subgroups of G, but in most cases any such complex must be infinite-
dimensional. For example, when F={1} contains only the trivial subgroup, a universal
(G, F)-complex is just a contractible complex upon which G acts freely; and so its orbit
space is a classifying space for G. The results in §1 will make it clear what conditions
are needed on F for there to be a finite (or finite-dimensional) universal (G, F)-complex.

The following lemma is the starting point for the constructions of universal (G, F)-
complexes, and of other G-complexes satisfying certain homological conditions. Roughly,
it describes the effect on the homology of X of attaching cells of one orbit type G/H
to X. By “attaching an orbit of cells of type G/H x D*” to a G-complex X, we mean
replacing X by the complex X U, (G/H x D™) for some G-map ¢: G/H x §"~1 — X (n=1),
We refer to Lemma A.2 for more detail.

PROPOSITION 0.2. Fiz a finite G-complex X, and a subgroup HCG. Then the
following hold.

(a) For any n>z1, there is a finite G-complex Y DX, obtained by attaching to X
orbits of cells of type G/Hx D' for 1<i<n, such that Y¥ is (n—1)-connected and
H(YH)2H{(XH) for all i>n. Also, H,(Y) is Z-free if H,(XH) is Z-free.

(b) Assume n>1, and that X¥ is (n—1)-connected. For any homomorphism

o: (ZIN(H)/H])* - H, (X )

of Z|N(H)/H]-modules, there is a finite G-complex Y 2X, obtained by attaching k
orbits of cells G/HxD"*! to X, such that H;(Y")=H;(XH) for all i#n,n+1, such
that

H, (YH) = Coker(y), (1)

and such that there is a short exact sequence
0— Hpy1 (XY= H, 1 (YH) 5 Ker(p) = 0. (2)

(c) Assume, for some n>1, that H,(XH)=H,(X") is a stably free Z[N(H)/H]-
module; more precisely that
Ho(X™)®(Z[N(H)/H))* = (Z[N(H)/H])™

(where k,m>0). Then there ezists a G-compler Y DX, obtained by attaching to X
k orbits of cells of type G/H x D™ and m orbits of cells of type G/H x D", such that
YH is acyclic.
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(d) Assume that all connected components of X¥ are acyclic, and that one of the
components of X is fixed by the action of N(H)/H and the others are permuted freely.
Then there exists a G-complexr Y2 X, obtained by attaching to X cells of orbit type
G/H x D1, such that Y¥ is acyclic.

Proof. (b) Since X is (n—1)-connected, the Hurewicz theorem applies to show
that each element h€ H,,(X*) is represented by a map ¢: S"—X#, in the sense that
h=p.([S™]) for some fixed generator [S™] of H,(S™). (See, e.g., [Hu, Theorem I1.9.1] if
n>1, or [Hu, Theorem I1.6.1] if n=1.) And we can assume that p(S™)C(X# )™ by the
cellular approximation theorem [LW, Theorem II.8.5], which says that any map S™— X ¥
is homotopic to a cellular map, and in particular a map with image in the n-skeleton.

Now let E={e,...,ex} denote the canonical basis of (Z|[N(H)/H])*, and fix maps
fi: 87— (XH)(") which represent (e;)€ H,(X*). Define

f(ExG/H)x 8™ = X

by setting f(ei, gH,x)=g-fi(x); and let f¥ be the restriction of f to the H-fixed point
sets. In particular, for each i and each gE N(H), fle,xgrxsn (as a map S"— XH) rep-
resents the class g-¢(e;)€ H,(X*). In other words, H,(f)=¢ under the identification

Ho((BxG/H)"xS") = H,(ExN(H)/H)x S*) = (Z[N(H)/H])".

Set
Y=XU;((ExG/H)xD"*")

(Lemma A.2). Then
YA =XHU;u ((ExN(H)/H)x D",

and (1) and (2) now follow from Lemma B.1.

(a) We prove this inductively. Fix n>0 such that X* is (n—1)-connected. We
will construct a finite G-complex Y DX, obtained by attaching orbits of cells of type
G/H x D™"*! to X, such that Y¥ is n-connected.

If n=0 and X* is not connected, then let v_; and v; be two vertices in dif-
ferent connected components of X, define f:G/H xS°— X by setting f(gH,t)=gv,
and set X'=XU;(G/H x D'). By construction, (X’)¥ has fewer connected components
than X, and by continuing the procedure we obtain a finite G-complex Y such that Y/
is connected.

If n=1 and m;(Xf)#1, choose any element 1#¢cm(XH), represent it by a map
fo: 81— XH and extend this to a G-map f:G/H xS'— X by setting f(gH,v)=g fo(v).
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Set X'=XUs(G/H x D*). Then 7, ((X")#)=m(X")/N, where N is a normal subgroup
of w1 (X ™) which contains ¢ (in fact, the normal closure of (¢)). Since 71 (X*) is finitely
generated, we can repeat this procedure and obtain a finite G-complex Y such that Y
is 1-connected.
If n>1, then the result follows from part (b), where we choose ¢ to be any surjection
(Hn(X") is finitely generated as an abelian group, hence as a Z[N(H)/H ]-module).
(c) Upon applying point (b) to the trivial homomorphism

ot (Z[N(H)/H])* = H, -1 (XT) =0,

we get a finite G-complex Y, 2 X, obtained by attaching k-orbits of cells G/H x D" to X,
such that H;((Yo)¥)=H,;(X")=0 for all i#n, and

Hy ((Yo)™) = Hy(X™)®(Z[N(H)/H))* = (Z[N(H)/H])™.

If we now apply (b) to any isomorphism ¢: (Z[N(H)/H])™— H,((Yy)"), we obtain a
finite G-complex Y DY), constructed by attaching m orbits of cells G/H x D"*1 such
that Y is acyclic.

(d) Here, we assume that all connected components of X are acyclic, and that
one is invariant under the action of N(H)/H and the others are permuted freely. Let
XoCXH denote the component which is N(H)/H-invariant, and let Xy, Xs,..., X) be
N(H)/H-orbit representatives for the other components. (If N(H)/H=1, then let X,
be any of the connected components.) Fix vertices 2, € X, for i=0, ..., k. Set J={1, ..., k},
and define ¢: (G/H x.J)x S"— X by setting

elgH,i,1)=gz; and @(gH,i,—1)=gx.
Now set Y=XU,,((G/H x.J)x D). Then
YH=X"U, (N(H)/Hx.J)xD"),

and this is acyclic since X, has been connected (by a unique 1-cell) to each of the other

connected components of X. O

We finish the section with two leminas which involve elementary properties of nerves

of posets. We first recall the following results of Quillen.

LEMMA 0.3 [Q2, 1.3-1.5]. (a) Let TCS be posets, and let r: S—T be any order-
preserving map such that r|p=Idr, and such that r(a)<a for all a€S (or r{a)za for
all a). Then the inclusion of N(T) in N(S) is a homotopy equivalence.

(b) Let G be a finite group, and let H be any nonempty set of subgroups of G.
Assume that there is some Ho€H such that either HNHyeH for all HEH, or
(H,Hy)€H for all HEH. Then N(H) is contractible.
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Proof. Point (a) is shown in [Q2, 1.3]. In fact, N(T) is a strong deformation retract
of N(S), where r induces the retraction N(S)—N(T), and where the homotopy with
the identity comes from the assumption that r(a) is always <a or always Za [Q2, 1.3].

If H is as in (b), then its nerve is “conically contractible” in the sense of Quillen,
and hence is contractible [Q2, 1.4-1.5]. a

The following lemma will also be useful, when showing that certain subgroups of G
need not occur as isotropy subgroups in acyclic G-complexes.

LEMMA 0.4. Let S be any finite poset, and let S'CS be any subposet with the
property that N (Ssq)~* forall a€ S\S’. Then N(S')~N(S) (the inclusion induces a

homotopy equivalence).

Proof. Tt suffices to show this when S\S” contains just one element «. In this case,
N(S) is the union of N (S”) with the cone over the subcomplex ACN(S’), where

A=N(S<0¢HS>(1)=N(S<nc)*N(S>a)' (1)

Note that the nerve of the disjoint union in (1) is identified with the join of the nerves,
since every element in S, is less than every element in S5,. Then A is contractible,
since N (S>q)=* by assumption. O

Lemma 0.4 does, in fact, hold without the assumption that S is finite: it follows as
a consequence of Quillen’s Theorem A [Q1] (see also [Q2, Proposition 1.6]).

A central problem throughout this paper, especially in §§5 and 6, is to find ways to
detect 2-dimensional homology in nerves of certain posets. Given a 2-cycle in N'(S), the
simplest way to show that it is nonvanishing in Ho(N(S)) is to show that some 2-simplex
with nonzero coefficient is maximal in A/(S); i.e., not in the boundary of any 3-simplex.

The following lemma provides a refinement of this observation, and will be used in §5.

LEMMA 0.5. Let S be a finite poset, and let z be a 2-cycle in the nerve of S.
Fiz elements m<M in S, where m is minimal and M is mazimal. Set Q={xeS]|
m<z<M}, and let Q'CQ be the set of all x€Q such that the simplex (m,x, M) occurs
with nonzero coefficient in z. Assume that Q'#@, and that some element of Q' lies in
a separate connected component of N(Q) from all of the other elements of Q'. Then
0£[2]€ Ha(N(S)).

Proof. Set X=N(8), for short, and let YC X be the subcomplex of all simplices
which do not contain both vertices m, M. Let C.(X)2C.(Y) be the simplicial chain
complexes, and write

z= Z az(m,z, M} (mod Ca(Y))
zeqQ’
(where 0#a, €Z for each z).
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For any 3-simplex o in X, either o is in Y (and so 8(¢)€C2(Y)), or o=(m,z,y, M)
for some z,y€Q in the same connected component of A (Q) and

8(o)=(m,z, M)—(m,y, M) (mod C2(Y)).

Thus, if z is a boundary, then the sum of the coefficients a, in the above expression for z,
taken over all z€(@’ which lie in any given connected component of A (Q), is zero. And
this contradicts the assumption that some element of @’ is in a component by itself. O

1. Minimal dimensions of universal G-spaces

We will now establish necessary and sufficient conditions for the existence of universal
complexes satisfying certain dimensional restrictions. These conditions will be expressed
in terms of the homology of the nerves of certain posets.

Throughout this section, G will be a finite group. A nonempty family FCS(G) will
be called separating if it has the following three properties: (a) G¢F; (b) any subgroup
of an element of F is in F; and (c) for any HQK CG with K/H solvable, Ke F if He F.
The following property of separating families is immediate.

LEMMA 1.1. Each mazimal subgroup in a separating family of subgroups of G is
self-normalizing. a

If G is solvable, then it has no separating family of subgroups. If G is not solvable,
then we let SLV denote the family of solvable subgroups: the minimal separating family
for G. We also let MAX denote the maximal separating family for G, which can be
described as follows. Let L be the maximal normal perfect subgroup of Gj i.e., the last
term in the derived series of G. Then MAX is the family of all subgroups of G which
do not contain L. In particular, if G is perfect, then MAX is the family of all proper
subgroups of G.

A (G, F)-complex will be called universal if the fixed point set of each HeF is
contractible, and will be called H-universal {“homologically universal”) if the fixed point
set of each HeF is acyclic. The importance of H-universal (G, F)-complexes when
studying 2-dimensional actions comes from the following lemma.

LEMMA 1.2. Let X be any 2-dimensional acyclic G-compler without fized points.
Let F be the set of subgroups HC G such that X"#@. Then F is a separating family
of subgroups of G, and X is an H-universal (G,F)-complez.

Proof. By [S1, Theorem 3.4], X is acyclic for each He F; i.e., for each H such that
XH+£g. (Another proof of this, which does not depend on the Feit-Thompson odd order
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theorem, is given in Theorem 4.1 here.) So by definition, X is an H-universal (G, F)-
complex. Also, if H<K C G are subgroups such that H€ F and K/H is solvable, then X
is acyclic, and so XX =(XH)&/H s acyclic by [S1, Theorem 3.1] (see also Theorem 4.1).
Thus, F is a separating family. O

For any family F of subgroups of G, we consider N(F) as a G-complex via the
conjugation action. Note, however, that A(F) is not itself a (G, F)-complex in general.
For example, when F={1}, then N(F) is a point, while a (G, F)-complex must have a
free G-action.

Recall that for any family F of subgroups of G and any set H of subgroups, 7>
denotes the poset of those subgroups in F which contain some element of H. Also, for any
subgroup HC G, F>u and F- g denote the posets of subgroups in F which contain H, or
strictly contain H, respectively. The following proposition is an immediate consequence
of Lemma 0.1.

PROPOSITION 1.3. Fiz any family F of subgroups of G. Let N'(F) be the nerve of
the poset F, regarded as a G-complex via the action by conjugation. Then for any
(G, F)-complex X, there is a G-map f: X >N(F) with the property that f(XH)C
N(Fsn) for all HCG. And if X is universal (H-universal), then for any set H of
subgroups of G, any such map f restricts to a homotopy equivalence (homology equiva-
lence) XM N(Foy).

Proof. We apply Lemma 0.1, with S=F (regarded as a poset via inclusion), and
Xg=XH for HEF. Since X is a (G, F)-complex, every cell in X is pointwise fixed by
some HeF, and so {XH}ger is a covering of X. Condition (a) of Lemma 0.1 clearly
holds, and condition (b) holds since the largest element of { HE F | z€ X ¥} is the isotropy
group G,. And condition (c) holds since X9H9™'=g(X ). |

The following lemma, which helps to limit the number of orbit types needed
when constructing “minimal” universal (G, F)-complexes, is an easy consequence of
Lemma 0.4.

LEMMA 1.4. Let F be any family of subgroups of G, and let FoCF be any subfamily
such that N'(Fs y)=~x for all HE F\Fy. Then any (H-)universal (G, Fy)-complez is also
an (H-)universal (G, F)-complex; and

N((Fo)pn) = N(Fon) (1)

for any set H of subgroups of G.

Proof. For any set H of subgroups of G, point (1) follows from Lemma 0.4, applied
to the posets Sdéf}';;l and S’ q—e—'f(]-'o)zn.
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Let X be an (H-)universal (G, Fy)-complex. All isotropy subgroups of X lie in
FoCF, so X is also a (G, F)-complex. For each K€ F, X¥ is homotopy (homology)
equivalent to N((Fo)»x) by Proposition 1.3 (applied with H={K?}); this in turn is
homotopy (homology) equivalent to N'(Fx k) by (1); and this last complex is contractible
(acyclic). So X is also (H-)universal as a (G, F)-complex. O

We are now ready to deal directly with the problem of controlling the dimensions
of universal or H-universal (G, F)-complexes. This will be done by attaching cells, one
orbit type at a time, at each stage arranging for the appropriate fixed point set to be
contractible or acyclic. The key problem is how to do this with cells in free orbits.
This will be described in the following three lemmas. The first will be needed when

constructing contractible 1-complexes.

LEMMA 1.5. Let X be any finite G-set with the property that |X*|=1 for each
subgroup 1#£HCG of prime power order. Then X has one fized point and is otherwise

free.

Proof. We may assume that X“=@; otherwise the result is clear. We may also
assume that X has no free orbits (otherwise just remove them). By assumption, each
Sylow subgroup of G acts freely on X away from one fixed point; and so | X|=1 (mod |G}).

Write X=G/H, I1G/H,11...1G/H}, where 1#H,; GG for all i. In particular,

k
Y (G:H=]X|=r|G|+1 (1)
i=1

for some r. Furthermore, for each pair of distinct elements x,y€ X, the isotropy sub-
groups G, and G, have trivial intersection, since otherwise G,,NG,, contains a nontrivial

p-subgroup (some p) which fixes two points of X. It follows that

. k k
IGl=12 ) (1G.|-1)=)_[G:H}]-(|Hi|-1) =k-|G|-)_[G:H,]. (2)
i=1 i=1

zeX
Upon adding (1) and (2), we see that (2) is an equality, and that r=k—1. But then after
dividing (1) by |G|, we get that

k
1
>k—1.
; |H;|

Since |H;|=2 for all ¢, we must have k=1, and hence | X|=1. O

A complex X will be called homologically m-dimensional if H,,(X)=0 for all n>m,
and H,,(X) is Z-free. (Technically, this should be called homologically <m-dimensional,
since it only provides an upper bound on the degrees of homology of X.) We note first
the following properties of subcomplexes of acyclic complexes.
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LEMMA 1.6. Let X be any m-dimensional acyclic CW complex (m>=1). Then any
subcomplex of X is homologically (m—1)-dimensional. And if Ay,...,A,CX are homo-
logically (m—2)-dimensional subcomplexes, then their intersection is also homologically
(m—2)-dimensional.

Proof. For any subcomplex AC X, H;(A)~H, (X, A) must be zero for i>m, and
Z-free for i=m—1. Hence A is homologically (m—1)-dimensional.

It suffices to prove the last statement when n=2. For each i>m—2, there is a

Mayer—Vietoris exact sequence
0— Hi+1(A1UA2) — Hi(AlﬂAg) — HL(Al)@HL(AQ)

If i2m—1, then the first and last groups are zero, and so H;(A; N A2}=0. And if i=m—2,
then the first and last groups are Z-free, and so H,,,—2(A1NA3) is also Z-free. O

The next lemma is essentially included in the proof of {02, Proposition 6].

PROPOSITION 1.7. Let X be a finite G-complex with the following two properties.
(a) For each 1#HCG, X is acyclic or empty, and is acyclic if H has prime power
order.
(b) For some n>0, H,(X)=H,(X), and is Z-free.
Then H,(X) s stably free as a Z[G]-module.

Proof. For each prime p and each Sylow p-subgroup SCG, consider the subcomplex

X/: U XH={1'€X Sl#l}

1£HCS
By Proposition 1.3, applied with H={1#£HCS}, X' is acyclic (N (H)=~x* since H has

maximal element S). Hence H, (X, X')2H,(X) also vanishes in degrees different from .

Furthermore, since all cells in X'\ X’ are permuted freely by S, C.. (X, X') is a chain com-
plex of finitely generated free Z[S]-modules (Lemma C.1). So by Proposition C.2, the
unique nonvanishing homology group H,, (X, X')~H,(X) is Z[S]-stably free. (Since all
but one summand in (1) of Proposition C.2 is stably free, so is the remaining sum-
mand, by definition.) In particular, H, (X) is a Z|G]-module which is projective after
restriction to each Sylow subgroup, and is hence Z[G]-projective by Rin’s theorem [Ri,
Proposition 4.9].

Now set Y=XxXX, where XX is the unreduced suspension of X (see Lemma A.5).
We identify X with the subcomplex X x {zy} of Y, where z,€ XX is one of the suspension
vertices. Then H, (XX, xy)=H,+1(ZX,20)=2H,(X); and so by the Kiinneth formula,

H,(X)®zH,(X) ifi=2n+1,
H{(Y,X)=2H; , 1(X)®H,+1(EX,z9) =< H,(X) if i=n+1,

0 otherwise.
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Consider the subcomplexes

X,= U X¥ and Y,= U Y
1#£HCG 1£HCG
We claim that the inclusion map X;—Y, is a homology equivalence. To see this, set
F={1#HCG|X"#2}. By Proposition 1.3, there is a map f:Y,—N(F) such that
FY)TYCN((F)p) for all HCG; and f|x, has the same property. Since X, and Y; are
both H-universal (G, F)-complexes (Y#=XH x XX is acyclic if X¥ is), Proposition 1.3
implies that f restricts to homology equivalences Y, —=N(F) and X;— AN (F); and thus

that the inclusion X;CYj is a homology equivalence.

In particular, this shows that H.(Y,X)=H.(Y,XUY,) (see Lemma B.2). Thus,
C.(Y,XUY,) is a chain complex of free Z[G]-modules (by Lemma C.1, since G acts
freely on Y \(XUY})) with only two nonzero homology groups. Since H,(X)®z H,(X)
is stably free by Proposition C.3, the other homology group H,(X) must also be stably
free by Proposition C.2. ]

For any G-space X and any HCG, we write
X>H={zeX |G, 2H},

i.e., the union of fixed point sets of subgroups which strictly contain H. Also, for any
family FCS(G), Fsu denotes the set of elements of F which strictly contain H.

PROPOSITION 1.8. Let G be any finite group, and let F be a separating family
for G. Let FoCF be any subfamily with the property that N'(Fsy) is contractible (and
nonempty) for all He F\Fy. Let d: Fy—N be any function which is constant on conju-
gacy classes of subgroups, such that d(H)=0 for H mazimal in F, such that N ((Fo)>u)
is homologically (d(H)—1)-dimensional for each nonmazimal subgroup He Fy, and such
that d(H)2d(H') whenever HC H'. Then there is a finite H-universal (G, Fy)-complex
X with the property that dim(X")<d(H) for each HE Fy. Furthermore, X can be taken
to be universal if d(H)#2 for each HEFy. Also, X can be chosen such that every verter
of X is fixed by some mazximal subgroup in F.

Proof. Extend d to a function F—N by setting d(H)=max{d(H')|HCH'eFy}
for all HE F\Fy. Let Fax be the set of maximal subgroups in F. Set Xo=Fax, re-
garded as a 0-dimensional G-complex. Since the elements of Fy,,x are all self-normalizing
(Lemma 1.1), Xg is a O-dimensional (G, F)-complex, and (Xo)¥ contains exactly one
point for each He Fiax-

Let Hy,...,Hy=1 be conjugacy class representatives for the elements of F\Fpax,
ordered such that d(H;)<d(H3)<...<d(H}), and such that i< j if H; contains a subgroup
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conjugate to H;. For each i=0,...,k, let H; be the set of all maximal subgroups in F,
together with all subgroups conJugate to H; for any j<¢. In particular, Ho=Fnax and
Hi=F. We construct a sequence of G-complexes XoC X;C X,C...C Xy such that for
each i21,

(a) dim(X,)<d(H;) and XV =X,,

(b) if X; 2X;_1 then X;\ X;_; has only orbit types G/H;,

(¢) X;=X,;_1 if H;¢Fy, and

(d) (X;)H: is acyclic, and is contractible if H;€Fy and d(H;)#2.
Note that for each HE Fpax, (Xo)?={H} is contractible, and hence (X;)¥ will be con-
tractible for all ¢>0. Once the X; have been constructed, we set X=Xj;. This is a
(G, Fo)-complex; and for all HE Fy, dim(X 7)< d(H), and X# is acyclic, and contractible
if d(H)#2. And by (a), each vertex of X is in Xy, and hence fixed by a maximal subgroup
of F.

It remains to construct the X;. Assume that X;_; has been constructed (i>1).
Then X;_; is an H-universal (G, H;_1)-complex. By Proposition 1.3 (and by definition
of the #;),

H((Xim)®) = Hu((Xim1) ") 2 H(N (Hiz) > 1)) = H NV (F> ).

In particular, by Lemma 1.4, (X;_;)¥¢ is homologically (d(H;)—1)-dimensional, and is
acyclic if H;¢Fy. Also, dim((X,_1)7¢)<d(H,): this is clear if i=1 (dim(X)=0), and
holds for i>1 by (a) since d(H;)<d(H,) for j<i by assumption. Thus, if H;¢Fy, we can
set X;=X,_1.

Assume now that H;€F,. Write H=H, and d=d(H) for short. If d=1, then
(X:-1)" is (at most) l-dimensional, and its connected components are all acyclic.
For each 1#K/H<N (H )/H of prime power order, K€F since F is separating, hence
KeHi_1, and so (X; )X =((X;—1))YK/H is acyclic by (d). Also, since K/H cannot act
on any of the acychc components of (X;_;)}¥ without fixed points, the only component
of (X;_1)" which is invariant under the K/H-action is the one which contains the fixed
point set. So by Lemma 1.5, applied to the N(H)/H-set mo((X;—1)") (the set of con-
nected components of (X;_1)¥), (X;—1)" has one connected component which is fixed
by the action of N(H)/H, and the other components are permuted freely by N(H)/H.
Proposition 0.2 (d) now applies to show that there is a finite G-complex X;, obtained by
attaching orbits of cells G/H x D! to X;_;, such that (X;)¥ is acyclic.

If d>1, then by Proposition 0.2 (a), there is a G-complex Y DX;_,, constructed
by attaching cells G/H x D* for 1<k<d-1, such that Y¥ is (d—2)-connected and
Hy_1(YH) is Z-free. In particular, Y# is still homologically (d—1)-dimensional, and
dim(Y H)<d. For any subgroup 1#K/HCN(H)/H of prime power order, (Y H)X/H =
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YE=(X;_1)¥ is acyclic by (d): Ke&F by definition of a separating family, and so
KeH;—1. Proposition 1.7 now applies to show that Hy_i(Y) is stably free as a
Z|N(H)/H]-module. So by Proposition 0.2 (c), we can attach orbits of cells of type
G/H x D* for k=d—1,d to Y, to obtain a finite G-complex X;2Y such that (X;)¥ is
acyclic. O

In fact, one can show for any family F of subgroups of G that there is a universal
(G, F)-complex. But such a complex must be infinite-dimensional if F is not a separating
family.

We can now state necessary and sufficient conditions for the existence of universal

or H-universal (G, F)-complexes of a given dimension.

ProprosiTION 1.9. Let G be any finite group, and let F be a separating family
for G. Let FoCF be any subfamily with the property that N (Fsp) is contractible (and
nonempty) for all HE F\Fy. Then there is a finite universal (G, Fo)-complex. Further-
more, the following four conditions are equivalent for any m>2:

(a) There exists an m-dimensional universal (G, F)-complex ( H-universal if m=2).

(b) There exists a finite m-dimensional universal (G, Fo)-complex (H-universal if
m=2).

(¢) N(Fsu) is homologically (m—1)-dimensional for each subgroup He Fy.

(d) N((Fo)>w) is homologically (m—1)-dimensional for each set H of subgroups
of G.

Proof. Since the nerve N'(F) is finite-dimensional, a function d as in Proposition 1.8
clearly exists, and so the existence of a finite universal (G, Fy)-complex follows from
Proposition 1.8.

(a) = (d). If X is an m-dimensional H-universal (G, F)-complex, then for any set of

subgroups H, X* is homologically (m—1)-dimensional by Lemma 1.6. Since
H.(X™) 2 H (N (F>)) = H (N ((Fo) >))

by Proposition 1.3 and Lemma 1.4, N'((Fy)>#) is also homologically (mn— 1)-dimensional.
(d) = (c). Follows immediately from Lemma 1.4.
(c¢) = (b). Follows immediately from Proposition 1.8.
(b} = (a). Follows immediately from Lemma 1.4. O

As an immediate corollary of Proposition 1.9, we get

COROLLARY 1.10. Let G be any finite group, and let F be a separating family
for G. Then there is a (finite) 2-dimensional H-universal (G, F)-complez if and only if
N (Fsn) is homologically 1-dimensional for each subgroup HEF, if and only if N(F»3)
is homologically 1-dimensional for each set H of subgroups of G. ]
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2. Numbers of cells

Again, G will always be a finite group throughout this section. We prove here some
results which will be useful for keeping track of Euler characteristics of (unions of) fixed
point sets in H-universal G-complexes. The notation used for doing this is defined as

follows:
Definition 2.1. For any family F of subgroups of G, define

1

ir(H) =i r)(H)= IN(H) H] (1-xN(F>u)))

for each HeF. Set I(G, F)=i(c,r)(1).

We first note the following elementary relation between Euler characteristics of G-
complexes and of their orbit spaces.

LEMMA 2.2. Let X'CX be any pair of finite G-complexes, and assume that all
orbits in X\ X' are of type G/H for some fixed subgroup HCG. Then

X(X)=x(X") =|G/H|-(x(X/G) - x(X'/G)).

Proof. For each n>0, let ¢, denote the number of n-cells in X not in X’. Then
xX(X)—x(X")=3%_,50(~=1)"cn. By assumption, each G-orbit of cells has order exactly
|G/H|. So the number of n-cells in X/G not in X'/G is (1/|G/H]|)-¢, for each n, and

thus
Cn 1

X(X/G)=x(X'/G) = (-1)" G/H] - |57F|(><(X)—X(X'))- O

nz20

The relation between the indices ix(H) and Euler characteristics of universal com-

plexes is given in the following two lemmas.

LEMMA 2.3. Fiz a separating family F, a finite H-universal (G,F)-compler X,
and a subgroup HCG. For each n, let ¢,(H) denote the number of orbits of n-cells of
type G/H in X. Then i;(H):Zn>O(—1)"c,,,(H).

Proof. By Proposition 1.3, there is a G-map f: X -N(F) which restricts to homol-
ogy equivalences X# 5 N(Fsp) and X>H N (Fsp). Thus, by Definition 2.1, and by
Lemma 2.2 applied to the action of N(H) on the complexes X>HC X #

1 1

=x(XH¥/N(H))-x(X>H/N(H)).

ir(H)= X(XH) —x(X>H))
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Each orbit of cells of type G/H x D™ in X restricts to one of type (N(H)/H)x D" in XH,
and hence to exactly one n-cell in the orbit space X¥/N(H). These are precisely the
cells in X*/N(H) which are not in X>#/N(H), and hence

X(XH/N(H))=x(X>H/N(H)) =Y (~1)"ea(H). ' U

nz0

LEMMA 2.4. Let F be any separating family of subgroups of G, and let X be any
finite H-universal (G, F)-complez. Let HCF be any subset with the property that K2
HeH and KeF implies KeH. Then

XN(H) =x(X*) = S [N(H): H] iz (H). (1)

HeH

If, furthermore, H is a family (i.e., a union of G-conjugacy classes), then

X(X"G)= > ix(H). (2)

HeEH /conj

Proof. We prove these formulas by induction on |H]; they clearly (vacuously) hold
when H=@. Let H be a minimal subgroup of H, and set H'=H\{H}. Then N(H)=
N(H)YOn(Fs ) CN(F>n)); in other words, the union of N(#') and C(N(F»p)) (the
cone over N'(Fsg)) with intersection N'(Fsg). So by the Mayer—Vietoris sequence for
the union,

XNV (H) =xN(H')+1-xN(F>n)) =xN(H))+[N(H): H]-ix(H);

and 50 X(N(H)=Y yen[N(H):H]-iz(H) by induction. Since x(N(H))=x(X™) by
Proposition 1.3, this proves (1).

Now assume that #H is a family. For each n>0 and each HeH, let ¢,(H) be the
number of orbits of n-cells of type G/H. Let c,(H) be the sum, taken over conjugacy
class representatives for all HeH, of the ¢, (H). Then ¢, (H) is precisely the number of
n-cells in X*/G; and so

XX =S (e = Y S (D)= Y ir(H)
n=0 HeH /conj n=0 HeH /conj

by Lemma 2.3. O
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COROLLARY 2.5. For any separating family F of subgroups of G,

> ip(H)=1.

He F/conj

Proof. If X is any finite H-universal (G, F)-complex, then in particular X is acyclic,
and so X/G is acyclic (cf. [Br, Theorem II1.7.12]). Thus x(X/G)=1, and so the result
follows from Lemma 2.4 (applied with H=F). O

The following relations will be useful later, when manipulating nerves of subgroups
of G.

LEMMA 2.6. Fiz a separating family F of subgroups of G. Let F.CF be the sub-
family of those subgroups HEF such that N (Fspg) is not contractible. Fiz a subgroup
HeF, such that HCN(H)eF, and let Ky, ..., K, be G-conjugacy class representatives
for the subgroups KeF, such that KpH and Nx(H)=H. For each j, let a; be the
number of Kj-conjugacy classes of subgroups in K; which are G-conjugate to H and
self-normalizing in K;. Then

i (H) == a5-ic.5)(K;)- (1)
j=1

Proof. For any subgroup He F\F,., N(F~py) is contractible, and so ix(H)=0 by
Definition 2.1. So we can assume that the K, ..., K, contain G-conjugacy class represen-
tatives for all subgroups K€ F such that K2 H and Nx(H)=H (not just those in F,),
without changing the right-hand side in (1).

Let X be any finite H-universal (G, F)-complex. Set H=F5y, and set

Ho={KeF|K2H,Nx(H)2H}.

Then M (H) and N(Hg) are both contractible by Lemma 0.3 (b): the first since H has
smallest element H; and the second since N(H)eHo, and N(H)NKeH,y for all KeH,.
By Lemma 2.4,

S IN(K):K]-iz(K) = X(N (H)) ~x(N (Hg)) = 1-1=0. (2)

KeH\Ho

Set R={KeF | KpH, Nx(H)=H}; the subgroups K, ..., K, are thus G-conjugacy class
representatives for the elements of R. For each j, set

Sj:{gecngjg_lgHaNngg"l(H):H}‘ (3)
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Then clearly
Sj={9€G|K;2g 'Hg, Nk,(g”'Hg)=g 'Hg}. (4)

Let
bj=|{KeR| K is G-conjugate to K,}|.

It is clear from (3) that |S;|=b,;|N(K;)|. On the other hand, one easily checks that
by (4), |Sjl=a;|K;|-|N(H)|/|H]|. It follows that

L biINCE) || H]
T KL IN(H)
Now by (2),
IN(K)|-|H| IHI Z IN(K;)I-|H| IHI
Z b ZCLJ Zj:
P |K| IN(H TR N ()|
and this finishes the proof of the lemma. 0

3. Construction of 2-dimensional actions

Again, in this section, G always denotes a finite group. To simplify the statements of
results here and later, for any separating family F of subgroups of G, we write (G, F)elUs
whenever there exists a 2-dimensional H-universal (G, F)-complex (and (G, F )¢ U, other-
wise).

We are now ready to construct the 2-dimensional acyclic actions of the groups G
listed in Theorem A. But we first must look more closely at the question of which sub-
groups of G need not appear as isotropy subgroups in a universal (G, F)-complex.

For any G and any separating family F of subgroups of G, we say that HEF is
a critical subgroup in F if M(Fsg) is not contractible. As seen in Proposition 1.9,
subgroups which are not critical need not occur as isotropy subgroups in (H-)universal
(G, F)-complexes. When notation is needed, we will denote by F,. the subfamily of
critical subgroups in F. In the following lemma, we note some conditions which allow us
to show that certain subgroups in F are not critical.

LEMMA 3.1. Let F be any family of subgroups of G which has the property that
HCH'CH" and H,H"eF imply H' € F. Fiz a subgroup HEF. Then N(Fsg)=x* if
any of the following conditions hold:

(a) H is not an intersection of mazimal subgroups in F.

(b) There is a subgroup HpH, HEF, such that KNHDH for all HGKEF,.
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Proof. (a) Let F'CF be the subfamily of all intersections of maximal subgroups
in F, and let a: F—F’ be the function which sends a subgroup to the intersection
of the members of F,ax which contain it. Then o induces a deformation retraction
N(Fspu) = N(FL ) (Lemma 0.3 (a)); and N(F. ) is contractible since it contains the
minimal element a(H).

(b) Set H={KeF|KNHRH}. Then HeH, and KNHeH for all KeH. So N'(H)
is contractible by Lemma 0.3 (b).

Now (F.)sua=(Fc)»n by assumption, and so

N(F>m) 2 N((Feo)>r) = N({(Fo)pu) 2 N(Fon) = N(H) =,

=

where the homotopy equivalences follow from Lemma 1.4. O

The following lemma provides a simple sufficient condition for the existence of a

2-dimensional H-universal {G, F )-complex.

LEMMA 3.2. Let F be any separating family of subgroups of G. Assume, for every
nonmazximal critical subgroup 1£HEF, that N(H)eF, and that KNN(H)2H for all
nonmazimal critical subgroups K2 H in F. Then (G, F)elUs.

More precisely, let My,..., M, be conjugacy class representatives for the mazimal
subgroups of F, and let Hy, ..., H be conjugacy class representatives for all nonmazimal
critical subgroups of F. Then there is a 2-dimensional H-universal (G,F)-complex X
which consists of one orbit of vertices of type G/M,; for each 1<i<n, (—ir(H;)) orbits of
1-cells of type G/H; for each 1<j<k, and free orbits of 1- and 2-cells. If, furthermore,
G is simple, and if it is impossible to write F as a disjoint union F=F 11 F, such that
the orders of all subgroups in F\#@ are prime to the orders of all subgroups in Fo#£Q,
then X can be constructed to contain exactly ix(1) free orbits of 2-cells and no free
orbits of 1-cells.

Proof. Fix a nonmaximal critical subgroup H=H;€F. If (F.)>n < Fumax, then
N(Fspy)=N((F.)>n) is homologically 0-dimensional by Lemma 1.4. Otherwise, let H
be the set of all K€ F. g such that KNN(H)2H, and set H.=HNF,. Then N(H)eH,
and KNN(H)eH for all KeH, so N(H) is contractible (Lemma 0.3 (b)). Since HCF
and H.CF, are terminal subposets, Lemma 0.4 now applies to show that N (H,.)~x.
Thus, N((F.)>y) consists of one contractible component N'(#..), together with some
isolated vertices for those maximal subgroups M€ F.y such that MNN(H)=H. In
particular, N'(Fsg) is homologically 0-dimensional.

Hence, by Proposition 1.8, there is a finite H-universal (G, F,)-complex X such that
dim(XM)=0 for each maximal subgroup M€ F, such that dim(X#)=1 for each nonmax-
imal subgroup 1# H€ F,, and such that each vertex of X is fixed by a maximal subgroup
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in F. But by Proposition 1.3 and Lemma 1.4, H.(X)=H.(N(Fs1)), so N(Fs1) is
homologically 1-dimensional since X is; and by Proposition 1.8 again, X can be taken
to be 2-dimensional.

By the above description of X, we see that all orbits of vertices in X are of type
G/M for maximal M; that all orbits of edges are of type G/H; for 1<i<k or (possibly)
free (of type G/1); and that all orbits of 2-cells are free. Hence the number of orbits of
cells of type G/M; or G/H, follows from the formula in Lemma 2.3. (Note that ix(M)=1
whenever M is maximal.)

Now assume that G is simple, and that it is not possible to write F as a disjoint union
F=F111.F; such that the orders of all subgroups in F;#& are prime to the orders of all
subgroups in Fo#@. We first claim that X is connected. To see this, consider the map
©: Fso—mo(Xs) which sends a subgroup H to the unique connected component of X,
which contains X . This is clearly surjective, since each component is the image of the
isotropy subgroup of any vertex in the component. Also, H'C H implies ¢(H')=¢(H),
so all subgroups of order a multiple of any given prime p are sent to the same G-orbit
in m9(X,), and the assumption on F implies that mo(X,) consists of only one G-orbit.
Finally, for any component Yem(X,), ¢~ (Y) contains a Sylow p-subgroup for each
prime p||G|, Y is H-invariant for each He€™!(Y), and this shows that Y is G-invariant
and thus that Y =X, is connected.

Now, by Proposition 1.7, H,(X,) is stably free as a Z[G]-module, and hence is free
by Proposition C.4 since G is simple. So by Proposition 0.2 (¢), applied with k=0, X can
be constructed by attaching only free orbits of 2-cells to X; and the number of orbits of

cells is again given by Lemma 2.3. O

Lemma 3.2 will be applied to construct 2-dimensional actions of the simple groups
Ls(q) (=PSLy(q)) for certain ¢q, and of the Suzuki groups. We first list some of the
properties of subgroups of the Ly(g) which will be needed here, and also later in §6.

PROPOSITION 3.3. Fiz g=p*>4, where p is prime. Then the mazximal solvable
subgroups HC Lo(q)=PSLa(q) and HCPGL»(q) are as described in Table 1. (Note
that Ly(q)=PGL2(q) when q is a power of 2.) Here, in all cases (when q is odd), H=
NpGr,q)(H). Furthermore, each nonsolvable subgroup of Lo(q) is conjugate in PGLy(q)
to one of the groups Ly(qo) for qo=p* and ko|k; or to PGLy(qo) for qo=p* and 2k¢|k;
or (if q is odd and gq==+1 (mod 5)) is isomorphic to As.

Proof. See [Su2, §3.6]. The subgroups of Lg(q) are described in [Su2, Theorems
3.6.25-26], and in [H1, 8.27]. The uniqueness up to conjugacy of the dihedral groups
follows from [Su2, 3.6.23]; and the uniqueness of the F xC,_) or FyxC,_1y/2 follows
since they are normalizers of Sylow p-subgroups. The maximal subgroups A4 or 34
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HCLy(g) (godd) HCPGL(q)
No. classes H No. classes Conditions
FgxC-1)/2 1 FgxCq- 1 —
D,y 1 Dsyy-1) 1 —
Dgs1 1 Dag41) ! —
Ay 1 P 1 g=%3 (mod 8)
Y4 2 P 1 g=%1 (mod 8)
Table 1

are normalizers of elementary abelian subgroups (C2)?C Ly(q), of which there is one or
two conjugacy classes depending on ¢ (mod 8) (see also [H1, 8.16]). The fact that any
subgroup isomorphic to La(go) or PGL2(qo) is conjugate (in PGL2(g)) to the standard
one follows from [Su2, 3.6.20 and Examples 3.6.1+3].

Note in particular that B (¥F xC,_, or 2F;xC(,_1),2) is represented by the group
of upper triangular matrices, and that Dy(,_,) is the subgroup of monomial matrices. The
other dihedral group Dy(q41) or D41 is the subgroup of GL(Fg2) (here F 2 is viewed as a
2-dimensional vector space over F,) of all transformations of determinant 1 generated by
multiplying by an element of F . or by applying the Frobenius automorphism (z+ z9).

Finally, the results about maximal subgroups of PGLy(q) follow from the informa-
tion about subgroups of La(q?) 2 PGLx(q). O

We first construct actions of the groups Ly(2F).

EXAMPLE 3.4. Set G=Ly(q), where g=2% and k>2. Then there is a 2-dimensional
acyclic fixed point free G-complex X, all of whose isotropy subgroups are solvable. More
precisely, X can be constructed to have three orbits of vertices with isotropy subgroups iso-
morphic to FyxCy_1, Dyy—1) and Dygy1); three orbits of edges with isotropy subgroups
isomorphic to Cy_y, Cy and Cy; and one free orbit of 2-cells.

Proof. Let SLV be the separating family of solvable subgroups of G, and let SLV,,C
SLYV be the subfamily of all critical subgroups in SLV. By Proposition 3.3, the maximal
solvable subgroups of G are the groups B=F,xC,_1, Dy_1) and Dy4;1), where each
occurs with exactly one conjugacy class.

The Borel subgroups of G are those conjugate to B; or equivalently those subgroups
of G which fix a line (a 1-dimensional subspace of (F;)?). Every subgroup of G of even
order is contained in at most one Borel subgroup, since the subgroup of elements fixing
any two distinct lines is cyclic of order g—1. Also, any subgroup contained in both a Borel
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HeSLV. | KNN(H)=H | i(H)
B=F,xCy_1 — 1
Dsg-1) _ 1
Dy e 1
Cyor B 1
Cs Dyq+1) -2
1 —_ 1
Table 2

subgroup and a dihedral subgroup must have order 2. Thus, C; is the only subgroup of
even order contained in more than one maximal subgroup in SLV. Any nontrivial odd
order subgroup is contained in a unique maximal dihedral subgroup (its normalizer); and
a subgroup C, for 1#r|(g—1) is contained in exactly two Borel subgroups corresponding
to the two lines (eigenspaces) it leaves invariant. Thus, since each critical subgroup must
be an intersection of maximal subgroups in SLV (Lemma 3.1), the only possible critical
subgroups are the maximal subgroups, together with C,_;, C2 and 1 (one conjugacy
class each). It is clear that the hypotheses of Lemma 3.2 are satisfied, and hence that
(L2(q), SLY)€Us.

Computations using Lemma 2.6 (and Corollary 2.5 to determine iscy(1)) now yield
Table 2. Using Lemma 3.2 and Table 2, we see that there is an H-universal (G,SLV,)-
complex, with three orbits G/B, G/Dy4—1y and G/Dy(,41) of vertices; with three orbits
G/Ca, G/Cy and G/C,_; of 1-cells; and with one free orbit of 2-cells. O

Before continuing with the construction of the actions of other groups, we want to
discuss the classical example of an As-action, and its relationship with the construction
(when G=Ly(4)= As) in Example 3.4. We first establish our notation. We write SO(3)=
SO(3,R), and write S*=SL;(H)=SU(2, C) for the group of unit quaternions (elements
of norm 1 in the quaternion algebra H over R). There is a homomorphism $%—S0(3),
surjective with kernel {£1}, which is defined by sending a€ S*CH to the matrix of the
conjugation map (z++aza~') on the subspace (i,j,k)CH. Thus, we regard S* as a
two-fold cover of SO(3).

We now identify A5 Lo(5) as the icosahedral subgroup of SO(3), and let A3=SL,(5)
(the binary icosahedral group) denote its inverse image in S%. Consider the action of As
via left multiplication on the space £3=80(3)/As2S% A% of left cosets. This space is
the Poincaré sphere, a 3-manifold which has the homology of the 3-sphere, and whose
fundamental group is isomorphic to the perfect group Af. Then A5 acts with fixed point
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set (SO(3)/As)?s=N(As)/As=pt. Upon removing an open invariant ball around the
fixed point, we obtain a compact acyclic 3-manifold M (with boundary) upon which As;
acts without fixed points. This was the starting point for the construction by Floyd and
Richardson [FR] of an action of A5 on a disk without fixed points (see also [Br, §1.8] for
more details). Since OM#@&, M can now be collapsed to a 2-dimensional subcomplex
X~M, upon which Aj still acts without fixed point.

This last step can be made more explicit. Let P denote the regular polytope with 120
dodecahedral faces, and let T be its symmetry group. Clearly, [ CSO(4)=S%x ¢, S, and
T" contains Ajs (the group of symmetries leaving one face invariant) with index 120. This
implies that I'> A} x ¢, Af; and hence that I’ contains a binary icosahedral subgroup A
which permutes freely the faces of P. So ¥32¢$3/A} can be identified with the space D/~,
obtained by identifying opposite faces of the solid dodecahedron D in an appropriate
way. This is in fact Poincaré’s original construction of the Poincaré sphere. For more
details on the identification, and another way of showing that these two constructions
are equivalent, we refer to [KS, pp. 124-128].

Under this identification of £* with D/~, the As-action on £ is induced by the
usual action on the dodecahedron. The fixed point is thus the center of D; and the oper-
ation of removing the fixed point and collapsing the remaining space to a 2-dimensional
subcomplex corresponds to removing the center of D and then collapsing to its boundary.
The result is an explicit 2-dimensional complex X=0D/~ with fixed point free action
of Ay, which has 6 pentagonal 2-cells, 10 edges, and 5 vertices.

Here is another, quicker way to construct this last complex. Let X be the 1-skeleton
of the 4-simplex, with the obvious action of As permuting the five vertices. Any 5-cycle
in A; (in the vertices of Xy) tells us how to attach a pentagon to X,; and two such
pentagons will be in the same orbit of A; if and only if the corresponding 5-cycles are
conjugate. So by attaching to X six pentagons corresponding to one conjugacy class of
5-cycles in As, we obtain a 2-complex X with As-action. One can check directly that X
is acyclic (and with a bit more work show that m;(X)=Af); but one also sees easily that
it is identical with the previous construction based on the dodecahedron.

If we now subdivide each pentagon in (either of) these spaces, as a union of ten
2-simplices (by adding extra vertices at the midpoints of edges and centers of faces),
we have constructed an As-complex of the type constructed in Example 3.4—except
that the 2-cells have been attached explicitly. This is also identical to the As-simplicial
complex constructed in [S1, §3] and in [AS, §9]. We also note here that for k>3, the
Ly(2F)-complexes constructed in Example 3.4 have the same 1-skeleton as the complexes
constructed in [AS, §9] (which were not acyclic); they differ only in the way the 2-cells
are attached.
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We now consider G=ULy(q). when ¢=+3 (mod 8) is an odd prime power.

EXAMPLE 3.5. Assume that G=Ly(q), where q=p*>5 and ¢g=%3 (mod 8). Then
there is a 2-dimensional acyclic fired point free G-complex X, all of whose isotropy
subgroups are solvable. More precisely, X can be constructed to have four orbits of vertices
with isotropy subgroups isomorphic to FyxCy_1y/2, Dg-1, Dgy1 and Ay; four orbits of
edges with isotropy subgroups isomorphic to C4_1)/2, C2, C3 and Ca; and one free orbit
of 2-cells.

Proof. Since La(5)=L2(4) has already been dealt with in Example 3.4, we assume for
simplicity that ¢>5. Let SLV be the separating family of solvable subgroups of G, and
let SCV.CSLY be the subfamily of all critical subgroups in SLV. By Proposition 3.3,
the maximal solvable subgroups of G are the groups

Dq._l, Dq+1, A4 and B:FqNC(q_l)/z,

where each occurs with exactly one conjugacy class.

Any subgroup HESLYV of order a multiple of p is contained in a unique subgroup
conjugate to B (it fixes a unique line in (F,)?); and is contained in one of the other
maximal subgroups only if p=3 and H=C5. If 1£HESLY has order prime to p, is not
maximal, and is not isomorphic to Cs, then either it is cyclic of order dividing %(q—l)
and contained in one dihedral group and two Borel subgroups (corresponding to the two
lines in (F,)? fixed by H), or it is cyclic of order dividing 3(g+1) and contained in
a unique Dy (its normalizer), or H is dihedral and contained in a unique maximal
dihedral subgroup D41 (the normalizer of its subgroup of index 2). Since each critical
subgroup must be an intersection of maximal subgroups in SLV (Lemma 3.1), we have
now shown that the only possible critical subgroups are the maximal subgroups, together
with one conjugacy class each of subgroups C(,_1)/2, Cs, C2, Cy and 1.

In Table 3, D, denotes the maximal dihedral subgroup of order ¢=1=0 (mod 4),
and D_ the other (conjugacy class of) maximal dihedral subgroup (note that D,=
N(C2)). Recall that we are assuming that ¢>5 (otherwise D,_1=C%). As before, the
computations of igsy(H) for nonmaximal 1# HCG all follow from Lemma 2.6, and the
computation of iscy(1) then follows from Corollary 2.5.

Lemma 3.2 now applies to show that (Lz(q),SLV)€Ua. More precisely, together
with Table 3, it shows that a 2-dimensional H-universal (L2(q), SLV)-complex X can be
constructed with four orbits of vertices of types G/B, G/Dy_1, G/Dg41 and G/Ay; four
orbits of 1-cells of types G/C%, G/ C(q-1)/2, G/C3 and G/Cy3; and one free orbit of 2-cells.
Note that G/C4-1)/2 % D! always connects the orbits G/B and G/D,_1, and G/Cy x D!
always connects the orbits G/D,_; and G/Dy41. The orbit of cells G/C3 x D' connects



FIXED POINT FREE ACTIONS ON Z-ACYCLIC 2-COMPLEXES 229

HeSLV, | KNN(H)=H |i(H)
B=F¢xCg-1)/2 — 1
Dys — 1
Dyt — 1
Ay — 1
Clg-1)/2 B -1
c2 D. 1
Cs Aq -1
Cy D. -1
1 — 1

Table 3

G/A4 to G/Dy—1 or G/Dgy41, depending on q (mod 8). And the orbit of cells G/Csx D?
connects G/A4 to one of G/B (if g=3%), or to G/D 4+, (whichever has order a multiple
of 3). a

The third family of groups with 2-dimensional actions consists of the Suzuki groups
-Sz(g), for all ¢g=22%*1>8. In order to specify more precisely subgroups of Sz(q), we
regard it as a subgroup of GL4(F,) as described in [H3, §X1.3]. The following properties
of Sz(q) and its subgroups will be needed here, as well as in §6.

PROPOSITION 3.6. Fiz q=2%+1 and let §cAut(F,) be the automorphism 2%=
22 =2V (thus (2°)=2?). For a,beF, and A(F,)", define elements

1 0 0 0

a 1 0 0

S(a,b) =
(a,b) b a? 1 0
a2t rab+b® a't?+b a 1
and
A+ 0 0 00 0 1
MO [ D CA 0 0010
= ) ’r:

0 0 A2 0 0100
0 0 o0 A2 1 000

Set S(q,0)=(S(a,b)|a,beF,), T=(M(N)| A& (F)*)=Cy_1 and

B=M(q,0)=5(q,0)xT and N=(T,7)=Dyq-1).
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Then Sz(q)={(M(q,8),T), and under this identification the following hold:

(a) S(q,0) is a Sylow 2-subgroup of Sz(q).

(b) There are four conjugacy classes of mazimal subgroups in Sz(q) which are solv-
able: (B), (N), (M,) and (M_), where

M+%Cq+m+1>404 and M_%Cq_\/g—q+1>404.

These are the only mazimal solvable subgroups in Sz(q).

(c) Each nonsolvable subgroup of Sz(q) is conjugate to Sz(qy), for some gg=2*m+1
where (2m+1)|(2k+1).

(d) Sz(q) is contained in the 4-dimensional symplectic group over F,:

Sz(g) C Spa(q) £ {g€ GLa(g) | g9 =7},

where g* is the transpose of g, and 7 is as above.
(e) All of the subgroups B, N, T, S(q,8), Sz(q) are invariant under the automor-
phisms of GL4(q) induced by automorphisms of the field F,,.
()
1S2(g)] = ¢*(a—1)(¢*+1) = ¢*(g—1)- (g++/29 +1)-(¢—/2¢ +1),

where the four factors in the second expression are pairwise relatively prime.

Proof. See [H3, §XL.3]. Note in particular the relations
S(a,b)-S(c,d)=S(a+e,b+d+a’c) and M(AN)7'S(a,b)M(A) = S(Aa, \'*9b).

The list of maximal subgroups of Sz{(q) (points (b) and (c)) is shown in [Sul, Theorem 9.

Note that if gy=22"*+1 where (2m+1)|(2k+1), then Sz(q)NGL4(q0)=Sz(qo) (and
similarly for the other subgroups). The inclusion Sz(gy)<Sz(q) follows since 2¥=2™
(mod 22+ —1), and hence 22" =x" for all z€F,,. The inclusion Sz(g)NGL4(q0)C
Sz(qy) then follows from (c). a

We are now ready to construct actions of Sz(g) on acyclic 2-complexes.

EXAMPLE 3.7. Set q=2%*1 for any k>1. Then there is a 2-dimensional acyclic
fized point free Sz(q)-complex X, all of whose isotropy subgroups are solvable. More
precisely, X can be constructed to have four orbits of vertices with isotropy subgroups
isomorphic to M(q,8), Dyq-1), Cqty3741%Ca and C,_ s55 112 Cy; four orbits of edges
with isotropy subgroups isomorphic to Cy,_y, Cy, Cy4 and Ca; and one free orbit of 2-cells.

Proof. Set G=Sz(q). By Proposition 3.6, G contains the following maximal solvable
subgroups:

M(q,0), Dyq-1), Cyyyag41%Cs and C,_ 5z 1%Cy;
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HeSCV. | KAN(H)=H | i(H)
B=M(q,6) — 1
Dyg-1) - 1
Corvaa+171Ca — 1
Cq_m+1x04 _ 1
Cye M(q,6) 1

Cy qum+1>404 -2

% Dyg-1) -1

1 —_— 1

Table 4

with one conjugacy class for each isomorphism type. If 1ZH€SLY and (|H|,¢*>+1)#1,
then H is contained in a unique maximal subgroup Cg24 /3541%C4: the normalizer of
its unique maximal odd order subgroup. Likewise, if H is dihedral of order dividing
2(q—1) (and |H|#2), then H is contained in a unique maximal subgroup Dy(,_1); while
if |H||(g—1) then H is contained in the same maximal subgroups as its centralizer of
order ¢—1. Any subgroup of even order which is not dihedral is contained in at most
one maximal subgroup, conjugate to M(q, ). (The centralizer of any involution in G is
a 2-group by [Sul, Proposition 1], and each involution in the Sylow subgroup S(g, ) is
central. So an involution cannot be in two Sylow subgroups.) Thus, any subgroup which
is an intersection of two or more maximal subgroups is isomorphic to one of the groups
Cy-1, C4, C; or 1; and these are the only possible critical subgroups by Lemma 3.1 (a).
There is just one conjugacy class each of subgroups C,_; or C; (note, for example, that
all subgroups of order 2 in S{g,#) are conjugate in M(q,6)). By [Sul, Proposition 18],
G contains two conjugacy classes of elements of order 4, and it is easy to check by direct
calculations that an element of order 4 in G is not conjugate to its inverse. Hence G
contains just one conjugacy class of Cy’s.

Now let SLV,. be the subfamily of critical subgroups in SLV. Consider the values in
Table 4 for ispy(H) for HESLV,.. When H=C,_1, Cy or Cy, then iscy(H) is computed
using Lemma 2.6. (Note that C2 can never be self-normalizing in any group of order a
multiple of 4.) The value of iszy(1) then follows from Corollary 2.5.

Lemma 3.2 now applies to show that (Sz(g), SCV)€U,. More precisely, there is a
2-dimensional H-universal (Sz(q), SLV)-complex which has four orbits of vertices and
four orbits of edges (with isotropy subgroups as given in Table 4), and one free orbit of
2-cells. O
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4. Reduction to simple groups

Throughout this section, G will be a finite group. Recall that a G-complex X is called
essential if there is no normal subgroup 1#N<G, with the property that the inclusion
XNC X is a G-Z-equivalence; i.e., such that XV — X# is a homology equivalence for
all HCG. We would like to be able to show directly that all groups which have essential
fixed point free actions on acyclic 2-complexes are simple. Instead, in this section, we
prove a slightly weaker result (Proposition 4.4), where we show that any group with such
an action is an extension of a simple group by outer automorphisms.

The proof of this uses the result in [S1] that the fixed point set of any group acting
on a 2-dimensional acyclic complex must be acyclic or empty. Since the proof in [SI]
requires the Feit-Thompson odd order theorem, we give here a different one, which is

more elementary.

THEOREM 4.1 [S1, Theorem 3.4]. Let X be any 2-dimensional acyclic G-complex
(not necessarily finite). Then X is acyclic or empty, and is acyclic if G is solvable.

Proof. The first half of the following proof is essentially the same as that in [S1],
but is included here for the sake of completeness.

If G is a p-group for some prime p, then X is Z/p-acyclic by Smith theory (cf. [Br,
Theorem I11.7.12]), and homologically 1-dimensional by Lemma 1.6. It follows that X¢
is Z-acyclic in this case.

Now assume that G is a minimal group for which there is a counterexample. Then G
must be simple and nonabelian—since if N<IG were a proper normal subgroup, then X~
would be acyclic, and hence X¢=(XN)¢/N would be acyclic or empty (acyclic if G is
solvable) by the minimality of G. Also, X is acyclic for all HG G, and X€ = Nuce XH
is homologically 0-dimensional by Lemma 1.6 again. In other words, each connected
component of X% is acyclic, and it remains to show that there is at most one component.

Assume otherwise: let k>2 be the number of connected components of X¢. Let F
be the (separating) family of proper subgroups HG G. Very roughly, we will show that
X “looks like” the join of an H-universal (G, F)-complex Y with a set of k& points. But
for X to be 2-dimensional, ¥ would have to be 1-dimensional, i.e., a tree; and this is
impossible.

To make this precise, let F, denote the poset which consists of F, together with
k elements (G,i) for i=1,...,k. Extend the ordering on F by setting (G,7)2 H for all
HcF, and with no inclusion relations between the (G,4). Write X¢=F11...11 F}, where
the F; are the connected components. We now apply Lemma 0.1, with the covering of X
given by Xy =X*H for HEF, and X(q,iy=F;. Thus, X, is acyclic for each o€ F,. So by
Lemma 0.1, for each HEF, H (X H)=2H, (N ((F+)>n)), and thus N ((F,)> g) is homo-
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logically 1-dimensional (Lemma 1.6). But the poset (F,)s g consists of sy together
with the elements (G, 1), and so its nerve is the union of k cones over N'(Fsyg). This
complex contains the suspension of N'(Fs g ) as a retract (i.e., the case k=2); and hence
N (Fspy) is homologically 0-dimensional. Since this holds for all HeF, Proposition 1.8
now applies to show that there is a finite 1-dimensional universal (G, F)-complex Y.
But then Y is a tree upon which G acts without fixed points, and this is impossible
(cf. [Se, §1.6]). O

The following easy consequence of Theorem 4.1 turns out to be very useful. Its proof
involves collapsing out certain subcomplexes of a CW complex to create new fixed points,
and get a contradiction to Theorem 4.1. In general, if X is a G-complex and ACX is
a G-invariant subcomplex, then X/A is defined to be the quotient space X/~, where
x~y if =y or z,y€A. This quotient space has an obvious structure as a G-complex:
where (X/A)(™ =X/~ and where X/A has one vertex for the identification point A/A
and otherwise one cell for each cell in X not in A (see [LW, Theorem IL.5.11], taking
Y=pt). The homology groups of X, A and X/A are linked by exact sequences (coming
from the fact that C,,(X/A)/C,(pt)=C,(X)/Cr(A)). In particular, if A is acyclic, then
H.(X/A)=H.(X).

COROLLARY 4.2. Let X be any 2-dimensional acyclic G-complex. Assume that
A,BC X are G-invariant acyclic subcomplezes such that AUBDX®. Then ANB#2.

Proof. Assume otherwise: that ANB=@. Let Y be the G-complex obtained by
identifying the subcomplexes A and B each to a point. Then Y is still acyclic, since
A and B are, and Y consists of the two identification points. And this contradicts
Theorem 4.1, which says that Y¢ must be acyclic or empty. O

As immediate consequences of Corollary 4.2 we get:

LEMMA 4.3. Let X be a 2-dimensional acyclic G-complex. Then the following hold:

(a) ([AS, 4.5)) If H,KCG are such that HCNg(K), and XH and XK are non-
empty, then XHK£x,

(b) If HCG is such that X" =2, then XCc(H) £y,

Proof. 1If X¢# @, then (a) and (b) are obvious. So assume X¢=2.

(a) Since H normalizes K, both X# and XX are H-invariant acyclic subcomplexes
of X. So by Corollary 4.2, if X and X¥ are nonempty, then XN XK=XHK Lg,

(b) It suffices to prove this when H is minimal among subgroups without fixed points.
Fix a pair M, M’C H of distinct maximal subgroups (H is nonsolvable). Then XM and
XM are nonempty, but XMAXM'=xMM) = xH_g Thus XM and XM are disjoint
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Cq(H)-invariant acyclic subcomplexes of X, and so Cg(H) must have fixed points by
Corollary 4.2. O

As a first consequence of Lemma 4.3, we can now prove

THEOREM B. Let G be any finite group, and let X be any 2-dimensional acyclic
G-complex. Let N be the subgroup generated by all normal subgroups N'<<G such that
XNl7é®. Then XV is acyclic; X is essential if and only if N=1; and the action of G/N
on XV is essential.

Proof. If XNz and XN2+£@, where Ny, No<G, then XNV Lo by Lemma
4.3 (a). Thus XV is nonempty, and is acyclic by Theorem 4.1. The action of G/N on
X" is always essential, since any nontrivial normal subgroup of G/N has empty fixed
point set.

Now assume that N#1. For all HCG, X and X™VH are acyclic or empty by
Theorem 4.1; and XV is nonempty if X is by Lemma 4.3(a). So the inclusion
XNH _, XH is always an equivalence of integral homology, and hence X is not essential. [J

We are now ready to prove

PROPOSITION 4.4. If G is a nontrivial finite group for which there exists an essential
2-dimensional acyclic G-complex X, then G is almost simple. More precisely, there is a
normal subgroup L<IG such that L is simple, such that XY =2, and such that C¢;(L)=1
(i.e., GCAut(L)).

Proof. By Theorem B, XVN=@ for all normal subgroups 1#N<G. In particular,
XC=2.

Fix a minimal normal subgroup 1#L<G. Then L is nonsolvable, since X*=@.
Hence L is a direct product of isomorphic nonabelian simple groups (cf. [G, Theo-
rem 2.1.5}).

Assume first that L is not simple. By Lemma 4.3 (b), X ¥ #@ for some simple factor
HAL; and L=(gHg~!'|g€G) since it is a minimal normal subgroup. Since XoHy ' =
g(XH)#o for all g, X*#@ by Lemma 4.3 (a) (applied to the action of L on X). And
this is a contradiction.

Thus, L is simple. Set H=Cg(L). Then H<G, and X" #& by Lemma 4.3 (b); and
so H=1 (again since the G-action on X is essential). a

Using Proposition 4.4, when determining which finite groups have essential fixed
point free actions on 2-dimensional acyclic complexes, it suffices first to determine which
simple groups have such actions, and then consider automorphism groups only of those
simple groups which do have them.
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5. Some conditions for nonexistence of 2-dimensional actions

Again, throughout this section, G is a finite group. We recall two definitions introduced
in §3. If F is a separating family for G, then F. denotes the subfamily of critical
subgroups for F: the set of all H€F such that N (Fs g)#*. And Us denotes the class of
pairs {G, F) (where F is a separating family for G) for which there exists a 2-dimensional
H-universal (G, F)-complex. We have already constructed some examples of pairs (G, F)
which do lie in Us, and next want to show that they are the only ones. In this section,
we develop some general techniques for doing this.

For any G-complex X, and any n>1, it will be convenient to write X[ to denote
the union of fixed point sets of subgroups of order a multiple of n; or equivalently the
set of all z€ X for which n||G.|. Also, for any family F of subgroups of G, we write 77,
to denote the subfamily of those subgroups in F of order a multiple of n. We will see
that if (G, F)€Us,, then not only is N(F,)) homologically 1-dimensional for all n, but
its orbit space N/ (Fin))/G is homologically 0-dimensional (i.e., its connected components
are acyclic).

In §5(a}, conditions are established which allow us to directly detect elements in
Hy(N(F))), for appropriate n, via Euler characteristic arguments. The properties of
N (Fn))/G are shown in §5(b), and then another set of criteria are found which detect
elements in H)(N(F,)/G). Afterwards, conditions on G and F are set up in §5(c)
which imply that for any 2-dimensional H-universal (G, F)-complex X, the singular set
X, is itself acyclic (and hence H-universal); and then §5(d) deals with the problem of

showing that this is impossible.

5(a). Detecting 2-cycles in nerves of posets of subgroups

Our main tool here for directly detecting elements in the second homology of nerves of
posets of subgroups will be certain “coset complexes”. We adopt the following notation:

Definition 5.1. Fix any group G, and eny triple K, Ko, K3 of subgroups of G.
Define
(K1, K2, Ky)) = (K1, K2, Ks))a

to be the G-simplicial complex with vertex set (G/K;)I(G/K2)U(G/K3) (where G acts
by left translation}, and with a 1- or 2-simplex for every pair or triple of cosets with
nonempty intersection.

Thus, each edge in (K1, K2, K3)) has the form [aK;,aK;] for some a€G and some
1<i<j<3, and each 2-simplex has the form [aK,aK>,aK3] for some a€G. In many
cases, one can show that Ha({K1, K2, K3)))#0 via an easy counting argument:
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LEMMA 5.2. Fiz any group G, and any sequence K1, K9, K3 of subgroups of G. Set
Kij=KiﬂKj, K:KlﬁKgﬂKg and GI=<K1,K2,K3>. Assume that
1 1 1

+ + <L 1
[KlglK] [KlglK] [Kgg:K] ( )
or (more generally) that
3
1 1 1
— - . 2
; K, K] <1+; K K] [G:K] (2)

Then H2(<<K1,K2, K3>)G)7é0

Proof. Set X={K;, K3, K3)¢ for short. By construction, X is the union of its
closed 2-simplices, each of which is of the form aAdéf[aK 1,aK>z,aK3] for some a€G.
Two 2-simplices aA and bA intersect if and only if aK;=bK; for some 7. Upon making
this relation transitive, we see that aA and bA are in the same connected component
of X if and only if @ and b are in the same left coset of G'=(K7, K2, K3); and so there
are exactly [G:G’] connected components.

By definition, X has three orbits of vertices of type G/Kj;, three orbits of edges of

type G/K;j, and one orbit of 2-simplices of type G/K. Hence

\(X) =[G K]-3[G: K]+ 3 (G Ki)

i<j i=1
1 3 1
(K12 g 2 ) 7 166 =kl
where the inequality follows from (1) or (2). And this implies that Hy(X)#0. 0

The following proposition is a first application of Lemma 5.2. Recall that F, denotes
the subfamily of critical subgroups in a separating family F.

PROPOSITION 5.3. Fiz a finite group G and a separating family F for G. Fiz
subgroups Ko 2 K1 2K, in F, and set Ny5Ng(K;), Njj=N;NN; and N=NyNN;NN;.
Set Fo=F,U(K;)U(K3). Assume that the following hold:

(a)

1 LI 1
> NN S 1*; NN [GN]

i<j

where G'=(Ny, N1, No).

(b} Ko is mazimal in F.

(c) If H H'eFy are such that K;GCHCK, and HGH'G Ky, then H'CK;.
Then Hy(F>(k,))#0; and so (G, F)¢Us,.
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Proof. Set H=(Fo)»(x,)- Consider the 2-simplex o={K3, K1, Ko} in N(H), and
let XCN(H) be the subcomplex generated by the 2-simplices go for all g€G (where G
acts by conjugation). Then X ={(Ny, N1, Na))g; and Ha(X)#0 by (a) and Lemma 5.2.

Let z be any 2-cycle in X such that 0#[z]€ H2(X). After conjugating, if necessary,
we can assume that the coefficient in 2z of ¢ is nonzero. Set Q=’H§£§’, and let Q' be the set
of those He@ such that the coefficient in z of { K2, H, Ky} is nonzero. By construction,
every element of @’ is G-conjugate (in fact, Npz-conjugate) to K;; and by condition (c),
every element of @ in the same N (Q)-connected component as K, is contained in K.
Now Lemma 0.5 applies (because K is in a different connected component of N(Q)
from the other elements of @'), and implies that 0#[z]€ Hy(N(H)). So (G, F)¢ Uy by

Proposition 1.9. O

Two n-tuples of subgroups (Hu,...,H,) and (H{,...,H}) in G will be called G-
conjugate if there is some g€G such that H/=gH;g~! for all i. The normalizer
Ng(Hy, ..., Hy) of such an n-tuple is just the intersection of the normalizers Ng(H;).

The next proposition is a somewhat more complicated application of Lemma 5.2.

PROPOSITION 5.4. Fix a separating family F of G. Let K, Ky, K3€F be three
subgroups such that neither K, nor K3 is conjugate to K,. Set K;j=K;NK; and
K=K\NK;NK3. Let FoCF denote the subfamily consisting of F., together with all
subgroups conjugate to any of the K;, K;; or K. Assume that the following conditions
hold:

(31)

1 1 1
+ + <L
[KIQZK] [K132K] [Kz;;:K]
or more generally
(a2)

1 + 1 N 1 <1+ 1 + 1 N 1 _ 1
[KlgiK] [K]gZK] [K23:K] [KlK] [K2K] [KgK] [G':K]’

where G'=(K1, K, K3).

(b) K, is mazimal in F.

(c) There is no HeFy such that KGHG Kya or KioGCHGK,.

(d) Ng(Ki,Ky2,K)=K.

(e) The triples (K1, K12, K) and (K1, K13, K) are not G-conjugate.
Then Hy(Fx(k))#0; and so (G, F)¢Us,.

Proof. Consider the complex X={{K7, K2, K3)) of Definition 5.1, and let X* denote
its barycentric subdivision. To distinguish between simplices of X* and of N (F), we
put parentheses (—) around the former and curly brackets {—} around the latter. The
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vertices in X* will be denoted (gK;) (the vertices in X)), (¢K,;) (the midpoint of the
edge (gK;,gK;)) and (gK) (the barycenter of the 2-simplex (9K, gK2, gK3)).

We have Hy(X)#0 by (a1) or (az), together with Lemma 5.2. Fix a 2-cycle z
in X such that 0#[z]€ H2(X). We can assume that the coefficient in z of the simplex
(K1, K2, K3) is nonzero (otherwise compose with the action of some appropriate element
of G). Let z* be the corresponding 2-cycle in the barycentric subdivision X* of X.

Let f: X*— N((Fo)>(k)) be the G-equivariant simplicial map which sends each ver-
tex in X* to its isotropy subgroup. Thus f(gK;)={gKig™'}, f(9Ki;)={9Ki;9"'} and
F(gK)={gKg~'}. By conditions (d) and (e), and since neither K, nor K3 is conjugate
to K, the only simplex in X* which is sent to { K3, K12, K} is (K3, K12, K ), and this sim-
plex has nonzero coefficient in the 2-cycle z*. Hence { K, K12, K} has nonzero coefficient
in the 2-cycle f(2*). By (b) and (c), {K1, K12, K} is maximal in N ((Fo)>(k)) (not in the
boundary of any 3-simplex), and hence [f(2*)]#0 in Ho(N((Fo)s(k)))=H2N(F>(x)))
(Lemma 1.4). And thus (G, F)¢ U, by Proposition 1.9 (a)=(d). O

5(b). Detecting nonzero elements in H{(X[™/G)

Recall that for any n and F, F,)CF denotes the subfamily of all subgroups in F of
order a multiple of n. We first show, for (G, F)€U,, that the connected components of
the orbit space of A/ (Finy) are all acyclic, and then set up some conditions which detect
elements in their first homology groups. The starting point for all of this is the following

result, a consequence of Smith theory.

PROPOSITION 5.5. If X is any finite-dimensional acyclic G-complez, then X/G is
also acyclic. If f: X 5Y is any equivariant map between finite-dimensional G-complezes
which induces an isomorphism H.(X;,Z)2H,(Y;Z), then f/G induces an isomorphism
H.(X/G,Z)~2H.(Y/G,;Z).

Proof. The first statement is shown, for example, in [Br, Theorem III1.7.12]. The
second statement follows from the first, since f induces an isomorphism in integral ho-
mology if and only if its mapping cone C; is acyclic, and similarly for f/G. (Note that
Cra=(Cy)/G.) O

The following result is similar to one used in [O3], but formulated here for acyclic

rather than F-acyclic spaces.

PROPOSITION 5.6. Fiz a prime p, and let X be a finite-dimensional acyclic G-
complex with the property that XF is acyclic for all p-subgroups PCG. Then for any
(nonempty) family P of p-subgroups of G, X¥/G is acyclic.
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Proof. We assume that any p-group which contains an element of P also lies in P
(if not, just add these groups to the family). For the purposes of this proof, we define,
for any p-subgroup PCG,

xF= U X9 and xP=¢xF= | x@.
QRP Q2P
Q a p-subgroup Q a p-subgroup

We first claim that for any PeP, the inclusion of X into X¥) induces an isomorphism

of homology groups
H.(XT/N(P), X[/N(P)) = H.(X'"/G, X{P)/G). (1)
In fact, the inclusion induces an isomorphism
C.(1): Cu(XTIN(P), XEIN(P)) S Cu(X PG, X (P G)

between the cellular chain complexes of these pairs. The surjectivity of C.(¢) is clear,
since any open cell ¢CX®N\ X lies in the G-orbit of some o CXP\XP. To see its
injectivity, fix open cells o,a(0)CXF\XF in the same G-orbit (a€G). Then P is a
Sylow p-subgroup of the isotropy subgroups G, and G,sy=aG,a”}, so P and a~'Pa
are both Sylow p-subgroups of G,, and hence a~! Pa=gPg~! for some g€G,. It follows
that ag€ Ni(P), and thus that ¢ and a(o)=ag(s) lie in the same N(P)-orbit. This
proves the injectivity of C,(¢); and finishes the proof that (1) is an isomorphism.
Now set
a=max{a>0]|p"|[G: P] for some PeP}.

The proposition will be proven by induction on «. If =0, then for any Sylow p-subgroup
Pof G, XP)=XP and X_SP)=Xf=®; and so

H,.(XP/G)=H, (X'P/G)= H, (XF/N(P))

by (1). Also, XF/N(P) is acyclic by Proposition 5.5 (since X ¥ is acyclic by assumption);
and thus X%/G is acyclic.

Now assume that a>0. Let PyCP be the subfamily of all P such that p*t[G:P].
Then XP9/G is acyclic by the induction hypothesis, and it remains to show that
H.(XP/G,XP°/G)=0. Let Pi,..., P, be conjugacy class representatives for the sub-
groups in P\ Py, and set P,=PyU(P;). Then by excision,

K3

k k
H(X7/G, XP/G)= @ H.(XP/G,XP/G)= @ H (X'P)/G, X{P/G).
=1 =1
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It thus remains to show that H,(X)/G, Xﬁ”)/G)zo for each P=P;. By (1), this means
showing that H,(X*/N(P),XF/N(P))=0. But XF/N(P) is acyclic by the induction
hypothesis again, and X*/N(P) is acyclic by Proposition 5.5 (since X% is acyclic by

assumption). O

Proposition 5.6 will be applied in particular to get information about the spaces
XM/G and N(Fn)/G.

COROLLARY 5.7. Let F be any separating family for G, and let FoCF be a sub-
family which contains F.. Let X be a finite-dimensional H-universal (G,F)}-complez.
Then for any subfamily H of F,

H (X" G) 2 H(F>3/G) = H,((Fo)pn /G).

In particular,

H.(X:/G) = H (N(F>1)/G) = H (N ((F0)>1)/G)

and
H (XM/G) = H (N (Fin))/G) = Hi(N ((Fo)pm))/G)  for all n>1.

And for any prime power q, N(Fi,))/G is acyclic.

Proof. By Proposition 1.3, for any HCF, there is a G-map f: X—-N(F) which
restricts to a homology equivalence f5#: X* —-AN(F>3). By Lemma 1.4, the inclusion
N({(Fo)>nu)CN(Fsy) is a homotopy equivalence. So by Proposition 5.5, these maps
induce homology equivalences in the orbit spaces. The isomorphisms involving H,(X,/G)
and H,(X["/G) now follow from the case where H=F51 or ‘H=F,. In particular, since
X exists by Proposition 1.8, and since X9/G is acyclic by Proposition 5.6, we see that
N (Fig)/G is acyclic. 0O

The importance of the families F|,,; comes from the following lemma. Note that for
a family F of subgroups of G and a group A of automorphisms of G, the orbit space
N(F)/A need not be a simplicial complex: there could, for example, be two edges of
N(F) not in the same A-orbit, but whose endpoints are identified pairwise. But A'(F)/A
does always have the structure of a CW complex in a natural way (cf. Lemma A.5).

LEMMA 5.8. Let F be a separating family of subgroups of G such that (G, F)€EUs,
and let FoCF be any subfamily which contains F.. Then for all n>1, N((Fo)m))/G
is homologically 0-dimensional. More generally, if GCAut(G) is any subgroup which
contains Inn(G), and such that F and Fo are G-invariant, then N'((Fo)n))/G is homo-
logically O-dimensional for all n>1.
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Proof. Let X be any 2-dimensional H-universal (G, Fy)-complex (X exists by Propo-
sition 1.8). Then X/G is Z-acyclic by Proposition 5.5. If n=p* where p is prime, then
Xl /G is acyclic by Proposition 5.6. If n is not a prime power, write n=gq; ... gx, where
the g; are prime powers for distinct primes. Then X"/G =ﬂf=1 X141/G is an intersec-
tion of acyclic subspaces of X/G; and hence is homologically 0-dimensional by Lemma 1.6
again.

Thus, N((Fo))/G is also homologically 0-dimensional by Corollary 5.7, and its
connected components are all acyclic. The last statement now follows by Proposition 5.5,
since N'((Fo)(n))/G is the orbit space of the G/Inn(G)-action on N((Fo)pm)/G- a

We end this subsection with an application of Lemma 5.8: one situation in which we
can show that N'(F[,)/G is not homologically O-dimensional, and thus that (G, )¢ Us.
The argument is based on the following observation: given a l-cycle ¢ in a simplicial
complex K which involves at least one “free” edge (an edge with no higher-dimensional
simplices attached), then 0#[¢]€ H1(K). Here, “simplicial complex” is used in the more
general sense, where there can be two or more n-simplices (n>1) having the same set of
vertices.

When working with the orbit space N(F)/G, we will let [H] denote the vertex
corresponding to a conjugacy class (H)CJF. More generally, for any chain HoGH1 ¢
...G H,, of subgroups in F, [Ho, Hy, ..., H,] will denote the corresponding n-simplex in
N(F)/G.

PROPOSITION 5.9. Let F be a separating family of subgroups of G. Assume that
there is a mazimal subgroup MEF, and a pair of marimal subgroups K, K'CM which
are not conjugate in M, but are conjugate in G. Then (G,F)¢Us. More generally, the
same conclusion holds if there is a subgroup GC Aut(G) containing Inn(G), such that F
is G-invariant, and such that K and K’ are in the same orbit of G, but not in the same
orbit of the action of the stabilizer of M.

Proof. Set n=|K|. Then F},)/G contains (at least) two edges which connect the
vertices [K] and [M]. The maximality properties guarantee that the resulting loop is
nonzero in Hy(Fn)/G). So (G, F)¢ U by Lemma 5.8. ]

5(c). Acyclicity of N'(F>1)

We now find conditions for showing that A (Fs;) is acyclic, under the assumption that
(G, F)eU,. This can then be combined with results in §5(d) to obtain contradictions.
We first note the following equivalent conditions on F.
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LEMMA 5.10. Fiz a separating family F of subgroups of G, and assume that
(G, F)eUs. Then the following are equivalent:

(a) N(Fs>1)/G is connected and Hy(N(F=1)/G)=0.

(b) N(Fs1) is acyclic.

(¢) N(F>1)/G is acyclic.

Proof. For any 2-dimensional H-universal (G, F)-complex X, H,(X) =2 H,(N(F>1))
by Proposition 1.3, and H.(X,/G)2H,.(N(F>1)/G) by Corollary 5.7. So it suffices to
show the equivalence of the above three conditions after replacing N (F~1) by X;.

Since X/G is acyclic (Proposition 5.5), X, and X,/G are homologically 1-dimen-
sional by Lemma 1.6. Thus, (a) is equivalent to (c). Also, (b) implies (c) by Proposi-
tion 5.5 again; and it remains to show that (c¢) implies (b).

If X,/G is acyclic, then in particular it has Euler characteristic one. Hence by
Lemma 2.2,

1-x(Xs) =x(X) = x(X,) = |G|- (x(X/G) = x(Xs/G)) = |G|(1-1) = 0;

and so x(X;)=1. Since G acts transitively on the connected components of X, (X,/G
being connected), all components of X, have the same Euler characteristic, and so X,
must be connected. And since X, is also homologically 1-dimensional, this shows that
X is acyclic. a

The next proposition provides a tool for showing that condition (a) in Lemma 5.10
holds.

PROPOSITION 5.11. Assume that G has even order, and let F be a separating family
for G. Assume, for each member M&F,,.x of even order and each element x€ M of odd
prime order, that either

(1.) |Nm({z))] s even; or

(1,) there is an element yeM of odd prime order such that |Ng({x))NNg{({y))|
and |Np((y))| are both even.

Let (My),...,(My) be the conjugacy classes of odd order subgroups in Fiax. For
1<i<k, let F| be the set of all subgroups of M; which are contained in members of Frax
of even order or in subgroups conjugate to M; for j<i; and assume that

(2) the image of N((F!)>1) in N(F>1)/G is connected and nonempty for each i.

Then N(F=1)/G is connected and H (N (F>1)/G)=0.

Proof. For any t€ HCG, we write NH(ac)d=efNH((x>), for short. For each =0, ..., k,
let F; be the family of all subgroups in F contained in even order members of Fiax, or in
subgroups conjugate to M; for j<i; and set X; =N((F;)>1)/G and X =X}. In particular,
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Fir=F, and Fy is the set of all subgroups in F which are contained in members of Fi,ax
of even order (k=0 if all members of Fp,ax have even order). Set Y=N (Flo))/G < Xy By
Corollary 5.7, Y is connected and H;(Y)=0. Then X is connected, since each vertex
of X is joined by an edge to a vertex of Y. And for each i>1, each vertex of X; not in
X;_; is joined to [M;], which in turn is connected to X;_; via a vertex in the image of
the set (F/)s1, which by (2) is nonempty. This shows that the X; are all connected. In
particular, X is connected, and it remains to show that H,(X)=0.

We first set up some notation for elements of Hy(X). The homology class of a
loop will be denoted [Hy, Hi,..., Hy], where (Ho)=(H,), and each H; contains or is
contained in H,, ;. Note that by specifying subgroups rather than just conjugacy classes,
we eliminate all ambiguity as to which edge between two vertices is meant (recall that
there can be more than one edge connecting a pair of vertices of X'). Finally, to simplify

the notation, we will sometimes replace a cyclic group H;={x;) by z; in this notation.

Step 1. We first show that H;(X,) maps trivially to Hy(X). When [Hy, Hy, ..., Hy]
is a path in X with endpoints in Y, we write [Hy, H,..., H,]y € H1(X) to denote the
homology class of the 1-cycle [Hy, ..., H,] — ¢ for any path ¢ from [Hp] to [H,] in Y. This
is well defined since Y is connected and H;(Y)=0.

Fix a loop in Xg; we can assume that it alternates “peaks” and “valleys” (vertices
corresponding to larger or smaller subgroups); and furthermore that each peak is maximal
in F (hence of even order) and each valley is minimal (i.e., of prime order). The loop
thus splits into a sum of elements [M,z, M']y, where M and M’ are maximal of even
order, and where |z| is prime. If |z|=2, then [M,z, M']y €Im(H;(Y})=0; so we can
assume that = has odd prime order.

In either of cases (1,) or (11,) above, N (x) has even order. Choose a maximal sub-
group M€ Fg) which contains the extension of (x) by a Sylow 2-subgroup of Ng(z)/(z)
(this extension is solvable and hence in Fzj). Then

M,z, M'}y = [M,z, M|y +[M;,z, M']y,

and we are reduced to showing that [M,z, M,;]y =0 in H,(X).

If |Np(z)| is even, let HC M be any subgroup which contains (z) with index 2.
Then H is conjugate in Ng(z) to some H'C M, (by choice of M, ); and so [M,z, M|y =
[M,H,z,H', M,y ={M, H|y +[H', M,]y (the last equality holds because [H, z]|=[H’, z]).
But these edges lie in Y=N(F3)/G, and so [M,x, M)y =0. Thus, [M,z, M,]y=0
whenever x €M satisfies condition (1,).

Now assume that €M satisfies condition (1y,), and fix ye M as in (1y,). Fix sub-
groups My, M, € Fmax of even order such that M, contains the extension of (y) by a
Sylow 2-subgroup of Ng(y)/(y), and M,, contains the extension of (z,y) by a Sylow
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2-subgroup of Ng(z)NN¢(y) (this last extension must lie in F since {z,y)CMeF and
F is separating). Consider the diagram
M

(z,y)
My,
By construction, condition (1,) is satisfied by each of the pairs *€Myy, Y€ M, and
y€M, and so

M, ()

() M.

[Ma <$,y>,y,My]Y =0= [sza <Z7 y>7y7 My]Y = [sz7 <J;7y>a$7Mw]Y'
And hence [M,z, M,y =M, {(z,y),z, M;]y =0.

Step 2. We now prove inductively, for i1, that H;(X;) has finite image in H;(X)
if H1(X;_1) does. Fix a loop in X;. We can again assume that it alternates “peaks”
and “valleys”; and that each peak is either equal to [M;] or lies in X;_;. If any of the
valleys is a vertex [H]¢X;_;, then it must be connected on both sides to [M;] (but
possibly by different edges). This forms a loop (two edges each connecting [H] to [M;])
whose homology class lies in the image of H,(N(F;)/G) for any prime p||H|, and this
group vanishes by Corollary 5.7. We are thus reduced to looking at 1-cycles of the form
z=¢—[H,M,;,H'], where H,H'€ F| and ¢ is a path in X;_; connecting [H] and [H'].
And since the image of N((F/)>1) in X is connected by (2), the path [H, M;, H'] is
homotopic to a path in X;_, (and hence [2] is in the image of H;(X;_1)), modulo loops
of the form [K, M;, K'] for G-conjugate subgroups K, K'e F]. O

The following proposition shows that in certain cases, one can replace F by a different
separating family without changing the homology of N(Fs1) or of N(F>1)/G. Note,
in its statement and proof, that any finite group G contains a (unique) maximal normal
perfect subgroup L<G: the last term in the derived series of G. This normal subgroup
is also characterized by the properties that L is perfect and G/L is solvable.

PROPOSITION 5.12. Let F'CF be two separating families in G, and let HCF be
any subfamily. Assume that one of the following two conditions holds: either

(a) for each perfect subgroup LEF\F', there is a solvable subgroup N<Cg(L) with
NeH; or

(b) the maximal normal perfect subgroup Li.x<G is simple, and Cg(L)eH for
each perfect subgroup L#Lyax in S(G)\F'.
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Then the inclusion of N(F'sy) into N(Fxsy) is a homotopy equivalence, and

H.N(F'>u)/G) = H. (N (F>n)/G).

Proof. For any He F\F' with maximal normal perfect subgroup L<H, H/L is
solvable and hence L& F\F'. This shows that the set of perfect subgroups in F\F' is
nonempty.

We first check that condition (b) implies condition (a). Fix any perfect subgroup
LeF\F', and let L'DL be the maximal normal perfect subgroup of L-Cg(L). Then
Ce(L')CCq(L), so L' Cg(L')CL-Cg(L), and Cg(L') is solvable since (L'-Cg(L"))/L’
is solvable and L'NCqg(L')=2Z(L') is abelian. Also, C¢(L) normalizes L', and so
Cg(L')<1Cq(L). If (b) holds, then either L=L' or L’ is not simple (since L<L’); and in
either case L' # Lix (because if Lyx=L'=L€F then G€F which contradicts the defini-
tion of a separating family). Thus Cg(L')€H, and condition (a) holds with N=Cg(L’).

Now assume that condition (a) holds. Fix a conjugacy class £ of maximal perfect
subgroups in F\F'. Set F"=F\(Fs): the family of subgroups in F which do not
contain any subgroup in £. This is a separating family (if H/K is solvable and HDLeL
then K D L); and we can assume inductively that the inclusion of N (F'») into N (F"54)
is a homotopy equivalence. So upon setting F'=F", we are reduced to the case where
F\F' contains a single conjugacy class £ of perfect subgroups, and where F” is the set
of subgroups in F which do not contain any subgroup in L.

For each LeL, let K1 be the set of all subgroups HC N(L) such that HL/L is
solvable, and let K} be the set of all HEK such that LZH. Then K, CF (HL/L
solvable implies HL€F and hence HEF) and K} =K NF'. By assumption, there is
a solvable normal subgroup N<tCg(L) with Ne’H. Upon replacing N by the subgroup
generated by its conjugates in N (L) (still solvable since it is generated by solvable normal
subgroups of Cg(L)), we can assume that NAN(L) (and NeF5). Then HNeK;, for
all HeK (HNL/L is solvable if HL/L is, since HL/L normalizes NL/L and NL/L is
solvable). Also, HNe K for all HeKY: since for HeKy, H/(HNL)=HL/L is solvable,
so HN/(HNL) is solvable (since N is solvable and centralizes HNL), and thus HN
contains L if and only if H does. The nerves N ((KL)>#) and N((K)>#) are thus
contractible by Lemma 0.3 (b).

For each subgroup He F\F’, there is a unique L€ L contained in H: the subgroups
in £ are maximal among perfect subgroups in F\F’, and hence L must be the last term
in the derived series of H. Thus, L<1H and H/L is solvable; and L is the unique element
of £ for which HeK \K. In other words, N(F5) is the union of N(F'5y) with
the contractible complexes N((K,)»3) for LEL, any two of the complexes N ((Kr)>%)
and N((K1/)>#) have intersection contained in N'(F's), and N (F'>31) NN ((KL)»n)=
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N{(K%,)>#) is also contractible for each L. The inclusion of N(F'5y) into N (Fsy) is
thus a homotopy equivalence; and hence H,(N(F'>«)/G)=H.(N(F>3)/G) by Propo-
sition 5.5. d

5(d). Connectivity of links at vertices

In §5(c), conditions were found on a separating family F which imply that if (G, F)€ Us,
then N'(Fs1) is acyclic, and hence there is a 2-dimensional H-universal (G, F )-complex
with no free orbits. The results of this section amount to showing that if there is such an
action, then the links at all of its vertices must be connected. This result, and its proof,
are closely related to [S2, Theorem 2.8].

PROPOSITION 5.13. Let F be a nonempty family of subgroups of G such that G¢ F.
Let Finax be the set of mazimal members of F. Assume that
(a) each member of Fuax is self-normalizing;
(b) each member of F\Fmax 15 contained in at least two members of Fmax; and
(¢) N(F) is connected and H,(N(F))=0.
Then for each M€ Fax, N(F<p) (i-e., the link of M) is connecied.

Proof. Set F'=F \ Fuax, for short. Let £ be the set of all pairs (M, H) &€ Fuax X F'
such that M 2 H; regarded as a poset via the relation (M, H)<(M',H') if M=M' and
HCH’'. In both ' and £ we let ~ denote the equivalence relation generated by the
poset relation; so that F’/~ and £/~ are the sets of connected components of the nerves.

Let T be the graph with vertex set F,.xLI(F’/~), and whose set of edges is £/~.
We use brackets here to denote the vertex corresponding to a subgroup in F, or an edge
corresponding to a pair of subgroups in £. Each edge {M, H], for (M, H )€ L, connects the
vertices [M] and [H]. There is an obvious map ¢: N(F)—T which sends each simplex in
N(F') to the vertex for its connected component, which sends each member of Fy,,x to
itself, and which sends a simplex {M, Hy, ..., Hy} (for M2 Hy 2...) to the edge [M, Hy).

We next construct a map ¢:T—N(F) in the other direction. For each vertex v
in I, let o(v)€F be any subgroup in the equivalence class which v represents. And for
each edge e in I, choose a representative (M, H)€ L for e, and send e to the path which
follows the edge from M to H in N(F), and then follows any path in N'(F’) from H
to ([H]).

The composite ¥op:T' =T sends each vertex to itself, and sends each closed edge to
itself (although not via the identity). In particular, ¥op is homotopic to the identity,
and so H,.(I') is a direct summand of H.(N(F)). Thus, I' is connected and H;(I')=0;
and so I is a tree.
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Now, G acts on I' via conjugation, and since I is a tree there must be a fixed point
zo€l'. Since the members of F.x are assumed to be self-normalizing, no element of
Fmax is normal in G, and hence xq is not the vertex corresponding to any M€ Fiax.

Assume that there is some M€ Fp,ax for which A(F<ps) is not connected. Then
there are two or more edges attached to [M] in I', and so I'\[M] is disconnected. Let
T'; be the component of I'\[M] which contains z, and let I'y be any other component.
Let [H] be a vertex in I';. By assumption, either H€ Fr,x, or H is contained in at least
two maximal subgroups of F. In particular, H is contained in some maximal subgroup
M#M.

The action of M’ on I fixes o and [M'], and hence fixes the full minimal path which
connects them. Since M lies on this path, this implies that M’ normalizes M. But both
are maximal in F, and so this contradicts assumption (a) that M is self-normalizing. O

The following proposition combines the above result with those in earlier sections.
For any family F of subgroups and any maximal element MeF, we set

Lkr, (M)=N(FSM)=N{HeF|1£HE M}).

PROPOSITION 5.14. Fiz a separating family F for G. Let FoCF be any subfamily
which contains F., and such that each nonmazimal subgroup in Fy is contained in two
or more maximal subgroups. Assume that F satisfies the following two conditions:

(a) N(Fs1)/G is connected and H{(N(Fs1)/G)=0.

(b) There is a maximal subgroup MeF such that Lk z,),,(M) is not connected.
Then (G, F)¢U,.

Proof. Assume that (G, F)€U,. Then by (a) and Lemma 5.10, N'(F51) is acyclic.
So Proposition 5.13, applied to the family (Fo)>1, implies that Lkz,). , (M)=N((Fo)$M)
is connected for all maximal subgroups M€ F, and this contradicts point (b). (Recall
that all maximal subgroups in F are self-normalizing by Lemma 1.1.) O

6. Simple groups of Lie rank 1

We now focus attention on the simple groups of Lie type and Lie rank 1. There are
four families of such groups: the 2-dimensional projective special linear groups Lo(q),
the 3-dimensional projective special unitary groups Us(q), the Suzuki groups Sz(22%+1),
and the Ree groups 2G(3%**1). We refer the reader to Appendix D for more detail
on these groups, and for additional information on the finite groups of Lie type in
general.
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We first show that the only 2-dimensional actions which involve the simple groups
Lo(q) or Sz(q) are the ones constructed in §3. This will be done in a series of three
lemmas, after which the results will be summarized in Proposition 6.4.

LEMMA 6.1. Assume that G=Ly(q) or PGLy(q), where q=p*>3 and p is an odd
prime. Let F be a separating family for G which contains no nonsolvable subgroups
L2(go) or PGL2(qq) for qo a smaller power of p. Assume also that F#SLV if G=Ly(q)
and q=+3 (mod 8). Then (G, F)¢Us.

Proof. We refer the reader to Proposition 3.3 for the description of the maximal
subgroups of G. We think of La(q) as a subgroup of index 2 in PGLz(g): the image in
PGL2(q) of those matrices in GLy(g) whose determinant is a square in F,. We describe
subgroups of PGL2(q) and Ly(g) by their inverse images in GLy(q).

Note that if G=La{q) and ¢=%3 (mod 8), then F must contain a subgroup isomor-
phic to As—the only nonsolvable subgroups of G not isomorphic to La(gg) or PGL2(q)
for go a smaller power of p. In particular, g=+1 (mod 5) in this case.

Case 1. Assume first that p=3. If k is odd, then ¢=3 (mod 8) and ¢g=+2 (mod 5);
and so G%L2(q) by the above remarks. Thus, either G=L,(3%) for k even, or G=
PGL,(3%).

Set K;=PGLy(3)%, (the subgroup of matrices with entries in F3), let K3 be the
subgroup of upper triangular matrices (Ko =FxC(q_1)/2 or FgxCy_1), and let K3 be
the subgroup of monomial matrices (K3~Dg_; or Dy4_1)). Set K;j=K;NK; and K=
KiNK2NKjs. Then K122 Dg, K132 C3, K332C,-1)/2 or Cq—1, and K=C;. Since K, is
a maximal subgroup in F (see the list of subgroups in Proposition 3.3), Proposition 5.4
now applies (using condition (a;), or (as) if G=L2(9)) to show that (G, F )¢ U,.

Case 2. Now assume that p>5. By Proposition 3.3, A4 is a maximal subgroup of
G only if G=Ly(q) and ¢g=+£3 (mod 8), in which case (as noted above) F must contain
subgroups isomorphic to As. And since there is only one conjugacy class of 44,CG
(Proposition 3.3 again), each such subgroup must be contained in some A€ F.

Thus, no maximal subgroup of F is isomorphic to A4. From the lists of maximal
subgroups in Proposition 3.3, we now see that each maximal subgroup in F is isomorphic
to one of the groups FyxC4_1y/2 or F;xCy_y (triangular matrices); Dy—1 or Dagq-1);
Dyt or Dyge1y; or Tg or As. Also, by hypothesis, if p=5, then A5=L(5) is not in F.

Let M;CG be the (maximal) subgroup of upper triangular matrices, and let TC M
be the subgroup of diagonal matrices. From the above list (and since p>3) we see
that M) and its conjugates are the only maximal subgroups in F of order a multiple
of p. Furthermore, for any subgroup HeF with p||H|, H leaves invariant a unique line
in (Fq)2, and hence is contained in a unique subgroup conjugate to M; (and thus a unique
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L La(q) Sz(q)

G

{diag(A\, A" [A€(Fg)*}/{£I} | {M(N)[Ae(Fy)"}

aqu}%Fq S{q,0)

SxT M{q,0)=S(q,) =T

-1 0

N N(T)=<T,(O 1>> N(T)=(M(\),7)

Table 5

maximal subgroup in F). Also, each nontrivial subgroup HC M; of order prime to p is
contained in a unique subgroup conjugate to T (i.e., Cps,(H)).

We first check that V' (Fs;)/G is connected and Hy(N(Fs1)/G)=0, using Proposi-
tion 5.11. From the above list of maximal subgroups in F (and since A4 is not among
them), we see that for each maximal subgroup MeF of even order, and each xe M
of odd prime order, Nj({z)) has even order. Thus, condition (1,) in Proposition 5.11
holds. Also, the only maximal subgroups in G of odd order are those conjugate to
M =F¢xC4_1y/2, when G=Lj(q) and ¢=3 (mod 4). Let F{ be the set of subgroups
of My which are contained in maximal subgroups in other conjugacy classes; by the
above remarks each He F| is conjugate to a subgroup of T. The image of N((F])>1)
in N(F>1)/G is thus connected, and so condition (2) in Proposition 5.11 holds. This
finishes the proof that N(F1)/G is connected and Hy(N(F>,)/G)=0.

Now let FyCF be the subfamily consisting of all maximal subgroups in F, together
with all subgroups in F contained in two or more maximal subgroups (thus F,2DF. by
Lemma 3.1 (a)). We have seen that each proper subgroup of M; contained in Fy is con-
tained in a unique subgroup conjugate to T In other words, Lkx,). ,(M)=N((Fo)SM)
is not connected: it has one connected component for each subgroup of M; conjugate
to T'. So Proposition 5.14 now applies to show that (G, F)¢ Us. O

In each of the next two lemmas, we deal simultaneously with the simple groups
L=L,(q) and Sz(q), where g=p* and p is prime (p=2 if L=Sz(q)). It will be convenient
to fix subgroups S,T,B, NCL of each of these groups, according to Table 5. When
L=Sz(q), we are using the notation in Proposition 3.6 (where Sz(q) is regarded as a
subgroup of GL4(g)). All of these subgroups are invariant under the action of Aut(F,).
In both cases, S is a Sylow p-subgroup, B=N(S) is a Borel subgroup, T is cyclic (of
order g—1 or 3(¢g—1)), and N is dihedral.
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LEMMA 6.2. Assume that G=L is one of the simple groups La(q) or Sz(q), where
g=p" and p is prime (p=2 in the second case). Let F be any separating family for G
which contains a nonsolvable subgroup isomorphic to Lo(q) or Sz(qo), where go=p*o

(and k()|k) Then (G,.F)¢UQ

Proof. Assume that go=p*° is chosen so that F contains a maximal subgroup
isomorphic to Go=ULa(q0), PGL2(qp) or Sz(gg). Thus, Gg is the subgroup of all ma-
trices in G with entries in Fg. (More precisely, if G=L2(q¢)CPGL2(q), then Go=
La(q)NPGLy(qo).) By Proposition 3.3 or 3.6, if Go=MecF, then there is an auto-
morphism o€Aut(G) such that o(M)=Gy. Thus, upon replacing F by o(F), we can
assume that GoeF.

We now apply Proposition 5.4, with the subgroups K1=Gy, K;=B and K3=N (as
in Table 5). Then Ki2=By, K13=Np, K23=T and K=K NK,;NK3=Ty. Condition (b)
of Proposition 5.4 holds by assumption (K;=Gy is maximal in F). Conditions (d) and
(e) are clear: Ng(Gy, By, To)=Ty, and the triples (K1, Bo,Tp) and (K, Np,Tp) are not
G-conjugate.

We next consider condition (¢). Clearly, K;2=By is a maximal subgroup of K;=Gj.
If G=L2(q), then K=T; is maximal in Kj2=Bj. And if G=Sz(q), then Tj is maxi-
mal among critical subgroups of By. (There is one subgroup Ty & RG By, where R=
Z(5(qo,9)) - To=Fg,xCy,_1. But using Proposition 3.6 (b), it is easy to check that every
maximal subgroup of G which contains R also contains By. So by Lemma 3.1 (a), R is
not, critical.)

It remains to check that inequality (a;) or (az) holds. From the above description

of the groups, we see that
qo if L= La(q), q

1
[Kw'K]_[BO'TO]_{(qu)z if L=Sa(q), i K] =2, (Ko K=

where 5:% if G=La(q), p is odd, and 2ko|k (so Go=PGL2(q)), and e=1 otherwise.
Inequality (ai) now holds (3, ; 1/[Ki;: K]<1) unless G=L2(25) and Go=PGL2(5).
In this last case,

Z _1_. = l+l+l < 1+1 = 1+;
< [Kij:K] 5 2 3 6  [Ki:K]
and inequality (ag) holds.
The conditions of Proposition 5.4 thus hold, and so (G, F)¢ Us. O

It remains to handle the case of extensions of L2(q) or Sz(q) by field automorphisms.
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LEMMA 6.3. Let L be one of the simple groups L=Lo(q) or Sz(q), where g=p* and
p is prime. Let ACAut(F,) be a subgroup of prime order, regarded as a subgroup of
Aut(L), and set G=LxA. Then (G,SLYV)¢Us.

Proof. Let LoCL be the subgroup of elements fixed by A. Let Fy, be the fixed
subfield of ACAut(F,). If g==+1 (mod 8), then (L,SLV)¢ U, by Lemma 6.1, and so we
also have (G,SLV)¢U,. Thus, we can assume that ¢ is a power of 2 or that ¢g=p*=+3
(mod 8). In the second case, k must be odd, and hence |A||k is odd. Thus, Lo=L2(go)
if L=Ls(q), and Lo=8z(qo) if L=Sz(g).

To simplify the argument, we assume that LZL,(4) (the case La(4)xCe=PGL4(5)
was already handled in Lemma 6.1).

Fix subgroups S,7, B, NCL as in Table 5. All of these are A-invariant. Set By=
BNLy, Ng=NNLy and Ty=T1N L.

We claim that conditions (a), (b), (¢) in Proposition 5.3 hold for the subgroups
Ko=BxA, K1=TxA and K,=A; this will then imply that (G, SLV)¢ U,. Condition (b)
is clear: K is a maximal subgroup of G since B is a maximal subgroup of L.

We next check condition (¢). Let H, H'€SLV, be critical subgroups such that
AGHGH'GKy=BxA and HCK;=TxA. We must show that H'CK;. Assume other-
wise. Write H=HyxA and H'=H{xA (where Ho=HNB and H{=H'NB). Thus,
1#£HyGH{GB=SxT, HyCT, but HyZT. So H{, intersects nontrivially with T and S.
Since the intersection of any two distinct Sylow p-subgroups of L is trivial (see [H1,
Theorem 11.8.5 (a)] or [H3, Theorem XI.3.10 (c)]), the lists of maximal subgroups of L
in Propositions 3.3 and 3.6 show that B is the unique maximal subgroup of L which
contains H{, and hence that Kq=BxA is the unique maximal subgroup of G=LxA
which contains H'=H}xA. And by Lemma 3.1 (a), this contradicts the assumption that
H'G Ky is critical in SLV. This proves condition (c).

It remains to check condition (a). To avoid conflicting notation, we set R;=Ng(K,),
R;j=R;NR; and R=RyNRiNR,. Then

Ry=Kog=BxA, Ry=NxA, Ry;=LgxA4;
R01:T>4A, R()Q:B()XA, R12=N()><A, R=T0XA;
and so

[R01:R]=[T:To]=ﬂ, 9o ?f L= Ly(q),
go—1 (90)* if L=Sz(q).
It follows that > 1/[R;;:R]<1 except when go=2 and L=Ly(g). And in this last
case, since ¢>8, we have [Ra:R]|=([LoxA:A]=6<(¢—1)/(go—1)=[Ro1:R], and so in-
equality (a) in Proposition 5.3 still holds. (In fact, inequality (a) in Proposition 5.3 also

[ngiR] - 2, [ROQZR] = [B()ZT()] = {

holds when g=4, but one has to calculate each term explicitly.) O
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The above three lemmas can now be summarized as follows.

PROPOSITION 6.4. Assume that L is one of the simple groups L>Ly(q) or Sz(q),
where g=p* and p is prime (p=2 in the second case). Let GCAut(L) be any subgroup
containing L, and let F be a separating family for G. Then (G, F)elUs if and only if
G=L, F=8LV, and q i3 a power of 2 or ¢=%3 (mod 8).

Proof. That (G,SLV)€Us in the given cases was shown in §3 (Examples 3.4, 3.5
and 3.7). It remains only to check that all of the other cases have been eliminated by
one of the above three lemmas.

If G=L2(q), then we are assuming that F#SLY or ¢g==+1 (mod 8). So (G, F)¢ Uz
by Lemma 6.1 (if F contains no nonsolvable subgroups L2(gg)) or by Lemma 6.2 (if F
does contain such subgroups). If G=Sz(q) and F#SLY, then F must contain some
nonsolvable subgroup Sz(gy) (these are the only nonsolvable subgroups of G by [Sul,
Theorem 9]); and hence (G, F)¢ Uz by Lemma 6.2. So we are finished if G=L is simple.

Now assume that G is not simple: that LGGCAut(L). If L=Ly(g), then Aut(L)
is generated by inner automorphisms, by “diagonal” automorphisms (conjugation by a
matrix of nonsquare determinant) and by field automorphisms (cf. [Ca, Theorem 12.5.1]).
In other words,

Aut(La(q)) 2 PT Ly(q) & PGLy(q) x Aut(F,).

Also, by [Sul, Theorem 11], all outer automorphisms of Sz(q) are given by field auto-
morphisms.

Since Aut(L)}/L is solvable, if (G, F)€Us,, then (G, FNS(G'))eU, for any G'CG
containing L. So it suffices to consider the case where G is minimal; i.e., when G/L
has prime order and where (L, FNS(L))€Uy. In particular, F=SLV. If L=Ly(2*%) or
Sz(2*), then we are done by Lemma 6.3, since the only outer automorphisms of L are
field automorphisms (PGLa(q)=L2(q) in this case). If L=L,(q) and g=p*=%3 (mod 8),
then k must be odd, and so

Ollt(L) = PGLg(q)/Lg(q) XAut(Fq) = Cz ><Ck.

Since G/L has prime order, either G2 PGL2(q) (and (G,SLV)¢ U, by Lemma 6.1); or
G=LxA for some group A of field automorphisms and (G,SLV)¢ U, by Lemma 6.3. O

The next groups we consider are the unitary groups Us(q)=PSU3(q). The cases ¢
odd and q a power of two will be handled separately. In both cases, we regard Us(g) as a
group of projective unitary transformations of a vector space V 2(F2)* with hermitian
product denoted (—, —). We fix two bases of V: an orthonormal basis {e1,ez,e3}, and a
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basis {v1,v2,v3} with respect to which the hermitian product has matrix
0 01
010
1 00
Elements of Usz(q) will be regarded as matrices with respect to one or the other basis,

depending on the situation.

PROPOSITION 6.5. Set G=Us(q), where q=p* is any odd prime power. Then there
is no 2-dimensional acyclic G-complex without fized points.

Proof. Assume otherwise: let F be a separating family of subgroups of G such that
(G, F)eU,. Set d=(3,q+1), the order of the center of SUs(q).

Case 1. Assume first that ¢>7, and regard elements of G as matrices with respect
to the basis {vy,vq,v3} described above. We apply Proposition 5.4 with the following
subgroups.

K12 S04(q) = PGLy(q),

the subgroup of matrices with entries in Fy.

K2=S>4T,
where
T = {diag(A, AL AT A€ (Fge)*}/Cu
and
1 a b
S= 0 1 —af a,bquz,b+b"=—aq+1
0 0 1

This is the subgroup of upper triangular matrices in Us(q), a Borel subgroup whose order

is ¢*(¢°~1)/d.
0 0 1
K3=T>4< 0 -10 >
1 0 0

Note that SO3(q)=PGL2(q) (cf. [H1, Satz 10.11] or [At, Theorem 5.20]). So all
three subgroups lie in F: the first by Proposition 6.4, and the others because they are
solvable.
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Set K;j=K;NK; and K=K NK>NK3, as usual. Then
1 a —3d?
Kio= 01 -a a€F, p x{diag(\, L, A" )} 2 F,xC,_s;
00 1
and
K132 Dyg-1), K=Clz_1yq, K=2Cy-1.

Then K;=503(q) is a maximal subgroup of G since ¢>7 (see [GLS, Theorem 6.5.3] and
its proof, where Us(q) is denoted PSL;(q)). The other conditions in Proposition 5.4 are
clear. So (G, F)¢U, in this case.

Case 2. Assume g=3. In particular, d=1. Regard elements of G as matrices with
respect to the orthonormal basis {e;,e2,e3}. Then each subgroup of G isomorphic to
C? is conjugate to the subgroup K of diagonal matrices with entries +1; and N(K )=
(C4)?xX3. Thus, all subgroups A4 containing K are conjugate, and have normalizer
isomorphic to 34. So G contains a unique conjugacy class of subgroups isomorphic
to X4.

Also, G=U3(3) contains a maximal subgroup L.(7) [CC], which must be in F by
Lemma 6.1. Since Ly(7) contains two conjugacy classes of ¥4’s, and G only contains one
such conjugacy class, Proposition 5.9 applies to show that (G, F)¢Us.

Case 3. Finally, assume q=5 (hence d=3). Set G=PGU;(5), regarded as a sub-
group of Aut(G). Then G/G=C; permutes the three conjugacy classes of maximal
subgroups A7 in G [CC]. Thus, the stabilizer of the G-action on each subgroup Az is the
group A7 itself. Each A; contains two conjugacy classes of subgroups L2(7) (permuted
by the outer automorphism of A;). Since Ly(7) has order prime to 5, one sees [Bl, The-
orem 1.1] via complex characters that it has a unique 3-dimensional representation over
F,2 which is irreducible (unique up to outer automorphism); and this has a unique uni-
tary structure (since any two would differ by an automorphism). Thus, there is exactly
one G-orbit of L(7)’s in G. Proposition 5.9 again applies to show that (G, F)¢U,. O

We next consider the unitary groups Us(2F).

PROPOSITION 6.6. Set G=Uz(q), where q=2%>2 is a power of 2. Then there is

no 2-dimensional acyclic G-complex without fixed points.

Proof. Assume otherwise: let g be such that Us(q) is the smallest counterexample,
and let F be a separating family of subgroups of G such that (G, F)elUs.
Set d=(3,¢+1). Then

2 ¢ —q+1

IGI=éqB(qz—l)(QSH)=q3-(f1~1)-(Q+1) y
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(cf. [Ca, Theorem 14.3.2], who writes Us(q) =242(g?)). Here, the factors in the second
formula are pairwise relatively prime. (Note that 3|(¢?—q+1)=(¢*+1)/(g+1) if and
only if 3|(g+1), and that (¢3+1)/(g+1) cannot be divisible by 32.)

Let @ be the Frobenius automorphism of order 2 on F2; and write z¢=0(z)=27 for
any .

The following list of maximal subgroups of G can be found in [Ha, p. 158] or in {GLS,
Theorem 6.5.3 (a), (b), (c), (g)]. Note also the thesis of Peter Kleidman [KI11, §5], where
maximal subgroups are listed for classical groups of low rank, and a general procedure
for determining them is described.

(My): M1=2[g*]|xCq2-1y/4; the stabilizers of isotropic lines (generated by v with
(v,v)=0); the Borel subgroups of G. We choose M; to be the stabilizer of (v1), or
equivalently the group of upper triangular matrices with respect to the basis {v1, v2,v3}.

(Mz): My=GUy(q)/Ca=Cy41)7a % La(q); the stabilizers of anisotropic lines (gen-
erated by v with (v,v}#0). We choose M, to be the subgroup of matrices (a;;} (with
respect to either of the above bases) for which agg is the only nonzero entry in the second
row or column.

(M3): M3=[(Cy41)?>xE3]/Cy; the stabilizer of (the union of) three pairwise ortho-
gonal lines. We choose M3 to be the group of monomial matrices with respect to the
orthonormal basis {e;, ez, e3}.

(MP°), if g=¢§ and b is an odd prime: MJ°=N(U,(qu)), isomorphic to Us(go) (if
(b,d)=1) or PGUj3(qy) (if b=d=3). There are (b, d) conjugacy classes of such subgroups
(all conjugate in PGUs(q)).

(Ms): M5=C(y2_4+1)/a%C3. Consider the hermitian form (—,—) on F (viewed
as a vector space over F2) defined by (ac,y):'ﬁ(:cy"a), where Tr: Fs »F2 is the trace
map. Let c€Aut(F,) be the automorphism o(z)=27, let H C(Fo)* be the subgroup
of order ¢g®+1, and set

M=Hx (0’) C (Fqﬁ)* NAut(Fqs).

Then M preserves {(—,—), and Mj is the intersection of Us(g) with the image of M
in PGUs(g). In particular, Cy acts on Cypz_qyq; via szt

We can assume inductively that none of the groups MJ°=N(Us(qo)), for go>2, can
act on an acyclic 2-complex without fixed points. So they must all be contained in F.
Also, by Proposition 6.4, if M>¢ F, then the only subgroups of M, (and its conjugates)
which are in F are solvable subgroups. So either F=MAX, the family of all proper
subgroups of G, or F=F;,, the family of all subgroups whose intersection with any
subgroup in (M>) is solvable—and this latter only when & is prime or a power of 2.

We first show that N(Fs)/G is connected and Hi(N(F>1)/G)=0, using Propo-
sition 5.11. Since every perfect subgroup in MAX\Fy is of the form Lo(2*°), where
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1<kg|k, and has nontrivial centralizer, Proposition 5.12 applies, with H=MAX-; (and
using condition (b)) to show that H. (N ((Fo)>1)/G)=H. (N (MAX51)/G). So we can
assume that F=MAX.

The even order maximal subgroups of G are those conjugate to My, My, M3 or MJ°.
If M=M,, M3 or M°, and z€ M is of odd prime order, then one easily sees that Nps((z))
has even order. Also, if €M; and |z||(g+1)/d, then Cp(x) has even order: if M, is
the subgroup of upper triangular matrices with respect to the basis {v1,v2,v3}, then z
is conjugate to a diagonal matrix diag(\, A~2, ) and is centralized by the element
1 01
010
0 01
Thus, condition (1,) of Proposition 5.11 holds in all of these cases.

Now let z€M; be of prime order dividing g—1. We check that condition (1) of
Proposition 5.11 holds. Let y€Cays,(z)=C(42-1),4 be any element of prime order dividing
(g+1)/d. We have just seen that Ny, ({y)) has even order, and Ng({z))NNg({y)) also
has even order since Ng((y))=M2=C411)/a % L2(g). Thus, condition (1) of Proposi-
tion 5.11 holds in this case.

It remains to check condition (2) of Proposition 5.11. Let F; be the set of all
subgroups of M52 C,2_g441),4XC3 which are also contained in even order maximal sub-
groups. Since 31(g2—g+1)/d as noted above, F; contains a unique M5-conjugacy class of
subgroups of order 3 (Sylow subgroups of M3), and all maximal subgroups in F; are of the
form C,xC3 (CMJ°) for some a. So the image of N ((F1)>1) in N(F>1)/G is nonempty
and connected (via the point corresponding to the subgroups of order 3). Proposition 5.11
thus applies to show that N(F51)/G is connected and H (N (F>1)/G)=0.

This shows that condition (a) in Proposition 5.14 holds, and it remains to check
condition (b). Set M=M5=C(42_44+1)/a¥C3. Let F.CF be the subfamily consisting of
all critical subgroups in F. Fix a prime

(°-1)(g-1)
(@3-1)(¢*-1)

such that pt(g§—1) when gq is a smaller power of 2 (such a prime exists by Zsigmondy’s
theorem [H2, Theorem IX.8.3]). Then for any proper subgroup HG M with p||H|, M is
the unique maximal subgroup of G which contains H, and so H¢F, (Lemma 3.1 (a)).
Let T<9M be the subgroup of order (¢ —q+1)/dp; then M/T=CpxC5. And Cj is not
normal in M/T: since C3 acts on C), via (a:»—)xqz), and (¢’-1,(¢?—¢g+1)/d)=1.

By Proposition 5.14, we will be done upon showing that the nerve of (F,)${7 is
not connected. For any 1#£HCT, H is not critical by Lemma 3.1(b): N(H)=MeF,

pl(¢®—q+1) =
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and Ng(H)2K for all KpH (note that K must be contained in M or in one of the
subgroups N(Us(qo))). Thus, any critical subgroup properly contained in M must be of
the form HxCj3 for HCT; and such subgroups do exist (any subgroup of M maximal
among those contained in other maximal subgroups in F is critical). The image of the
poset (F.)SM in S(M/T) thus consists precisely of the subgroups of order 3. Since the
continuous image of a connected space must be connected, this shows that N'((F.)$H)

is not connected, and finishes the proof of the proposition. O

We note here that Proposition 6.6 can also be proven using Propositions 5.3 and 5.4;
but this involves considering several different cases, and requires complicated arguments
that certain subgroups are not critical.

We are now ready to consider the Ree groups 2G5(q).

PROPOSITION 6.7. When q is any odd power of 3, there is no 2-dimensional acyclic
2G2(q)-complex without fized points.

Proof. Set G=2G5(q), where ¢=3* and k is odd; and assume that F is a separating
family for G such that (G, F)el,. We can assume inductively that g is the smallest
power of 3 for which this happens. Since 2G3(3)=Aut(Ly(8)) [Jan], this subgroup has
no fixed point free action on a Z-acyclic 2-complex by Lemma 6.3. Thus, we must have
2G,(3)eF.

The order of G is given by the formula

Gl=¢*(a=1)(¢’+1) =¢" 2% 3(¢-1)- 3(a+1)- (¢++v/3a +1) - (4= V/3g +1)

(cf. [Ca, Theorem 14.3.2]), where the factors in the last decomposition are pairwise
relatively prime. The maximal solvable subgroups of G, as listed in [K12, Theorem C],
all lie in the following conjugacy classes:

(M;): the Borel subgroups PxC,_, where |P|=¢* (a Sylow 3-subgroup of G).
More precisely, P=(F,)* with multiplication given by

(x1,y1,21) (T2, Y2, 22) = (T1+T2, Y1 +Y2+21° 23, 21+ 22— T1 Y2 + Y1 T2 — T1-27- T2).
Here, z°=2V% (s0 z°°=2%). The action of (Fq)* on P is given by
Mz, y, 2)A 7= Az, Ay, A2A72).
(See [H3, Theorem XI.13.2].)

(Mg): M2=CG(C2)§CQ XLQ(q) for any CQC_:G
(M3): M3=N(C%)=(C3 x D(g41y/2)xC3 for any C3CG.
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(MJ) and (My): Mf%C’qi\/quxC’g, where Cg acts via (z—z7). (The action of
Cs is determined by the fact that an element of order 2 or 3 has centralizer of order
prime to g—q+1.)

(M{°): MJ°=2G5(qo) whenever g=g} for some (odd) prime p.

By our inductive assumption, 2G5(go)€F for all go=3% where ko|k. So all of the
maximal subgroups must be included in F, except possibly those in (M3).

We first show that N(Fs;) is connected and that Hy(N(Fs1)/G)=0. By Propo-
sition 5.12 (arguing as in the proof of Proposition 6.6), it suffices to do this when
F=MAX: the family of all proper subgroups of G. We apply Proposition 5.11. From
the above list, we see that all maximal subgroups of G have even order. If M is maxi-
mal and €M has odd prime order, then Nys(z) has even order, except possibly when
M is conjugate to My and |z|=3. And under the above description of P<tM;, any
xE€P of order 3 is of the form z=(0,b,c) for b,c€F,; « is normalized by —1€(F,)*
if b=0 or ¢=0; and if b#0 then x=(0,b,c) is conjugate to (0,b,0). Condition (1,) of
Proposition 5.11 thus holds (and condition (2) is empty). It follows that N (Fsq) is
connected and H; (N (Fs1)/G)=0.

We have now shown that condition (a) in Proposition 5.14 holds. We claim that
condition (b) holds for one of the maximal subgroups M =Cy+35+1XCs; once this
has been shown then we can conclude that (G, F)¢U,. By Zsigmondy’s theorem [H2,
Theorem 1X.8.3], there is a prime p|(g®—1)=3% —1 such that p{(3™ 1) for any m<6k.
In particular, p|(¢*+1)/(g+1)=(g++/3q +1)(¢—+/3¢ +1)—and thus divides the order
of M=M} or M;—but does not divide the order of 2G3(qq) for any go<g. We claim
that the nerve of the poset of proper subgroups of M which are critical in F is not
connected. Let T'AM be the cyclic subgroup of index 6p, and set

H=Tm{(F )3} - S(M/T).
From the above list of maximal subgroups, we see that for any proper subgroup HG M
of order a multiple of p, H is contained in no other maximal subgroup in F, and hence
H is not critical (Lemma 3.1 (a)). Also, for any 12HCT, Lemma 3.1 (b) applies (with
H=N(H)=M) to show that H¢F,. Thus, H contains neither the trivial subgroup nor
subgroups of order a multiple of p. Also, H contains the subgroups of order 6 in M/T,
since any subgroup of the form HxCsC M (for HC T') which is maximal among subgroups
of M contained in other maximal subgroups of F must be critical. We have now shown
that H consists of the subgroups of order 6 in M/T=C,xCs, as well as possibly the
subgroups of order 2 and 3. Since none of these subgroups is normal (Cy acts on Cp via
(z—2z7) and p is prime to ¢°—1 and to ¢®>—1), this shows that the nerve of # is not
connected. And since the continuous image of a connected space must be connected, this
shows that N((F.)SM) also fails to be connected. a
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Proposition 6.7 can also be proven using Proposition 5.4 (when F contains the
conjugacy class (M») as defined above), and Proposition 5.12 to reduce the general case
to this case.

7. Sporadic simple groups

Aschbacher and Segev proved in [AS] that no sporadic simple group, with the possible
exception of the first Janko group Ji, can act on a 2-dimensional acyclic complex without
fixed points. In all cases, this was done by applying the four-subgroup criterion, presented
here in Proposition E.1. Since the arguments in [AS]| use a variety of structures and
definitions unfamiliar to non-group-theorists, we now describe how these results—as
well as the nonexistence of a Jj-action—can be proven using Proposition 5.4 instead.
Note however that the arguments presented here, while fairly brief to present, are not
really more elementary than those given in [AS]. They depend on information about
maximal subgroups which has been collected together in [CC] and [A2], but whose proofs
(especially for the ten sporadic groups listed in Table 6) are scattered widely throughout
the literature.

We first repeat some definitions in [A2, §28]. Fix a finite group G, a subgroup
ACAut{G) and an A-invariant subgroup BCG. A regular (A, B)-basis for G is a set
{G;|i€I} of subgroups containing B which satisfies the following two conditions:

(1) each subgroup HCG containing B is in the A-orbit of G’,;défﬂ jes Gj for some
unique JCI (in particular, B=Gy); and

(2) for each J,KCI, if a(Gk)CG,; for some a€A, then Gk CG; and a(Gk)=
a'(Gg) for some a’'€ No(G ).

If for some A and B, G has a regular (A, B)-basis of order at least 4, then by [AS, 6.1]
(and using the four-subgroup criterion described in Proposition E.1), (G, F)¢ U, for any
separating family F which contains the basis. Using Proposition 5.4, this can be shown
for bases of order 3 which satisfy certain additional conditions.

LEMMA 7.1. Fiz a simple group G and a separating family F of subgroups of G.

Assume, for some ACInn(G) and some A-invariant subgroup 1£2KCG, that there is a
regular (A, K)-basis {K;|i€I}, and indices r,s,t€l, such that K,, K., Ki€F and

1 1
+ + <L 1
[Krs : Krst] [Krt : K’rst] [Kst : K'rst] ( )

Then (G,F)¢Uy. In particular, (1) holds if K contains a Sylow p-subgroup for some

prime pl|G]|.

Proof. For simplicity, we write I={1,2,...,k}, and assume that {r,s,t}={1,2,3}.
By [A2, 28.1], {K, K2, K3} is a regular (Na(K123), K123)-basis; so we can assume k=3
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and K=Kj23. It is immediate from the definition of a regular (A, K)-basis that Ky
is a maximal subgroup of K; for any JG I and any i€I\J.

We claim that the subgroups K, Ky, K3 satisfy the hypotheses of Proposition 5.4;
it then follows that (G, F )¢ U,. We have just checked conditions (b) and (¢} (maximal-
ity of subgroups). Condition (a;) holds by assumption, and condition (e) (the triples
(K1, K2, K) and (K7, K13, K) are not G-conjugate) is immediate from the definition of
a regular (A, K)-basis.

We next show that the K can be ordered so that Ng(K;, Kz, K)=K, thus proving
condition (d). To see this, note first that Ng{K) must be A-conjugate (hence equal) to
one of the subgroups K;, K;; or K. Also, the K; are maximal in the simple group G,
and hence self-normalizing. If Ng(K)=K, then we are done. Otherwise, we can assume
(after switching indices if necessary) that Ng(K)=K3 or Koz, If Ng(K)=Ko3, then
Ne(K1, K2, K)CK1NKy3=K. Sosuppose Ng(K)=Kj. Since K2 is not normal in G=
(K1, K3), K2 cannot be normal in both K; and K>, and we can assume without loss of
generality that Ks is not normal in K. Then Nk, (K12)=Ki2, and so N(K1, K12, K)C
Ki19NK3=K. This finishes the proof that (G, F)¢Us.

It remains to show that (1) always holds if K contains a Sylow p-subgroup for
some prime p||G|. By definition of a regular basis, [K;;: K|>1 for all ¢,j. If [K;;: K]=
[K;k: K]|=2 for some i, then KQK,;=(K;;, Kix) ([A2, 28.1(2)]); K;/K is generated by
two elements of order 2 and hence dihedral; and this is a contradiction since it means
that there are other overgroups of K not conjugate to any of the given ones.

Thus, [K;;: K]=2 for at most one pair of indices ¢, j. So if (1) does not hold, then the
three indices [K;;: K] must be (2,3,3), (2,3,4) or (2,3,5). Since each index is prime to p
(K contains a Sylow p-subgroup), this shows that p>5. If [K;;: K]=m, then the permu-
tation action of K;; on the set K;;/K restricts to a homomorphism ¢;;: K—=X,, 1%,
whose kernel R;; is normal in K;;. Set H=0%?3}(K)<K: the smallest normal sub-
group of index a product 27-3°. Then H is characteristic in any subgroup of K which
contains H, and in particular characteristic in each R;;. So H is normal in each Kjj,
and hence normal in G=(K),, K13, K23). Since G is simple, H=1, so 2 and 3 are the
only primes dividing |K|. And this contradicts the assumption that K contains a Sylow
p-subgroup for some p>5 and p||G|. a

We are now ready to prove

PROPOSITION 7.2. Let G be any of the sporadic simple groups, or the Tits group
2Fy(2)'. Then there is no 2-dimensional acyclic G-complez without fized points.

Proof. We first prove the proposition for ten of the sporadic groups as well as the
Tits group, by direct application of Proposition 5.4. Since My, is one of these groups,
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G K, Ky K3 Kio K Ki3 K23 [K;;: K]

J 23.7:3 7:6 C3xDyg 7:3 3 6 6 7,2,2
=N(7) =C(3)

Moy | L34 24:85 24: Aq 24 Ay 92+4.3 2% Ag 22+4.5. | 552

(point) (duad) (hexad) =2%: 4, =24:84

Ja Us(3) |3-PGLy(9)| 21t%:55 | 3112:8 3:8 4-84 3:D1g 9,4,2
=N(34) | =N(4)

HS | Us(5):2 | U3(5):2 C(2z) |[5iT%:8:2| s5:8:2 255.2 2552 | 25,6,6
2N(Syls)

Js | La16):2| Loy | 2lt4:is, 17:4 4 Dgx2 Dig 17,4,4
2NQT) | =N(@)

He [SgxL3(2)| L3(2)x7:3| N(3z) |S4x(7:3})] Ssx3 SixDg | L3(2)x3 | 7,2,7
=N(7)

Ru 2F4(2) | La(25)-2%2 | 3-46-27 |L2(25)-2| Dog.2  |(3LT2:Dg)2| Dag.2% | 9,2

(point) (edge) =N(3)

O’N J1 L3(7):2 |(3%2xAg)-2| 19:6 6 DgxDig S3x S, |19,10,24
2N(19) [ =N@)

HN A Myg:2 C(2z) Mi2 2x Ss 25:86  |(2%2xA5):2| 96,2

=Fy (point) |(point pair) =Cjp1,,(24)| =Cy,,(2B)

Th | 3D4(2):3 | 3x13)12 | 21845 | 13:12 12 Ck,(22) 3x12 13,¢,3

=F3 =N(13) =C(2) order 2 9216

2F4(2) | Lo(25) | 5%:4A4 [29-3] 52:12 12 Das 4A4 25,2,4

=N(Syls) | C(2B)

Table 6

Proposition E.3 then applies to prove the proposition for the other four Mathieu groups.
The last twelve sporadic groups are then handled using Lemma 7.1. Throughout the
proof, whenever two names are given for one of the sporadic groups, the first is that used
in [CC}, and the second the name used in [Al] or [A2].

Assume that the proposition does not hold, and let G be the smallest such group
which has a fixed point free action on a 2-dimensional acyclic complex X. Let F be the
separating family of subgroups HCG such that X”#@. Consider first Table 6, which
describes how Proposition 5.4 can be applied to these eleven simple groups. We refer
to [CC] for the existence of subgroups with these properties, and to [GLS, Table 5.3] for
tables of normalizers of prime order subgroups of the sporadic groups. The subgroups in
Table 6 are described using mostly the notation of [CC]. However, we write, for example,
N(3) or C(3) to denote the normalizer or centralizer in G of a subgroup of order 3
when there is a unique G-conjugacy class of such subgroups; and write N(3A) or N(3B)
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(or N(3z) when the class is unspecified) ouly when there is more than one class. Also,
Syl, always denotes a Sylow p-subgroup of G.

In all cases, the results of §6 and Appendix E and the minimality assumption on G
imply that K;eF for all ¢=1,2,3. Note in particular the cases G=HS, He and HN:
K3€F since Ki3 or Koz is nonsolvable and in F.

The remarks under the names of the subgroups K, describe how they are chosen
relative to one another. In all cases except G=Ms2, K7 and K> are chosen in one of the
following two ways: either

{(a) they are the stabilizers of a vertex and an edge {or point pair) of a standard
action of G on a graph; or

(b) K, is a maximal subgroup of G, and K> is the normalizer of some subgroup
XCK; (as indicated in the table), or a maximal subgroup (not conjugate to K;) con-
taining Ng(X) and such that Kjp=Ng, (X).

The subgroup K3 is then chosen as the normalizer or centralizer of a certain subgroup
Y C K5 as indicated. In all cases where K5 contains more than one conjugacy class of
subgroups of the given order, the choice is either specified under K=Ng,,(Y), or is clear
from the description of K. In many cases, it is unnecessary to identify K3 more precisely,
since the only thing we need know about it is that it must lie in F.

When G =My, K3222%: Ag is the subgroup which leaves invariant some hexad in the
Steiner system of order 22, and it has the obvious action on this set of order 6 (cf. [Gri,
Theorem 6.8]). Then K is taken to be the stabilizer of some point x in the hexad, and
K, the stabilizer of some pair of points in the hexad including z.

In all cases, each of the subgroups in the sequence KC K;2C K1 CG is maximal and
self-normalizing in the next one. Thus, conditions (b}, (c), (d) in Proposition 5.4 always
hold. Condition (e) ({K1, K12, K) is not G-conjugate to (K4, K3, K)) is clear except
when G=Mjy; in this case K;2 and K3 are distinct parabolic subgroups in K;=L;(4)
containing the same Borel subgroup K, and hence not conjugate in K;. Inequality (a)
holds in all cases except when G=.J;, as can be checked using the list of indices [K;;: K]

“w N
L]

in the last column (where means that the index is greater than 10, and hence large
enough not to matter).

We give particular attention to the case G=J;: the first Janko group, and the only
sporadic group not handled in [AS]. Fix some K= C3x(C7xC3): a maximal subgroup of
G by [A2, 16.17] (see also 16.4 and 16.16 in [A2]). Let K>=C7xCp be the normalizer of
a subgroup of order 7 in K, and let K3=Cj3x Djy be the centralizer in G of a subgroup

of order 3 in K5. Then

K o2CrxCy, Ki3=2Cg=Ky; and K=K NKy;NK3=(Cj.
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All of these subgroups are solvable, and hence in F. Also,

1 1 1 1 1

111
L S PRI | ,
jL:;[Kij;K] e e M a0 T T K TR K

which proves inequality (as) in Proposition 5.4. The other conditions in Proposition 5.4
are easily checked, and so J; has no fixed point free action on a 2-dimensional acyclic
complex.

The remaining twelve sporadic groups can now be handled using Lemma 7.1. In
[A2, §28], a p-basis for G is defined to be a regular (Ng(B), B)-basis for some BCG which
contains a Sylow p-subgroup T of G, and such that the basis contains representatives for
all G-conjugacy classes of maximal subgroups in G which contain T (not only conjugacy
class representatives for maximal overgroups of B). Maximal overgroups of the Sylow
subgroups of sporadic groups are listed in [A2], and conditions for their forming a p-basis
are given in [A2, Theorem 1]. So from [A2, pp. 7-36], we get the following list of sporadic
groups GG and primes p=2, 3 or 5, where in each case G has a p-basis with at least three
elements already known not to have fixed point free actions on 2-dimensional acyclic com-
plexes: Jy (p=2), McL (p=3), Suz (p=3), Ly (p=3,5), Coz (p=2,5), Coz (p=2,3,5),
Coi (p=2,3), Fizgg=M(22) (p=2,3), Fizs=M (23) (p=3), Fiy, =M (24)' (p=2,3), B=F;
(p=2,3,5), M=F) (p=2,3,5). Note in particular the case G=Ly and p=3: the maximal
overgroup Gz ([A2, p. 19]) must lie in F since it surjects onto S5. This list includes all
of the sporadic groups not dealt with in Table 6 or in Proposition E.3, and thus finishes
the proof of the proposition. g

8. Proof of Theorem A
We are now ready to prove Theorem A.

THEOREM A. For any finite group G, there is an essential fized point free 2-
dimensional (finite) Z-acyclic G-complex if and only if G is isomorphic to one of the
simple groups Ly(2%) for k>2, La(q) for g==+3 (mod 8) and ¢=5, or Sz(2*) for odd
k>=3. Furthermore, the isotropy subgroups of any such G-complex are all solvable.

Proof. By Proposition 4.4, if G has an essential action on an acyclic 2-complex X
without fixed points, then there is a nonabelian simple normal subgroup L<1G whose
action also is fixed point free, and such that Cg(L)=1 (i.e., GCAut(L)). By the clas-
sification theorem, L must be an alternating group, or of Lie type, or the Tits group
2F4(2)’, or one of the 26 sporadic simple groups. By [S1, 3.7] (Proposition E.3), L can-
not be any of the alternating groups A, for n>6. By [AS, §5] (or Proposition E.4),
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L cannot be of Lie type and of Lie rank 2 or more. By Proposition 7.2, L cannot be
any of the sporadic simple groups, nor the Tits group (see [AS, §6] for all of these ex-
cept the first Janko group J;). Hence L must be of Lie type and of Lie rank 1. The
groups Us(q) are eliminated by Propositions 6.5 and 6.6, and the Ree groups 2G2(q) by
Proposition 6.7. We are thus reduced to the case where L2Ly(g) or Sz(g); and this was
handled in Proposition 6.4. O

Appendix

Throughout the appendix, G will always denote a finite group, though most of the
definitions and results stated in Parts A and B apply equally well to actions of an infinite
discrete group. A “map” (between spaces or CW complexes) always means a continuous
map.

Parts A and B give a brief introduction to (G-)CW complexes and their homology,
for readers not already familiar with them. In Part C, several results—both elementary
and deep—about projective and free Z[G]-modules are given. A survey of some of the
theory of finite simple groups of Lie type is given in Part D. Finally, in Part E, we
sketch some of the results shown in [S1] and [AS] on the nonexistence of fixed point free
actions of certain multiply transitive groups, and of certain simple groups of Lie type,
on 2-dimensional acyclic complexes.

Appendix A. G-CW complexes

We use [LW] as a general reference for the definition(s) and properties of CW complexes.
The following is a combination of [LW, Definitions I.1.1 and II.1.1], but extended to the

equivariant case.

Definition A.1. A G-CW complex is a Hausdorff space X with continuous G-action
(i.e., G is represented as a group of homeomorphisms of X), together with a filtration
XOCxMCx@c... by closed G-invariant subspaces (the “skeleta” of X), as well as
discrete G-sets J,, and G-equivariant “characteristic maps” @n,: J; X D™ — X (for all
m2>0), which satisfy the following properties.

(a) X=Uso_, X(™). For each m, y,, restricts to a homeomorphism

Jin xint(D™) = (X 0\ X (m=1)),

(b) For each m>0, ¢, (Jr x S™~1)C X(m=1) Moreover, for each j€J,,, there are
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finite subsets J, CJ, (0<k<m—1) such that
. 1 m-1 ’ k
Pm(ixS™7)C U @r(Jpx D).
k=0

(c) A subset UC X is open if and only if ¢} (U) is open in J,, x D™ for each m>0.
(X has the “weak topology” with respect to its cell structure.)

In the above definition, G is always assumed to act trivially on D™ and S™~!.
Usually, a G-CW complex will be called a G-complex for short.

A CW complex is just a G-CW complex in the case where G is the trivial group.
An open cell in a (G-)CW complex X is the image ¢,,(jxint(D™)) of one open disk
under the characteristic map. Note that if o=¢,,(jxint(D™)) is any open cell, then
©m(ixD™)=& (the closure of o) and 9o =y,,(jxS™ 1)=5\o (the boundary of ¢) are
determined by o itself as a subspace of X. By condition (a) in the definition, each point of
X lies in exactly one open cell, and the open m-cells of X are the connected components
of X\ x(m=1),

The following is an alternative way to regard G-complexes, once CW complexes have
been defined. Fix a CW complex X with continuous G-action. Call the action admissible
if it permutes the open cells of X, and sends a cell to itself only via the identity. If X
is a G-complex, then by definition the G-action is admissible. Conversely, if the action
of G on X is admissible, then the characteristic maps of X can be redefined to yield a
G-complex. More precisely, if p,,: J,x D™ — X is the given characteristic map for the
m-cells of X, then the action of G on the m-cells of X induces an action on J,,. Also,
for any orbit  of G on J,, and any j€, one can define ¢!, on QxD™ by setting
@ (97, )=gpm(j,z). Upon doing this for all m>0 and all orbits of J,,,, we get the new
characteristic maps which make X into a G-complex.

Note in particular the last part of condition (b). Each cell in a CW complex must be
“closure finite”: its boundary must be contained in a finite union of closed cells of smaller
dimensions. To see the importance of this condition, consider the space X=D?, let Jy be
the circle S! with the discrete topology, let J; be a set with one element, and set J,,=&
for all m#0,2. Let ¢q: Jyx D°— X be projection to the first factor (i.e., inclusion of the
circle), and let ¢: Jox D?— X be projection to the second factor. These sets and maps
satisfy all of the conditions for a CW structure on D? except for closure finiteness. But
this goes against our intuitive expectations (by analogy with simplicial complexes) that
the 0-skeleton of any CW complex should be discrete, and that compact CW complexes
should be made up of finitely many cells.

The following lemma describes the principal means of constructing G-complexes
(see, e.g., Proposition 0.2).
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LEMMA A.2. Let X be a G-complex, let J be any discrete set with G-action, and
let p: Jx8" 15 X"V be any G-equivariant map. Then the space

Y=XU,(JxD")

is a G-complex.

Proof. Let ®: JxD"—Y be the obvious map; thus ®|;,gs-1=¢. This, together
with the characteristic maps for X, make up the characteristic maps for Y. The other
details are the same as in the nonequivariant case; cf. [LW, Proposition 11.2.2]. O

If X has been constructed via successively attaching cells, i.e., via successive repe-
tition of the construction of Lemma A.2, starting with a discrete set, then the closure
finiteness condition holds automatically. In fact, this is the basis for an alternative defi-
nition of a CW complex, described more precisely in [LW, Theorem II.2.4].

A (G-invariant) subcomplez of a G-CW complex is a closed (G-invariant) subspace
ACX which is a union of closed cells in X; i.e., a union of images of characteristic maps.
A subcomplex is itself a CW complex in an obvious way. Note in particular that if X
is a G-complex, then for every HCG, the fixed point set X is a subcomplex of X:
if m:JJmxD™—X are the characteristic maps for X, then (p,,):(J,,)¥xD™—XH
are the characteristic maps for X .

The following proposition is an immediate consequence of condition (c) in Defini-
tion A.1. Roughly, it says that a function defined on a CW complex is continuous if and

only if its restriction to each closed cell of the complex is continuous.

LEMMA A.3. Let X be a CW complex, with characteristic maps @,,: J;, x D™ — X.
Then if Y is any topological space, a function f: X =Y is continuous if and only if fop,,

s continuous for each m. O

Recall (cf. [S1], [AS]) that a simplicial complex X with G-action is called admissible
if the action permutes the simplices linearly, and sends a simplex to itself only via the
identity. (If this last condition does not hold, then it does hold for the barycentric
subdivision of X.) We claimed in the introduction that Theorem A holds equally well if
one replaces “G-complex” by “admissible G-simplicial complex” in the statement. This
follows from the following proposition, where simplicial complexes are always assumed
to have the metric topology (cf. [LW, Definition 1V.4.1}).

PROPOSITION A.4. Any finite-dimensional admissible G-simplicial complex is G-
homotopy equivalent to a G-complex of the same dimension. Any countable, finite-
dimensional G-complex is G-homotopy equivalent to an admissible G-simplicial complex

of the same dimension.
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Proof. For any admissible G-simplicial complex X, one can clearly define skeleta
and characteristic maps for X which satisfy conditions (a) and (b) in Definition A.1;
but for these to also satisfy condition (c¢) we must replace X with a new space X,
having the same underlying set but a finer topology (more open sets). The identity map
Xew— X is continuous and is a homotopy equivalence by [LW, Proposition IV .4.6] (and
the argument in [LW] can easily be fixed to cover the equivariant case).

The second statement is shown, in the nonequivariant case, by Whitehead in [Wh,
Theorem 13], and his proof carries over immediately to G-complexes. The idea is the
following: once X(™~1 has been replaced by a G-simplicial complex of the same dimen-
sion, then approximate the characteristic map Jp, xS™ 1 — X (=1 by a simplicial map
(possibly after further subdivision of X ("‘_1)), and attach the m-cells after giving them
appropriate simplicial structure. O

For any space X, we let ¥X denote its unreduced suspension: EXdéf(XxI)/N,

where (z,0)~(z’,0) and (z,1)~(z/,1) for all z,z’€ X. A G-action on X automatically
determines a G-action on XX, via the trivial action on the interval I.

LEMMA A.5. The orbit space X/G of a G-complex X inherits a structure of a
CW complez, with one n-cell in X/G for each G-orbit of n-cells in X. The unreduced
suspension LX of any G-complex X is itself a G-complex in a natural way. And if X
and Y are any two G-complezes, at least one of which is finite, then their product X XY

is also a G-complex.

Proof. If X is a G-complex, with skeleta X(™ and characteristic maps o,,:
JmxD™— X, then X/G is a CW complex with skeleta (X/G)(™ =X(")/G and charac-
teristic maps ¢, /G: (J,,/G)x D™ — X/G. This follows immediately from Definition A.1.
Note in particular that condition (c¢) holds for X /G by definition of the quotient topology:
a subspace is open in X/G if and only if its inverse image is open in X.

The unreduced suspension of a CW complex is again a CW complex by [LW, Corol-
lary I1.5.12]. And if X or Y is finite, then X xY is a G-complex with the obvious product
structure by [LW, Theorem I1.5.2]. In each of these last two cases, the arguments in [LW]
carry over without change to the equivariant case.

We remark here that if X and Y are arbitrary CW complexes, then there is an
obvious way to define skeleta for X xY:

(XxY)('") = U (X(i)xY(j)).

i+j=m

Also, if @ S x D™ — X and 9,,: K,y X D™ —Y are the characteristic maps for X and Y,
then one can define characteristic maps wm=11,, -, (i x¥;) for XxY. (This requires
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fixing identifications D*xD?=D*J.) Conditions (a) and (b) in Definition A.1 always
hold; what can go wrong is condition (c). d

The following lemma is not used in the paper, but does help to motivate the concept
of “universal” (G, F)-complexes as defined in §0.

PROPOSITION A.6. Fiz a family F of subgroups of G, and let Y be any universal
(G, F)-complex. Then for any (G,F)-complex X, any G-invariant subcompler ACX,
and any equivariant map fa: A=Y, fa extends to an equivariant map f: X —Y. Further-
more, f is unique up to homotopy, in the sense that if f': X—Y is any other exten-
sion of fa, then there is an equivariant homotopy F: XxI—Y such that F|xxo=f,
Flxx1=f" and Flax1=faoproj,.

Proof. It suffices to prove the existence of f: X —Y; the uniqueness then follows by
extending the given map on (Xx{0,1})U(AxT) to X xI.

We construct f: X —Y one skeleton at a time. The construction of fo: X(OUA—Y
is easy: let {z;} be orbit representatives for the vertices not in A, set H;=G,, (the
isotropy subgroup), choose any y;€ Y i and define fo(gz;)=gy; for all g€G and all i
(and fola=fa).

Now assume that n>1, and that f,_;: X(*"DUA—=Y has been constructed. Let
@n: Jnx D™= X be the characteristic map for the n-cells of X (where J, is a discrete set
with G-action), and let J/ CJ, be the subset of those n-cells not in A. Set

7! -1
u()=fn—l°(Pn|J1’l><S"_l'JnXS" —Y.

For each jeJ}, let
Gj={9eGlgi=jteF

be its isotropy subgroup. Then uy(jxS*~!)CY Y. Also, Y% is contractible (since
Y is (G, F)-universal), the identity map Y% —Y % is homotopic to a constant map,
and hence any map to Y¢s is homotopic to a constant map. In particular, ug can be
extended to a (nonequivariant) map v}: jxD"—YSCi. This can then be extended to
a G-map v;: GjxD"—=Y (where Gj is the orbit of j) by setting v;(gj, z)=g-v}(J, x).
Upon repeating this procedure with one representative from each G-orbit in J},, the v,
combine to give a G-map u: J),x D" —Y whose restriction to J/,x5"~! is ug. If we now
set fo(z)=fn_1(x) for ze X""DUA, and f,(on(4,z))=u(j,z) for (j,z)€J, x D", then
this is a well-defined map of sets from X (™ to Y, which is equivariant by construction,
and continuous by Lemma A.3. O

Note that Proposition A.6 implies in particular that any two universal (G,F)-
complexes are G-homotopy equivalent.
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Appendix B. Cellular homology of G-complexes

The cellular chain complex (Cp(X),0n)n>0 of &8 CW complex is described in [LW, §V.2].
Formally, this is defined by singular homology (in particular, C,(X)=H, (X ™, X(»-1)),
as in [LW, Definition V.2.1]. By [LW, Proposition V.1.8], C,,(X) is the free abelian group
with basis the set of (oriented) n-cells in X; and by [LW, §V.3] each boundary map
On: Cp(X)—Cr—1(X) can be described via the matrix whose entries are the degrees of
maps between (n-—1)-spheres induced by the attaching maps for the n-cells. By [LW,
Theorem V.2.11], the singular homology H,(X) is isomorphic to the homology of the
complex (Cp(X),8,). Hence, if X is a finite complex, the Euler characteristic x(X) is
equal to the alternating sum of the numbers of cells in each dimension.

Note that for a map f: X =Y between CW complexes to induce a homomorphism
C.(X)—=C.(Y), it must be a cellular map, in the sense that f(X{™)CY (™ for all n>0.
However, since cellular homology H.(C.{X}, 8} is isomorphic to singular homology, any
continuous map between CW complexes induces a homomorphism between their cellular
homology groups.

More generally, if X is any CW complex and AC X is any subcomplex, then the
relative cellular chain complex is defined by setting C.(X, A)dﬁfC*(X )/C«(A). Thus,
Cn(X,A) is the free abelian group with one generator for each n-cell of X not in A.
By [LW, Theorem V.2.11} again, the homology of the complex (C.(X, A}, 9) is naturally
isomorphic to H.(X, A).

If X is a G-complex and AC X is a G-invariant subcomplex, then the cellular chain
complexes C,(X) and C.(X, A), and the homology groups H.(X) and H,.(X, A), are all
Z[G]-modules. In fact, each chain group C;(X) or C;(X, A) is a permutation module, in
the sense that it has a Z-basis which is permuted by the linear action of G.

Once homology has been defined using the cellular chain complex, then the rela-
tive and Mayer—Vietoris exact sequences, and excision, are immediate. (Note, however,
that excision in singular homology is needed to establish the basic properties of cellular
homology of CW complexes [LW, §V.1-2].} To see this, fix a G-complex X. For any
G-invariant subcomplexes AgC AC X, the short exact sequence of chain complexes

0—C.(A4)/C.(Ag) = Cu(X)/C.(Ag) = C(X)/Ci{(A) =0
induces, via the snake lemma, the relative exact sequence
o= Hi(A, Ag) = Hi(X, Ao) = Hi(X, A) D H,_1(A, Ag) = ... .

Similarly, for any pair of G-invariant subcomplexes A, BC X with AUB=X, there is a

short exact sequence

0— C.(ANB) = C,(A)®C,(B) = C4(AUB) =0
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which induces the Mayer—Vietoris sequence
...— H{(ANB) - Hi(A)®H;(B) = Hy(X) % Hi_1(ANB) > ... .

All of these are exact sequences of Z[G]-modules.
Similarly, since B\ (AN B) contains exactly the same cells as (AUB)\ A, the inclusion

map induces an isomorphism
H,(B,ANB) = H,(AUB, A) (excision)

since it induces an isomorphism of cellular chain complexes.

The following lemma, used in the proof of Proposition 0.2, is one application of
excision and the relative exact sequence. It describes the effect of attaching cells on the
homology of the complexes involved.

LEMMA B.1. Let X be a G-complex, let J be a discrete set with G-action, and let
f1Ix8"— X ™ be any G-equivariant map (n>1). Set Y=XUs(JxD"t1). Then there
is an ezact sequence of Z|G]-modules

0— Hyp1(X) 2% Hoy (Y) = Ho(JxS™) L5 Ho (X)) 2 H, (V) — 0;

and the inclusion X LY induces isomorphisms H;(X)2H,(Y) for all i#n,n+1.

Proof. Let a: Jx D™t -Y be the characteristic map (so a|;xs»=f). This induces
an isomorphism C,(JxD"*! JxS8")=C,(Y, X) of chain complexes, and hence an iso-

morphism in homology in all degrees. The square

Hyu1 (Jx D™, JxS™) —Z Hy(JxS™)

”*ie Hn(f)l

Hn+1(Y»X) H‘n(X)

commutes by the naturality of the relative exact sequences for pairs of CW complexes,
and the upper boundary map is an isomorphism since H;(JxD"+1)=0 for i>1. The
lemma now follows from the relative exact sequence for the pair (Y, X ), where H,,11(Y, X)
is replaced by H, (JxS") via the above square. O

The following more technical application of excision and the relative exact sequences

is needed in the proof of Proposition 1.7.
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LEMMA B.2. Fiz a CW complex Y and subcomplezes B, XCY, and set A=BNX.
Assume that the inclusion induces an isomorphism H.(A)— H.(B). Then H.(Y,X)=
H,(Y,XUB).

Proof. Tt suffices to show that H,(XUB, X)=0; the result then follows from the
relative exact sequence for Y 2 XUBDX. But H,(XUB, X)=H,(B, A) by excision, and
this last group vanishes since H,(A)=H,(B). O

The following result says, roughly, that a union of homology or homotopy equiva-~
lences between CW complexes is again a homology or homotopy equivalence.

ProPOSITION B.3. Let f: X—=Y be a map between CW complezes. Fiz subcom-
plezes A1, A2GC X and By, BaCY such that X=A;UAy and Y=DB1UB;, and set Ag=
AiNA, and By=B1NBy. Assume that f restricts to homology (homotopy) equivalences
fir A;— B; for i=0,1,2. Then f is itself a homology (homotopy) equivalence.

Proof. If fo, f1 and f2 are all homology equivalences, then f is a homology equiva-~
lence by the Mayer—Vietoris sequences for the two unions (and the 5-lemma).

Assume now that fy, f1 and f2 are all homotopy equivalences; we must show that
f is a homotopy equivalence. By the van Kampen theorem, f induces an isomorphism
of fundamental groups (on each connected component). The map between the universal
covers is a homology equivalence, hence a homotopy equivalence; and hence f: X —»Y is
itself a homotopy equivalence. For the details of this argument, cf. [Gra, Lemma 16.24
and Theorem 16.22].

Alternatively, and more geometrically, one can show directly that any homotopy
inverse go: Bo— Ao of fo can be extended (one cell at a time) to homotopy inverses
gi:Bi—A; (i=1,2), while at the same time extending the homotopies of gyofo~Ida,
and foego~Idp,. The result then follows upon taking g=g;Ug::Y = X (and similarly
for the homotopies). The existence of the g; and the homotopies follows from the proofs
of [LW, Theorems IV.3.2-3] (applied to the 2-ads (A;, Ag) and (B, By)); although the
statements of these theorems are not sufficiently precise to do this. O

Appendix C. Projective Z[G]-modules

Recall that for any G-complex X, C.(X) and H.(X) are Z]|G]|-modules in an obvious
way. A finitely generated Z[G)-module M will be called stably free if there are finitely
generated free modules Fyy and F such that M@ Fy=F. Free Z[G]-modules, and hence
(as an intermediate step) stably free Z|G]-modules, play a key role when constructing
finite G-complexes in §1.
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LEMMA C.1. If XCY are finite G-complezes such that G acts freely on Y\ X, then
C. (Y, X) is a finite chain complex of free finitely generated Z[G]-modules.

Proof. By assumption, G permutes freely the cells in Y not in X. Thus, G permutes
freely a basis of C.(Y,X); and this is a finite basis since X and Y have only finitely

many cells. 0

The following proposition says in particular that if C, is a finite chain complex of
finitely generated free Z[G[-modules all but one of whose homology groups are stably
free, then the remaining homology group is also stably free. This does not hold for
modules over arbitrary noetherian rings, but uses special properties of group rings.

~ ProposiTioN C.2. Let C, be any finite chain complez of projective Z[G)-modules.
Assume, for some k, that H;(C.) is projective as a Z|G]-module for all i#k, and that
H(C.) is Z-free. Then H(C.) is also a projective Z[G]-module, and
@ H;(C.)e P Ci= @ Hi(C.)d D Ci. (1)
i even i odd i odd i even

Proof. We first claim the following: if 0+ A— B—C—0 is a short exact sequence
of finitely generated Z-free Z[G]-modules, and two of the modules A, B and C are
projective (stably free), then so is the third. This is clear if C is projective, since in
that case BA®C. So assume that A and B are projective (stably free). Since all
three groups are Z-free and finitely generated, the dual sequence 0—C*—B*—A*—0 is
also exact. Here, for any Z[G]-module M, M *({—S’fHomz(M ,Z) has the obvious structure
as a Z|G]-module. Dualization clearly takes finitely generated free Z[G]-modules to free
Z[G]-modules, hence the same for projective modules; and so the dualized sequence splits.
Thus B*~A*®C* as Z[G]-modules; and upon dualizing again we see that B=A&C. So
C is Z|G]-projective (stably free).

Now fix any m,n€Z such that m<k<n, and C;=0 for all i<m and all i>n. For
each 1, set Zi=Kor[C,i2>Ci_1] and B,-=Im[C’i+1£>C,;]. Consider the short exact se-
quences

0-2,-C;—>B;-1—»0 and 0-B;—Z;— H;(C,)—0.

By induction starting at i=m, one sees that Z; is projective for each i<k, and that B, is
projective for each ¢<k. Similarly, by downward induction starting at i=n+1, one sees
that B; is projective for each ik, and that Z; is projective for each i>k. In particular,
By and Z, are both projective, and so the same holds for Hy(C,).

In particular, the above short exact sequences split, since all of their terms are

projective. Set

Cov=P(C2), Coda=B(C2it1), Hev=EPB(H2(Ck)), Hoqa=D(Ha41(C\));
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and similarly for Z.y, Zoq, Bev and B,q. Then

Hev@cod = ev@Bev®Zod = ZeveaZod’
Hodescev = odeaBod@Zev = od@Zev7

and this proves (1). O

The following property of projective Z[G]-modules is a consequence of a theorem of
Swan.

PROPOSITION C.3. Let P and P’ be any two finitely generated projective Z|G-
modules. Then PRz P’ (with the diagonal action of G) is stably free as a Z|G]-module.

Proof. Assume first that P is free. Let {a;} be a Z[G]-basis for P, and let {b,} be a
Z-basis for P’. Then {a;®b;} is a Z[G]-basis for P®P’, and this module is free. (Note
that we did not need to know that P’ is projective, only that it is Z-free.)

Now consider the general case. By [Sw, Theorems 7.1 and 8.1}, for any n>0, any
finitely generated projective Z[G]-module contains a free submodule of finite index prime
to n. In particular, we can choose free submodules FCP and F'C P’ such that [P:F ]
and [P’: F'] are finite and relatively prime. Consider the commutative diagram

0 —> FRF —> PQF —> (P/F)QF —= ()

T

0 —> F®P' —2> PgP' — (P/F)®P' — 0,

where all tensor products are taken over Z. The rows are both exact, and « is an
isomorphism since (P/F)®(P’/F')=0. So by an easy diagram chase, the sequence

0 FoF 0 (po Fa(FoP') 222, Po P! -0

is exact. We have just seen that the first two terms in this sequence are free, and so
P®P' is stably free. [

In fact, using stability results of Swan, one can show that the tensor product of
any two finitely generated projective Z[G]-modules is free. This is not needed for the
constructions in this paper, but the following much deeper stability result is used. It is
not needed to prove the existence of 2-dimensional acyclic G-complexes, but it is used in
§3 to show that all of the complexes we construct can be taken to have exactly one free
orbit of 2-cells (and no free orbits of cells in other dimensions).
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PRrOPOSITION C.4. If G is simple, or (more generally) if there is no homomorphism
G—SU(2) (=8SU(2,C)) with nonabelian image, then any stably free Z|G]-module is free.

Proof. By a theorem of Jacobinski [Jac, Theorem 4.1], if % is any Z-order in a
finite-dimensional semisimple Q-algebra A which satisfies the Eichler condition, then all
finitely generated stably free 2l-modules are free. Here, the algebra A satisfies the Eichler
condition if it has no simple factor B, with center K, for which every embedding K< C
has image contained in R and induces an isomorphism R®x B=H (the quaternion
algebra over R).

If Q[G] does not satisfy the Eichler condition—if B is a simple summand of Q[G]
and R®yx B=H—then the composite

QG X% BoH

restricts to a multiplicative homomorphism a: G—$3=SU(2,C). Here, S® denotes the
group of quaternions of norm 1. And since the image of G in H generates H as an
R-vector space, Im{a) must be nonabelian. See also [Re, §38] for more discussion. O

Appendix D. Finite simple groups of Lie type

We give here a very short discussion of groups of Lie type. For more detail, we refer to
[St1], [St2], [Ca] or [GLS].

The finite simple groups of Lie type consist of the Chevalley groups and their twisted
analogs. The finite Chevalley groups are analogs of the (complex or compact) Lie groups,
but realized over a finite field. They thus include the four families of classical groups:
An(q@)= Lns1(q)=PSLy+1(q), Bn(q)=2 P02, +1(q) (the commutator subgroup of the pro-
Jective orthogonal group PGO3,+1(q)), Crn(q)=PSp,(q) and D,,(q)2PQ3, (¢) (the com-
mutator subgroup of the projective special orthogonal groups with respect to a qua-
dratic form of “plus type”); as well as the exceptional groups Fs(q), E7(q), Es(q), Fa(q)
and G2(q). All of these are defined over any finite field; i.e., for any prime power gq.

The finite twisted groups of Lie type were first treated systematically by Steinberg
in [St1] and [St2], where (very roughly) they are obtained as fixed points of certain
automorphisms of the Chevalley groups—group automorphisms which are associated
with automorphisms of the Dynkin diagram. Let G be one of the symbols A, By, Cy,
etc. Then ™G(q) denotes the fixed subgroup of an automorphism of order m of G(¢g™)
(or of G(q) when G=Bs, G, or Fy). The finite twisted groups thus consist of the classical
groups 24, (q) = PSU,+1(q)=Un+1(g) and 2D, (q)=9;5,(g) (the commutator subgroup of
the projective special orthogonal groups of “minus type”); as well as the Suzuki groups
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2B,(22k+1) the Ree groups 2G2(3%**1) and 2F,(2%%*!), and the Steinberg groups ?F¢(q)
and 3Dy(q).

To make this more concrete, it is necessary to work with automorphisms of the
Chevalley groups over the algebraic closure Fp, where p is prime. Let G(Fp) denote a
simple algebraic group of type G defined over F,,. We will always assume that G(F,) is of
adjoint type (i.e., with trivial center), or equivalently that it is a group of automorphisms
of the corresponding Lie algebra. For ¢ a power of p, the finite Chevalley group G(q)
can (roughly) be thought of as the fixed subgroup of the automorphism ¢, of G(F,)
induced by the field automorphism (¢—t?). More generally, a Steinberg endomorphism
of G=G(F,) is defined to be an algebraic endomorphism of G whose fixed subgroup
Cs(o)={z€G|o(z)=x} is finite. (In fact, the Steinberg endomorphisms are all auto-
morphisms of G as an abstract group, but none of them is invertible as an algebraic
endomorphism.) The finite twisted groups of Lie type are (roughly) the fixed subgroups
of Steinberg endomorphisms of G, which are field automorphisms (t—19) “twisted” by
graph automorphisms.

More precisely, if o is a Steinberg endomorphism of G=G(F,), let G, denote the
subgroup of Cg(o) generated by its Sylow p-subgroups. Or, equivalently, let G,=
(Cy(o),Cy(c)), where U,VCG are subgroups defined in the next paragraph. If G is
the universal central extension of G, then G,=Cg(0)/Z, where Z denotes the center.
For example, if q is a power of p, then SL,(q)=Cg., (¥,)(#q), while PSL,(q) can be a
proper subgroup of Cpgy, (f,)(q)- For all G and all q=p*, G(g)=G,,.

To describe the Steinberg endomorphisms, we must first establish notation for certain
elements of the Chevalley groups. Fix a prime p, and let FCF, be any subfield. Set
G=G(F), and let ¥ be the system of roots of type G. Let £,,X_C¥ denote the sets
of positive and negative roots, respectively. To each r€X there corresponds a subgroup
(the root subgroup) X,={z,(t)|teF}CG, isomorphic to the additive group F. Then
Udéf(Xr |reX,) and Vdéf(XT |r€X_) are both maximal unipotent subgroups of G; they
are closed and connected if F=F,, and are Sylow p-subgroups of G if F is finite. Also,
G=(U, V). The subgroup HdéfNG(U)ﬂNG(V) is a maximal torus of G if F=F,, and is
called a Cartan subgroup of G when G is finite. This subgroup H is abelian, generated
by elements h,(t) for simple roots r and t€F*; and its elements are called “diagonal
elements” of G. Also, Ng(U)=UH and Ng(V)=VH (Borel subgroups of G).

For example, when G=A,,(F)=L, 1 (F) (of adjoint type}, then the roots correspond
to the pairs (¢, 7) for i#7, and the positive roots correspond to the pairs (¢, j) for i<j. In
this case, z;;(t)=e;;(t), the matrix which has 1’s on the diagonal, ¢ in position (z, 7), and
0’s elsewhere. Thus U and V are the subgroups of (strict) upper and lower triangular
matrices, and H is the subgroup of diagonal matrices. Note that when we describe
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elements and subgroups here in terms of matrices, we mean their images under the
surjection of SL,,11(F) onto Lyp4+1(F)=PSL,4+1(F).

Let o be a Steinberg endomorphism of G=G(F,) (still assumed of adjoint type). By
the Lang-Steinberg theorem [St2, Theorem 10.1}, for any g€G, there exists h€G such
that g=o(h)h~!. Hence, all elements in Inn(G)oo are conjugate in Aut(G). In other
words, composing a Steinberg endomorphism ¢ with an inner automorphism of G, does
not change G, (up to conjugation).

Next, Steinberg showed that for any o, there is some g€ G such that conj(g)oo leaves
U and V invariant, and permutes the root subgroups X,.. It thus suffices to consider those
o for which o (X, )=X (- for some automorphism g of the root system Z of type G, which
preserves the positive roots; i.e., a permutation of ¥ which preserves angles between the
roots, such that o(X,)=X,. Hence p permutes the simple roots, and induces a symmetry
of the Dynkin diagram of G. By inspection of the Dynkin diagrams, one sees that if
o#Id, then either G=A,,, D, or Eg, and g is the automorphism of order 2 of the root
system; or G=Dy, and g is an automorphism of order 3; or G=B,, F4 or G2, and p is
an automorphism of order 2 which interchanges long and short roots.

If 0(X,)=X,(r) for such p, then necessarily o(z,(t))=z () (e, t?") for some &, € (Fp)*
and some ¢, powers of p. After composing with conjugation by a diagonal element, we
can assume that £,=1 for all simple roots r (and ,=+1 for all r). Also, by studying
the action of & on diagonal elements, one can show that the ratio g.-||r|l/|lo(r})] is
constant, independent of r. In particular, if p=Id, then o=y, (¢=¢, for all r) is a field
automorphism.

Assume that p#Id, and that all roots in ¥ have the same length. Then o=pg401,,
where g=p*>1 (g=g¢, for all ), and where ¥, (z,(t)) =z ,((t) for all simple roots r and all
teF, (and ¢,(z,(t)) =z, (£t) for arbitrary 7). The existence of such an automorphism
¥, is shown in [St1, Theorem 29] or [Ca, Proposition 12.2.3]. If m is the order of p,
then 6™ =ypym, so Gom=G(¢™), and mG(q)%'G, can be viewed as the subgroup of
Cg(qm)(T) generated by its Sylow-p subgroups, where 7 is the restriction of ¢ to G(¢™).
In other words, we can regard ™ G(gq)=G(g™)r, where 7 is the field automorphism (t—t7)
“twisted” by the “graph automorphism” of G(g™).

As one example, consider the automorphism 7(a;;)=(((=1)"an42—jnt2-i)?)"?
of L,+1(¢?). This preserves upper and lower triangular matrices, and sends z;;(t) to
Tny2-jn+2—i(Ft?). The signs have been chosen so that 7(x,(t))=zy)(t?) when r is a
simple root {4,i+1) (but not for all roots). Then 2An(qr)déf(LnH(<12))T=PS'U',H,1(q) is
the projective special unitary group defined with respect to the hermitian form (z,y)=
w3 (=1)* 'z (ynt2—:)? on (Fy2)"*! (where u=1 if n is even, and u¢~'=—1if n is odd).

Note that there can be elements of PSL,,;(g?) fixed by 7 which are not represented by
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unitary matrices, which is why one must define ?4,(q)={(Cy(7),Cv(7)). If one works
in the universal central extension SL,+1(g?), the subgroup of elements fixed by 7 is
SUn+1(q)-

If ¥ has roots of distinct lengths and p is nontrivial, then as mentioned above,
G=B,, F4 or G5, and p interchanges long and short roots. Set pg=2 if G=B,, Fy,
and pp=3 if G=Gy, so that |lo(r)||/||I7||=(po)T'/? for each rcX. Since q,-||7||/|le(r)]|| is
independent of r (and the g, are all powers of p), this is possible only if p=py. Hence,
og=pgo1, for some g=p*>1, where

Zory(t?) if 7 is a short root,
Yo(zr(t)) = {

Zory(t) if 7 is a long root.

Then o2=p,2,, s0 G,2=G(¢’p)=G(p?**!), and 2(?r([)2’“+1)d§f§Cr can be regarded as

the fixed subgroup of an involution on G(p?**1). This group is sometimes denoted
2g( pk+%)‘

As an example, Ono [On] carried out this procedure on Spy(22k+1)=By(22k+1),
regarded as the group of (4x4)-matrices which preserve the symplectic form (z,y)=
T1Ya+T2Ys+Z3y2+xay1. He obtained precisely the matrix presentation of Sz(22¢+1)
described in Proposition 3.6, as the fixed points (Sp4(22%+1)),, where 7 is the restriction
of the above o=y o1, to Spy(22*+1).

The rank of a Chevalley group G(g) is just the rank of G=G(F,) in the usual
sense; i.e., the number of simple roots in its root system, or the number of nodes in
its Dynkin diagram. The rank of a twisted group ™G(q) is equal to the number of
orbits of roots (or of nodes) under the corresponding automorphism of the root system
or the Dynkin diagram of G. There are thus four families of finite simple groups of Lie
type and Lie rank 1: the 2-dimensional projective special linear groups L2(q)=A,(q),
the 3-dimensional projective special unitary groups Us(q)=245(q), the Suzuki groups
Sz(g)22?B,(22F*1), and the Ree groups 2G,(3%¢+1).

We now return to the internal structure of the groups of Lie type. First let G=G(F')
be a Chevalley group over any field F, and let ¥ be a root system of type G. We
have already discussed the root subgroups X, ={z,(t)|t€F} for each root r€X, and the
subgroups U=(X,|reX,) and V=(X,|reX_). For each root r, there is a surjection
¢r: SLo(FY— (X, X_,) which sends

((1) i) to  z(t)

(1 (1)> to  z_.(t).

and
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This allows the definition of elements

e =a(y 0) and e (° )
The elements h,()), for r€X and A€ F*, generate the subgroup H of diagonal elements
of G, and together with the n, they generate the subgroup N=(H,n,|r€3) of monomial
elements. Then N/H=W, the Weyl group of G (and of its root system), and BY
(U,H)=Ng(U) is a Borel subgroup of G.

Now set G=G(F,), and let o be a Steinberg morphism of G. Set U,=Cy (o) and
V,=Cy (o), the subgroups of elements fixed by ¢, and let G= (Us, V) be the correspond-
ing group of Lie type. Set I;T:CH(J)HCA?, ]V=CN(0)D@ and B=Cp(c)NG. Let g be
the automorphism of the root system ¥ associated to o, as described earlier. In par-
ticular ¢ permutes the positive roots, and hence the simple roots. By a root (or simple
root) of G is meant a g-orbit FC S (or p-orbit of simple roots). Note that if p=Id, then
G is an (untwisted) Chevalley group, and its roots are the roots in the usual sense. We
write =X /p for the set of roots, —#={—r|ref}; and (J) (when JCE) for the set of
g-orbits of roots which are linear combinations of elements re#eJ. The root subgroup
X corresponding to an orbit 7 is the subgroup (][, Xr)s of o-invariant elements. The
Weyl group of G is the group W=N /ﬁ ; or equivalently the subgroup of W=N/H of ele-
ments which commute with o (cf. [Ca, Proposition 13.5.2]) when both are considered as
groups of permutations of the roots X (or of the real vector space generated by the roots).
The Weyl group is generated by elements w; of order 2, one for each g-orbit § of simple
roots, where the w;-action on ¥ sends s to —s for all s€5. The root subgroups of G are
discussed in detail in [Ca, Proposition 13.6.3] and [GLS, Table 2.4]; in particular, they
need not be abelian. The Weyl groups of the twisted groups are described in [Ca, §13.3];
each is isomorphic to that of some Chevalley group except when G =2F,(2%%*1), in which
case W is dihedral of order 16.

For notational convenience we now drop the “hat” from our notation for the finite
simple groups of Lie type of the previous paragraph. Thus from now through the end of
Appendix D, G =@, U=U , etc. Also, we will abuse notation and write r=7 for a g-orbit
in X. '

Tits has axiomatized the properties of the pairs (B, N) in groups of Lie type. These
permit, for example, uniform proofs of the simplicity of these groups in all cases where
they are simple. See, e.g., [Ca, §8.2] or [GLS, §1.11] for more detail about such BN-pairs.

By definition, any group of Lie type is generated by its root subgroups (for a given
choice of root system). In fact, it suffices to take the simple roots.

LEMMA D.1. Let G be a finite simple group of Lie type, with root system X. Then
G is generated by the root subgroups X, and X_, for simple roots s€3,.
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Proof. See [Ca, Proposition 13.6.5]. Very briefly, when G is a Chevalley group, this
holds since conjugation by elements of N (or of W=N/H ) permutes the root subgroups
in the same way as the Weyl group permutes the roots, and each root is in the W-orbit
of a simple root. Since N/H is generated by the images of the elements n,€(X,, X ;)
for simple roots s, this shows that (X,, X_|s simple) contains all of the X, for re¥,
and hence is all of G. The same argument works for the twisted groups. O

We now turn attention to parabolic subgroups: proper subgroups of G which contain
a Borel subgroup. For convenience, set B'=VH (and B=UH as usual). Let X be the
root system corrésponding to G. For each proper subset J of simple roots of G, let
(JYC X be as defined above, and set

P;=(B,n,|seJ)=(B, X, |re{J)),
Py=(B'\nstscJ)=(B, X, |re{J)).

By [Ca, Theorem 8.3.2], the groups P; are precisely the overgroups of B in G (i.e., the
parabolic subgroups containing B).

LEMMA D.2. Let G be a finite simple group of Lie type. Let ¥ be the root system
associated with G, and let £, and X_ be the sets of positive and negative roots. Fiz
a set J of simple roots which does not contain all of them, and let L; be the subgroup
generated by the diagonal subgroup H together with the root subgroups X, for all r€{J).
Let Uj and Vj be the subgroups generated by all X, for roots re¥X, or r€X_, respec-
tively, which are not in (J). Then U;<P;=U;L; and Vy;<P,=V;L;, Uy and V; are
nilpotent, and (U;,V;)=G.

Proof. When G is a Chevalley group, the nilpotency of U2U; and V 2V follows
from [Ca, Theorem 5.3.3], and L; normalizes U; and V; by [Ca, Theorem 8.5.2]. Both of
these are consequences of Chevalley’s commutator formula, which says that for any pair
of roots r,s€X, [X,, X,] is generated by the subgroups X for all roots t=ir+ js where
1,7>0. The twisted group case follows immediately by restriction. And P;=U;L; and
Py=V,L; since U and V are generated by their root subgroups: by definition when G
is a Chevalley group, and by [Ca, Proposition 13.6.1] when G is a twisted group.

This also shows that (L;, Uy, V;)=(U,V)=G. Thus (U, V,;)<G, since L; normal-
izes Uy and Vj; and so G=(U;,V}) since G is simple. O

The decomposition P;=U;L; of Lemma D.2 is called the Levi decomposition of P;,
and L is called the Levi subgroup.

We now return to looking at group actions on 2-dimensional acyclic complexes.
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LeEMMA D.3. Let G be a finite simple group of Lie type, and let PG G be one of the
parabolic subgroups Py or P} of Lemma D.2. Then for any action of G on an acyclic
2-compler X, X¥+#w.

Proof. We can assume X®=@. By Lemma D.2, there are subgroups U;<P;,
V;<1P} and Ly=P;N P} such that U; and V; are nilpotent, P;=U,;L;, Py=V;L; and
(U;,V;)=G. In particular, XU and X"’ are acyclic, disjoint and L j-invariant. Then
XLz by Corollary 4.2, applied to the action of Ly on X with invariant subspaces
A=XY’ and B=X""; and so X* and X*’ are nonempty by Lemma 4.3 (a).

To see this more directly, let Y be the complex obtained by collapsing XY’ and
XV to separate points. Then Y is still acyclic, L; acts on Y, and Y7 contains at
least the two collapse points. Thus, YL/ is acyclic by Theorem 4.1, and is in particular
connected; hence X’ must intersect with both subcomplexes XY’ and XV7. It follows
that X' =XLiNnXVi4g and XPr=XLnXVi 0. O

Appendix E. The four-subgroup criterion

In [S1] and [AS], very strong restrictions were placed on the finite simple groups which
could possibly have actions on 2-dimensional acyclic complexes without fixed points.
The main tool for doing this was a “four-subgroup criterion”, which for the sake of
completeness we present here as Proposition E.1. To illustrate its use, we then describe
how it was applied to certain multiply transitive groups, and to simple groups of Lie type
and Lie rank at least 2-—those cases of the proof of Theorem A which were not dealt
with in §§6 and 7.

PropPOSITION E.1 [S1, Theorem 3.2]. Fiz a finite group G and a 2-dimensional
acyclic G-complex X. Let Hy, Hy, H3, HyC G be subgroups such that X HiHiHe) Loy for
any 4,7, k. Then X(HuHeHs He) £ o

Proof. Assume otherwise: that X (H1HzHs Ha) =g Get, H={H,,Hs,H;,Hs}. By
Theorem 4.1, X* is the union of the acyclic subcomplexes X ¢, which have the prop-
erty that any two or three of them have acyclic intersection, but the four have empty
intersection. This implies that Ho(X™)~H,(S%)=Z (see Lemma 0.1, applied using the
poset S of nonempty proper subsets of {1,2,3,4}). But this is impossible, since X*
must be homologically 1-dimensional by Lemma 1.6. 0O

The simplest application of Proposition E.1 is to multiply transitive groups.

COROLLARY E.2. Assume that G acts 4-transitively on a set S with point stabilizer
HCG. Let X be a 2-dimensional acyclic G-complex such that XH+#@. Then XC+£.
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Proof. 1f | S|=4, then this follows from Theorem 4.1. So assume |S|>5, and fix four
elements si, s2,83,54€S. For each i=1,2,3,4, let H;CG be the subgroup of elements
which fix s; for all j#4. For each {i,7,k,r}={1,2,3,4}, (H,, H;, Hi) is the point stabi-
lizer of s,, and hence fixes a point in X by assumption. So X“#@ by Proposition E.1. O

This is now applied to the alternating groups, as well as most of the Mathieu groups.

ProposITION E.3 [S1, 3.6]. If G=A, for n26, or if G is one of the Mathieu
groups My1 or Mo, then every G-action on an acyclic 2-complezx has fixed points. The
same holds for My and Moy if it holds for Mas.

Proof. Let X be a 2-dimensional acyclic G-complex. If G=A,, for n>=6, then by
Corollary E.2, X¢#@ if XAn-1+£@. By Proposition 6.4, Ag2Ly(9) must have nonempty
fixed point set, and the result now follows by induction on n.

Each of the simple Mathieu groups M,, for n=11,12, 23,24 acts 4-transitively on
a set with point stabilizer M,y (cf. [A3, 18.9-10 and 19.4], [Gri, 5.33 and 6.18], [Ma]
or [Wi]). So by Corollary E.2, the proposition holds for M, if it holds for M,,_;. Since
Mo contains a subgroup Ag of index 2, this proves the proposition when n=11 or 12;
and it will follow for the other simple Mathieu groups once it has been shown for My,. O

Proposition E.1 can also be applied to simple groups of Lie type of Lie rank at least 2.
In this case, the subgroups in question come from the root system of the group. Note
that the following proof applies only to groups of Lie type which are themselves simple.
The Tits group 2F(2)’, which has index 2 in 2F(2), is dealt with here in Proposition 7.2,
as well as in [AS, 5.2].

PROPOSITION E.4 [AS, §5]. If G is a simple group of Lie type and Lie rank at
least 2, then every G-action on an acyclic 2-complex has fized points.

Proof. We use the notation of Lemma D.2. Fix a root system =%, IIX_ for G, and
let J,11.J5 be a decomposition of the set of simple roots as a disjoint union of nonempty
subsets. For each i=1,2, set

Hf=(H,X,|seJ;) and H; =(H,X_,|s€J;).

The subgroup generated by any three of the Hft is contained in one of the parabolic
subgroups Pj, or Pj (in the notation of Lemma D.2), and hence has nonempty fixed
point set in X by Lemma D.3. But (H, Hf)=G by Lemma D.1, since it contains all
subgroups X, and X_, for simple roots s, and hence X% by Proposition E.1. O
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List of notation

Groups:

C,,.: a cyclic group of order m;

Dy,,: a dihedral group of order 2m;

A, the alternating group on n letters;

Yn: the symmetric group on n letters;

PGL,(q)=GL,(q)/(center): the projective general linear group over F;

L,(q)=PSL,(q): the projective special linear group over Fy;

PGU,(q): the projective general unitary group over F;

Un(q)=PSU,(q): the projective special unitary group over F ..
Topological spaces:

I=[0,1]: the unit interval;

D"={zeR"|||z||<1}: the unit ball in R™;

S"={zeR"*!|||z||=1}: the unit sphere in R"*!;

X=Y: X and Y are homeomorphic;

X~Y: X and Y are homotopy equivalent;

X~x: X is contractible;

H(X)¥H.(X;2);

acyclic means Z-acyclic: X is acyclic if and only if H,(X;Z)~H,(pt,Z).
Families and sets of subgroups of G:

S(G): the family of all subgroups of G;

(H): the conjugacy class of HCG;

FCS(G) is a family & HeF implies (H)CF;

FCS(G) is a separating family: see the beginning of §1;

SLY(G): the family of solvable subgroups of G;

MAX(G): the maximal separating family of subgroups of G;

(G, F)elU, (F separating) < there exists a 2-dimensional Z-acyclic (G, F )-complex.
For any families F, F' of subgroups of G:

Fmax: the set of maximal subgroups of F;

Feru={KeF|K2DH} for all HCG;

Fsp={KeF|K2H} for all HCG;

FiM ={KeF|HZKGM} for all HE MCG;

Fsu={KeF|K2DH for some HeH} for all HCS(G);

Fimy={HeF|n||H|} for all n>1;

FAF'={HNH'|HeF, H'eF'},

HeF is critical in F & N (Fapy)

F.={HeF|H critical in F}.
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If X is a G-complez:

(A1]
(A2]
[A3]

(AS]

[Ad]

[BI]

G,={9€G|gz=x} for all z€ X,

X is a (G, F)-complex & G, €F for all € X;
XH={ze X |hz=z for all he H}: the fixed point set;

X ={2eX|Ge2H}=Ugon X"

XH=Jyey X for all HCS(G);

XM=, g X ={e€ X ||G,|€nZ} for all n>1;
X(H):UQEG X9Ho

Xs=Uisnce XT={z€X|G,#1}: the “singular set” of X.
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