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In  th i s  p a p e r ,  we give a c o m p l e t e  d e s c r i p t i o n  of  t h e  f in i te  g r o u p s  w h i c h  can  ac t  on  2- 

d i m e n s i o n a l  Z -acyc l i c  c o m p l e x e s  w i t h o u t  f ixed po in t s .  O n e  e x a m p l e  of  such  an  a c t i o n  

(by t h e  g r o u p  A5) has  b e e n  k n o w n  for a l ong  t ime ,  b u t  as  far as  we k n o w  it  is t h e  on ly  

such  a c t i o n  c o n s t r u c t e d  ear l ier .  In  fac t ,  we c o n s t r u c t  he re  ac t ions  of  th i s  t y p e  for m a n y  

d i f fe ren t  f in i te  s i m p l e  g roups .  
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More precisely, our main theorem is the following. 

THEOREM A. For any finite group G, there is an essential fixed point free 2- 

dimensional (finite) Z-acyclic G-complex if and only if G is isomorphic to one of the 

simple groups PSL2(2 k) for k>~2, PSL2(q) for q - •  (rood 8) and q>~5, or Sz(2 k) for 

odd k>~3. Furthermore, the isotropy subgroups of any such G-complex are all solvable. 

Here "G-complex" means a G-CW complex; but the same result holds if one in- 

stead uses simplicial complexes with admissible G-action in the sense of [$1] or [AS] 

(see Proposition A.4 in the appendix). The word "finite" is in parentheses because the 

theorem holds whether or not this condition is included. 

Before we give our definition of essential action, we make precise the relationship 

between essential actions and arbi t rary actions on Z-acyclic 2-complexes. 

THEOREM B. Let G be any finite group, and let X be any 2-dimensional Z-acyclic 

G-complex. Let N be the subgroup generated by all normal subgroups N~<~G such that 

x N ' # o .  Then X N is Z-acyclic; X is essential if and only if N = I ;  and the action of 

G /N  on X N is essential. 

Thus, the condition in Theorem A that  the action be essential was included to 

insure that  for a normal subgroup N<]G, an action of a quotient group GIN does not 

automatically produce (via the quotient map  G-+G/N)  an action of G. If X is a G- 

complex, and N<~G is such that  for each HC_G, the inclusion xHN--+X H induces an 

isomorphism on integral homology, then the G-action on X is "essentially" the same as 

the G-action on X N, which factors through the G/N-action. This motivates the following 

definition. 

Definition. A G-complex X is essential if there is no normal subgroup I#N<IG 

with the property that  for each H C_ G, the inclusion x HN--+xH induces an isomorphisnl 

on integral homology. 

The proofs of Theorems A and B rely on the earlier works [Ol1, [O2], [Sl] and [AS], 

as well as on the classification theorem for finite simple groups. In [S1], Y. Segev proved 

that  if a finite group G acts on a Z-acyclic 2-complex X, the fixed point set X C" is 

either Z-acyclic or empty, and is Z-acyclic if G is solvable or G~An  for n>~6. Later, 

in [AS], Aschbacher and Segev extended these results, and proved that  XC'#O if G is 

simple, except perhaps when G is of Lie type and Lie rank 1, or the first Janko group J1 

(a sporadic group). 

Techniques for constructing fixed point free actions of finite groups on finite acyclic or 

contractible complexes (without restrictions on dimension) were developed by B. Oliver 
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in several earlier papers such as [O1] and [02]. In particular, in [O2], actions for which 

the fixed point set of each subgroup is contractible or empty  are studied. 

The proof of Theorem A both when constructing actions of G and when proving 

their nonexistence is based on refinements of the techniques developed in these earlier 

papers of both authors. The main new input comes from a more detailed analysis of 

the subgroup lattice of G and its orbit space. In particular, necessary and sufficient 

conditions for the existence of actions are stated in terms of this lattice in Proposit ion 1.9. 

Afterwards, the proofs of nonexistence of actions of particular groups require identifying 

homology in certain "pieces" of the subgroup lattice of G. 

In fact, relatively few solvable subgroups need occur as isotropy groups for the actions 

we construct when proving Theorem A, and those which do occur are listed explicitly. It  

is possible that  these and similarly constructed G-complexes can give new information 

about  decompositions of BG, and about  the cohomology of G. 

Theorem A leaves open the question as to whether or not it is possible for a finite 

group to act on a 2-dimensional contractible complex without fixed points. Understanding 

actions on acyclic 2-complexes is clearly a first step towards investigating this question, 

but the first author feels that  any serious a t tempt  to answer it will require some very 

different methods than those used here. 

This paper is intended for both group theorists and topologists, and we have at- 

tempted to write it in a way which will be appealing and readable for both. In particular, 

more background material has been included than might normally be the case, although 

we have tried to put most of tha t  in the appendix at the end of the paper. 

The paper is organized as follows. In w conditions are established, in terms of 

holnological properties of the subgroup lattice of G, which determine the minimal di- 

mensions of certain "universal" G-complexes. In particular, this section includes the 

general machinery for constructing G-complexes with certain prescribed properties. Af- 

ter proving some technical results in w the constructions of the G-complexes described 

in Theorem A are carried out in w In w we show that  any finite group G which acts 

essentially on a 2-dimensional acyclic complex must be ahnost simple (i.e., there is a 

nonabelian simple group L such that  LCGCAut(L)). In w we develop inachinery to 

show the nonexistence of actions on acyclic 2-complexes; and this is applied in w to 

prove Theorem A for simple groups of Lie type and Lie rank 1. The sporadic groups are 

dealt with in Theorem 7; except for the first .]anko group J1 this repeats results already 

shown in [AS]. Theorem B is proven in w and Theorem A in w All of this is pre- 

ceded by a preliminary "w where we present some general results about  G-posets and 

construction of G-complexes; and is followed by an appendix which includes background 

material about  G-complexes, Z[G]-Inodules, and simple groups of Lie type, as well as a 
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sketch of the proofs in [S1] and [AS] of certain cases of Theorem A. References of the 

form A.x, B.x, etc. all refer to the appendix. After the appendix, we attach a list of the 

notation used throughout the paper. 

The first author would like to thank the Hebrew University for the hospitality during 

his visit in 1997. This visit, and the visit of the second author to Aarhus University 

in 1992, played an important  role in starting our collaboration. We would also like 

to thank Jean-Pierre Serre for his letters, which also helped revive our interest in this 

problem. 

0. G-complexes and G-posets 

Posets, and in particular families of subgroups considered as posets, will play an impor- 

tant role as "bookkeeping" devices for controlling dimensions of certain acyclic complexes. 

For any poset S, we let A/'(S) denote its nerve: the simplicial complex with one vertex 

for each element of S, and one n-simplex for each chain a0 <cq  < ... < a n  of elements of S. 

By a G-poset is meant a poset with G-action which preserves the ordering. A terminal 

subposet of a poset S is a subset S 'C S such that  13>~aES' implies ~ES ' .  For any element 

a in a poset S, we set S~>~= {/3ESI/3>~a }. The next lemma provides a general setting 

for comparing G-complexes with coverings to the nerves of the coverings. 

LEMMA 0.1. Let X be a G-complex, let S be a finite G-poset, and let {X~}aes be 

a covering of X by subcomplexes which satisfies the following conditions: 

(a) aK~fl implies X,~D_X/~. 

(b) For all x E X ,  the set {aESIxEX, ,  } has a largest element. 

(c) X.q(~,)=g(X,,) for all aES,  gEG. 

Then there is a G-map fx :  X--+Af(S) with the property that 

fx(xo)cw(s>~,O b r  all ~ES. (1) 

If, furthermore, X~ is acyclic (contractible) for each a, then for any map f: X--+Af(S) 

which satisfies (1), and any terminal subposet S~CS, f restricts to a homology equiva- 

lence (homotopy equivalence) fs': Xs, = Uc, Es, X~-+.N'(S'). 

Proof. For each n~>0, let Jn denote the G-set of n-cells of X, and let ~,,: J,, x Dn-+X 

denote the characteristic map for the n-cells (see Appendix A). Let 0: J,,--+S be the map 

which sends jEJn to the largest element in the set {aESI~n(j ,O)EX~}; this is well 

defined by (b) and equivariant by (c). For each a E S ,  we let [a] denote the corresponding 

vertex in A/'(S). 
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First define fo:X(~ by setting fo(~o(j,O))=[O(j)] for each jEJ0.  This 

clearly satisfies condition (1) (with respect to the covering {X(~ 

Now assume that fn-l:X(n-1)--+Af(S) has been defined, satisfying (1). For any 

jEJn and any vES ~-1, ~)n(j,O)EXo(j) by construction, and so ~(j,v)EXe(j) since 

Xo(j) is a subcomplex of X. So fn-l(qOn(j,v))EAf(S>~e(j)) by (1), hence it is in some 

simplex which contains the vertex [0(j)], and the segment from fn--l(~n(j, V)) to [0(j)] 

lies in Af(S). So we can define 

fn: X (n) --> N'(S) 

by setting f,(x)=f~_l(X) for x E X  (n-l), and 

fn(qPn(j, tv)) =t'fn--t(~n(j,v))+(1--t)" [0(j)] for jEJn, V E S  n - l ,  t C  [0, 1]. 

This is well defined as a map of sets, since the two definitions agree on ~n(J~ x S ' - l )  C _ 

X (~-1). So it is continuous by Lemma A.3 (fn[x(n-1) and f,,oqo~ are both continuous). 

Condition (1) still holds for f~, since for all jEJn and vEint(D~), and all a E S ,  

~o,~(j,v)EX,~ r ~,,(j,O)EX~ ~ a<<.O(j) ~ f~(~(j,v))EN(S>.o(j))C_Af(S>.~). 

And f,~ is equivariant since 0 is equivariant, since f~_ 1 is equivariant (by induction), and 

since the G-action on Af(S) is affine. 

Finally, define fx: X--+N'(S) to be the union of the fn; this is again continuous by 

Lemma A.3, and condition (1) holds since it holds for each fn. 
Now let f be any map which satisfies (1), and assume that  X,~ is aeyelic (con- 

tractible) for each c~ES. We want to show that f is a homology (homotopy) equivalence. 

The group action no longer plays a role here, so we can assume G =  1. We can assume 

inductively that for any properly contained terminal poset S '~  S, f restricts to an equiv- 

alence U~es, X~,--+N'(S') (since the subspace and subposet still satisfy conditions (a) 

and (b) above). If S has a smallest element a, then X = X ,  is acyclic (contractible) and 

N'(S) is contractible, so any map f:X--+N'(S) is a homology (homotopy) equivalence, 

and we are done. 

Assume now that S contains no smallest element. In this case, we can write S =  

SIUS2, where S1 and $2 are proper terminal subposets of S. Set S0=SlClS2, and set 

xi=U~esX~ for each i=0 ,1 ,2 .  Clearly, . A f ( S 0 ) = J ~ ( S 1 ) [ " I J ~ f ( S 2 )  , and condition (b) 

implies that  Xo=XIMX2. By the inductive assumption, f restricts to homology (homo- 

topy) equivalences fi:Xi--+A[(Si), and so f is a homology (homotopy) equivalence by 

Proposition B.a. [] 

By a family of subgroups of G will here be meant any subset 5vC_$(G) which is 

closed under conjugation. We do not assume here that  subgroups of elements of the 

family are also in the family. 
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For any family 9 r of subgroups of G, a (G, gr)-complex will mean a G-CW complex 

all of whose isotropy subgroups lie in b t-. A (G, 9V)-complex is universal if the fixed point 

set of each subgroup in 5 r is contractible. (The "universality" property of such spaces 

is explained in Proposition A.6.) One can, in fact, construct universal (G, ~)-complexes 

for any family ~ of subgroups of G, but in most cases any such complex must be infinite- 

dimensional. For example, when ~ = { 1 }  contains only the trivial subgroup, a universal 

(G, ~)-complex is just a contractible complex upon which G acts freely; and so its orbit 

space is a classifying space for G. The results in w will make it clear what conditions 

are needed on ~" for there to be a finite (or finite-dimensional) universal (G, br)-complex. 

The following lemma is the starting point for the constructions of universal (G, 9v) - 

complexes, and of other G-complexes satisfying certain homological conditions. Roughly, 

it describes the effect on the homology of X of attaching cells of one orbit type G/H 

to X. By "attaching an orbit of cells of type G / H x D  i'' to a G-complex X, we mean 

replacing X by the complex XU ~(G/ H  • D ' )  for some G-map qo: G/H x S n-1 --+X (n-l). 

We refer to Lemma A.2 for more detail. 

PROPOSITION 0.2. Fix a finite G-complex X,  and a subgroup HC_G. Then the 

following hold. 

(a) For any n>~l, there is a finite G-complex YD_X, obtained by attaching to X 

orbits of cells of type G / H x D  i for l<~i<~n, such that yH is (n-1)-connected and 

Hi(yH)~-Hi(X H) for all i>n. Also, Hn(Y H) is Z-free if Hn(X H) is Z-free. 

(b) Assume n>~ l, and that X H is (n-1)-connected. For any homomorphism 

~o: (Z[N(H)/H])  k --+ Hn(X  H) 

of Z[N(H)/H]-modules, there is a finite G-complex Y D X ,  obtained by attaching k 

orbits of cells G / H x D  TM to X,  such that Hi(yH)'~Hi(X H) for all i # n , n + l ,  such 

that 

Hn(Y H) ~- Coker(qo), (1) 

and such that there is a short exact sequence 

0 --+ Hn+l (X  H) --+ H,+I  (yH)  _..+ Ker(~o) --+ 0. (2) 

(c) Assume, for some n>~l, that ~I.(XH)=H,~(X H) is a stably free z [ g ( g ) / H ] -  

module; more precisely that 

H n ( X H ) o ( Z [ N ( H ) / H ] )  A: "~ (Z[N(H)/H])  TM 

(where k,m>/O). Then there exists a G-complex YD_X, obtained by attaching to X 

k orbits of cells of type G/H x D n and m orbits of cells of type G/H x D n+l, such that 

yH is acyclic. 
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(d) Assume that all connected components of X H are acyclic, and that one of the 

components of X H is fixed by the action of N ( H ) / H  and the others are permuted freely. 

Then there exists a G-complex Y~_X, obtained by attaching to X cells of orbit type 

G/H x D 1, such that yH is acyclic. 

Proof. (b) Since X H is (n-1)-connected,  the Hurewicz theorem applies to show 

that  each element hEHn(X H) is represented by a map ~: sn--+X H, in the sense that  

h=~ , ( [Sn] )  for some fixed generator [S n] of Hn(Sn). (See, e.g., [Hu, Theorem II.9.1] if 

n > l ,  or [Hu, Theorem II.6.1] if n = l . )  And we can assume t h a t  ~ ( s n ) c ( x H )  (n) by the 

cellular approximation theorem [LW, Theorem II.8.5], which says that  any map Sn--+ X H 

is homotopic to a cellular map, and in particular a map with image in the n-skeleton. 

Now let E = { e l ,  ..., ek} denote the canonical basis of (Z[N(H)/H]) k, and fix maps 

fi: sn"+ (xH) (n) which represent ~(ei) E Hn ( xH ) .  Define 

f: (E x G/H) x S n -~ X (~) 

by setting f(e~,gH, x)=g.fi(x); and let fH be the restriction of f to the H-fixed point 

sets. In particular, for each i and each gEN(H),  fl~xgHxSn (as a map Sn--~X H) rep- 

resents the class g.~(ei)E Hn(xH).  In other words, Hn(fH)=~ under the identification 

Hn((E x G/H)Hx S '~) = Hn((E x N (H ) / H )  x S n) ~- (Z[N(H)/H]) k. 

Set 

(Lemma A.2). Then 

Y = XU S ((E • G/H) • D ' '+ ' )  

yH = x H u s  '' ( ( E x N ( H ) / H )  x Dn+l);  

and (1) and (2) now follow from Lemma B.1. 

(a) We prove this inductively. Fix n>~0 such that  X H is (n-1)-connected.  We 

will construct a finite G-complex YD_X, obtained by attaching orbits of cells of type 

G/H x D n+l to X, such that  yH is n-connected. 

If n = 0  and X H is not connected, then let v-1 and vl be two vertices in dif- 

ferent connected components of X H, define f :  G/H x S~ by setting f (gH, t)=gvt, 

and set X ' = X U s ( G / H x D 1 ) .  By construction, (X') H has fewer connected components 

than X H, and by continuing the procedure we obtain a finite G-complex Y such that y H  

is connected. 

If n = l  and 7r l (XH)~I ,  choose any element I~r represent it by a map 

f0: S 1 --~X H, and extend this to a G-map f :  G/H x S 1 --+X by setting f(gH, v) =g'fo(v). 
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Set X ' = X t J  S (G/H x D2). Then TrI((X')tt)=Trl(XH)/N, where N is a normal subgroup 

of 7rl (X N) which contains r (in fact, tile normal closure of (r Since 7rl(X H) is finitely 

generated, we can repeat  this procedure and obtain a finite G-complex Y such that  yH 

is 1-connected. 

If n >  1, then the result follows from part  (b), where we choose 9~ to be any surjection 

( H , ( X  H) is finitely generated as an abelian group, hence as a Z[N(H)/H]-raodule). 

(c) Upon applying point (b) to the trivial homomorphism 

9~o: (Z[N(H)/H]) k --+ H,,,,-1 (X H) = O, 

we get a finite G-complex Y0 2 X ,  obtained by attaching k-orbits of cells G/H • D" to X,  

such that  Hi((~))H)~--Hi(XH)=o for all i#n ,  and 

H,((Yo) H) ~- Hn(xH)|  k ~- (Z[N(H)/H])' ' .  

If we now apply (b) to any isomorphism ~: (Z[N(H)/H])"-+Hn((yo)H), we obtain a 

finite G-complex Y_DY0, constructed by attaching m orbits of cells G / H x D  ''+1, such 

that  yH is acyclic. 

(d) Here, we assume that  all connected components of X H are acyclic, and that  

one is invariant raider the action of N ( H ) / H  and the others are permuted freely. Let 

XoC_X H denote, the component which is N(H)/H-invariant, and let X1, X2,..., Xk be 

N(H)/H-orbit  ret)resentatives for the other components. (If N ( H ) / H = I ,  then let Xo 

be any of the connected components.)  Fix vertices :ri E X~ for i =0,  ..., k. Set J = { 1,..., k }, 

and define ~: (G/H x J) x S ~ X by setting 

9~(.qS, i, 1)=gx~ and ~(.qH, i , -1 )=gxo .  

Now set Y =  X U; ( ( G / H  x .l) x D'). Then 

yH = X H U~ I ( (N(H) /H x .l) x D l ), 

and this is acyclic since X0 ha~s t)een connected (by a unique 1-cell) to each of the other 

connected coml)onents of X. [] 

We finish the section with two lenmms which involve elementary properties of nerves 

of posers. We first recall the following results of Quillen. 

LEMMA 0.3 [Q2, 1.3 1.5]. (a) Let TC_S be posets, and let r :S-+T be any order- 

preserving map .such th.at rIT=IdT, and such that r(c~)~c~ for all c~ES (or r(c~)~c~ for 

all (~). Then the inclusion of Af(T) in A/'(S) is a homotopy equivalence. 

(b) Let G be a finite group, and let 7"l be any nonempty set of subgroups of G. 

Assume that there is some HoEtt such that either HNHoETt for all HEt-I, or 

(H, Ho)Et-I for all H E ~ .  Then Af(tt) is contractible. 
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Proof. Point (a) is shown in [Q2, 1.3]. In fact, N'(T) is a strong deformation retract 

of N'(S),  where r induces the retraction H ( S ) ~ N ' ( T ) ,  and where the homotopy with 

the identity comes from the assumption that  r (a )  is always ~<a or always ~>a [Q2, 1.a]. 
If 7-I is as in (b), then its nerve is "conically contractible" in the sense of Quillen, 

and hence is contractible [Q2, 1.4-1.5]. [] 

The following lemma will also be useful, when showing that  certain subgroups of G 

need not occur as isotropy subgroups in acyclic G-complexes. 

LEMMA 0.4. Let S be any finite poset, and let S~C_S be any subposet with the 

property that Af(S>~)-~* for all aE S \ S ' .  Then Af(S')~-Af(S)  (the inclusion induces a 

homotopy equivalence). 

Proof. It suffices to show this when S \ S  ~ contains just one element a. In this case, 

Af(S) is the union of N'(S')  with the cone over the subcomplex AcAf(S~),  where 

A = Af(S<,  II S>~) = Af(S<,)*Af(S>~).  (1) 

Note that  the nerve of the disjoint union in (1) is identified with the join of the nerves, 

since every element in S<~ is less than every element in S>~. Then A is contractible, 

since flf(S>~) ~- * by assumption. [] 

Lemma 0.4 does, in fact, hold without the assumption that S is finite: it follows as 

a consequence of Quillen's Theorem A [Q1] (see also [Q2, Proposition 1.6]). 

A central problem throughout this paper, especially in w167 5 and 6, is to find ways to 

detect 2-diinensional homology in nerves of certain posets. Given a 2-cycle in Af(S), the 

simplest way to show that it is nonvanishing in H2(Af(S)) is to show that some 2-simplex 

with nonzero coefficient is maximal in N'(S);  i.e., not in the boundary of any 3-simplex. 

The following lemlna provides a refinement of this ot)servation, and will t)e used in w 

LEMMA 0.5. Let S be a finite poset, and let z be a 2-cycle in the nerve of S. 

Fix elements m<5~l in S, where m is minimal and M is maximal. Set Q={xES[  

m < x < M } ,  and let QrC_Q be the set of all xEQ such that the simplex ( m , x , M )  occurs 

with nonzero coefficient in z. Assume that Q~7~2J, and that some element of Q~ lies in 

a separate connected component of N'(Q) from all of the other elements of Q~. Then 

Or 

Proof. Set X=f l f (S ) ,  for short, and let YC_X be the subcomplex of all simplices 

which do not contain both vertices m , M .  Let C,(X)D_C,(Y) be the simplicial chain 

complexes, and write 

z =  E a~ (m ,x ,M)  (mod C2(Y)) 
xEQ' 

(where 0r for each x). 
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For any 3-simplex a in X, either a is in Y (and so O(a)cC2(Y)), or cr=(m,x,y, M) 

for some x, yEQ in the same connected component of Af(Q) and 

O(a) = ( m , x , M ) - ( m , y , M )  (mod C2(Y)). 

Thus, if z is a boundary, then the sum of the coefficients ax in the above expression for z, 

taken over all xEQ t which lie in any given connected component of fir(Q), is zero. And 

this contradicts the assumption that  some element of Q~ is in a component by itself. [] 

1. Minimal  d imens ions  of  universal  G-spaces  

We will now establish necessary and sufficient conditions for the existence of universal 

complexes satisfying certain dimensional restrictions. These conditions will be expressed 

in terms of the homology of the nerves of certain posets. 

Throughout  this section, G will be a finite group. A nonempty family ~C_S(G) will 

be called separating if it has the following three properties: (a) G~gv; (b) any subgroup 

of an element of ~ is in ~ ;  and (c) for any H,3KC_G with K / H  solvable, KE9 ~ if H E ~ .  

The following property of separating families is immediate. 

LEMMA 1.1. Each maximal subgroup in a separating family of subgroups of G is 

self-normalizing. [] 

If G is solvable, then it has no separating family of subgroups. If G is not solvable, 

then we let $/~V denote the family of solvable subgroups: the minimal separating family 

for G. We also let . M A X  denote the maximal separating family for G, which can be 

described as follows. Let L be the maximal normal perfect subgroup of G; i.e., the last 

term in the derived series of G. Then .MAX is the family of all subgroups of G which 

do not contain L. In particular, if G is perfect, then .MAX is the family of M1 proper 

subgroups of G. 

A (G,~-)-complex will be called universal if the fixed point set of each HE~-  is 

contractible, and will be called H-universal ("homologically universal") if the fixed point 

set of each HE5 r is acyclic. The importance of H-universal (G,~-)-complexes when 

studying 2-dimensional actions comes from the following lemma. 

LEMMA 1.2. Let X be any 2-dimensional acyclic G-complex without fixed points. 

Let ~ be the set of subgroups HC_G such that xHr Then Jr is a separating family 

of subgroups of G, and X is an H-universal (G, ~)-complex. 

Proof. By [$1, Theorem 3.4], X H is acyclic for each HE~' ;  i.e., for each H such that  

x H r  (Another proof of this, which does not depend on the Fel t -Thompson odd order 
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theorem, is given in Theorem 4.1 here.) So by definition, X is an H-universal (G ,~) -  

complex. Also, if H<~KC_ G are subgroups such that  H E ~  and K / H  is solvable, then X H 

is acyclic, and so x K = ( x H )  K/H is acyclic by [S1, Theorem 3.1] (see also Theorem 4.1). 

Thus, ~" is a separating family. [] 

For any family ~ of subgroups of G, we consider Af(~)  as a G-complex via the 

conjugation action. Note, however, that  Af(5 r )  is not itself a (G, ~)-complex in general. 

For example, when ~={1} ,  then Af(~-) is a point, while a (G,~')-complex must have a 

free G-action. 

Recall that  for any family ~- of subgroups of G and any set 74 of subgroups, ~-.>n 

denotes the poset of those subgroups in ~ which contain some element of 7-/. Also, for any 

subgroup HC_ G, ~ ' ~ H  and ~ - > H  denote the posets of subgroups in ~" which contain H, or 

strictly contain H, respectively. The following proposition is an immediate consequence 

of Lemma 0.1. 

PROPOSITION 1.3. Fix any family jz of subgroups of G. Let Af(J z) be the nerve of 

the poset Jr, regarded as a G-complex via the action by conjugation. Then for any 

(G,.~)-complex X ,  there is a G-map f:X-+.Af(9 v) with the property that f ( xH)c_  

.hf(.~>,H) for all HC_G. And if X is universal (H-universal), then for any set 74 of 

subgroups of G, any such map f restricts to a homotopy equivalence (homology equiva- 

lence) X n --+ Af ( J:>>. n ) . 

Proof. We apply Lemma 0.1, with S=~" (regarded as a poset via inclusion), and 

X H = X  H for HE~' .  Since X is a (G,~)-complex, every cell in X is pointwise fixed by 

some HE5 r,  and s o  {XH}HE.T is a covering of X. Condition (a) of Lemma 0.1 clearly 

holds, and condition (b) holds since the largest element of { HE ~ ' l x  E x H }  is the isotropy 

group Gx. And condition (c) holds s i n c e  xgg 'q- l=g(xH).  [] 

The following lemma, which helps to limit the number of orbit types needed 

when constructing "minimal" universal (G,~-)-complexes, is an easy consequence of 

Lemma 0.4. 

LEMMA 1.4. Let jr be any family of subgroups of G, and let 3:oC_J r be any subfamily 

such that J~('~>H) ~ *  for all HE J:\JZo. Then any (H-)universal (G,.To)-complex is also 

an (H-)universal (G,J:)-complex; and 

(1) 

for any set 74 of subgroups of G. 

Proof. For any set 74 of subgroups of G, point (1) follows from Lemma 0.4, applied 
~ d e f  ~-. O! def/'L" "~ 

to the posets = .>n and ~, = ~o)>.n. 
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Let X be an (H-)universal (G, bC0)-complex. All isotropy subgroups of X lie in 

9c0C_9 c, so X is also a (G, br)-complex. For each KE~,  X K is homotopy (homology) 

equivalent to Af((~-0)~>K) by Proposition 1.3 (applied with 7-/={K}); this in turn is 

homotopy (homology) equivalent to Af(Sc)K) by (1); and this last complex is contractible 

(acyclic). So X is also (H-)universal as a (G, 5~)-complex. [] 

We are now ready to deal directly with the problem of controlling the dimensions 

of universal or H-universal (G, 5C)-complexes. This will be done by attaching cells, one 

orbit type at a time, at each stage arranging for the appropriate fixed point set to be 

contractible or acyelic. The key problem is how to do this with cells in free orbits. 

This will be described in the following three lemmas. The first will be needed when 

constructing contractible i-complexes. 

LEMMA 1.5. Let X be any finite a-set with the property that IxHI=I for each 

subgroup I r H C_G of prime power order. Then X has one fized point and is otherwise 

free. 

Proof. We may assume that  xC'=25; otherwise the result is clear. We may also 

assume that X has no free orbits (otherwise just remove them). By assumption, each 

Sylow subgroup of G acts freely on X away from one fixed point; and so IXl -1  (mod IGI)- 

Write X=G/HIHG/H2H. . .HG/Hk,  where I C H i ~ G  for all i. In particular, 

k 

E [G:Hi] = IXl -- r. Ial + 1 (1) 
i= l  

tbr some r. Furthermore, for each pair of distinct elements z, yEX,  the isotropy sub- 

groups G~, and G~ have trivial intersection, since otherwise G,,, A G~ contains a nontrivial 

p-subgroup (some p) which fixes two points of X. It follows that 

k k 

Ia l -1  >1 ~-~(Iaxl-1)=~-~[a:Hi].(IHil-1)=k.lGl-~--~,[a:H~]. (2) 
x E X  i = l  i = 1  

Upon adding (1) and (2), we see that  (2) is an equality, and that r = k - 1 .  But then after 

dividing (1) by IGI, we get that 

k 
1 

E ~ - ~  > k - 1 .  
i = 1  

Since IH~I~>2 for all i, we must have k = l ,  and hence IXI=l .  [] 

A complex X will be called homologically m-dimensional if H n ( X ) = 0  for all n>rn, 

and H,,,(X) is Z-free. (Technically, this should be called homologically ~<m-dimensional, 

since it only provides an upper bound on the degrees of homology of X.) We note first 

the following properties of subcomplexes of acyclic complexes. 
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LEMMA 1.6. Let X be any m-dimensional acyclic CW complex (m~>l). Then any 

subcomplex of X is homologically (m-1)-dimensional. And if A1, ...,AnG X are homo- 

logically (m-2)-dimensional subcornplexes, then their intersection is also homologically 

(m-2)-dimensional. 

Proof. For any subcomplex AC_X, [Ii(A)~-H~+I(X, A) must be zero for i~>m, and 

Z-free for i = m - 1 .  Hence A is homologically (m-1)-dimensional. 

It suffices to prove the last statement when n=2.  For each i~>m-2,  there is a 

Mayer-Vietoris exact sequence 

0 ---+ HiwI(A1UA2) ~ H,i(A1NA2) -+ Hi(A1)OHi(A2). 

If i >~ m -  1, then the first and last groups are zero, and so Hi (A1 A A2)= 0. And if i = m - 2 ,  

then the first and last groups are Z-free, and so H,,,-2(A1NA2) is also Z-free. [] 

The next lemma is essentially included in the proof of [02, Proposition 6]. 

PROPOSITION 1.7. Let X be a finite G-complex with the foUowmg two properties. 

(a) For each I#HC_G, X H is acyclic or empty, and is acyclic if H has prime power 

order. 

(b) For some n>0,  ~I . (X)=H, , (X) ,  and is Z-free. 

Then H , ( X )  is stably free as a Z[G]-module. 

Proof. For each prime p and each Sylow p-subgroup SC_ G, consider the subconq)lex 

x'= U 
I#HCS 

By Proposition 1.3, applied with H={I#HC_S} ,  X '  is acyclic (A/'(~)-~* since H has 

nmxiuml element S). Hence H,  (X, X' )  ~- H,  (X) also vanishes in degrees different from n. 

Furthermore, since all cells in X \ X '  are permuted freely by S, C, (X, X' )  is a chain com- 

plex of finitely generated free Z[S]-modules (Lemma C.1). So by Proposition C.2, the 

unique nonvanishing homology group H,,. (X, X'  ) ~ H,, (X) is Z [S]-stably free. (Since all 

but one smnnmnd in (1) of Proposition C.2 is stably free, so is the remaining sum- 

mand, by definition.) In particular, H,,.(X) is a Z[G]-module which is projective after 

restriction to each Sylow subgroup, and is hence Z[G]-projective by Rim's theorem [Ri, 

Proposition 4.9]. 

Now set Y = X  x EX,  where EX is the unreduced suspension of X (see Lemma A.5). 

We identify X with the subcomplex X x {x0} of Y, where xoEP~X is one of the suspension 

vertices. Then H.(P.X, Xo)=Hn+a(Y;.X, xo)~H,.(X);  and so by the Kiinneth formula, 

{ H n ( X ) |  if i = 2 n + 1 ,  

Hi(Y,X)~-H,i  ..... I (X) |  xo) ~- H,,(X) if i = n + l ,  

0 otherwise. 
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Consider the subcomplexes 

Xs= U xH and Y~= U yH. 
I#HC_G I#HCG 

We claim that the inclusion map Xsc--+Y~ is a homology equivalence. To see this, set 

. T = { I r 1 6 2  By Proposition 1.3, there is a map f:Y~--~Af(~-) such that  

f((Ys)H)c_Af((3r)>>.H) for all HC_G; and fix~ has the same property. Since X~ and Y~ are 

both H-universal (G, 5r)-complexes ( y H = x H •  ~X  H is acyclic if X H is), Proposition 1.3 

implies that f restricts to homology equivalences Y~--+Af(~') and X~--+Af(~'); and thus 

that the inclusion X~ C_ Y~ is a homology equivalence. 

In particular, this shows that H. (Y ,X )~ -H . (Y ,  XUY~) (see Lemma B.2). Thus, 

C.(Y, XUY~) is a chain complex of free Z[G]-modules (by Lemma C.1, since G acts 

freely on Y\ (XUY~) )  with only two nonzero homology groups. Since H n ( X ) |  

is stably free by Proposition C.3, the other homology group H,.(X) must also be stably 

free by Proposition C.2. [] 

For any G-space X and any HCG, we write 

x > H = { x E X I G x ~ H } ,  

i.e., the union of fixed point sets of subgroups which strictly contain H. Also, for any 

family 9vGS(G), -~">H denotes the set of elements of ~ which strictly contain H. 

PROPOSITION 1.8. Let G be any finite group, and let jz be a separating family 

for G. Let 3:oCJ c be any subfamily with the property that Af(.T'>H) is contractible (and 

nonempty) for all HE J:\  ]:o. Let d: .To---~ N be any function which is constant on conju- 

gacy classes of subgroups, such that d ( H ) = 0  for H maximal in .7 r, such that A/'((~'0)>H) 

is homologically ( d( H ) -  1)-dimensional for each nonmaximal subgroup HE J:o, and such 

that d(H)>~d(H ~) whenever H C H q  Then there is a finite H-universal (G,J:o)-complex 

X with the property that dim(XH)<~d(H) for each HE~'o. Furthermore, X can be taken 

to be universal if d ( H ) ~ 2  for each HEgr0. Also, X can be chosen such that every vertex 

of X is fixed by some maximal subgroup in J:. 

Proof. Extend d to a function ~'--+N by setting d(H)=max{d(H') IHCH'EgVo} 

for all HE~-\.T'o. Let ~'max be the set of maximal subgroups in ~'. Set X0=hrmax, re- 

garded as a 0-dimensional G-complex. Since the elements of ~'m~• are all self-normalizing 

(Lemma 1.1), Xo is a 0-dimensional (G, 9V)-complex, and (Xo) H contains exactly one 

point for each HE 9rm~• 

Let H1, ..., Hk=l  be conjugacy class representatives for the elements of ~ \~max ,  

ordered such that  d(H1)<~ d(H2)~<... ~< d(Hk), and such that  i ~ j  if Hi contains a subgroup 



F I X E D  P O I N T  F R E E  A C T I O N S  ON Z - A C Y C L I C  2 - C O M P L E X E S  217 

conjugate to Hj. For each i=0,  ..., k, let 7/i be the set of all maximal subgroups in 9 c, 

together with all subgroups conjugate to Hj for any j<~i. In particular, 7-/0=$'ma• and 

7-/k=9 ~. We construct a sequence of G-complexes XoC_X1C_X2C_...C_Xk such that  for 

each i ~> 1, 

(a) dim(Xi)<.d(Hi) and X} ~ 

(b) if Xi ~Xi-1 then Xi\Xi-1 has only orbit types G/Hi, 
(c) Xi=Xi-1 if H i ~ o ,  and 

(d) (Xi) H~ is acyclic, and is contractible if HiEgr0 and d(Hi)r  

Note that  for each H E ~  . . . .  (Xo)H={H} is contractible, and hence (Xi) H will be con- 

tractible for all i>0.  Once the Xi have been constructed, we set X=Xk. This is a 

(G, ~o)-complex; and for all HE 9r0, dim(X H) <.d(H), and X H is acyclic, and contractible 

if d(H)r And by (a), each vertex of X is in )2o, and hence fixed by a maximal subgroup 

of 9 r .  

It remains to construct the 3//. Assume that  X~-I has been constructed (i~>1). 

Then Xi-1 is an H-universal (G, 7-/i-1)-complex. By Proposition 1.3 (and by definition 

of the 7-/j), 

H . ( ( X i - 1 )  Hi ) = H , ( ( X i - 1 )  >H' ) '~ H, (N'((Hi-1) >H~)) = H,  (N'(gr>H~)). 

In particular, by Lemma 1.4, (Xi-1)H' is homologically (d (Hi ) -  1)-dimensional, and is 

acyclic if Hiq~o. Also, dim((Xi_l)H~)<.d(Hi): this is clear if i=1  (dim(Xo)=0), and 

holds for i>  1 by (a) since d(Hj)~d(Hi) for j < i  by assumption. Thus, if Hi ~.~(), we can 

set Xi = Xi- 1. 
Assume now that HiESr0. Write H=Hi and d=d(H) for short. If d = l ,  then 

(X~_I) H is (at most) 1-dimensional, and its connected components are all acyclic. 

For each Ir of prime power order, KE~- since ~" is separating, hence 

KET-/i-1, and so (Xi_I)K=((Xi_I)H) K/H is acyclic by (d). Also, since K/H cannot act 

on any of the acyclic components of (Xi_l) H without fixed points, the only component 

of (Xi_I) H which is invariant under the K/H-action is the one which contains the fixed 

point set. So by Lemma 1.5, applied to the N(H)/H-set 7ro((Xi_l) H) (the set of con- 

nected components of (Xi-I)H), (Xi-1) H has one connected component which is fixed 

by the action of N(H)/H, and the other components are permuted freely by N(H)/H. 
Proposition 0.2 (d) now applies to show that there is a finite G-complex Xi, obtained by 

attaching orbits of cells G/H x D 1 to Xi-1, such that  (Xi) H is acyclic. 

If d > l ,  then by Proposition 0.2(a), there is a G-complex YD_Xi-1, constructed 

by attaching cells G/HxD k for l<.k<<.d-1, such that yH is (d-2)-connected and 

Hd_t(Y H) is Z-free. In particular, yH is still hoInologically (d-1)-dimensional, and 

dim(yH)<.d. For any subgroup Ir of prime power order, (yH)K/H= 
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Y ~ = ( X i _ I )  K is acyclic by (d): KE~- by definition of a separating family, and so 

KE74i-1. Proposition 1.7 now applies to show that  Hd_I(Y  H) is stably free as a 

Z[N(H)/H]-module. So by Proposition 0.2 (c), we can attach orbits of cells of type 

G / H x D  k for k = d - l , d  to Y, to obtain a finite G-complex X iD_Y such that  (X~) H is 

acyclie. [] 

In fact, one can show for any family ~ of subgroups of G that  there is a universal 

(G, 9r)-eomplex. But such a complex must be infinite-dimensional if 9 c is not a separating 

family. 

We can now state necessary and sufficient conditions for the existence of universal 

or H-universal (G, 9V)-complexes of a given dimension. 

PROPOSITION 1.9. Let G be any finite group, and let 2 r be a separating family 

for G. Let 2roC_~" be any subfamily with the property that N'(~>g)  is contractible (and 

nonempty) for all HE,~\~o .  Then there is a finite universal (G, .~o)-complex. Further- 

more, the following four conditions are equivalent for any m~>2: 

(a) There exists an m-dimensional universal (G, .T)-eomplex (H-universal if m=2) .  

(b) There exists a finite m-dimensional universal (G,.7o)-eomplex (H-universal if 

m=2) .  

(c) N'(~->H) is homologically (m-1)-dimensional for each subgroup H E ~o. 

(d) N'((~'0))n) is homologically (m.-1)-dimensional for each set 74 of subgroups 

of G. 

Proof. Since the nerve Af(~-) is finite-dimensional, a function d a~ in Proposition 1.8 

clearly exists, and so the existence of a finite mfiversal (G,~0-complex follows from 

Proposition 1.8. 

(a) ~ (d). If X is an m-dimensional H-universal (G, ~-)-complex, then fbr any set of 

subgrout)s 74, X 7"t is homologically (m-1)-diinensional t)y Lemma 1.6. Since 

H , ( X  '~) ~- H, (N'($-~>~t)) ---- H,  (N'((br0) ~>~t)) 

by Proposition 1.3 and Lemma 1.4, N ' ( ( ~  0)~t) is also homologically (m-1)-dimensional.  

(d) ~ (c). Follows immediately from Lemma 1.4. 

(c) =*, (b). Follows immediately from Proposition 1.8. 

(b) ~ (a). Follows immediately from Lemma 1.4. [] 

As an immediate corollary of Proposition 1.9, we get 

COROLLARY 1.10. Let G be any finite group, and let ~ be a separating family 

for G. Then there is a (finite) 2-dimensional H-universal (G, ~)-complex if and only if 

Af(gV>H) is homologically 1-dimensional for each subgroup HE.T, if and only if N ' ( ~ ) n )  

is homologically 1-dimensional for each set 7{ of subgroups of G. [] 
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2. N u m b e r s  of  c e l l s  

Again, G will always be a finite group throughout this section. We prove here some 

results which will be useful for keeping track of Euler characteristics of (unions of) fixed 

point sets in H-universal G-complexes. The notation used for doing this is defined as 

follows: 

Definition 2.1. For any family $r of subgroups of G, define 

@(H) = i ( a , ~ - ) ( H )  = 

for each HE9 r .  Set I(G, 5r)=i(o, j : )(1) .  

1 
[N(H)  : H ] '  (1 - x(N'(.T'>H))) 

We first note the following elementary relation between Euler characteristics of G- 

complexes and of their orbit spaces. 

LEMMA 2.2. Let X'C_X be any pair of finite G-complexes, and assume that all 

orbits in X \ X '  are of type G/H for some fixed subgroup HC_G. Then 

x ( X ) - x ( X ' )  = IG/HI ' ( x (X /G) -x (X ' /G) ) .  

Proof. For each n>~0, let c n denote the number of n-cells in X not in X' .  Then 

x (X) -x (X ' )=~ , ,> ,o ( -1 ) "c  n. By assumption, each G-orbit of cells has order exactly 

IG/H I. So the munt)er of n-cells in X / G  not in X J G  is (1/IG/HI).c, for each n, and 

thus 
x ( X / G ) - x ( X ' / G )  = E ( - 1 ) "  cn 1 IG-]-HI - IG/ H~ (~ ( (X) -x (X ' ) ) "  [] 

The relation between the indices ij=(H) and Euler characteristics of universal com- 

plexes is given in the following two lemmas. 

LEMMA 2.3. Fix a separating family J:, a finite H-universal (G, iT:)-complex X,  

and a subgroup HC_G. For each n, let ca(H) denote the number of orbits of n-cells of 

type G/H in X .  Then iT(g)=~--~n>,o(-1)'~c,(g). 

Proof. By Proposition 1.3, there is a G-map f :  X-+Af(U)  which restricts to homol- 

ogy equivalences xH""~./~f(~F>~H ) a n d  x>H--~J~(JF>H ). Thus, by Definition 2.1, and by 

Lemma 2.2 applied to the action of N(H) on the complexes x > H c x  H, 

1 1 
iT(H) - [N(H):  H ] '  (1 - ~(.Af(.~'>u)) ) = [N(H) :  H ] '  ()~(xH)--x(x>H)) 

= ) ( ( X H / N ( H ) ) - x ( x > H / N ( H ) ) .  
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Each orbit of cells of type G/H x D n in X restricts to one of type (N(H)/H) • D n in X H, 
and hence to exactly one n-cell in the orbit space XH/N(H).  These are precisely the 

cells in XH/N(H) which are not in x>H/N(H),  and hence 

x (XH/N(H)) -x (x>H/N(H))  = E (-1)"cn(H). 
n~O 

[] 

LEMMA 2.4. Let Jr be any separating family of subgroups of G, and let X be any 
finite H-universal (G,~')-complex. Let 7/C_J z be any subset with the property that K ~  
HE 7/ and KE Jr implies KE 7/. Then 

x(.N'(7/)) -- x(X n) = E [N(H): HI. i:r(H). 
HET-/ 

(1) 

If, furthermore, 7/ is a family (i.e., a union of G-conjugacy classes), then 

x (Xn /G)= E ij:(H). (2) 
HE ~ / c o n j  

Proof. We prove these formulas by induction on ]7/[; they clearly (vacuously) hold 

when 7 / = 0 .  Let H be a minimal subgroup of 7/, and set 7/~=7/\{H}.  Then A/'(7/)= 

N'(7/')UAr(j=>n)C(Af(~'>H)); in other words, the union of Af(7/') and C(Af(~'>H)) (tim 

cone over N'(9~>H)) with intersection .N'(JV>H). So by the Mayer Vietoris sequence for 

the union, 

X(H(7/)) = x(Af(7/')) + 1 - x(Af(5~> H)) = X(Af(7/'))+ IN(H):  HI "ix(H); 

and so x(Af(7/))=~-~Hen[N(H):H].i~=(H ) by induction. Since x(Af(7/))=x(X n) by 

Proposition 1.3, tills proves (1). 

Now assume that  7-/ is a family. For each n~>0 and each HE?-/, let c,,(H) be the 

number of orbits of n-cells of type G/H. Let c,(7/) be the sum, taken over conjugacy 

class representatives for all HE7/,  of the c,~(H). Then cn(7/) is precisely the number of 

n-cells in Xn/G; and so 

x(Xn/G) = E ( - 1 ) ' ~ c n ( 7 / ) =  E (-1)ncn(H)= E ix(H) 
n = 0  HE 7-//conj n = 0  HE "/'-//conj 

by Lemma 2.3. [] 
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COROLLARY 2.5. For any separating family jr of subgroups of G, 

E i j : (H)=i .  
HE.T'/conj 

Proof. If X is any finite H-universal (G, jr)-complex, then in particular X is acyclic, 

and so X/G  is acyclic (cf. [Br, Theorem III.7.12]). Thus x(X/G)=I ,  and so the result 

follows from Lemma 2.4 (applied with ?-/---jr). [] 

The following relations will be useful later, when manipulating nerves of subgroups 

of G. 

LEMMA 2.6. Fix a separating family jr of subgroups of G. Let jrcC_jr be the sub- 

family of those subgroups HE Jr such that Af(jr>g) is not contractible. Fix a subgroup 

HEjrc such that H~N(H)EJr ,  and let K1, . . . ,Kr  be G-conjugacy class representatives 

for the subgroups KEJrc such that K ~ H  and NK(H)=H. For each j,  let aj be the 

number of Kj-eonjugacy classes of subgroups in Kj which are G-conjugate to H and 

self-normalizing in Kj. Then 

i(c,,:r) (H) = - E aj'i(c,~)(Kj). (!) 
j = l  

Proof. For any subgroup H E j r \ j r c ,  ,Af(.)V>H) is contractible, and so i T ( H ) = 0  by 

Definition 2.1. So we can assume that  the K1,..., Kr contain G-conjugacy class represen- 

tatives for all subgroups KE~- such that K ~ H  and NK(H)=H (not just those in jrc), 

without changing the right-hand side in (1). 

Let X be any finite H-universal (G, jr)-complex. Set 7/=~',>H, and set 

7/o = {KEJ:IKD_H, NK(H)~H} .  

Then Af(7/) and Af(7/o) are both contractible by Lemma 0.3 (b): tile first since 7-/ has 

smallest element H; and the second since N(H)ET/o, and N(H)MKET/o for all KET/o. 

By Lemma 2.4, 

E [N(K):  K].  i s (K)  = x(Af(H)) -x(Af(7/o)) = 1 - 1 = 0. 
KE 7-t \7"to 

(2) 

Set R={KEJr IK~H,  NK(H)=H}; the subgroups K1 .... , K,. are thus G-conjugacy class 

representatives for the elements of R. For each j ,  set 

Sj = {gEG I gKyg-1D_H, NgK;g-I(H)-- H}. (3) 
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Then clearly 

Let 

Sj = {gCG[ Kj D_g-lHg, NK,(g-IHg) =g- lHg} .  

bj = ] {KER]K is G-conjugate to Kj}]. 

(4) 

It is clear from (3) that  ISj[=bj[N(Kj)[. On the other hand, one easily checks that  

by (4), ISj[=aj[KjI.[N(H)]/[HI. It follows that  

aj = bjIN(Kj)I'IH[ 
IK~I.IN(H)I " 

Now by (2), 

KER [KI'IN(H)[ i z ( K ) = - -  j=i bj IKy[.IN(H)[ ij:(Kj) = -  ai.iz(Ky); 
j = l  

[] and this finishes the proof of the lemma. 

3. C o n s t r u c t i o n  o f  2 - d i m e n s i o n a l  ac t ions  

Again, in this section, G always denotes a finite group. To simplify the statements of 

results here and later, for any separating family .7- of subgroups of G, we write (G, 9 v) E 142 

whenever there exists a 2-dimensional H-universal (G, ~')-complex (and (G, ~') ~ b/2 other- 

wise). 

We are now ready to construct the 2-dimensional acyclic actions of the groups G 

listed in Theorem A. But we first must look more closely at the question of which sub- 

groups of G lined not appear as isotropy subgroups in a universal (G, 9V)-complex. 

For any G and any separating family .T" of subgroups of G, we say that  H E ~  is 

a critical subgroup in 5 v if .h/'(5~>H) is not contractible. As seen in Proposition 1.9, 

subgroups which are not critical need not occur as isotropy subgroups in (H-)universal 

(G,.F)-complexes. When notation is needed, we will denote by ~-~, the subfamily of 

critical subgroups in ~'. In the following lemma, we note some conditions which allow us 

to show that certain subgroups in 9 r are not critical. 

LEMMA 3.1. Let jz be any family of subgroups of G which has the property that 

H C H ' C H "  and H , H " E ]  z imply H'E.7:. Fix a subgroup HEJ z. Then Af(gV>H)--, if 

any of the following conditions hold: 

(a) H is not an intersection of maximal subgroups in jr. 

(b) There is a subgroup f i S H ,  filE~, such that K A ~ I ~ H  for all H~KE.T:,,. 
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Proof. (a) Let Y C 5  r be the subfamily of all intersections of maximal subgroups 

in 9 r,  and let a :Sr- -+7 be the function which sends a subgroup to the intersection 

of the melnbers of 9rma• which contain it. Then a induces a deformation retraction 

H(gr>H)-+A/'(gr>H) (Lemma 0.3 (a)); and A/'(gr>H) is contractible since it contains the 

minimal element a(H).  

(b) Set H={KESZ]KN~I~H } .  Then &rET-/, and KAHET-/ for all KET-/. So Af(7/) 

is contractible by Lemma 0.3 (b). 

Now (~-(:)>n=(~'c)~>n by assumption, and so 

 v(7>H) = , ,  

where the homotopy equivalences follow from Lemma 1.4. [] 

The following lemma provides a simple sufficient condition for the existence of a 

2-dimensionM H-universal (G, 9V)-complex. 

LEMMA 3.2. Let .T be any separating family of subgroups of G. Assume, for every 

nonmaximal critical subgroup 1#HE.T,  that N(H)E.T,  and that K A N ( H ) ~ H  for all 

nonmaximal critical subgroups K ~  H in .T. Then (G,.T)Elg2. 

More precisely, let M1, ..., M,, be conjugacy class representatives for the maximal 

subgroups of .T, and let Ha,..., Hk be conjugacy class representatives for all nonmaximal 

critical subgroups of .T. Then there is a 2-dimensional H-universal (G,.T)-complex X 

which consists of one orbit of vertices of type G/M~ for each, l <~i<~n, ( - i j : (Hj) )  orbits of 

l-cells of type G/Hj for each l <~j<~k, and free orbits of 1- and 2-cells. If, furthermore, 

G is simple, and if it is impossible to write .T as a di.sjoint union 5v=grlHSr2 such that 

the orders of all subgroups in .T I#Z  are prime to the orders of all subgroups in ~'2#~, 

then X can be constr~tcted to contain exactly i~-(1) free orbits of 2-cells and no free 

orbits of l-cells. 

Proof. Fix a nonmaximal critical subgroup H=HiE.T .  If (Sc,~)>HC_gv,,~• then 

A/'(.T> H) ~-- A/'((Sr~) > u) is homologically 0-dimensional by Lenmm 1.4. Otherwise, let 7-/ 

be the set of all KE.T>H such that K A N ( H ) ~ H ,  and set 7-L:=?-/A~',, Then N ( H ) E H ,  

and KNN(H)ET-I for all KET~, so A/'(7-/) is contractible (Lemma 0.3 (b)). Since 7-/C.T 

and H,C_gr,: are terminal subposets, Lemma 0.4 now applies to show that Af(7-/~:)-~*. 

Thus, Af((~-~)>H) consists of one contractible component Af(7-L:), together with some 

isolated vertices for those maximal subgroups ME.T>H such that  M A N ( H ) = H .  In 

particular, N'(Z'>H) is homologically 0-dimensional. 

Hence, by Proposition 1.8, there is a finite H-universal (G, .T~:)-complex X such that  

dim(X M) =0 for each maximal subgroup ME 3 ,  such that dim(X H)= 1 for each nonmax- 

imal subgroup I-fiHE $-r and such that  each vertex of X is fixed by a maximal subgroup 
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in $.. But by Proposition 1.3 and Lemma 1.4, H.(Xs)'~H.(N*($.>I)), SO .A/*(.~>I ) is 

homologically 1-dimensional since X~ is; and by Proposition 1.8 again, X can be taken 

to be 2-dimensional. 

By the above description of X, we see that  all orbits of vertices in X are of type 

G/M for maximal M; that  all orbits of edges are of type G/Hi for l<~i<~k or (possibly) 

free (of type G / l ) ;  and that  all orbits of 2-cells are free. Hence the number of orbits of 

cells of type G/M~ or G/Hj follows from the formula in Lemma 2.3. (Note that  i j , (M)= 1 

whenever M is maximal.) 

Now assume that  G is simple, and that  it is not possible to write $. as a disjoint union 

$.=$.1 II$.2 such that  the orders of all subgroups in $'1 r  are prime to the orders of all 

subgroups in $ ' 2 r  We first claim that  Xs is connected. To see this, consider the map 

~:$'>0~7r0(Xs) which sends a subgroup H to the unique connected component of X~ 

which contains X H. This is clearly surjective, since each component is the image of the 

isotropy subgroup of any vertex in the component. Also, H'C_H implies ~(H')=p(H) ,  

so all subgroups of order a multiple of any given prime p are sent to the same G-orbit 

in 7ro(X~), and the assumption on $" implies that  ~r0(X~) consists of only one G-orbit. 

Finally, for any component YcTro(X~), qo-l(Y) contains a Sylow p-subgroup for each 

prime p llGI, Y is H-invariant for each HE ~ - l ( y ) ,  and this shows that  Y is G-invariant 

and thus that  Y=X.~ is connected. 

Now, by Proposition 1.7, HI(X.~) is stably free as a Z[G]-module, and hence is free 

by Proposition C.4 since G is simple. So by Proposition 0.2 (c), applied with k=0,  X can 

be constructed by attaching only free orbits of 2-cells to X.~; and the number of orbits of 

cells is again given by Lemma 2.3. [] 

Lemma 3.2 will be applied to construct 2-dimensional actions of the simple groups 

L2(q) (=PSL2(q)) for certain q, and of tile Suzuki groups. We first list some of the 

properties of subgroups of the L2(q) which will be needed here, and also later in w 

PROPOSITION 3.3. Fix q=p~:)4,  where p is prime. Then the maximal solvable 

subgroups UC_L2(q)=PSi2(q) and HC_PGL2(q) are as described in Table 1. (Note 

that L2(q)=PGL2(q) when q is a power of 2.) Here, in all cases (when q is odd), H= 

NpaL2(q)(H). Furthermore, each nonsolvable subgroup of L2(q) is conjugate in PGL2(q) 

to one of the groups L2(qo) for qo=p k~ and kolk; or to PGLu(q()) for qo=p k'' and 2k01k; 

or (if q is odd and q=-+l (mod 5)) is isomorphic to As. 

Proof. See [Su2, w The subgroups of L2(q) are described in [Su2, Theorems 

3.6.25-26], and in [H1, 8.27]. The uniqueness up to conjugacy of the dihedral groups 

follows from [Su2, 3.6.23]; and the uniqueness of the FqNCq-1 o r  Fq;4C(q_l)/2 follows 

since they are normalizers of Sylow p-subgroups. The maximal subgroups A4 or E4 
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HCL2(q) (q odd) HC_PGL2(q) 

H No. classes H No. classes Conditions 

1 1 Fq >~ C(q_ 1)/2 

Dq-1 

Fq~Cq_l 

D 2 ( q - 1 )  

Dq+ 1 1 D2(q+l) 1 

A4 1 E4 1 q-:t:3 (mod 8) 

E4 2 E4 1 q-: t : l  (mod 8) 

Table 1 

are normalizers of elementary abelian subgroups (C2)2C_ L2(q), of which there is one or 

two conjugacy classes depending on q (rood 8) (see also [H1, 8.16]). The fact that any 

subgroup isomorphic to L2(qo) or PGL2(qo) is conjugate (in PGL2(q)) to the standard 

one follows from [Su2, 3.6.20 and Examples 3.6.1+3]. 

Note in particular that B (~- Fq >~ Cq- 1 or ~ Fq >4 C(q_ 1)/2) is represented by the group 

of upper triangular matrices, and that D2(q-1) is the subgroup of monomial matrices. The 

other dihedral group D2(q+l) or Dq+l is the subgroup of GL(Fq2) (here Fq2 is viewed as a 

2-dimensional vector space over Fq) of all transformations of determinant 1 generated by 

multiplying by an element of Fq2 or by applying tile Frobenius automorphism (x~-+xq). 

Finally, the results about maximal subgroups of PGL2(q) follow from the informa- 

tion about subgroups of L2 (q2) _~ PGL2 (q). [] 

We first construct actions of the groups L2(2k). 

EXAMPLE 3.4. Set G=L2(q), where q=2 ~: and k>~2. Then there is a 2-dimensional 

acyclic fixed point free G-complex X,  all of whose isotropy subgroups are solvable. More 
precisely, X can be constructed to have three orbits of vertices with isotropy subgroups iso- 

morphic to Fq>4Cq_I, D2(q-1) and D2(q+l); three orbits of edges with isotropy subgroups 

isomorphic to Cq-1, C2 and C2; and one free orbit of 2-ceUs. 

Proof. Let Ss be the separating family of solvable subgroups of G, and let $/212~: C_ 

8s be the subfamily of all critical subgroups in 8s By Proposition 3.3, the maximal 

solvable subgroups of G are the groups B=Fu>~Cq_I, D2(q-1) and D2(q+i), where each 

occurs with exactly one conjugacy class. 

The Borel subgroups of G are those conjugate to B; or equivalently those subgroups 

of G which fix a line (a 1-dimensional subspace of (Fq)2). Every subgroup of G of even 

order is contained in at most one Borel subgroup, since the subgroup of elements fixing 

any two distinct lines is cyclic of order q -  1. Also, any subgroup contained in both a Borel 
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H65s KNN(H)=H 

B=Fq>~Cq_I 

D2(q-1) 

D 2 ( q + l )  

C~-1 B 

C2 D2(q+l) 

1 

i(H) 

1 

1 

1 

-1 

-2 

1 

Table 2 

subgroup and a dihedral subgroup must have order 2. Thus, (72 is the only subgroup of 

even order contained in more than one maximal subgroup in 8s Any nontrivial odd 

order subgroup is contained in a unique maximal dihedral subgroup (its normalizer); and 

a subgroup C,. for l # r [ ( q - 1 )  is contained in exactly two Borel subgroups corresponding 

to the two lines (eigenspaees) it leaves invariant. Thus, since each critical subgroup must 

be an intersection of maximal subgroups in 8s (Lemma 3.1), the only possible critical 

subgroups are the inaxiinal subgroups, together with Cq-1, C2 and 1 (one conjugaey 

class each). It is clear that  the hypotheses of Lemma 3.2 are satisfied, and hence that  

(L2 (q), 8/212)e/,/2. 

Computations using Lemma 2.6 (and Corollary 2.5 to determine i$cv(1)) now yield 

Table 2. Using Lelnlna 3.2 and Table 2, we see that  there is an H-universal (G, 8s 

complex, with three orbits G/B, G/D2(q-1) and G/D.2(q+I) of vertices; with three orbits 

G/C2, G/C2 and G/Cq_1 of 1-cells; and with one free orbit of 2-cells. [] 

Before continuing with the construction of the actions of other groups, we want to 

discuss the classical example of an Ar,-action, and its relationship with tile construction 

(when G=L.2(4)~-An) in Example 3.4. We first establish our notation. We write S0(3)= 
S0(3, R), and write Sa=SL1 ( H ) ~ S U ( 2 ,  C) for the group of unit quaternions (elements 

of norm 1 in the quaternion algebra H over R). There is a homomorphism S:~--+S0(3), 
surjective with kernel {-t-l}, which is defined by sending a6SaC_H to the matrix of the 

conjugation map (x~-~axa -1) on the subspace (i,j,k)CH. Thus, we regard S 3 as a 

two-tbld cover of SO(3). 

We now identify An ~ L2(5) as the icosahedral subgroup of SO(3), and let A~ ~ SL2 (5) 

(the binary icosahedral group) denote its inverse image in S a. Consider the action of At, 
via left multiplication on the space Ea=SO(3)/A5 ~-Sa/A~ of left cosets. This space is 

the Poincar4 sphere, a 3-inanifold which has the homology of the 3-sphere, and whose 

flmdamental group is isomorphic to the perfect group A~. Then A5 acts with fixed point 
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set (SO(3)/As)A~=N(A5)/A5=pt. Upon removing an open invariant ball around the 

fixed point, we obtain a compact acyclic 3-manifold M (with boundary) upon which A5 

acts without fixed points. This was the starting point for the construction by Floyd and 

Richardson [FR] of an action of A5 on a disk without fixed points (see also [Br, w for 

more details). Since c9M~0, M can now be collapsed to a 2-dimensional subcomplex 

X~-M, upon which A5 still acts without fixed point. 

This last step can be made more explicit. Let P denote the regular polytope with 120 

dodecahedral faces, and let P be its symmetry group. Clearly, FCSO(4)~-S  "~ • $3, and 

F contains A5 (the group of symmetries leaving one face invariant) with index 120. This 

implies that F = A  5 xc2As, and hence that  F contains a binary icosahedral subgroup A 5 

which permutes freely the faces of P. So Ea~-S3/A~ can be identified with the space D/~, 
obtained by identifying opposite faces of the solid dodecahedron D in an appropriate 

way. This is in fact Poincar~'s original construction of the Poincar~ sphere. For more 

details on the identification, and another way of showing that  these two constructions 

are equivalent, we refer to [KS, pp. 124 128]. 

Under this identification of E 3 with D/,~, the A5-action on E 3 is induced by the 

usual action on the dodecahedron. The fixed point is thus the center of D; and the oper- 

ation of removing the fixed point and collapsing the remaining space to a 2-dimensional 

subcomplex corresponds to removing the center of D and then collapsing to its boundary. 

Tile result is an explicit 2-dimensional complex X=OD/,.~ with fixed point free action 

of An, which has 6 pentagonal 2-cells, 10 edges, and 5 vertices. 

Here is another, quicker way to construct this last complex. Let X0 be tile l-skeleton 

of the 4-simplex, with the obvious action of An permuting the five vertices. Any 5-cycle 

in A,~, (in the vertices of X0) tells us how to attach a pentagon to X0; and two such 

pentagons will be in the same orbit of At, if and only if the corresponding 5-cycles are 

conjugate. So by attaching to X0 six pentagons corresponding to one conjugacy class of 

5-cycles in A.~, we obtain a 2-complex X with As-action. One can check directly that  X 

is acyclic (and with a bit more work show that  ~I(X)-~A~); but one also sees easily that  

it is identical with the previous construction based on the dodecahedron. 

If we now subdivide each pentagon in (either of) these spaces, as a union of ten 

2-simplices (by adding extra vertices at the midpoints of edges and centers of faces), 

we have constructed an As-complex of the type constructed in Example 3 .4--except  

that the 2-cells have been attached explicitly. This is also identical to the A.~-simplicial 

complex constructed in [S1, w and in [AS, w We also note here that  for k~>3, the 

L2(2k)-complexes constructed in Example 3.4 have the same l-skeleton as the complexes 

constructed in [AS, w (which were not acyclic); they differ only in the way the 2-cells 

are attached. 
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We now consider G=L2(q). when q- : t :3  (rood 8) is an odd prime power. 

EXAMPLE 3.5. Assume t/m t G=L2(q), where q=pk)5 and q-+3 (rood 8). Then 
there is a 2-dimensional acyclie fixed point free G-complex X,  all of whose isotropy 
subgroups are solvable. More precisely, X can be constructed to have four orbits of vertices 

with isotropy subgroups isomorphic to Fq>4C(q_l)/2, Dq-1, Dq+l and A4; four orbits of 
edges with isotropy subgroups isomorphic to C(q-1)/2, C 2, Ca and C2; and one free orbit 

of 2-cells. 

Proof. Since L2 (5)~L2 (4) has already been dealt with in Example 3.4, we assume for 

simplicity that  q>5. Let Ss be the separating family of solvable subgroups of G, and 

let 8s163 be the subfamily of all critical subgroups in 8s By Proposition 3.3, 

the maximal solvable subgroups of G are the groups 

Dq-1, D q + l ,  A4 a n d  B=FqNC(q_I)/2 , 

where each occurs with exactly one conjugacy class. 

Any subgroup HE$s  of order a multiple of p is contained in a unique subgroup 

conjugate to B (it fixes a unique line in (Fq)2); and is contained in one of the other 

maximal subgroups only if p=3 and H~-C3. If Ir163 has order prime to p, is not 

maximal, and is not isomorphic to C2, then either it is cyclic of order dividing � 8 9  

and contained in one dihedral group and two Borel subgroups (corresponding to the two 

lines in (Fq) 2 fixed by H) ,  or it is cyclic of order dividing �89 and contained in 

a unique D,I+I (its normalizer), or H is dihedral and contained in a unique maximal 

dihedral subgroup Dq• (the normalizer of its subgroup of index 2). Since each critical 

subgroup must be an intersection of maximal subgroups in ,Ss (Lemma 3.1), we have 

now shown that the only possible critical subgroups are the maximal subgroups, together 

with one conjugacy class each of subgroups C(q-i)/2, Ca, C~, C2 and 1. 

In Table 3, D+ denotes the maximal dihedral subgroup of order q + l - 0  (mod 4), 

and D_ the other (conjugacy class of) maximal dihedral subgroup (note that  D+= 

N(C2)). Recall that  we are assuming that q>5  (otherwise Dq_I=C2). As before, the 

computations of is~v (H) for nonmaximal 1 r H C_ G all follow from Lemma 2.6, and the 

computation of i scv(1)  then follows from Corollary 2.5. 

Lemma 3.2 now applies to show that (L2(q),8s More precisely, together 

with Table 3, it shows that  a 2-dimensional H-universal (L2(q),Ss X can be 

constructed with four orbits of vertices of types G/B, G/Dq_I, G/Dq+I and G/A4; four 

orbits of 1-cells of types G/C~, G/C(q-1)/2, G/C3 and G/C2; and one free orbit of 2-cells. 

Note that G/C(q-1)/2 • D 1 always connects the orbits G/B and G/Dq-1, and G/C2 • D 1 
always connects the orbits G/Dq_I and G/Dq+I. The orbit of cells G/C 2 x D 1 connects 
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HE,NI2V~ K A N ( H ) = H  

B=Fq x C(q_l)/2 

Dq_ 1 

Dq+l 

A4 

C(q_l)/2 B 

C~ D+ 

C3 A4 

C 2 D_ 

1 

i(H) 

1 

1 

1 

1 

-1  

-1  

-1  

-1  

1 

T a b l e  3 

G/A4 to G/Dq-1 or G/Dq+I, depending on q (mod 8). And the orbit of cells G/Ca x D 1 

connects G/A4 to one of G/B (if q=3k),  or t o  G/Dq:t: 1 (whichever has order a multiple 

of 3). [] 

The third family of groups with 2-dimensional actions consists of the Suzuki groups 

Sz(q), for all q=2  2k+1~>8. In order to specify more precisely subgroups of Sz(q), we 

regard it as a subgroup of GL4(Fq) as described in [H3, w Tile following properties 

of Sz(q) and its subgroups will be needed here, as well as in w 

PROPOSITION 3.6. Fix q=2 2k+1, and let 0EAut(Fq) be the automorphism x~ 

x2k+~=x 4,N (thus (x~176 For a, bEFq and Ae(F,~)*, define elements 

( 1 o 
S(a, b) = a 1 0 

b a ~ 1 
a2+~176 al+~ a 

and 

M(A) = ( /~ l+2k 0 0 0 

i A 2~ 0 0 
0 A -2k 0 
0 0 A -1-2k 

( oo 1) 
0 1 0 

1 0 0 

0 0 0 

Set S(q, O)= (S(a, b)]a, bE Fq), T =  (M(A) ] AE (Fq)*) ~ Cq-1 and 

B=M(q,O)=S(q,O)>4T and N=(T,r)-~D2(q_I). 
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Then Sz(q)--- (M(q, 0), T), and under this identification the following hold: 

(a) S(q,O) is a Sylow 2-subgroup of Sz(q). 
(b) There are four conjugacy classes of maximal subgroups in Sz(q) which are solv- 

able: (B), (N), (M+) and (M_), where 

M+ ~- CffT~/~2~+INC4 and M_ ~ Cq_x/~+l)qC 4. 

These are the only maximal solvable subgroups in Sz(q). 
(c) Each nonsolvable subgroup of Sz(q) is conjugate to Sz(qo), for some q0=2 am+l 

where (2m+l)l(2k+1).  
(d) Sz(q) is contained in the 4-dimensional symplectic group over Fq: 

Sz(q) C_ Spa(q)~f{g E GL4(q) l gvgt= T}, 

where gt is the transpose of g, and T is as above. 

(e) All of the subgroups B, N,  T, S(q, 0), Sz(q) are invariant under the automor- 

phisms of GL4(q) induced by automorphisms of the field Fq. 

(f) 
[Sz(q)l =q2(q-1)(q2 + l ) =q2 . (q -1 ) ' ( q+v /~  + l ) . ( q - v / ~  + l ), 

where the four factors in the second expression are pairwise relatively prime. 

Proof. See [H3, w Note in particular the relations 

S(a, b).S(c, d) = S(a+c, b+d+a%) and M(,k)-lS(a, b)M(~) = S(~a, Al+Ob). 

The list of maximal subgroups of Sz(q) (points (b) and (c)) is shown in [Sul, Theorem 9]. 
Note that if q0=22''+1, where (2m+l ) l (2k+ l ) ,  then Sz(q)AGLa(qo)=Sz(qo) (and 

sinfilarly for the other subgroups). The inclusion Sz(qo)CSz(q) follows since 2k--2 ''" 
(rood 2'm'+1-1), and hence x'2~=x 2''' for all XEFqo. The inclusion Sz(q)NGLa(qo)C 

Sz(q0) then follows from (c). [] 

We are now ready to construct actions of Sz(q) on acyclic 2-complexes. 

EXAMPLE 3.7. Set q=22k+l, for any k>~l. Then there is a 2-dimensional acyclic 

fixed point free Sz(q)-eomplex X,  all of whose isotropy subgroups are solvable. More 
precisely, X can be constructed to have four orbits of vertices with isotropy subgroups 

isomorphic to M(q,O), D 2 ( q _ l )  , Cq+~-~+i)~C4 and Cq_x/~+INC4; four orbits of edges 
with isotropy subgroups isomorphic to Cq-1, C4, C4 and Ca; and one free orbit of 2-cells. 

Proof. Set G=Sz(q). By Proposition 3.6, G contains the following maximal solvable 

subgroups: 

M(q,O), D2(q-a), Cq+~+a:4C4 a n d  Cq_v~+iNC4; 
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HCSI2V,: KNN(H)=H 

B=M(q,O) 

D2(q-1)  

Cqq-v/~ q-l ~C4 

Cq_,/-~ + l x C4 

Cq-1 M(q,O) 

C4 Cq-t-,j~ + l ;4 C4 

(72 D2(q-1 )  

1 

i(H) 

1 

1 

1 

1 

-1 

-2 

-1 

1 

Table 4 

with one conjugacy class for each isomorphism type. If I#HcSs  and ([HI, q2+ 1 )#  1, 

then H is contained in a unique maximal subgroup Cq2• the normalizer of 

its unique maximal odd order subgroup. Likewise, if H is dihedral of order dividing 

2 (q -1 )  (and IHI#2), then H is contained in a unique maximal subgroup O2(q_l) ; while 

if IHWl(q-1) then H is contained in the same maximal subgroups as its centralizer of 

order q - 1 .  Any subgroup of even order which is not dihedral is contained in at most 

one maximal subgroup, conjugate to M(q, 0). (The centralizer of any involution in G is 

a 2-group by [Sul, Proposition 1], and each involution in the Sylow subgroup S(q, O) is 

central. So an involution cannot be in two Sylow subgroups.) Thus, any subgroup which 

is an intersection of two or more maximal subgroups is isomorphic to one of the groups 

C,j-1, C4, C2 or 1; and these are the only possible critical subgroups by Lemma 3.1 (a). 
There is just one conjugacy class each of subgroups Cq_ 1 or C2 (note, for example, that 

all subgroups of order 2 in S(q, O) are conjugate in M(q, 0)). By [Sul, Proposition 18], 

G contains two conjugacy classes of elements of order 4, and it is easy to check by direct 

calculations that  an element of order 4 in G is not conjugate to its inverse. Hence G 

contains just one conjugacy class of C4's. 

Now let Ss be the subfamily of critical subgroups in $s Consider the values in 

Table 4 for iscv(H) for HE$s When H~-Cq_I, C4 or (;'2, then iscv(H) is computed 

using Lemma 2.6. (Note that 6'2 can never be self-normalizing in any group of order a 

multiple of 4.) The value of iscv(1) then follows from Corollary 2.5. 

Lemma 3.2 now applies to show that  (Sz(q),Ss More precisely, there is a 

2-dimensional H-universal (Sz(q), Ss which has four orbits of vertices and 

four orbits of edges (with isotropy subgroups as given in Table 4), and one free orbit of 

2-cells. [] 
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4. R e d u c t i o n  t o  s im p le  g r o u p s  

Throughout  this section, G will be a finite group. Recall that a G-complex X is called 

essential if there is no normal subgroup I#N<~G, with the property that  the inclusion 

x N c _ x  is a G-Z-equivalence; i.e., such that  x N H - - ~ X  H is a homology equivalence for 

all HC_G. We would like to be able to show directly that  all groups which have essential 

fixed point free actions on acyclic 2-complexes are simple. Instead, in this section, we 

prove a slightly weaker result (Proposition 4.4), where we show that  any group with such 

an action is an extension of a simple group by outer automorphisms. 

The proof of this uses the result in [S1] that  the fixed point set of any group acting 

on a 2-dimensional acyclic complex must be acyclic or empty. Since the proof in [S1] 

requires the Fel t -Thompson odd order theorem, we give here a different one, which is 

more elementary. 

THEOREM 4.1 IS1, Theorem 3.4]. Let X be any 2-dimensional acyclic G-complex 

(not necessarily finite). Then X c is aeyclic or empty, and is aeyclic if G is solvable. 

Proof. The first half of the following proof is essentially the same as that in [S1], 

but is included here for the sake of completeness. 

If G is a p-group for some prime p, then X G is Z/p-acyclic by Smith theory (cf. [Br, 

Theorem III.7.12]), and homologically 1-dimensional by Lemma 1.6. It follows that  X G 

is Z-acyclic in this case. 

Now assume that  G is a minimal group for which there is a counterexample. Then G 

must be simple and nonabelian--since if N<1G were a proper normal subgroup, then X N 

would be acyclic, and h e n c e  x G = ( x N )  GIN would be acyclic or empty (acyclic if G is 

solvable) by the Ininimality of G. Also, X H is acyclic for all H ~  G, and XC;= NH~C, XH 

is homologically 0-dimensional by Lemma 1.6 again. In other words, each connected 

coinponent of X C" is acyclic, and it reinains to show ttmt there is at most one component. 

Assume otherwise: let k~>2 be the immber of connected components of X c;. Let Y 

be the (separating) family of proper subgroups H ~ G .  Very roughly, we will show that  

X "looks like" the join of an H-universal (G, Y)-complex Y with a set of k points. But 

for X to be 2-dimensional, Y would have to be 1-dimensional, i.e., a tree; and this is 

impossible. 

To make this precise, let Y+ denote the poset which consists of Y, together with 

k elements (G,i)  for i=l, . . . ,  k. Extend the ordering on Y by setting (G,i)D_H for all 

HE Y, and with no inclusion relations between the (G, i). Write X C =F1 H... I] Fk, where 

the Fi are the connected components. We now apply Lemma 0.1, with the covering of X 

given by X H = X  H for H E Y ,  and X(c.,i)=Fi. Thus, Xa is acyclic for each aEY+.  So by 

Lemma 0.1, for each H E Y ,  H , ( X  >H) ~--H,(.N'((Y+)>H)), and thus Af((Y+)>H) is homo- 
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logically 1-dimensional (Lemma 1.6). But the poset (5~+)>H consists of ~'>H together 

with the elements (G,i), and so its nerve is the union of k cones over Af(5~>H). This 

complex contains the suspension of Af(~'>H) as a retract (i.e., the case k=2) ;  and hence 

Af(b~>H) is homologically 0-dimensional. Since this holds for all HE5 v, Proposition 1.8 

now applies to show that  there is a finite 1-dimensional universal (G, 5V)-complex Y. 

But then Y is a tree upon which G acts without fixed points, and this is impossible 

(cf. [Se, w [] 

The following easy consequence of Theorem 4.1 turns out to be very useful. Its proof 

involves collapsing out certain subcomplexes of a CW complex to create new fixed points, 

and get a contradiction to Theorem 4.1. In general, if X is a G-complex and A C X  is 

a G-invariant subcomplex, then X / A  is defined to be the quotient space X / u ,  where 

x ~ y  if x=y  or x, yEA. This quotient space has an obvious structure as a G-complex: 

where (X/A) (n) =X(n) /~,  and where X / A  has one vertex for the identification point A/A  

and otherwise one cell for each cell in X not in A (see [LW, Theorem II.5.11], taking 

Y=pt ) .  The homology groups of X, A and X / A  are linked by exact sequences (coming 

from the fact that Cn(X/A) /Cn(pt )~-Cn(X) /Cn(A)) .  In particular, if A is acyclic, then 

H,(X /A)~ -H. (X) .  

COROLLARY 4.2. Let X be any 2-dimensional acyclic G-complex. Assume that 

A, BC_X are G-invariant acyclic subcomplexes such that AUB~_X G. Then A n B ~ O .  

Proof. Assume otherwise: that  ANB=O.  Let Y be the G-complex obtained by 

identifying the subcomplexes A and B each to a point. Then Y is still acyclic, since 

A and B are, and yG consists of the two identification points. And this contradicts 

Theorem 4.1, which says that yc; nlust be acyclic or empty. [] 

As immediate consequences of Corollary 4.2 we get: 

LEMMA 4.3. Let X be a 2-dimensional acyclic G-complex. Then the following hold: 

(a) ([AS, 4.5]) If H, KC_G are such that HC_Nc(K),  and X H and X K are non- 

empty, then x H K ~ o .  

(b) If H C G  is such that x H = o ,  then xCc ' (H)r  

Proof. If X C ~ O ,  then (a) and (b) are obvious. So assume X C = O .  

(a) Since H normalizes K, both X u and X K are H-invariant acyclic subcomplexes 

of X. So by Corollary 4.2, if X H and X K are nonempty, then x H N x K = x H K r  

(b) It suffices to prove this when H is minimal among subgroups without fixed points. 

Fix a pair M, M~C_H of distinct maximal subgroups (H is nonsolvable). Then X M and 

X M' are nonempty, but xM[-]xM'=x  (M'M') =xH-~-~J. Thus X M and X M' are disjoint 
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Cc(H)- invar iant  acyclic subcomplexes of X, and so Ca(H)  nmst have fixed points by 

Corollary 4.2. [] 

As a first consequence of Lemma 4.3, we can now prove 

THEOREM B. Let G be any finite group, and let X be any 2-dimensional acyclic 

G-complex. Let N be the subgroup generated by all normal subgroups N~<~G such that 

x N ' # ~ .  Then X N is acyclic; X is essential if and only if N = I ;  and the action of GIN 

on X N is essential. 

Proof. If x N I # O  and x N 2 # o ,  where N1,N2<1G, t h e n  x ( N " N 2 } r  by Lemma 

4.3 (a). Thus X m is nonempty, and is acyclic by Theorem 4.1. The action of G/ N  on 

X N is always essential, since any nontrivial normal subgroup of G/ N  has empty fixed 

point set. 

Now assume that  N # I .  For all HC_G, X H and X NH are acyclic or empty by 

Theorem 4.1; and X NH is nonempty if X H is by Lemma 4.3 (a). So the inclusion 

X NH -+X H is always an equivalence of integral homology, and hence X is not essential. [] 

We are now ready to prove 

PROPOSITION 4.4. If G is a nontr~ivial finite group for which there exists an essential 

2-dimensional acyclic G-complex X ,  then G is almost simple. More precisely, there is a 

normal subgroup L<~G such that L is simple, such that x L = o ,  and such that C(;(L)=I 

(i.e., GC h u t ( i ) ) .  

Proof. By Theoreln B, x N = f g  for all nornml subgroups I#N<~G. In particular, 

XC;=;g. 

Fix a ininimal nornml subgroup I#L<1G. Then L is nonsolvable, since x L = ~ .  

Hence L is a direct product of isoinorphic nonabelian simple groups (cf. [G, Theo- 

rein 2.1.5]). 

Assmne first ttmt L is not simple. By Lemma 4.3 (b), xHT~2~ for some simple factor 

H<1L; and L=(gHg -1 IgEG) since it is a mininlal norlnal subgroup. Since X :jH:j-~= 

g (xH)# ;g  for all g, x L # o  by Lemma 4.3 (a) (applied to the action of L on X) .  And 

this is a contradiction. 

Thus, L is simple. Set H=C(;(L).  Then H<~G, and x H # f g  by Lemma 4.3 (b); and 

so H =  1 (again since the G-action on X is essential). [] 

Using Proposition 4.4, when determining which finite groups have essential fixed 

point free actions on 2-dilnensional acyclic complexes, it suffices first to determine which 

simple groups have such actions, and then consider automorphism groups only of those 

silnple groups which do have them. 
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5. Some condit ions for nonexis tence  of 2-dimensional  actions 

Again, throughout this section, G is a finite group. We recall two definitions introduced 

in w If 5 ~ is a separating family for G, then ~'~: denotes the subfamily of critical 

subgroups for bY: the set of all HE9 v such that  Af(9~>H)7~.. And/42 denotes the class of 

pairs (G, 5 ~) (where ~ is a separating family for G) for which there exists a 2-dimensional 

H-universal (G, ~-)-complex. We have already constructed some examples of pairs (G, ~-) 

which do lie in/42, and next want to show that  they are the only ones. In this section, 

we develop some general techniques for doing this. 

For any G-complex X, and any n > l ,  it will be convenient to write X[ n] to denote 

the union of fixed point sets of subgroups of order a multiple of n; or equivalently the 

set of all xEX for which n l[Gx I. Also, for any family ~- of subgroups of G, we write 9v[n] 

to denote the subfamily of those subgroups in Y of order a multiple of n. We will see 

that  if (G, gV)C/42, then not only is Af(9~[,~]) homologically 1-dimensional for all n, but 

its orbit space Af(gv[n])/G is homologically 0-dimensional (i.e., its connected components 

are acyelic). 

In w conditions are established which allow us to directly detect elements in 

H2(.hf(.,~[n])), for appropriate n, via Euler characteristic arguments. The properties of 

./Y'(.T[n])/G are shown in w and then another set of criteria are found which detect 

elements in HI(Af(.T[,t)/G ). Afterwards, conditions on G and 9 ~ are set up in w 

which imply that for any 2-dimensional H-universal (G, 9V)-complex X, the singular set 

X.~ is itself acyclic (and hence H-universal); and then w deals with the problem of 

showing that this is impossible. 

5(a). Detect ing  2-cycles in nerves of  posets  of  s u b g r o u p s  

Our main tool here for directly detecting elements in the second homology of nerves of 

posets of subgroups will be certain "coset complexes". We adopt the following notation: 

Definition 5.1. Fix any group G, and any triple K1,K2, K3 of subgroups of G. 

Define 

((K1, K2, K:d) = ((K1, K2, K:d)c, 

to be the G-simplicial complex with vertex set (G/K1)H(G/K2)H(G/K:~) (where G acts 

by left translation), and with a 1- or 2-simplex for every pair or triple of cosets with 

nonempty intersection. 

Thus, each edge in ((K1, K2, K:~)) has the form [aKi, aKj] for some aEG and some 

l~i<j~<3, and each 2-simplex has the form [aKl,aK2,aK3] for some aGG. In many 

cases, one can show that H2(((K1, K2, K3)))#0 via an easy counting argument: 
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LEMMA 5.2. Fix any group G, and any sequence K1, K2,  K3 of subgroups of G. Set 
Kij = Ki N Kj,  K = K1 n K2 n K3 and G' = (K1, K2, K3 ). Assume that 

1 

[ / (12 :  K ]  

or (more generally) that 

1 

~--~ [Kij : K l i<j 

Then H2(((K1,/(2, K3)>G)•0. 

1 1 
[K13 : K - - - - ~  + [K23 : K------~ ~< 1; (1) 

3 
1 1 

- - < I + E [ K i i K ]  [G':K]" (2) 
i=1 

Proof. Set X=((K1,K2,K3)>G for short. By construction, X is the union of its 

closed 2-simplices, each of which is of the form aA~-f[aKl,aK2,aK3] for some aEG. 

Two 2-simplices aA and bA intersect if and only if aKi =bKi for some i. Upon making 

this relation transitive, we see that aA and bA are in the same connected component 

of X if and only if a and b are in the same left coset of GI=(K1, K2, K3); and so there 

are exactly [G: G t] connected components. 

By definition, X has three orbits of vertices of type G/Ki, three orbits of edges of 

type G/Kij, and one orbit of 2-simplices of type G/K. Hence 

3 

x(X)  = [G: K ] -  E [G: K~j] + E  [G: K i] 
i<j i=1 

= [ G : K  l �9 1 -  rg i y :K l+  >[G:G']=rk(Ho(X)),  

where the inequality follows from (1) or (2). And this implies that H2(X)#O. [] 

The following proposition is a first application of Lemma 5.2. Recall that ~,: denotes 

the subfamily of critical subgroups in a separating family 9 r.  

PROPOSITION 5.3. Fix a finite group G and a separating family .T for G. Fix 

subgroups K o ~ K I ~ K 2  in .T, and set Ni--~NG(Ki), N i j = N i A N j  and N = N o A N I N N 2 .  
Set .To=.TcU(K1)U(K2). Assume that the following hold: 

(a) 
1 

E [Nij: N] 
i<j 

where G'= <No, N1, N2). 

(b) Ko is maximal in .Y. 

2 
1 1 

- -  < lq-~) ~ 

I 

i=o [Ni~N] [G': N] ' 

(c) If  H,H'E.~o are such that K 2 ~ H C K 1  and H ~ H ' ~ K o ,  then H'C_K1. 

Then H2(~->~(K2))r and so (G, Sr)~/~/2. 
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Proof. Set n=(~o)~>(K2). Consider the 2-simplex cr={K2,K1,Ko} in X'(7-/), and 

let XC_A/'(7-/) be the subcomplex generated by the 2-simplices ga for all gEG (where G 

acts by conjugation). Then X~-((No, N1, N2}}G; and H2(X)r by (a) and Lemma 5.2. 

Let z be any 2-cycle in X such that Or After conjugating, if necessary, 

we can assume that the coefficient in z of a is nonzero. Set g)-7-/<K~ and let Q' be the set " ~ - -  > K 2  ' 

of those HEQ such that the coefficient in z of {K2, H, K0} is nonzero. By construction, 

every element of Q' is G-conjugate (in fact, No2-conjugate) to KI; and by condition (c), 

every element of Q in the same A/'(Q)-connected component as KI is contained in KI. 

Now Lemma 0.5 applies (because KI is in a different connected component of J~(Q) 

from the other elements of Q'), and implies that 0~[z]EH2(JV'(7-/)). So (G,.T')~U 2 by 

Proposition 1.9. [] 

..., H '  Two n-tuples of subgroups (H1, Hn) and (H{, ..., n) in G will be called G- 

conjugate if there is some gEG such that H'=gHig -1 for all i. The normalizer 

No(HI,  ..., Hn) of such an n-tuple is just the intersection of the normalizers No(Hi). 

The next proposition is a somewhat more complicated application of Lemma 5.2. 

PROPOSITION 5.4. Fix a separating family ~ of G. Let K1,K2, K a E ~  be three 

subgroups such that neither K2 nor K3 is conjugate to K1. Set Ki j=KiMKj and 

K=K1NK2MKa. Let ~oC.~ denote the subfamily consisting of -~c, together with all 

subgroups conjugate to any of the Ki, Kij or K. Assume that the following conditions 

hold: 

(ai) 

or more generally 
(a2) 

1 1 1 

[K12: K------~ + [Kia: K-----~ + [K2:I : K----~ E 1; 

1 1 1 1 1 1 1 

[K12:K] [K13:K] [K23:K] [KI:K] [K2:K] [K3:K] [G':K]'  

where G'= ( K1, K2, K:I) . 
(b) K1 is maximal in .7". 

(c) There is no HEro such that K g H g K 1 2  or K12gHgK1.  

(d) No(K1, gi2, K ) = K .  
(e) The triples (K1, K12, K) and (K1, K13, K) are not G-conjugate. 

Then H2(.~>>.(K))#O; and so (G, gr)6/g2. 

Proof. Consider the complex X =  ((K1,/(2, K3)) of Definition 5.1, and let X* denote 

its barycentric subdivision. To distinguish between simplices of X* and of Af(Y), we 

put parentheses ( - )  around the former and curly brackets {-}  around the latter. The 
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vertices in X* will be denoted (9Ki) (the vertices in X),  (gKij) (the midpoint of the 

edge (gKi, gKj)) and (gK) (the barycenter of the 2-simplex (gK1, gK2, gK3)). 

We have H2(X)r by (al) or (a2), together with Lemma 5.2. Fix a 2-cycle z 

in X such that  Or We can assume that  the coefficient in z of the simplex 

(K,, K2, Ka) is nonzero (otherwise compose with the action of some appropriate element 

of G). Let z* be the corresponding 2-cycle in the barycentric subdivision X* of X. 

Let f :  X*--+ Af(($-0) > (~c)) be the G-equivariant simplicial map which sends each ver- 

tex in X* to its isotropy subgroup. Thus f(gKi)={gKig-1},  f(gKij)={gKijg -1} and 

f (gK)={gKg-1}.  By conditions (d) and (e), and since neither K :  nor Ka is conjugate 

to K1, the only simplex in X* which is sent to {K1, K12, K} is (K1, K12, K) ,  and this sim- 

plex has nonzero coefficient in the 2-cycle z*. Hence {K1, K12, K} has nonzero coefficient 

in the 2-cycle f(z*). By (b) and (c), {K1, K12, K} is maximal in JV'((hc0))(K)) (not in the 

boundary of any 3-simplex), and hence [f(z*)]r in H2(./~f((.~'o))(K)))=H2(.Af(.T')(K))) 
(Lemma 1.4). And thus (G, JC)~U2 by Proposition 1.9 (a )~(d) .  [] 

5(b).  D e t e c t i n g  n o n z e r o  e l e m e n t s  in HI(X[ 'q /G)  

Recall that for any n and 9 v, ~-[,] C 9 ~ denotes the subfamily of all subgroups in ~- of 

order a multiple of n. We first show, for (G, 9v)E L/2, that the connected components of 

the orbit space of Af(gv[,]) are all acyclic, and then set up some conditions which detect 

elements in their first homology groups. The starting point for all of this is the following 

result, a consequence of Smith theory. 

PROPOSITION 5.5. If X is any finite-dimensional aeyelic G-complex, then X/G is 

also aeyclic. If f: X--+ Y is any equivariant map between finite-dimensional G-complexes 

wh.ieh, induces an isomorphism H. (X; Z )~  H.  (Y; Z), then f /G induces an isomo~Thism 
H,(X/G; Z)~-H,(Y/G; Z). 

Proof. The first statement is shown, for example, in [Br, Timorem III.7.12]. The 

second statement follows from the first, since f induces an isomorphism in integral ho- 

mology if and only if its mapping cone Cf is acyclic, and similarly for f /G.  (Note that  
[] 

The following result is similar to one used in [03], but. formulated here for acyclic 

rather than Fv-acyclic spaces. 

PROPOSITION 5.6. Fix a prime p, and let X be a finite-dimensional acyclic G- 

complex with the property that X p is aeyclic for all p-subgroups PC_G. Then for any 

(nonempty) family 7 ) of p-subgroups of G, XP/G is aeyelie. 
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Proof. We assume that  any p-group which contains an element of 7) also lies in 7) 

(if not, just add these groups to the family). For the purposes of this proof, we define, 

for any p-subgroup PC_G, 

x P -  U x Q and X! P)=G.X y= U x(Q) 
Q ~ P  Q ~ P  

Q a p - subgroup  Q a p - subg roup  

We first claim that  for any PET), the inclusion of X P into X (P) induces an isomorphism 

of homology groups 

H.(XP/N(P), X~/N(P)) -~+ H.(x(P)/G, x!P)/G). (i) 

In fact, the inclusion induces an isomorphism 

C. (t): C.(XP/N(P), x.P/N(P) ) -~ C.(x(P)/G, x.~P)/G) 

between the cellular chain complexes of these pairs. The surjectivity of C, (c) is clear, 

since any open cell aC_x(P)\x.~ P) lies in the G-orbit of some ac_xP\x.~. To see its 

injectivity, fix open cells a,a(a)GxP\x P in the same G-orbit (aEG). Then P is a 

Sylow p-subgroup of the isotropy subgroups G~ and Ga(~,)=aG~,a -1, so P and a-lpa 
are both Sylow p-subgroups of G , ,  and hence a-lPa=gPg -1 for some gEG,~. It follows 

that agENc;(P), and thus that  ~ and a(o')=ag(a) lie in the same N(P)-orbi t .  This 

proves the injectivity of C. (t,); and finishes the proof that (1) is an isomorphism. 

Now set 

c~ = max{a/> ()1P"I[ G: P] for some PC 7)}. 

The proposition will be proven t)y induction on (~. If c~=0, then for any Sylow p-subgroup 

P of G, X (P) = X  ~' and X ( P ) - X  P-O" and so 

H.(XP/G) '~ H.(x(P)/G) ~- H.(XP/N(p) ) 

by (1). Also, XP/N(P) is acyclic by Proposition 5.5 (since X P is acyclic by assumption); 

and thus XP/G is acyclic. 

Now assume that a > 0 .  Let 7)0C7) be tile subfamily of all P such that  p'~[G:P]. 
Then XP('/G is acyclic by the induction hypothesis, and it remains to show that 

H.(XP/G, XP~ Let P1,..-,Pt: be conjugacy class representatives for the sub- 

groups in 7)\7)0, and set 7),i=7)oU(Pi). Then by excision, 

k k 
H.(X~/G, XP~ ~- ~ H.(X~'/G, XT:"/G) ~_ ~ H.(x(P~)/G, X!R')/G). 

i=1  i=1  
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It thus remains to show that  H,(x(P)/G,  x~P)/G)=O for each P=Pi. By (1), this means 

showing that  H,(XP/N(P) ,XP/N(P))=O.  But XP/N(P)  is acyclie by the induction 

hypothesis again, and XP/N(P)  is acyclic by Proposition 5.5 (since X g is acyclic by 

assumption). [] 

Proposition 5.6 will be applied in particular to get information about the spaces 

X[n]/G and N'(jr[n])/G. 

COROLLARY 5.7. Let jr be any separating family for G, and let jroC_jr be a sub- 

family which contains jr~. Let X be a finite-dimensional H-universal (G, jr)-eomplex. 

Then for any subfamily 7-t of jr, 

u u 

In particular, 

H,(Xs/G) H,  (N(J r>I ) /G)  

and 

H,(X[n]/G) ~- H,(Af(jr[n])/G) ~- H,(Af((jro)[n])/G) for all n > 1. 

And for any prime power q, Af(jr[q])/G is acyclic. 

Proof. By Proposition 1.3, for any 7-/C_jr, there is a G-map f : X - + A f ( j r )  which 

restricts to a homology equivalence f~>u: X u--+N'(jr~>~t). By Lemma 1.4, the inclusion 

Af((~0)~>u)C_N'(jr>u) is a homotopy equivalence. So by Proposition 5.5, these maps 

induce homology equivalences in the orbit spaces. The isomorphisms involving H, (X~/G) 

and H,  (X ['~]/G) now follow from the ease where 7-/= jr> 1 or 7-I = jr[,]. In particular, since 

X exists by Proposition 1.8, and since x[ql/G is acyclic by Proposition 5.6, we see that  

./kf(jr[q])/G is acyclic. [] 

The importance of the families jr[n] comes from tile following lemma. Note that for 

a family ~" of subgroups of G and a group A of automorphisms of G, the orbit space 

flf(jr)/A need not be a simplicial complex: there could, for example, be two edges of 

N'(jr)  not in the same A-orbit, but whose endpoints are identified pairwise. But Af(Jr)/A 

does always have the structure of a CW complex in a natural way (cf. Lemma A.5). 

LEMMA 5.8. Let ~ be a separating family of subgroups of G such that (G, jr)C Lt2, 

and let jroCjr be any subfamily which contains jr~:. Then for all n > l ,  Af((jro)[,q)/G 

is homologically O-dimensional. More generally, if GC_Aut(G) is any subgroup which 

contains Inn(G), and such that jr and jro are G-invariant, then Af((jro)[n])/(~ is homo- 

logically O-dimensional for all n> 1. 
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Proof. Let X be any 2-dimensional H-universal (G, 9v0)-complex (X exists by Propo- 

sition 1.8). Then X / G  is Z-acyclic by Proposition 5.5. If n=p k where p is prime, then 

x[n]/G is acyclic by Proposition 5.6. If n is not a prime power, write n=ql ... qk, where 

the q~ are prime powers for distinct primes. Then x[n]/G--N~_I x[qi]/G is an intersec- 

tion of acyclic subspaces of X/G; and hence is homologically 0-dimensional by Lemma 1.6 

again. 

Thus, A/'((YCO)[n])/G is also homologically 0-dimensional by Corollary 5.7, and its 

connected components are all acyclic. The last statement now follows by Proposition 5.5, 

since Af((~0)[n])/G is the orbit space of the G/Inn(G)-act ion on A/'((.~O)In])/G. [] 

We end this subsection with an application of Lemma 5.8: one situation in which we 

can show that  H(~-[n])/G is not homologically 0-dimensional, and thus that  (G, ~ ) ~  U2. 

The argument is based on the following observation: given a 1-cycle r in a simplicial 

complex K which involves at least one "free" edge (an edge with no higher-dimensional 

simplices attached), then 0 #  [r E H1 (K). Here, "simplicial complex" is used in the more 

general sense, where there can be two or more n-simplices (n~> 1) having the same set of 

vertices. 

When working with the orbit space .N'(.T)/G, we will let [HI denote the vertex 

corresponding to a conjugacy class ( H ) C ~ .  More generally, for any chain H o ~ H I ~  

�9 . .~Hn of subgroups in ~-, [H0, HI, ..., H,,] will denote the corresponding n-simplex in 

N(~=)/G. 

PROPOSITION 5.9. Let Jr be a separating family of subgroups of G. Assume that 

there is a maximal subgroup ME.T, and a pair of maximal subgroups K, KtC_ M which 

are not conjugate in M,  but are conjugate in G. Then (G, .~)~ Lt2. More generally, the 

same conclusion holds if  there is a subgroup GCAut(G)  containing Inn(G), such that Y: 

is G-invariant, and such that K and K ~ are in the same orbit of G, but not in the same 

orbit of the action of the stabilizer of M. 

Proof. Set n = l g  ]. Then ~'[,,]/G contains (at least) two edges which connect the 

vertices [K] and [M]. The maximality properties guarantee that  the resulting loop is 

nonzero in HI(~'[n]/G). So (G,3:')~U2 by Lemma 5.8. [] 

5(c). Acyc l i c i ty  of .~f(,~')l) 

We now find conditions for showing that  Af(~'>l) is acyclic, under the assumption that  

(G,~r)EH2. This can then be combined with results in w to obtain contradictions. 

We first note the following equivalent conditions on ~r. 



242 B. OLIVER AND Y. SEGEV 

LEMMA 5.10. Fix a separating family jz of subgrvups of G, and assume that 

(G, $v)E/g2. Then the following are equivalent: 

(a) Af(~->~)/G is connected and HI(Af(J=>~)/G)=O. 

(b) Af(~->l)is acyclic. 

(C) J ~ f ( . ~ ' > l ) / G  i8 acyclic. 

Proof. For any 2-dimensional H-universal (G, ~')-complex X, H,  (Xi) ~ H,  (Af(U> 1 )) 

by Proposition 1.3, and H,(X~/G)~-H,(Af(Jz>I)/G) by Corollary 5.7. So it suffices to 

show the equivalence of the above three conditions after replacing A/'($->I) by X~. 

Since X / G  is acyclic (Proposition 5.5), X~ and X~/G are homologically 1-dimen- 

sional by Lemma 1.6. Thus, (a) is equivalent to (c). Also, (b) implies (c) by Proposi- 

tion 5.5 again; and it remains to show that  (c) implies (b). 

If X~/G is acyclic, then in particular it has Euler characteristic one. Hence by 

Lemma 2.2, 

1 - x(X.~) = x ( X ) - x ( X ~ )  = IGI" ( x ( X / G ) - x ( X ~ / G ) )  = [G[(1 - 1) = 0; 

and so x(X~)=I .  Since G acts transitively on the connected components of X~ (X~/G 

being connected), all components of X~ have the same Euler characteristic, and so X~ 

must be connected. And since X~ is also homologically l-dimensional, this shows that  

X~ is acyclic. [] 

The next proposition provides a tool for showing that  condition (a) in Lemma 5.10 

holds. 

PROPOSITION 5.1 1. Assume that G has even order, and let .7: be a separating family 

for G. Assume, for each member ME.Tm~,x of even order and each element x E M  of odd 

prime order, that either 

(1~,) [NM((X))[ is even; or 

(15) there is an element y E M  of odd prime order such that ]NG((x})ANG((y})[ 

and ]NM( (y> )[ are both even. 

Let (M1), ..., (Mk) be the conjugacy classes of odd order subgroups in JZm~x. For 

1 <~ i <<. k, let J=[ be the set of all subgroups of Mi which are contained in members of ~'max 

of even order or in subgroups conjugate to Mj for j<i;  and assume that 

(2) the image of Af((~'[)>l) in Af(5~>,)/G is connected and nonempty for each i. 

Then .hf(~'>l)/G is connected and HI(JV'(.T>I)/G)=O. 

Proof. For any xeriC_G, we write gH(x)~fNH(IX)) ,  for short. For each i=0,  ..., k, 

let ~'i be the family of all subgroups in ~ contained in even order members of 9Vm~x, or in 

subgroups conjugate to Mj for j ~< i; and set Xi =Af((~'i) > 1)/G and X = Xk. In particular, 
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5rk =9 r ,  and 9% is the set of all subgroups in 9 t" which are contained in members of 9Vmax 

of even order (k=O if all members of 5rmax have even order). Set Y=A/'(~'[2])/GC_ Xo. By 

Corollary 5.7, Y is connected and H i ( Y ) = 0 .  Then X0 is connected, since each vertex 

of X0 is joined by an edge to a vertex of Y. And for each i~>1, each vertex of Xi not in 

Xi-1 is joined to [Mi], which in turn is connected to X~-I via a vertex in the image of 

the set (~./)>1, which by (2) is nonempty. This shows that  the Xi are all connected. In 

particular, X is connected, and it remains to show that  H1 (X)=0 .  

We first set up some notation for elements of H i (X) .  The homology class of a 

loop will be denoted [H0, H1,. . . ,Hn],  where (H0)=(Hn) ,  and each Hi contains or is 

contained in Hi+l.  Note that  by specifying subgroups rather than just conjugacy classes, 

we eliminate all ambiguity as to which edge between two vertices is meant (recall that  

there can be more than one edge connecting a pair of vertices of X) .  Finally, to simplify 

the notation, we will sometimes replace a cyclic group Hi = (xi) by xi in this notation. 

Step 1. We first show that  H~(Xo) maps trivially to Hi(X). When [H0, H1, ..., Hn] 
is a path in X with endpoints in Y, we write [H0, H1,..., Hn]w E H1 (X) to denote the 

homology class of the 1-cycle [Ho, ..., H,J-r for any path r from [H0] to [Hn] in Y. This 

is well defined since Y is connected and H i ( Y ) = 0 .  

Fix a loop in Xo; we can assume that it alternates "peaks" and "valleys" (vertices 

corresponding to larger or smaller subgroups); and furthermore that  each peak is maximal 

in 9 t" (hence of even order) and each valley is minimal (i.e., of prime order). The loop 

thus splits into a sum of elements [M,x, M/]w, where M and M ~ are maximal of even 

order, and where I x] is prime. If Ixl=2, then [M,x, M']y E I ra (Hi (Y) )=0 ;  so we can 

assume that x has odd prime order. 

In either of cases (1~) or (lb) above, Ne(x) has even order. Choose a maximal sub- 

group MxE.T[2 ] which contains the extension of (x) by a Sylow 2-subgroup of Nc(x)/@) 
(this extension is solvable and hence in 5r[2]). Then 

[M, x, M']v = [M, x, M~]v + IMp, x, M']v , 

and we are reduced to showing that  [M, x, Mz]v=O in H i (X) .  

If ]NM(X)I is even, let HCM be any subgroup which contains (x) with index 2. 

Then H is conjugate in Na(x) to some H~CM~ (by choice of M~); and so [M,x,M~]v= 
[M, H, x, H',  M~]w = [M, g]v + [g', M~]v (the last equality holds because [H, x] = [g ' ,  x]). 

But these edges lie in Y=Af(.T[2])/G, and so [M,x, Mx]v=O. Thus, [M,x,M~]v=O 
whenever x E M satisfies condition (1~ 0. 

Now assume that  xEM satisfies condition (lb), and fix yEM as in (lb). Fix sub- 

groups M?j,M.,::~jEJ~m~x of even order such that  My contains the extension of (y) by a 

Sylow 2-subgroup of Nc.(y)/(y), and M~y contains the extension of (x,y) by a Sylow 
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2-subgroup of Nc(x)NNc(y)  (this last extension must lie in ~- since (x, y)C_ME.~ and 

9 ~ is separating). Consider the diagram 

M 

T 
Mx �9 (x} , (x,y) < (y} , My. 

t 
Mzy 

By construction, condition (1~) is satisfied by each of the pairs xEMxy, yEM~y and 

yEM,  and so 

[M, (x, y} , y, MulY = 0 = [Mxy, (x, y}, y, My]y = [Mxy, (x, y} , x, M~ly. 

And hence [M, x, Mx]y = [M, (x, y}, x, M~]y =0. 

Step 2. We now prove inductively, for i~>l, that  Hl(Xi)  has finite image in Hi(X)  

if Hl(Xi-1)  does. Fix a loop in Xi. We can again assume that  it alternates "peaks" 

and "valleys"; and that  each peak is either equal to [Mi] or lies in Xi-1. If any of the 

valleys is a vertex [H]~X~-I,  then it must be connected on both sides to [Mi] (but 

possibly by different edges). This forms a loop (two edges each connecting [g] to IMp]) 

whose homology class lies in the image of Hl(J~f(~'[p])/G) for any prime p iIg], and this 

group vanishes by Corollary 5.7. We are thus reduced to looking at 1-cycles of the form 

z = r  Mz, U'], wtmre H,H~E.Y[ and r is a path in Xi-1 connecting [H] and [H']. 

And since the image of Af((~[)>l)  in X is connected by (2), the path [H,M~,H t] is 

homotopic to a path in Xi-1 (and hence [z] is in the image of Hl(Xi-1)),  modulo loops 

of the form [K, M~, K ~] for G-conjugate subgroups K, K ' E ~ .  [] 

The following proposition shows that in certain cases, one can replace 9 ~ by a different 

separating family without changing the homology of flf(gv>l) or of J~f(.T'>I)/G. Note, 

in its statement and proof, that  any finite group G contains a (unique) maximal normal 

perfect subgroup L.~G: the last term in the derived series of G. This normal subgroup 

is also characterized by the properties that  L is perfect and G/L is solvable. 

PROPOSITION 5.12. Let jzt~.~ be two separating families in G, and let ?-lC_J z be 

any subfamily. Assume that one of the following two conditions holds: either 

(a) for each perfect subgroup LEJZ\.7 z', there is a solvable subgroup N<1CG(L) with 

NET4; or 

(b) the maximal normal perfect subgroup Lmax<~G is simple, and Cc(L)ET-I for 

each perfect subgroup LCLmax in $ ( G ) \.~'. 
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Then the inclusion of Af(7>>.n) into N'(jr>>.n) is a homotopy equivalence, and 

H,(N'(Y>~n)/G) ~- H,(N'(Jr>~n)/G). 

Proof. For any HE Jr\jr' with maximal normal perfect subgroup L<IH, H/L is 

solvable and hence LEY\Jr ' .  This shows that the set of perfect subgroups in Y \ j r '  is 

nonempty. 

We first check that condition (b) implies condition (a). Fix any perfect subgroup 

L E Y \ Y ' ,  and let L'D_L be the maximal normal perfect subgroup of L.Cc(L). Then 

Ca(L')C_Cc(L), so L'.Ca(L')C_L.Cc(L), and Ca(L') is solvable since (L'.Ca(L'))/L' 
is solvable and L'MCa(L')=Z(L') is abelian. Also, Co(L) normalizes L', and so 

Cc(L')<~Cc(L). If (b) holds, then either L=L' or L' is not simple (since L<3L'); and in 

either case L'~Lmax (because if Lmax =L'----LEY then GEY which contradicts the defini- 

tion of a separating family). Thus Ca (L') E 7{, and condition (a) holds with N = Cc (L'). 
Now assume that condition (a) holds. Fix a conjugacy class s of maximal perfect 

subgroups in Y\Y'. Set Jr"--Y\(Y~>s the family of subgroups in Y which do not 

contain any subgroup in s This is a separating family (if H/K is solvable and HD_LEf 
then K_D L); and we can assume inductively that the inclusion of flf(Y'~>~t) into .hf(Y">~n) 
is a homotopy equivalence. So upon setting Jr'=Y", we are reduced to the case where 

Y\Y'  contains a single conjugacy class/2 of perfect subgroups, and where Y' is the set 

of subgroups in Y which do not contain any subgroup in/~. 

For each LEt:, let ]~L be the set of all subgroups HC_N(L) such that HL/L is 
solvable, and let K~ be the set of all HE]CL such that L~=H. Then ]CLC_Jr (HL/L 
solvable implies HLEJr and hence HEY) and /C~----K~LNY'. By assumption, there is 

a solvable normal subgroup N,~CG(L) with NET-/. Upon replacing N by the subgroup 

generated by its conjugates in N(L) (still solvable since it is generated by solvable normal 
subgroups of Ca(L)), we can assume that N<~N(L) (and NEjr)~t). Then HNe~L for 

all HE]~L (HNL/L is solvable if HL/L is, since HL/L normalizes NL/L and NL/L is 
solvable). Also, HNEIC' L for all HEK:~: since for HEICL, H/(HML)~-HL/L is solvable, 

so HN/(HNL) is solvable (since N is solvable and centralizes HNL), and thus HN 
contains L if and only if H does. The nerves Af((K:L)~>~t) and Af((]C~)~>~t) are thus 

contractible by Lemma 0.3 (b). 

For each subgroup H E Y \ J  r', there is a unique LEE contained in H: the subgroups 

in s are maximal among perfect subgroups in Y \ 7 ,  and hence L must be the last term 

in the derived series of H. Thus, L,~H and H/L is solvable; and L is the unique element 

of s for which H6~L\)~'L. In other words, Af(Y/>n) is the union of Af(jr'>>.n) with 

the contractible complexes A/'((]CL)>~n) for LEE., any two of the complexes Af((KL)>>.~) 
and .Af(() ( :L ' ) )7- / )  have intersection contained in N'(jr'~>n), and .hf(Y'>~n)nN'((K:L)~>n)= 
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N'((tC),)~>n) is also contractible for each L. The inclusion of 2V'(Y')n) into N ' (~ ' )n )  is 

thus a homotopy equivalence; and hence H,  (Af(gc'>n)/G) ~- H, (N'(.T')~)/G) by Propo- 

sition 5.5. [] 

5(d) .  C o n n e c t i v i t y  o f  l inks a t  v e r t i c e s  

In w conditions were found on a separating family 5 r which imply that  if (G, 5r)E/.42, 

then Af(gr>l) is acyclic, and hence there is a 2-dimensional H-universal (G, ~')-complex 

with no free orbits. The results of this section amount to showing that  if there is such an 

action, then the links at all of its vertices must be connected. This result, and its proof, 

are closely related to [$2, Theorem 2.8]. 

PROPOSITION 5.13. Let ~ be a nonempty family of subgroups of G such that G ~ .  

Let 9rmax be the set of maximal members of ~ .  Assume that 

(a) each member of-~m~x is self-normalizing; 

(b) each member of :K\.~ma• is contained in at least two members of $rm~x; and 
(c) Af(5 r )  is connected and HI(Af(~ ' ) )=0.  

Then for each MESr,,,a• Af(~<M) (i.e., the link of M) is connected. 

Proof. Set ~'~=~-\gv,,,,~x, for short. L e t / :  be the set of all pairs (M, H)EgVm~x x9 vr 

such that M ~ H ;  regarded as a poset via the relation (M, H)<.(M ~, H ~) if M = M  ~ and 

HC_Hq In both ~-~ and s we let ,.~ denote the equivalence relation generated by tile 

poset relation; so that Y/~.- and s  are the sets of connected components of the nerves. 

Let F be tile graph with vertex set ~-,,,~• and whose set of edges is s 

We use brackets here to denote the vertex corresponding to a subgroup in ~-, or an edge 

corresponding to a pair of sut)gronps in/ : .  Each edge [M, HI, for (M, H )E  s connects the 

vertices [M] and [H]. There is an obvious map ~/~: Af(~-)--+F which sends each simplex in 

Af(~ "~) to the vertex for its connected component, which sends each member of ~',n~• to 

itself, and which sends a simplex {M, HI,  ..., Hk} (for M~H1 ~...) to the edge [M, Hi]. 

We next construct a map ~: F-+Af(~')  in the other direction. For each vertex v 

in F, let ~(v)E~- be any subgroup in the equivalence class which v represents. And for 

each edge e in F, choose a representative (M, H ) E s  for e, and send e to the path which 

follows the edge from M to H in Af(~) ,  and then follows any path in H (9  TM) from H 

to ~([H]). 

The composite @o~: F--+F sends each vertex to itself, and sends each closed edge to 

itself (although not via the identity). In particular, @o~ is homotopic to the identity, 

and so H, (F)  is a direct summand of H,(N'(gv)). Thus, F is connected and H i (F )=0 ;  

and so F is a tree. 
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Now, G acts on F via conjugation, and since F is a tree there must be a fixed point 

x0 E F. Since the members  of 9 r . . . .  are assumed to be self-normalizing, no element of 

5 r . . . .  is normal in G, and hence Xo is not the vertex corresponding to any MEhVmax. 

Assume that  there is some MEhrma• for which Af(~<M) is not connected. Then 

there are two or more edges at tached to [M] in F, and so r\[M] is disconnected. Let 

F1 be the component  of F \ [ M ]  which contains x0, and let F2 be any other component.  

Let. [H] be a vertex in F:.  By assumption, either H E 9  r ...... or H is contained in at least 

two maximal subgroups of ~ .  In particular, H is contained in some maximal  subgroup 

M ' # M .  

The action of M'  on F fixes Xo and [M'], and hence fixes the full minimal pa th  which 

connects them. Since M lies on this path, this implies that  M '  normalizes M.  But both  

are maximal in 5 r ,  and so this contradicts assumption (a) that  M is self-normalizing. [] 

The following proposition combines the above result with those in earlier sections. 

For any family 5 r of subgroups and any maximal  element ME9 r ,  we set 

LkT>l (M) = A/'(hr<l M ) = Af ({He  ~- [ 1 # H ~ M} ). 

PROPOSITION 5.14. Fix a separating family J: for G. Let JZoC_Jc be any subfamily 

which contains Jze, and such that each nonmaximal subgroup in JCo is contained in two 

or more maximal subgroups. Assume that ~ satisfies the following two conditions: 

(a) Jkf(gV>l)/G is connected and HI(.M'(.T>I)/G)=O. 

(b) There is a maximal subgroup ME.T  such that Lk(yo)>l(M ) is not connected. 

Then (G, ~ ' )  ~/42. 

Proof. Assume that  (G, gr)eU2. Then by (a) and Lemma 5.10, Af(gV>l) is acyclic. 

So Proposition 5.13, applied to the family (.To) > 1, implies that  Lk(~=,,) >1 (M) = Af((9%) < M ) 

is connected for all maximal subgroups ME~ ' ,  and this contradicts point (b). (Recall 

that  all maximal subgroups in 9 ~ are self-normalizing by Lemma 1.1.) [] 

6. S imple  groups  of  Lie rank 1 

We now focus attention on the simple groups of Lie type and Lie rank 1. There are 

four families of such groups: the 2-dimensional projective special linear groups L2(q), 

the 3-dimensional projective special unitary groups Ua(q), the Suzuki groups Sz(22k+1), 

and the Ree groups 2G2(32k+l). We refer the reader to Appendix D for more detail 

on these groups, and for additional information on the finite groups of Lie type in 

general. 
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We first show that  the only 2-dimensional actions which involve the simple groups 

L2(q) or Sz(q) are the ones constructed in w This will be done in a series of three 

lemmas, after which the results will be summarized in Proposition 6.4. 

LEMMA 6.1. Assume that G=L2(q) or PGL2(q), where q=pk>3 and p is an odd 
prime. Let .7: be a separating family for G which contains no nonsolvable subgroups 

L2(q0) or PGL2(qo) for qo a smallerpower of p. Assume also that .T~8s  if G=L2(q) 
and q - •  (mod 8). Then (G,~)~LI2. 

Proof. We refer the reader to Proposition 3.3 for the description of the maximal 

subgroups of G. We think of L2(q) as a subgroup of index 2 in PGL2(q): the image in 

PGL2(q) of those matrices in GL2(q) whose determinant is a square in Fq. We describe 

subgroups of PGL2(q) and L2(q) by their inverse images in GL2(q). 
Note that if G=L2(q) and q - •  (mod 8), then ~ must contain a subgroup isomor- 

phic to A s - - t h e  only nonsolvable subgroups of G not isomorphic to L2(q0) or PGL2(qo) 
for q0 a smaller power of p. In particular, q - •  (mod 5) in this case. 

Case 1. Assume first that  p=3. If k is odd, then q--3 (mod 8) and q - •  (rood 5); 

and so G~L2(q) by the above remarks. Thus, either G=L2(3 k) for k even, or G =  

PGL2(3k). 

Set K1 =PGL2(3)~ E4 (the subgroup of matrices with entries in F3), let K2 be the 

subgroup of upper triangular matrices (K2~-Fq>4C(q_I)/2 or Fq>~Cq-1), and let K3 be 

the subgroup of monomial matrices (K:~-Dq_I or D2(q-1)). Set K~j=K.iOKj and K= 

K1NK2AK3. Then ./~12~D6, K 1 3 ~ C  2, K23'~C(q_l)/2 o r  Cq_l, and K ~ - C 2  . Since K 1 is 

a maximal subgroup in ~- (see the list of subgroups in Proposition 3.3), Proposition 5.4 

now applies (using condition (al), or (a2) if G=L2(9) )  to show that  (G,U)~b/2.  

Case 2. Now assume that  p>~5. By Proposition 3.3, A4 is a maximal subgroup of 

G only if G=L2(q) and q - •  (mod 8), in which case (as noted above) ~" must contain 

subgroups isomorphic to As. And since there is only one conjugacy class of A4C_G 

(Proposition 3.3 again), each such subgroup must be contained in some Ar, CU. 

Thus, no maximal subgroup of ~" is isomorphic to A4. From the lists of maximal 

subgroups in Proposition 3.3, we now see that  each maximal subgroup in ~" is isomorphic 

to one of the groups Fq>4C(q_U/2 or Fq>4Cq_I (triangular matrices); Dq-1 or D2(q_l) ; 

Dq+l or D2(q+I); or E4 or As. Also, by hypothesis, if p=5, then A5~L2(5) is not in U. 

Let M1C_G be the (maximal) subgroup of upper triangular matrices, and let TCM1 
be the subgroup of diagonal matrices. From the above list (and since p>3)  we see 

that  M1 and its conjugates are the only maximal subgroups in 5 r of order a multiple 

of p. Furthermore, for any subgroup HE9 v with p l[H[, H leaves invariant a unique line 

in (Fq) 2, and hence is contained in a unique subgroup conjugate to M1 (and thus a unique 
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L 

S 

T 

B 

N 

L2(q) Sz(q) 

{ ( ;  ~ ) a e F q } ~ - F q  S(q,O) 

{diag(A,A-1)[Ae(Fq)*}/{+I} {M(A) I Ae(Fq)*} 

S ,T  M(q,O)=S(q,O)>~T 

/ ( 0  1 ) )  
N ( T ) =  T, - 1  0 N(T)=(M(A),v) 

T a b l e  5 

maximal subgroup in ~) .  Also, each nontrivial subgroup HC_M1 of order prime to p is 

contained in a unique subgroup conjugate to T (i.e., CMI(H)). 
We first check that Af(sc>I)/G is connected and H1 (N'(~>I) /G)=0,  using Proposi- 

tion 5.11. From the above list of maximal subgroups in Or (and since Aa is not among 

them), we see that for each maximal subgroup M E ~  of even order, and each xEM 
of odd prime order, NM((X}) has even order. Thus, condition (1~) in Proposition 5.11 

holds. Also, the only maximal subgroups in G of odd order are those conjugate to 

Ml~-Fq>aC(q_l)/2, when G=L2(q) and q - 3  (mod 4). Let br[ be the set of subgroups 

of M1 which are contained in maximal subgroups in other conjugacy classes; by the 

above remarks each HE~-[ is conjugate to a subgroup of T. The image of A/'((~[)>I) 

in N'(Ov>I)/G is thus connected, and so condition (2) in Proposition 5.11 holds. This 

finishes the proof that Af(~'>I)/G is connected and HI(N' (F>I) /G)=0.  

Now let br0 CO r be the subfamily consisting of all maximal subgroups in b r, together 

with all subgroups in jc contained in two or more maximal subgroups (thus ~o_D~'c by 

Lemma 3.1 (a)). We have seen that each proper subgroup of M1 contained in 3c0 is con- 

tained in a unique subgroup conjugate to T. In other words, Lk(o%)>l(M)=Af((~-o)~ I) 

is not connected: it has one connected component for each subgroup of M1 conjugate 

to T. So Proposition 5.14 now applies to show that (G,~')~/d2. [] 

In each of the next two lemmas, we deal simultaneously with the simple groups 

L=L2(q) and Sz(q), where q=pk and p is prime (p=2 if L=Sz(q)). It will be convenient 

to fix subgroups S,T,B, NC_L of each of these groups, according to Table 5. When 

L=Sz(q), we are using the notation in Proposition 3.6 (where Sz(q) is regarded as a 

subgroup of GL4(q)). All of these subgroups are invariant under the action of Aut(Fq). 

In both cases, S is a Sylow p-subgroup, B=N(S) is a Borel subgroup, T is cyclic (of 
1 order q -1  or ~(q-1)), and N is dihedral. 
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LEMMA 6.2. Assume that G=L is one of the simple groups L2(q) or Sz(q), where 
q=pk and p is prime (p=2 in the second case). Let .7= be any separating family for G 
which contains a nonsolvable subgroup isomorphic to L2(qo) or Sz(qo), where qo=p k~ 
(an d k0]k). Then (G,9~)~U2. 

Proof. Assume that qo=p k~ is chosen so that  ~ contains a maximal subgroup 

isomorphic to Go=L2(qo), PGL2(qo) or Sz(qo). Thus, Go is the subgroup of all ma- 

trices in G with entries in Fqo. (More precisely, if G=L2(q)CPGL2(q), then Go= 

L2(q)APGL2(qo).) By Proposition 3.3 or 3.6, if Go~-MEJ z, then there is an auto- 

morphism a c A u t ( G )  such that  a(M)=Go. Thus, upon replacing 9 ~ by a(9~), we can 

assume that  GoE5 ~. 

We now apply Proposition 5.4, with the subgroups KI=Go, K2=B and K3=N (as 
in Table 5). Then K12--B0, K13=No, K23=T and K=K1NK2NK3=To. Condition (b) 

of Proposition 5.4 holds by assumption (KI=G0 is maximal in 9~). Conditions (d) and 

(e) are clear: gc (Go ,  Bo, T0)--T0, and the triples (K1, B0, To) and (K1, No, To) are not 

G-conjugate. 

We next consider condition (c). Clearly, K12 = B0 is a maximal subgroup of K1 = Go. 

If G=L2(q), then K=To is maximal in K12=Bo. And if G=Sz(q), then To is maxi- 

mal among critical subgroups of B0. (There is one subgroup To~R~Bo, where R= 
Z(S(qo,O)).To~-Fqo)aCqo_X. But using Proposition 3.6 (b), it is easy to check that  every 

maximal subgroup of G which contains R also contains B0. So by Lemma 3.1 (a), R is 

not critical.) 

It remains to check that inequality (al) or (a2) holds. ~rom tim above description 

of the groups, we see that 

[K12:K]=[Bo:To]={~ ~ 
qo) 2 

if L = L2 (q), q -  1 
if L = Sz(q), [gl:~ : K] = 2, [K2:~ : K] -- ~.--'q0-1 

where E--�89 if G=L2(q), p is odd, and 2k0[k (so Go=PGL2(qo)), and r otherwise. 

Inequality (hi) now holds ( ~ i < j  1/[K.ij:K]<~I) unless G=L2(25) and Go=PGL2(5). 
In this last case, 

1 1 1 1 1 1 
E [gi i ig  ] - 5  ~-2+5 < 1 + 6  =1-~ [K:I:K]'  
i<j  

and inequality (a2) holds. 

The conditions of Proposition 5.4 thus hold, and so (G, 9v)~ L{2. [] 

It remains to handle the case of extensions of L2(q) or Sz(q) by field automorphisms. 
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LEMMA 6.3. Let L be one of the simple groups L=L2(q) or Sz(q), where q=pk and 
p is prime. Let ACAut(Fq) be a subgroup of prime order, regarded as a subgroup of 
Aut(L), and set G=L)~A. Then (G,$s 

Proof. Let L0 C_ L be the subgroup of elements fixed by A. Let Fqo be the fixed 

subfield of A_CAut(Fq). If q - •  (mod 8), then (L,$/ : I ; )~U2 by Lemma 6.1, and so we 

also have (G,Ss Thus, we can assume that  q is a power of 2 or that  q=pk-• 
(mod 8). In the second case, k must be odd, and hence IAI Ik is odd. Thus, Lo=L2(qo) 
if L=L2(q), and L0=Sz(q0) if L=Sz(q). 

To simplify the argument, we assume that  L~L2 (4) (the case L2 (4))4 C2 ~PGL2 (5) 

was already handled in Lemma 6.1). 

Fix subgroups S, T, B, NCL as in Table 5. All of these are A-invariant. Set B0= 

BALo, No=NNLo and To=TNLo. 
We claim that conditions (a), (b), (c) in Proposition 5.3 hold for the subgroups 

Ko=B)~A, KI=T)4A and K2=A; this will then imply that  (G, 8s b/2. Condition (b) 

is clear: K0 is a maximal subgroup of G since B is a maximal subgroup of L. 

We next check condition (c). Let H,H~ESs be critical subgroups such that  

A~H~H~Ko=B)~A and HGKI=T)4A. We must show that  H~C_K1. Assume other- 

wise. Write H=Ho)4A and H'=H~)4A (where Ho=HAB and H~=H'NB). Thus, 

I~Ho~H~B=S)~T, HoC_T, but H ~ T .  So HI) intersects nontrivially with T and S. 

Since the intersection of any two distinct Sylow p-subgroups of L is trivial (see [H1, 

Theorem II.8.5 (a)] or [H3, Theorem XI.3.10 (c)]), the lists of maximal subgroups of L 

in Propositions 3.3 and 3.6 show that  B is the unique maximal subgroup of L which 

contains H~, and hence that  Ko=B)4A is the unique maximal subgroup of G=L>~A 
which contains H~=H())4A. And by Lemma 3.1 (a), this contradicts the assumption that  

H ~  K0 is critical in 8s  This proves condition (c). 

It remains to check condition (a). To avoid conflicting notation, we set Ri = Na(Ki) ,  

Rij=RiNRj and R=RoNR1NR2. Then 

Ro= Ko= B)~A, RI = N)4A, R2= Lo• 

ROl = T~A, 

and so 

JR01: R] = IT: To] - q -  1 
q o - l '  

R02=B0•  R12=No• R=To• 

[R12:R]=2, [R~176176 l q~ 2 ififL=L2(q)'L--Sz(q). 

It follows that ~I/[Rij:R]<I except when qo--2 and L=L2(q). And in this last 

case, since q>~8, we have [R2:R]=[Lo• and so in- 

equality (a) in Proposition 5.3 still holds. (In fact, inequality (a) in Proposition 5.3 also 

holds when q=4, but one has to calculate each term explicitly.) [] 
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The above three lemmas can now be summarized as follows. 

PROPOSITION 6.4. Assume that L is one of the simple groups L~L2(q) or Sz(q), 

where q=pk and p is prime (p=2 in the second case). Let GCAut(L)  be any subgroup 

containing L, and let jz be a separating family for G. Then (G, JZ)CLI2 if and only if 
G=L, ~ = 8 s  and q is a power of 2 or q-+3 (mod 8). 

Proof. That (G, Ss in the given cases was shown in w (Examples 3.4, 3.5 

and 3.7). It remains only to check that  all of the other cases have been eliminated by 

one of the above three lemmas. 

If G=L2(q), then we are assuming that 9rr or q - -+ l  (mod 8). So (G, gr)~/,/2 

by Lemma 6.1 (if ~ contains no nonsolvable subgroups L2(q0)) or by Lemma 6.2 (if 9 t" 

does contain such subgroups). If G=Sz(q) and .T~Ss then 9c must contain some 

nonsolvable subgroup Sz(q0) (these are the only nonsolvable subgroups of G by [Sul, 

Theorem 9]); and hence (G,$-)~U2 by Lemma 6.2. So we are finished if G=L is simple. 

Now assume that G is not simple: that  L~GCAut(L).  If L=L2(q), then Aut(L) 

is generated by inner automorphisms, by "diagonal" automorphisms (conjugation by a 

matrix of nonsquare determinant) and by field automorphisms (cf. [Ca, Theorem 12.5.1]). 

In other words, 

Aut (L2 (q)) ~ P r L ~  (q) '~f PGL2 (q) >4 Aut (Fq). 

Also, by [Sul, Theorem 11], all outer automorphisms of Sz(q) are given by field auto- 

morphisms. 

Since Aut(L)/L is solvable, if (G,~')E/A2, then (G', ~'NS(G'))Eb/2 for any G'CG 
containing L. So it suffices to consider the case where G is mininml; i.e., when G/L 
has prinle order and where (L,.TzNS(L))eLI2. In particular, .T=$EV. If L=L2(2 k) or 

Sz(2k), then we are done by Lemma 6.3, since the only outer automorphisms of L are 

field automorphisms (PGL2(q)=L2(q) in this case). If L=L2(q) and q=pk-+3 (mod 8), 

then k nmst be odd, and so 

Out(L) = PGL2(q)/L2 (q) x Aut(Fq) ~ C2 x Ck. 

Since G/L has prime order, either G~PGL2(q) (and (G,,Ss hi2 by Lemma 6.1); or 

G=L~A for some group A of field automorphisms and (G,Ss by Lemma 6.3. [] 

The next groups we consider are the unitary groups U3(q)=PSU3(q). The cases q 

odd and q a power of two will be handled separately. In both cases, we regard U3(q) as a 

group of projective unitary transformations of a vector space V~(Fq2) :~ with hermitian 

product denoted ( - ,  - ) .  We fix two bases of V: an orthonormal basis {el, e2, e3}, and a 
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basis {Vl,  V2, V 3 } with respect to which the hermitian product has matrix 

1 

0 

Elements of U3(q) will be regarded as matrices with respect to one or the other basis, 

depending on the situation. 

PROPOSITION 6.5. Set G=U3(q), where q=pk is any odd prime power. Then there 

is no 2-dimensional acyclic G-complex without fixed points. 

Proof. Assume otherwise: let j r  be a separating family of subgroups of G such that  

(G, jr) E b/2. Set d=  (3, q+ 1), the order of the center of SU3(q). 

Case 1. Assume first that  q~>7, and regard elements of G as matrices with respect 

to the basis {Vl, v2, v3} described above. We apply Proposition 5.4 with the following 

subgroups. 

K1 ~- S03(q)  ~- PGL2(q), 

the subgroup of matrices with entries in Fq. 

where 

/42 = S>4 T, 

T =  {diag(A, A q-l, A-q) I AE (Fq2)*}/Cd 

and 

{(la i) S =  0 1 - q  

0 0 

a, bEFq2, b+b q = - a  q+l } . 

This is the subgroup of upper triangular matrices in U3(q), a Borel subgroup whose order 

is q3(q2-1)/d. 

Ka=T:4  - 1  0 . 
0 0 

Note that  SOa(q)~-PGL2(q) (cf. [HI, Satz 10.11] or [At, Theorem 5.201). So all 

three subgroups lie in jr: the first by Proposition 6.4, and the others because they are 

solvable. 
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and 

Set Kij=I(iNKj and K=K1NK2NK3,  as usual. Then 

K12---- 1 a aEFq N{diag(A, 1, A-1)}~-FqNCq_l; 

0 

K'13 --~ D2(q_l), K23~--C(q2_l)/d~ I(~--Cq_l . 

Then KI=SO3(q) is a maximal subgroup of G since q~7 (see [GLS, Theorem 6.5.3] and 

its proof, where Ua(q) is denoted PSL73 (q)). The other conditions in Proposition 5.4 are 

clear. So (G,~-)~/42 in this case. 

Case 2. Assume q=3. In particular, d = l .  Regard elements of G as matrices with 

respect to the orthonormal basis {el,e2,e3}. Then each subgroup of G isomorphic to 

(722 is conjugate to the subgroup K of diagonal matrices with entries +1; and N ( K )  ~- 

(C4)2)4E3. Thus, all subgroups A4 containing K are conjugate, and have normalizer 

isomorphic to E4. So G contains a unique conjugacy class of subgroups isomorphic 

to E4. 

Also, G=U3(3) contains a maximal subgroup L2(7) [CC], which must be in 5 r by 

Lemma 6.1. Since L2(7) contains two conjugacy classes of E4's, and G only contains one 

such conjugacy class, Proposition 5.9 applies to show that  (G, 5 v) ~/42. 

Case 3. Finally, assume q=5 (hence d=3).  Set G=PGUa(5), regarded as a sub- 

group of Aut(G). Then G/G~-Ca permutes the three conjugacy classes of maximal 

subgroups A7 in G [CC]. Thus, the stabilizer of the G-action on each subgroup A7 is the 

group A7 itself. Each A7 contains two conjugacy classes of subgroups L2(7) (permuted 

by the outer automorphism of A7). Since L2(7) has order prime to 5, one sees [BI, The- 

orem 1.1] via complex characters that  it has a unique 3-dimensional representation over 

Fq2 which is irreducible (unique up to outer automorphism); and this has a unique uni- 

tary structure (since any two would differ by an automorphism). Thus, there is exactly 

one (~-orbit of L2(7)'s in G. Proposition 5.9 again applies to show that  (G,~-)~U2. [] 

We next consider the unitary groups Ua(2k). 

PROPOSITION 6.6. Set G=U3(q), where q=2k>2 is a power of 2. Then there is 
no 2-dimensional acyclic G-complex without fixed points. 

Proof. Assume otherwise: let q be such that U3(q) is the smallest counterexample, 

and let $- be a separating family of subgroups of G such that  (G, $-)E/42. 

Set d=(3,  q+l) .  Then 

1 a, 2 q3. q2-q  +1 
I a l  = ~q - 1 ) ( q 3 + l )  = ( q - 1 ) . ( q + l )  2. d (1) 
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(cf. [Ca, Theorem 14.3.2], who writes U3(q)=2A2(q2)). Here, the factors in the second 

formula are pairwise relatively prime. (Note that  3 ] ( q 2 - q + l ) = ( q ' 3 + l ) / ( q + l )  if and 

only if 3 ](q+l), and that (q3+l)/(q+l) cannot be divisible by 32.) 

Let 0 be the Frobenius automorphism of order 2 on Fq2; and write x~ q for 

any x. 

The following list of maximal subgroups of G can be found in [Ha, p. 158] or in [GLS, 

Theorem 6.5.3 (a), (b), (c), (g)]. Note also the thesis of Peter Kleidman [Kll, w where 

maximal subgroups are listed for classical groups of low rank, and a general procedure 

for determining them is described. 

(M1): Ml~-[q3]>~C(q2-1)/d; the stabilizers of isotropic lines (generated by v with 

(v,v)=0);  the Borel subgroups of G. We choose M1 to be the stabilizer of (vl), or 

equivalently the group of upper triangular matrices with respect to the basis {vl, v2, v3}. 

(M2): M2~GU2(q)/Cd~-C(q+I)/dXL2(q); the stabilizers of anisotropic lines (gen- 

erated by v with (v, v)r  We choose M2 to be the subgroup of matrices (aij) (with 

respect to either of the above bases) for which a22 is the only nonzero entry in the second 

row or column. 

(Ma): M3"~[(Cq+I)2:~E'~]/Cd; the stabilizer of (the union of) three pairwise ortho- 

gonal lines. We choose M3 to be the group of monomial matrices with respect to tile 

orthonormal basis {el, e2, e3}. 

(M~"), if q=qb and b is an odd prime: M~l~ isomorphic to U3(qo) (if 

(b, d )=  1) or PGU3(qo) (if b=d=3). There are (b, d) conjugacy classes of such subgroups 

(all conjugate in PGU:~(q)). 
(Ms): M~--Q,I~_,t+I)/d>~C:~. Consider the hermitian form ( - , - )  on Fr (viewed 

as a vector space over Fq~) defined by (x, y> =Tr(xy~), where Tr: F,l~ ~F,12 is the trace 

map. Let aeAut(Fqo) be tile automorphism a(x)=x ~;~, let HC_(F,t~)* be the subgroup 

of order q3 + 1, and set 

M = g>4(a) C_ (Fq6)* >~ Aut(F~) .  

Then M preserves ( - , - ) ,  and M5 is the intersection of U:~(q) with the image of M 

in PGU3(q). In particular, C.~ acts on Cq2_q+l via x-+x ~12. 
We can assume inductively that none of the groups M~" =N(U3(qo)), for q0 > 2, can 

act on an acyclic 2-complex without fixed points. So they must all be contained in ~ .  

Also, by Proposition 6.4, if M2~5 r, then the only subgroups of M~ (and its conjugates) 

which are in 9 r are solvable subgroups. So either IP=.A4.AX, the family of all proper 

subgroups of G, or 9v=~'0, the family of all subgroups whose intersection with any 

subgroup in (M2) is solvable--and this latter only when k is prime or a power of 2. 

We first show that Af(hr>l)/G is connected and HI(Af(Jc>I)/G)=O, using Propo- 

sition 5.11. Since every perfect subgroup in A ~ A X \ ~ 0  is of the form L2(2k"), where 



256 B. O L I V E R  AND Y. S E G E V  

1< k0]k, and has nontrivial centralizer, Proposition 5.12 applies, with ~=.A4.AX>I (and 

using condition (b)) to show that  H.(Af((.T'o)>~)/G)~-H.(Af(.A4.AX>I)/G). So we can 

assume that .7"=A/IAX. 
The even order maximal subgroups of G are those conjugate to M1, M2, M3 or M4 q~ 

If M = M2, M3 or M~ ~ and x E M is of odd prime order, then one easily sees that  NM ((x}) 
has even order. Also, if xEM1 and Ixl](q+l)/d, then CMI(x) has even order: if M1 is 

the subgroup of upper triangular matrices with respect to the basis {vl,v2, v3}, then x 

is conjugate to a diagonal matrix diag(A, A -2, A) and is centralized by the element 

(i~ 1 . 

0 

Thus, condition (la) of Proposition 5.11 holds in all of these cases. 

Now let xEM1 be of prime order dividing q -1 .  We check that  condition (lb) of 

Proposition 5.11 holds. Let y E CMI (x) ~ C'(q2 _ 1)/d be any element of prime order dividing 

(q+l)/d. We have just seen that  NM~((y}) has even order, and Na((x))NNG((y)) also 

has even order since NG((y})~-M2'~C(,~+I)/d • Thus, condition (lb) of Proposi- 

tion 5.11 holds in this case. 

It remains to check condition (2) of Proposition 5.11. Let 5vl be the set of all 

subgroups of M.~'~C(q2_~+X)/d ~ C3 which are also contained in even order maximal sub- 

groups. Since 3~(q 2 - q +  1)/d as noted above, ~1 contains a unique Mn-conjugacy class of 

subgroups of order 3 (Sylow subgroups of M.~), and all maximal subgroups in ~'1 are of the 

form Ca>4C3 (C_M~4 z~ for some a. So the image of N((hvl)>l) in A/(.7">I)/G is nonempty 

and connected (via the point corresponding to the subgroups of order 3). Proposition 5.11 

thus applies to show that  Af(hr> 1)/G is connected and Hi (Af(~->I)/G) = O. 
This shows that  condition (a) in Proposition 5.14 holds, and it remains to check 

condition (b). Set M=Mh'~C(q2_q+l)/d~C3. Let $'~C_~ be the subfamily consisting of 

all critical subgroups in ~-. Fix a prime 

(q'~- 1)(q- 1) 
P l ( q ~ - q + l )  = (q'~- 1)(q~- 1) 

such that p{(q~)- 1) when q0 is a smaller power of 2 (such a prime exists by Zsigmondy's 

theorem [H2, Theorem IX.8.3]). Then for any proper subgroup H ~ M  with p[ [HI, M is 

the unique maximal subgroup of G which contains H, and so H ~ r ~  (Lemma 3.1 (a)). 

Let T,aM be the subgroup of order (q2-q+l)/dp; then M/T'~Cp>4C3. And C3 is not 

normal in M/T: since C3 acts on Cp via (x~--~xq2), and (q2-1,  (qU-q+l)/d)=l. 
By Proposition 5.14, we will be done upon showing that  the nerve of ( ~ ) < M  is >1 

not connected. For any I~HC_T, H is not critical by Lemma 3.1 (b): N(H)=ME.T', 
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and N K ( H ) ~ K  for all K ~ H  (note that  K must be contained in M or in one of the 

subgroups N(U3(qo))). Thus, any critical subgroup properly contained in M must be of 

the form H~C3 for HE_T; and such subgroups do exist (any subgroup of M maximal 

among those contained in other maximal subgroups in 9 c is critical). The image of the 

poset (~ )X  M in S(M/T)  thus consists precisely of the subgroups of order 3. Since the 

continuous image of a connected space must be connected, this shows that  Af(($-c)X M) 

is not connected, and finishes the proof of the proposition. [] 

We note here that  Proposition 6.6 can also be proven using Propositions 5.3 and 5.4; 

but this involves considering several different cases, and requires complicated arguments 

that  certain subgroups are not critical. 

We are now ready to consider the Ree groups 2G2(q). 

PROPOSITION 6.7. When q is any odd power of 3, there is no 2-dimensional acyclic 

2 G2 ( q ) -complex without fixed points. 

Proof. Set G=2G2(q), where q=3 k and k is odd; and assume that  5 c is a separating 

family for G such that  (G, gV)EU2. We can assume inductively that q is the smallest 

power of 3 for which this happens. Since 2G2(3)-~Aut(L2(8)) [Jan], this subgroup has 

no fixed point free action on a Z-acyclic 2-complex by Lemma 6.3. Thus, we must have 

2G2(3) e.T'. 

The order of G is given by the formula 

[G[ = q3(q _ 1)(q3 + 1) = q3.2 3.1 (q _ 1). �88 (q+ 1). (q+ V ~  + 1). (q - V / ~  + 1) 

(cf. [Ca, Theorem 14.3.2]), where the factors in the last decomposition are pairwise 

relatively prime. The maximal solvable subgroups of G, as listed in [K12, Theorem C], 

all lie in the following conjugacy classes: 

(M1): the Borel subgroups P)4Cq_I, where IP[=q 3 (a Sylow 3-subgroup of G). 

More precisely, P = ( F q )  3 with multiplication given by 

(xl, Yl, Zl)" (x2, Y2, z2) = (Xl +x2, y] +Y2 + x l '  x~, zl +z2 -xl"  y2+Yl"X2 -x l 'x~ 'x2) .  

Here, x~=x ~ (so x~=x3).  The action of (Fq)* on P is given by 

�9 ,~(X, y ,  Z),,~ - 1  = (,~X, AA~y, A2A~z). 

(See [H3, Theorem XI.13.2].) 

(Ms): M2=Cc(C2)~-C2xL2(q) for any C2C_G. 

(M3): for any C CC. 
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M •  r,~,rv (M~) and (M4): 4 =Wq+v/~+l~C6,  where C6 acts via (x~-+xq). (The action of 

C6 is determined by the fact that  an element of order 2 or 3 has centralizer of order 

prime to q 2 - q + l . )  
qo , Mq0 (M~) .  ~2G2(q0) whenever q=qP for some (odd) prime p. 

By our inductive assumption, 2G2(q0)Cgr for all qo=3 k~ where ko[k. So all of the 

maximal subgroups must be included in 5 r ,  except possibly those in (M2). 

We first show that  Af(hr>l) is connected and that  HI(.Af(.T>I)/G)=O. By Propo- 

sition 5.12 (arguing as in the proof of Proposition 6.6), it suffices to do this when 

.T=.M.A,u the family of all proper subgroups of G. We apply Proposition 5.11. From 

the above list, we see that  all maximal subgroups of G have even order. If M is maxi- 

mal and xEM has odd prime order, then NM(X) has even order, except possibly when 

M is conjugate to M1 and [x[=3. And under the above description of P<~M1, any 

xEP of order 3 is of the form x=(O,b,c) for b, cEFq; x is normalized by -1E(Fq)*  

if b--0 or c=0;  and if 550  then x=(O,b,c) is conjugate to (0, b, 0). Condition (la) of 

Proposition 5.11 thus holds (and condition (2) is empty). It follows that  N'(hr>i) is 

connected and H1 (A/'(hr> 1 ) /G)  = O. 
We have now shown that condition (a) in Proposition 5.14 holds. We claim that  

M + "~C condition (b) holds for one of the maximal subgroups 4 = q+x/Y4+I>4C6; once this 

has been shown then we can conclude that  (G,.T)~L/2. By Zsigmondy's theorem [H2, 

Theorem IX.8.3], there is a prime p[(q6--1)=36k--1 such that p { ( 3 ' " -  1) for any m<6k. 
In particular, p[(qa+ 1) / (q+ 1)= (q+ x / ~  + 1 ) (q -  v ~  + 1 ) - - and  thus divides the order 

of M=M~ or M 4- but does not divide the order of 2G2(qo) for any qo<q. We claim 

that the nerve of the poset of proper subgroups of M which are critical in ~" is not 

connected. Let T<1M be the cyclic subgroup of index 6p, and set 

7-/= IIn[(~:)<~ ~ --+ S(M/T)]. 

From the above list of maximal subgroups, we see that for any proper subgroup H ~ M  
of order a multiple of p, H is contained in no other maximal subgroup in 5 r ,  and hence 

H is not critical (Lemma 3.1 (a)). Also, for any 17~HC_T, Lemma 3.1 (b) applies (with 

~I=N(H)=M) to show that  H~Sr~:. Thus, 74 contains neither the trivial subgroup nor 

subgroups of order a multiple of p. Also, 7-/contains the subgroups of order 6 in M/T, 
since any subgroup of the form H>~ C6 C_ M (for HC_ T)  which is maximal among subgroups 

of M contained in other maximal subgroups of .7" must be critical. We have now shown 

that  7-/ consists of the subgroups of order 6 in M/T~-Cp:4C6, as well as possibly the 

subgroups of order 2 and 3. Since none of these subgroups is normal (C6 acts on C v via 

(x~-+x q) and p is prime to q2 -1  and to q3-1) ,  this shows that  the nerve of 7-/ is not 

connected. And since the continuous image of a connected space must be connected, this 

shows that Af((hr~)<l M) also fails to be connected. [] 
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Proposition 6.7 can also be proven using Proposition 5.4 (when ~ contains the 

conjugacy class (/1//2) as defined above), and Proposition 5.12 to reduce the general case 

to this case. 

7. Sporad ic  s imple  g roups  

Aschbacher and Segev proved in [AS] that  no sporadic simple group, with the possible 

exception of the first Janko group J1, can act on a 2-dimensional acyclic complex without 

fixed points. In all cases, this was done by applying the four-subgroup criterion, presented 

here in Proposition E.1. Since the arguments in [AS] use a variety of structures and 

definitions unfamiliar to non-group-theorists, we now describe how these results--as 

well as the nonexistence of a J l -ac t ion--can be proven using Proposition 5.4 instead. 

Note however that the arguments presented here, while fairly brief to present, are not 

really more elementary than those given in [AS]. They depend on information about 

maximal subgroups which has been collected together in [CC] and [A2], but whose proofs 

(especially for the ten sporadic groups listed in Table 6) are scattered widely throughout 

the literature. 

We first repeat some definitions in [A2, w Fix a finite group G, a subgroup 

ACAut(G)  and an A-invariant subgroup BC_G. A regular (A,B)-basis for G is a set 

{Gi[iEI}  of subgroups containing B which satisfies the following two conditions: 
+~ def  

(1) each subgroup HC_G containing B is in tile A-orbit of ~.1 = I I / c j  G/ for some 

unique J C I (in particular, B = G+); and 

(2) for each J, KCI ,  if a(GK)C__Gj for solne aEA, then GKC_Gj and a(GK)= 

a'(GK) for some a'ENA(Gj). 
If for some A and B, G has a regular (A, B)-basis of order at least 4, then by [AS, 6.1] 

(and using the four-subgroup criterion described in Proposition E.1), (G, 5~)~ b/2 for any 

separating family ~" which contains the basis. Using Proposition 5.4, this can be shown 

for bases of order 3 which satisfy certain additional conditions. 

LEMMA 7.1. Fix a simple group G and a separating family .7: of subgroups of G. 

Assume, for some ACInn(G) and some A-invariant subgroup I C KCG, that there is a 

regular (A, K)-basis {K~[iEI}, and indices r, s, tEI,  such that KT, Ks, Kt e J: and 
1 1 1 

t- + <1.  (1) 
[K,..~: K,..~t] [K~t: I~rst] [K~t: K,..~t] 

Then (G, Sr)~L/2. In particular, (1) holds if K contains a Sylow p-subgroup for some 

prime Pl IG[ �9 

Proof. For simplicity, we write I={1 ,2 , . . . ,k} ,  and assume that  {r,s , t}={1,2,3}.  

By [A2, 28.1], {K1, K2, K3} is a regular (NA(K123), g123)-basis; so we can assume k=3  
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and K=K123. It is immediate from the definition of a regular (A, K)-basis that  Kjo{i )  

is a maximal subgroup of Kj for any J ~ I  and any iEI \J .  
We claim that  the subgroups K1, / (2 , / (3  satisfy the hypotheses of Proposition 5.4; 

it then follows that  (G, 5c)~/.r We have just  checked conditions (b) and (e) (maximal- 

ity of subgroups). Condition (al) holds by assumption, and condition (e) (the triples 

(K1, K12, K)  and (K1, K13, K)  are not G-conjugate) is immediate from the definition of 

a regular (A, K)-basis. 

We next show that  the Ki can be ordered so that  No(K1, K12, K)=K, thus proving 

condition (d). To see this, note first that  Na(K) must be A-conjugate (hence equal) to 

one of the subgroups Ki, Kij or K. Also, the Ki are maximal in the simple group G, 

and hence self-normalizing. If Na(K)=K, then we are done. Otherwise, we can assume 

(after switching indices if necessary) that  Na(K)=K3 or /(23. If Na(K)=K23, then 

Na(K1, K12, K)CK1NK23=K. So suppose Na(K)=Ka. Since K12 is not normal in G =  

(K1, Ks), K12 cannot be normal in both K1 and / (2 ,  and we can assume without loss of 

generality that  K12 is not normal in K1. Then NKl(K12)--K12, and so N(K1, Kt2, K)C 
KiN AKa = K .  This finishes the proof that  (G, ~-) ~b/2. 

It remains to show that (1) always holds if K contains a Sylow p-subgroup for 

some prime Pl Ial. By definition of a regular basis, [Kiy:K]>I for all i,j. If [ K i j : K ] =  

[Kik:K]=2 for some i, then K<1Ki=(Kij,K.sk) ([12, 28.1(2)]); K~/K is generated by 

two elements of order 2 and hence dihedral; and this is a contradiction since it means 

that there are other overgroups of K not conjugate to any of the given ones. 

Thus, [Kij :K] =2 for at most one pair of indices i, j .  So if (1) does not hold, then the 

three indices [Kij: K] must be (2, 3, 3), (2, 3, 4) or (2, 3, 5). Since each index is prime to p 

(K contains a Sylow p-subgroup), this shows that  p ) 5 .  If [Kij:K]=m, then the permu- 

tation action of Kij on the se t  Kij/K restricts to a homoInorphism @ij:K~ ~rn-1 C- ~4 
whose kernel Rij is norinal in Kij. Set H=OI2'3I(K),~K: the smallest normal sub- 

group of index a product 2~.3 "~. Then H is characteristic in any subgroup of K which 

contains H, and in particular characteristic in each Rij. So H is normal in each Kij, 
and hence normal in G=(K12, Kla, K2a). Since G is simple, H=I, so 2 and 3 are the 

only primes dividing IKI. And this contradicts the assumption that  K contains a Sylow 

p-subgroup for some p>~5 and p[ [G[. [] 

We are now ready to prove 

PROPOSITION 7.2. Let G be any of the sporadic simple groups, or the Tits group 
2F4(2)q Then there is no 2-dimensional acyclic G-complex without fixed points. 

Pro@ We first prove the proposition for ten of the sporadic groups as well as the 

Tits group, by direct application of Proposition 5.4. Since/1//22 is one of these groups, 
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HN 
= &  

Th 
=Fa 

2F4(2 )' 

G K 1 K 2 K 3 K12 

dl 23:7:3 7:6 C3 XDlo 7:3 
=N(7) =C(3) 

M22 L3(4) 24:$5 24:A6 24:A5 
(point) (duad) (hexad) 

J2 U3(3) 3"PGL2(9) 21-+4:$3 31- +2:8 
----N(3A) =N(4) 

HS U3(5):2 U3(5):2 C(2~) 5~+2:S:2 
_:)N(Syl5) 

J3 L2(16):2 L2(17) 21+4:$3 17:4 
_DN(17) =N(4) 

He $4 • L3(2) L3(2)x7:3 N(3x) $4 • ) 
=N(7) 

Ru 2F4(2 ) L2(25 ).22 3.A6.22 L2(25 ).2 
(point) (edge) =N(3) 

O'N J1 L3(7):2 (32• 19:6 
_DN(19) =g(3)  

A12 M12:2 6(2~c) M12 
(point) (point pair) 

3D4(2):3 (3x 13):12 21++8:A9 13:12 
----N(13) =C(2) 

L2(25) 52:4A4 [29.3] 52:12 

=N(Syl5) C(2B) 

K K13 

3 6 

22+4:3 24:A5 

=24:A4 

3:8 4$4 

5:8:2 2S5.2 

K23 [Kij : K] 

6 7, 2, 2 

22+4:$3 

~24:$4 
5,5,2 

3:D16 9,4,2 

2S 5.2 25, 6, 6 

4 D 8 x 2 DI6 

$4• S4• 6 

17, 4, 4 

L3(2)x3 7,2,7 

D24.22 e, 9, 2 

S 3 x $4 19, 10, 24 

(22x A5):2 *,96, 2 

3x12 13,*,3 

Table 6 

D24.2 (3F2:D8).2 

6 D6XDlo 

2xS 5 25:$6 

=CM12(2A) =CA12(2B) 

12 CKl(2x ) 
order >/9216 

12 D24 4A 4 25, 2, 4 

Proposition E.3 then applies to prove the proposition for the other four Mathieu groups. 

The last twelve sporadic groups are then handled using Lemma 7.1. Throughout the 

proof, whenever two names are given for one of the sporadic groups, the first is that used 

in [CC], and the second the name used in [A1] or [A2]. 

Assume that the proposition does not hold, and let G be the smallest such group 

which has a fixed point free action on a 2-dimensional acyclic complex X.  Let ~" be the 

separating family of subgroups HCG such that xHr Consider first Table 6, which 

describes how Proposition 5.4 can be applied to these eleven simple groups. We refer 

to [CC] for the existence of subgroups with these properties, and to [GLS, Table 5.3] for 

tables of normalizers of prime order subgroups of the sporadic groups. The subgroups in 

Table 6 are described using mostly the notation of [CC]. However, we write, for example, 

N(3)  or C(3) to denote the normalizer or centralizer in G of a subgroup of order 3 

when there is a unique G-conjugacy class of such subgroups; and write N(3A)  or N ( 3 B )  
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(or N(3x) when the ctass is unspecified) only when there is more than one class. Also, 

Sylp always denotes a Sylow p-subgroup of G. 

In all cases, the results of w and Appendix E and the minimality assumption on G 

imply that KiE.Y for all i=1 ,2 ,3 .  Note in particular the cases G=HS,  He and HN: 

K3C~- since K13 or K23 is nonsolvable and in ~'. 

The remarks under the names of the subgroups K,~ describe how they are chosen 

relative to one another. In all cases except G=M22, K1 and K2 are chosen in one of the 

following two ways: either 

(a) they are the stabilizers of a vertex and an edge (or point pair) of a standard 

action of G on a graph; or 

(b) K1 is a maximal subgroup of G, and K2 is the normalizer of some subgroup 

XC_K1 (as indicated in the table), or a maximal subgroup (not conjugate to K1) con- 

taining Nc(X) and such that  K12=NKl(X). 
The subgroup K3 is then chosen as the normalizer or centralizer of a certain subgroup 

YC_ K12 as indicated. In all cases where K12 contains more than one conjugacy class of 

subgroups of the given order, the choice is either specified under K=NKI: (Y), or is clear 

from the description of K.  In many cases, it is unnecessary to identify K3 more precisely, 

since the only thing we need know about it is that it must lie in ~'. 

When G =  M22, K3 ~ 24:A6 is the subgroup which leaves invariant some hexad in the 

Steiner system of order 22, and it has the obvious action on this set of order 6 (cf. [Gri, 

Theorem 6.8]). Then K1 is taken to be the stabilizer of some point x in the hexad, and 

K2 the stabilizer of some pair of points in the hexad including x. 

In all cases, eacil of the subgroups in the sequence KC_ K12 C_ K1 C G is maximal and 

self-normalizing in the next one. Thus, conditions (b), (c), (d) in Proposition 5.4 always 

hold. Condition (e) ((K1, K12, K)  is not G-conjugate to (K1, Kl:~, K) )  is clear except 

when G=M22; in this case K12 and KI.~ are distinct parabolic subgroups in KI~L:~(4) 

containing the same Borel subgroup K,  and hence not conjugate in K1. Inequality (al) 

holds in all cases except when G =  J1, as can be checked using the list of indices [Kij:K] 
in the last column (where " . "  means that  the index is greater than 10, and hence large 

enough not to matter).  

We give particular attention to the case G=JI: the first Janko group, and the only 

sporadic group not handled in [AS]. Fix some K1"~C~)~(C7)~C3): a maximal subgroup of 

G by [A2, 16.17] (see also 16.4 and 16.16 in [A2]). Let K2'~C7)4C6 be the normalizer of 

a subgroup of order 7 in K1, and let K.~-C:~• be the centralizer in G of a subgroup 

of order 3 in K12. Then 

K12~-C7)~C:~, K13~-C(~-K23 and K=K1AK2AK3~--C3 . 
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All of these subgroups are solvable, and hence in ~ .  Also, 

1 _ 1  b 1 + 1 < 1  1 1 1 1 
Z [K{j:K l 7 z z +~-~+~-~ = 1+ [K2:K-----] + [K3:K-----]' 
i<j  

which proves inequality (a2) in Proposition 5.4. The other conditions in Proposition 5.4 

are easily checked, and so J1 has no fixed point free action on a 2-dimensional acyclic 

complex. 

The remaining twelve sporadic groups can now be handled using Lemma 7.1. In 

[A2, w a p-basis for G is defined to be a regular (Na(B),  B)-basis for some BC_G which 

contains a Sylow p-subgroup T of G, and such that  the basis contains representatives for 

all G-conjugacy classes of maximal subgroups in G which contain T (not only conjugacy 

class representatives for maximal overgroups of B). Maximal overgroups of the Sylow 

subgroups of sporadic groups are listed in [A2], and conditions for their forming a p-basis 

are given in [A2, Theorem 1]. So from [A2, pp. 7 36], we get the following list of sporadic 

groups G and primes p=2, 3 or 5, where in each case G has a p-basis with at least three 

elements already known not to have fixed point free actions on 2-dimensional acyclic com- 

plexes: J4 (p=2),  McL (p=3),  Suz (p=3),  Ly (p--3, 5), Co3 (p=2, 5), Co2 (p=2, 3, 5), 

C o  I (p=2, 3), Fiu2=M(22) (p=2,  3), Fi23=M(23) (p=3),  Fi~4=M(24 )' (p=2,  3), B=F2 
(p=2,  3, 5), M=F1 (p=2, 3, 5). Note in particular the case G=Ly and p=3: the maximal 

overgroup G2 ([A2, p. 19]) must lie in 9 r since it surjects onto $5. This list includes all 

of the sporadic groups not dealt with in Table 6 or in Proposition E.3, and thus finishes 

the proof of the proposition. [] 

8, P r o o f  of  T h e o r e m  A 

We are now ready to prove Theorem A. 

THEOREM A. For any finite group G, there is an essential fixed point free 2- 

dimensional (finite) Z-acyclic G-complex if and only if G is isomorphic to one of the 

simple groups L2(2 k) for k>~2, L2(q) for q-:k3 (mod 8) and q~5, or Sz(2 k) for odd 

k>~3. Furthermore, the isotropy subgroups of any such G-complex are all solvable. 

Proof. By Proposition 4.4, if G has an essential action on an acyclic 2-complex X 

without fixed points, then there is a nonabelian simple normal subgroup L<~G whose 

action also is fixed point free, and such that  Ca(L)=1 (i.e., GC_Aut(L)). By the clas- 

sification theorem, L must be an alternating group, or of Lie type, or the Tits group 

2F4(2)I , or one of the 26 sporadic simple groups. By [$1, 3.7] (Proposition E.3), L can- 

not be any of the alternating groups An for n>~6. By [AS, w (or Proposition E.4), 
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L cannot be of Lie type and of Lie rank 2 or more. By Proposition 7.2, L cannot be 

any of the sporadic simple groups, nor the Tits group (see [AS, w for all of these ex- 

cept the first Janko group J1). Hence L must be of Lie type and of Lie rank 1. The 

groups U3(q) are eliminated by Propositions 6.5 and 6.6, and the Ree groups 2G2(q) by 

Proposition 6.7. We are thus reduced to the case where L~-L2(q) or Sz(q); and this was 

handled in Proposition 6.4. [] 

Appendix 

Throughout the appendix, G will always denote a finite group, though most of the 

definitions and results stated in Parts A and B apply equally well to actions of an infinite 

discrete group. A "map" (between spaces or CW complexes) always means a continuous 

map. 

Parts A and B give a brief introduction to (G-)CW complexes and their homology, 

for readers not already familiar with them. In Part  C, several resul t s - -both  elementary 

and deep- -abou t  projective and free Z[G]-modules are given. A survey of some of the 

theory of finite simple groups of Lie type is given in Part  D. Finally, in Part  E, we 

sketch some of the results shown in IS1] and [AS] on the nonexistence of fixed point free 

actions of certain inultiply transitive groups, and of certain simple groups of Lie type, 

on 2-dimensional acyclic complexes. 

A p p e n d i x  A. G - C W  c o m p l e x e s  

We use [LW] as a general reference for the definition(s) and properties of CW complexes. 

The following is a combination of [LW, Definitions I.l.1 and II.l.1], but extended to the 

equivariant case. 

Definition A.1. A G-CW complex is a Hausdorff space X with continuous G-action 

(i.e., G is represented as a group of homeomorphisms of X) ,  together with a filtration 

X(~ by closed G-invariant snbspaces (the "skeleta" of X) ,  as well as 

discrete G-sets J,,, and G-equivariant "characteristic maps" ~m: J,~xD'n--+X (for all 

m~>0), which satisfy the following properties. 

(a) X=[.J~= o X (m). For each m, ~m restricts to a homeomorphism 

Jm xint(D m) -~ (X(rn) \X(m-1)). 

(b) For each m>0 ,  ~m(JmxSm-1)CX (m-l). Moreover, for each jEJ,~, there are 
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finite subsets J~CJk (O~<k-~<m-1) such that  

m--1 
~ m ( j x S m - 1 )  C - U ~k(J~xDk)  �9 

k=0  

(c) A subset U C X is open if and only i f  (p~n 1 ( g )  is open in J m x  D m for each m ~> 0. 

(X has the "weak topology" with respect to its cell structure.) 

In the above definition, G is always assumed to act trivially on D m and S m-1. 

Usually, a G - C W  complex will be called a G-complex for short. 

A CW complex is just a G - C W  complex in the case where G is the trivial group. 

An open cell in a (G-)CW complex X is the image ~ m ( j x i n t ( D ~ ) )  of one open disk 

under the characteristic map. Note tha t  if a = ~ ( j x i n t ( D m ) )  is any open cell, then 

~ m ( j x D m ) = ~  (the closure of a)  and Ocr=~m(jxSm-1)=~\~r (the boundary of ~r) are 

determined by a itself as a subspace of X.  By condition (a) in the definition, each point of 

X lies in exactly one open cell, and the open m-cells of X are the connected components 

o f  x ( m ) \ x  (m-l) . 

The following is an alternative way to regard G-complexes, once CW complexes have 

been defined. Fix a CW complex X with continuous G-action. Call the action admissible 

if it permutes the open cells of X,  and sends a cell to itself only via the identity. If X 

is a G-complex, then by definition the G-action is admissible. Conversely, if the action 

of G on X is admissible, then the characteristic maps of X can be redefined to yield a 

G-complex. More precisely, if ~, , :  Jm x D"--+X is the given characteristic map  for the 

m-cells of X,  then the action of G on the m-cells of X induces an action on Jm. Also, 

for any orbit fl of G on Jm and any j e f f ,  one can define ~ on f l x D  m by setting 
! ~m(g2, x )=g~m(j ,x ) .  Upon doing this for all m~>0 and all orbits of J,~, we get the new 

characteristic maps which make X into a G-complex. 

Note in particular tile last part  of condition (b). Each cell in a CW complex must be 

"closure finite": its boundary must be contained in a finite union of closed cells of smaller 

dimensions. To see the importance of this condition, consider the space X = D  2, let Jo be 

the circle S 1 with the discrete topology, let J2 be a set with one element, and set J m = ~  

for all m7~0, 2. Let ~0: Jo x D o ~ X  be projection to the first factor (i.e., inclusion of the 

circle), and let ~2:J2 x D 2 ~ X  be projection to the second factor. These sets and maps 

satisfy all of the conditions for a CW structure on D 2 except for closure finiteness. But 

this goes against our intuitive expectations (by analogy with simplieial complexes) that  

the 0-skeleton of any CW complex should be discrete, and that  compact  CW complexes 

should be made up of finitely many cells. 

The following lemma describes the principal means of constructing G-complexes 

(see, e.g., Proposition 0.2). 
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LEMMA A.2. Let X be a G-complex, let J be any discrete set with G-action, and 

let ~: J x S n - l - +  x ('-1) be any G-equivariant map. Then the space 

Y = X U ~ ( J x D  ~) 

is a G-complex. 

Proof. Let ~: JxD~--~Y be the obvious map; thus ~ l j x s , - l = ~ .  This, together 

with the characteristic maps for X, make up the characteristic maps for Y. The other 

details are the same as in the nonequivariant case; el. [LW, Proposition II.2.2]. [] 

If X has been constructed via successively attaching cells, i.e., via successive repe- 

tition of the construction of Lemma A.2, starting with a discrete set, then the closure 

finiteness condition holds automatically. In fact, this is the basis for an alternative defi- 

nition of a CW complex, described more precisely in [LW, Theorem II.2.4]. 

A (G-invariant) subcomplex of a G-CW complex is a closed (G-invariant) subspace 

AC_X which is a union of closed cells in X; i.e., a union of images of characteristic maps. 

A subcomplex is itself a CW complex in an obvious way. Note in particular that  if X 

is a G-complex, then for every HE_G, the fixed point set X H is a subeomplex of X: 

if ~m: JmxD'~--~X are the characteristic maps for X, then (~m)H: (Jm)HxDm"+X H 

are the characteristic maps for X g. 

The following proposition is an immediate consequence of condition (c) in Defini- 

tion A.1. Roughly, it says that  a function defined on a CW complex is continuous if and 

only if its restriction to each closed cell of the complex is continuous. 

LEMMA A.3. Let X be a CW complex, with characteristic maps ~o,,: J,,,xDm-+ X.  

Then if Y is any topological space, a function f: X-+ Y is continuous if and only if fo~,, .  

is continuous for each m. [] 

Recall (cf. IS1], [AS]) that a simplicial complex X with G-action is called admissible 

if the action permutes the simplices linearly, and sends a simplex to itself only via the 

identity. (If this last condition does not hold, then it does hold for the barycentric 

subdivision of X.) We claimed in the introduction that  Theorem A holds equally well if 

one replaces "G-complex" by "admissible G-simplicial complex" in the statement. This 

follows from the following proposition, where simplicial complexes are always assumed 

to have the metric topology (cf. [LW, Definition IV.4.1]). 

PROPOSITION A.4. Any finite-dimensional admissible G-simplicial complex is G- 

homotopy equivalent to a G-complex of the same dimension. Any countable, finite- 

dimensional G-complex is G-homotopy equivalent to an admissible G-simplicial complex 

of the same dimension. 
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Proof. For any admissible G-simplicial complex X, one can clearly define skeleta 

and characteristic maps for X which satisfy conditions (a) and (b) in Definition A.1; 

but for these to also satisfy condition (c) we must replace X with a new space Xcw 

having the same underlying set but a finer topology (more open sets). The identity map 

Xcw-+X is continuous and is a homotopy equivalence by [LW, Proposition IV.4.6] (and 

the argument in [LW] can easily be fixed to cover the equivariant case). 

The second statement is shown, in the nonequivariant case, by Whitehead in [Wh, 

Theorem 13], and his proof carries over immediately to G-complexes. The idea is the 

following: once X (m-l) has been replaced by a G-simplicial complex of the same dimen- 

sion, then approximate the characteristic map Jm x Sm-l-+x(m-l) by a simplicial map 

(possibly after further subdivision of X (m- 1)), and attach the m-cells after giving them 

appropriate simplicial structure. [] 

For any space X, we let E X  denote its unreduced suspension: E X ~ - f ( X •  

where (x, 0)~(x ' ,  0) and (x, 1)~(x ', 1) for all x ,x 'CX.  A G-action on X automatically 

determines a G-action on EX,  via the trivial action on the interval I.  

LEMMA A.5. The orbit space X / G  of a G-complex X inherits a structure of a 

CW complex, with one n-cell in X / G  for each G-orbit of n-cells in X.  The unreduced 

suspension E X  of any G-complex X is itself a G-complex in a natural way. And if X 

and Y are any two G-complexes, at least one of which is finite, then their product X • Y 

is also a G-complex. 

Proof. If X is a G-complex, with skeleta X(")  and characteristic ,naps ~,,~: 

JmxDm--'~X, then X/G is a CW complex with skeleta (X/G) ('') =X(m)/G and charac- 

teristic maps r (J, , /G) x D"---~ X/G.  This follows immediately from Definition A. 1. 

Note in particular that condition (c) holds for X/G by definition of the quotient topology: 

a subspace is open in X/G if and only if its inverse image is open in X. 

The unreduced suspension of a CW complex is again a CW complex by [LW, Corol- 

lary II.5.12]. And if X or Y is finite, then X x Y  is a G-complex with the obvious product 

structure by [LW, Theorem II.5.2]. In each of these last two cases, the arguments in [LW] 

carry over without change to the equivariant case. 

We remark here that if X and Y are arbitrary CW complexes, then there is an 

obvious way to define skeleta for X x Y: 

(XxY)(")= U (XU)xyU)). 
i+ j=m 

Also, if ~m: J,,~ xD"~-~X and era: Km x D m - e Y  are the characteristic maps for X and Y, 

then one can define characteristic maps wm= I_[i+j=,~(~i x ~j)  for X x Y. (This requires 
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fixing identifications D i x D  j~-Di+y.) Conditions (a) and (b) in Definition A.1 always 

hold; what can go wrong is condition (c). [] 

The following lemma is not used in the paper, but does help to motivate the concept 

of "universal" (G, ~')-complexes as defined in w 

PROPOSITION A.6. Fix a family .T of subgroups of G, and let Y be any universal 

(G,.T)-eomplex. Then for any (G,.T)-eomplex X,  any G-invariant subeomplex A C X ,  

and any equivariant map f A : A-+Y, f A extends to an equivariant map f: X-+ Y. Further- 

more, f is unique up to homotopy, in the sense that if f~: X--+ Y is any other exten- 

sion of fA, then there is an equivariant homotopy F :Xx I - -+Y  such that F[x• 

F i x •  ' and FiA• . 

Proof�9 It suffices to prove the existence of f :  X-+Y; the uniqueness then follows by 

extending the given map on (Xx{0,  1}) t2(AxI)  to X x I .  

We construct f :  X--+Y one skeleton at a time. The construction of fo: X (~ 

is easy: let {xi} be orbit representatives for the vertices not in A, set Hi=Gx~ (the 

isotropy subgroup), choose any y iEY H~, and define fo(gxi)=gyi for all gEG and all i 

(and fo[A=fA). 
Now assume that  n~>l, and that  fn_I:X(n-1)UA--+Y has been constructed�9 Let 

~,~:J,  x D ~ -+X be the characteristic map for the n-cells of X (where J ,  is a discrete set 

with G-action), and let J�88 be the subset of those n-cells not in A. Set 

For each j E J~, let 

�9 ! 

U 0 = f n _ l O ~ n i , l ~ •  J ~ x S  n - 1  ---~y. 

Gj = { g E G I g j = j } E ~  

be its isotropy subgroup. Then uo(j•162 Also, yC.~ is contractible (since 

Y is (G,~')-universal), the identity map yCj__~yCj is homotopic to a constant map, 

and hence any map to yc.~ is homotopic to a constant map. In particular, u0 can be 

t ' j•  This can then be extended to extended to a (nonequivariant) map vj. 

a G-map vj:GjxD'~-+Y (where Gj is the orbit of j )  by setting vj(gj, x)=g.v~(j,x).  

Upon repeating this procedure with one representative from each G-orbit in J~, the vj 

combine to give a G-map u: J~,xD~--+Y whose restriction to Jt,~xSn-1 is uo. If we now 

set fi~(x)=fn-l(X) for xeX(n-1)UA,  and f , . (~n( j ,x) )=u( j ,x)  for ( j , x )E J~xD  n, then 

this is a well-defined map of sets from X (n) to Y, which is equivariant by construction, 

and continuous by Lemma A.3. [] 

Note that  Proposition A.6 implies in particular that  any two universal ( G , ~ ) -  

complexes are G-homotopy equivalent�9 
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Appendix B. Ce l lu l a r  h o m o l o g y  of  G-complexes 

The cellular chain complex (Cn(X), 0n)~>0 of a CW complex is described in [LW, w 

Formally, this is defined by singular homology (in particular, Cn(X)=Hn(X(n), X(n--1))), 
as in ILW, Definition V.2.1]. By [LW, Proposition V.1.8], Cn(X) is the free abelian group 

with basis the set of (oriented) n-cells in X; and by [LW, w each boundary map 

COn: C~(X)-+Cn_I (X) can be described via the matrix whose entries are the degrees of 

maps between (n-1)-spheres induced by the attaching maps for the n-cells. By [LW, 

Theorem V.2.11], the singular homology H,(X) is isomorphic to the homology of the 

complex (Cn(X), On). Hence, if X is a finite complex, the Euler characteristic x(X) is 

equal to the alternating sum of the numbers of cells in each dimension. 

Note that  for a map f :  X-+Y between CW complexes to induce a homomorphism 

C.(X)---+C.(Y), it must be a cellular map, in the sense that  f ( x ( n ) ) c Y  (n) for all n~>O. 

However, since cellular homology H. (C.(X), 0) is isomorphic to singular homology, any 

continuous map between CW complexes induces a homomorphism between their cellular 

homology groups. 

More generally, if X is any CW complex and ACX is any subcomplex, then the 

relative cellular chain complex is defined by setting C.(X,A)~fC.(X)/C.(A).  Thus, 

Cn(X, A) is the free abelian group with one generator for each n-cell of X not in A. 

By [LW, Theorem V.2.11] again, the homology of the complex (C.(X, A), cO) is naturally 

isomorphic to H. ( X, A ). 
If X is a G-complex and AC_X is a G-invariant subcomplex, then the cellular chain 

complexes C. (X) and C. (X, A), and the homology groups H.  (X) and H.  (X, A), are all 

Z[G]-modules. In fact, each chain group Ci(X) or Ci(X, A) is a permutation module, in 

the sense that it has a Z-basis which is permuted by the linear action of G. 

Once homology has been defined using the cellular chain complex, then the rela- 

tive and Mayer-Vietoris exact sequences, and excision, are immediate. (Note, however, 

that  excision in singular homology is needed to establish the basic properties of cellular 

homology of CW complexes [LW, w To see this, fix a G-complex X. For any 

G-invariant subcomplexes A0 C - A C_ X, the short exact sequence of chain complexes 

0 -+ C.(A)/C.(Ao) --+ C.(X)/C.(Ao) -+ C.(X)/C.(A) -+ 0 

induces, via the snake lemma, the relative exact sequence 

...--+ Hi(A, Ao) ~ Hi(X, Ao) ~ Hi(X, A) -~ Hi-I(A, Ao) -+ .... 

Similarly, for any pair of G-invariant subcomplexes A, B C X  with AUB=X, there is a 

short exact sequence 

0 -+ C, (AQ B) -+ C, (A) ~C, (B) -+ C, (AUB) -+ 0 
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which induces tile Mayer-Vietoris sequence 

...--~ Hi(ANB) -+ Hi(A)GHi(B) -+ Hi(X) -~ Hi_I(ANB) -+ .... 

All of these are exact sequences of Z[G]-modules. 

Similarly, since B \  (ANB) contains exactly the same cells as (AUB)\A,  the inclusion 

map induces an isomorphism 

H,(B,  ANB) -~+ H,(AUB, A) (excision) 

since it induces an isomorphism of cellular chain complexes. 

The following lemma, used in the proof of Proposition 0.2, is one application of 

excision and the relative exact sequence. It describes the effect of attaching cells on the 

homology of the complexes involved. 

LEMMA B.1. Let X be a G-complex, let J be a discrete set with G-action, and let 

f : J •  (~) be any G-equivariant map (n~>l). Set Y=XU$(J•  Then there 

is an exact sequence of Z[G]-modules 

0--> H n + l ( X )  incl.) H,~+I(Y)-+H.,(JxS") -~:~Hn(X) i n c l . ) H n ( Y ) - + O ;  

and the inclusion X incl) y induces isomorphisms Hi (X) ~- Hi(Y) for all i # n, n+ 1. 

Proof. Let a: J • D n+ 1 _+ y be the characteristic map (so (~1.I • s'~ = f) .  This induces 

an isomorphism C,(J•  n+i, JxSn)~-C,(Y,  X)  of chain complexes, and hence an iso- 

inorphisln ill homology in all degrees. The square 

H,~+I(JxD "~+1, J •  n) ~ Hn(J•  '~) 

H,~+I(Y,X) o , Hn(X) 

commutes by the naturality of the relative exact sequences for pairs of CW complexes, 

and the upper boundary map is an isomorphism since Hi(JxDn+l)=O for i~>l. The 

lemma now follows from the relative exact sequence for the pair (]I, X),  where H , +  1 (Y, X) 

is replaced by H n ( J x S  n) via the above square. [] 

The following more technical application of excision and the relative exact sequences 

is needed in the proof of Proposition 1.7. 
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LEMMA B.2. Fix a CW complex Y and subcomplexes B, XC_Y, and set A = B A X .  

Assume that the inclusion induces an isomorphism H,(A)--+H,(B). Then H , ( Y , X )  ~- 

H,(Y, XUB).  

Proof. It suffices to show that  H,(XUB,  X)=O; the result then follows from the 

relative exact sequence for Y D X U B D X .  But H, ( X U B , X)  ~- H, ( B , A) by excision, and 

this last group vanishes since H, (A)~-H,(B). [] 

The following result says, roughly, that a union of homology or homotopy equiva- 

lences between CW complexes is again a homology or homotopy equivalence. 

PROPOSITION B.3. Let f :X--+Y be a map between CW complexes. Fix subcom- 

plexes A 1 , A 2 ~ X  and B1,B2C_Y such that X=A1UA2 and Y=B1UB2, and set A0= 

A1NA2 and Bo= BI NB2. Assume that f restricts to homology ( homotopy) equivalences 

f,~: Ai--+ Bi for i=O, 1,2. Then f is itself a homology (homotopy) equivalence. 

Proof. If f0, f l  and f2 are all homology equivalences, then f is a homology equiva- 

lence by the Mayer-Vietoris sequences for the two unions (and the 5-1emma). 

Assume now that fo, f l  and f2 are all homotopy equivalences; we must show that 

f is a homotopy equivalence. By the van Kampen theorem, f induces an isomorphism 

of fundamental groups (on each connected component). The map between the universal 

covers is a homology equivalence, hence a homotopy equivalence; and hence f :  X--+Y is 

itself a homotopy equivalence. For the details of this argument, cf. [Gra, Lemma 16.24 

and Theorem 16.22]. 

Alternatively, and more geometrically, one can show directly that  any homotopy 

inverse go:Bo--+A0 of fo can be extended (one cell at a time) to homotopy inverses 

gi:B,i-+Ai ( i=1,2),  while at the same time extending the homotopies of goofo~--Idmo 

and foogo~--IdBo. The result then follows upon taking g=gl Ug2: Y--+X (and similarly 

for the homotopies). The existence of the g/ and the homotopies follows from the proofs 

of [LW, Theorems IV.3.2-3] (applied to the 2-ads (Ai, Ao) and (B/, Bo)); although the 

statements of these theorems are not sufficiently precise to do this. [] 

Appendix C. Projective Z[G]-modules 

Recall that for any G-complex X, C,(X)  and H,(X)  are Z[G]-modules in an obvious 

way. A finitely generated Z[G]-module M will be called stably free if there are finitely 

generated free modules Fo and F such that  MOFo~-F. Free Z[G]-modules, and hence 

(as an intermediate step) stably free Z[G]-modules, play a key role when constructing 

finite G-complexes in w 
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LEMMA C. 1. If  XC_ Y are finite G-complexes such that G acts freely on Y \ X ,  then 

C,(Y, X)  is a finite chain complex of free finitely generated Z[G]-modules. 

Proof. By assumption, G permutes freely the cells in Y not in X. Thus, G permutes 

freely a basis of C,(Y, X); and this is a finite basis since X and Y have only finitely 

many cells. [] 

The following proposition says in particular that  if C, is a finite chain complex of 

finitely generated free Z[G]-modules all but one of whose homology groups are stably 

free, then the remaining homology group is also stably free. This does not hold for 

modules over arbitrary noetherian rings, but uses special properties of group rings. 

PROPOSITION C.2. Let C, be any finite chain complex of projective Z[G]-modules. 

Assume, for some k, that Hi(C,) is projective as a Z[G]-module for all i #k ,  and that 

Hk(C,) is Z-free. Then Ha(C,) is also a projective Z[G]-module, and 

H~(C.)r ~ C~ ~ G Hi(C.)r �9 C~. (1) 
i even  i o d d  i o d d  i even  

Proof. We first claim the following: if O-+A--+B-+C-+O is a short exact sequence 

of finitely generated Z-free Z[G]-modules, and two of the modules A, B and C are 

projective (stably free), then so is the third. This is clear if C is projective, since in 

that  case B~Aq)C.  So assume that A and B are projective (stably free). Since all 

three groups are Z-free and finitely generated, the dual sequence 0-+C*-+B*--+A*--+0 is 

also exact. Here, for any Z[G]-module M, M * ~ f H o m z ( M ,  Z) has the obvious structure 

as a Z[C]-module. Dualization clearly takes finitely generated free Z[G]-modules to free 

Z[G]-modules, hence the same for projective modules; and so tile dualized sequence splits. 

Thus B* ~-A*| as Z[G]-modules; and upon dualizing again we see that B ~ A |  So 

C is Z[C]-projective (stably free). 

Now fix any m, n E Z  such that  m<k<n ,  and C i=0  for all i < m  and all i>n. For 

each i, set Z~=Kcr[Ci~ and Bi=Im[Ci+l~ Consider the short exact se- 

quences 

O--+ Zi--+C,--+ Bi-I  ~ O  and O--+ Bi--+ Zi--+ Hi(C,)-+O. 

By induction starting at i=m, one sees that Zi is projective for each i<.k, and that  Bi is 

projective for each i < k. Similarly, by downward induction starting at i=n+ 1, one sees 

that  B/ is projective for each i~k ,  and that Z / i s  projective for each i>k. In particular, 

Bk and Zk are both projective, and so the same holds for Hk(C.). 

In particular, the above silort exact sequences split, since all of their terms are 

projective. Set 

Cev = (~(C2i), Cod = (~)(C2i+1), Hev=  (~(H2i(C.)), Hod = t~)(H2i+,(C.));  
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and similarly for Z~v, god, B~v and Bod. Then 

He r  |  |  ~ Z e  CZo~ v ~ v e v  o d  ~ v , 

Hod @Cev ~ = Hod@Bod| = Zod| 

and this proves (1). [] 

The following property of projective Z[G]-modules is a consequence of a theorem of 

S w a n .  

PROPOSITION C.3. Let P and P'  be any two finitely generated projective Z[G]- 

modules. Then P |  (with the diagonal action of G) is stably free as a Z[G]-module. 

Proof. Assume first that  P is free. Let {ai} be a Z[G]-basis for P,  and let {by} be a 

Z-basis for P' .  Then {a~| is a Z[G]-basis for P|  and this module is free. (Note 

that we did not need to know that  P '  is projective, only that it is Z-free.) 

Now consider the general case. By [Sw, Theorems 7.1 and 8.1], for any n>0 ,  any 

finitely generated projective Z[G]-module contains a free submodule of finite index prime 

to n. In particular, we can choose free submodules FC_P and F ' C P '  such that  [P :F ]  

and [P': F ']  are finite and relatively prime. Consider the commutative diagram 

0 �9 F |  i, �9 P |  �9 ( P / F ) |  �9 0 

0 �9 F |  i2 �9 p |  �9 ( P / F ) |  �9 O, 

where all tensor products are taken over Z. The rows are both exact, and c~ is an 

isomorphism since ( P / F ) |  So by an easy diagram chase, the sequence 

0 --+ F |  (i~,jl)) ( P | 1 7 4  j?-i~ > p |  0 

is exact. We have just seen that  the first two terms in this sequence are free, and so 

P |  is stably free. [] 

In fact, using stability results of Swan, one can show that  the tensor product of 

any two finitely generated projective Z[G]-modules is free. This is not needed for the 

constructions in this paper, but the following much deeper stability result is used. It is 

not needed to prove the existence of 2-dimensional acyclic G-complexes, but it is used in 

w to show that  all of the complexes we construct can be taken to have exactly one free 

orbit of 2-cells (and no free orbits of cells in other dimensions). 
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PROPOSITION C.4. If G is simple, or (more generally) if there is no homomorphism 
G--~SU(2) (=SU(2, C) ) with nonabelian image, then any stably free Z[G]-module is free. 

Proof. By a theorem of Jacobinski [Jac, Theorem 4.1], if 91 is any Z-order in a 

finite-dimensional semisimple Q-algebra A which satisfies the Eichler condition, then all 

finitely generated stably free 91-modules are free. Here, the algebra A satisfies the Eichler 

condition if it has no simple factor B, with center K, for which every embedding Kr 

has image contained in R and induces an isomorphism R |  (the quaternion 

algebra over R).  

If Q[G] does not satisfy the Eichler condi t ion-- i f  B is a simple summand of Q[G] 

and R |  the composite 

Q[G] ,roj > B ~ H 

restricts to a multiplicative homomorphism a: G--+S a-~SU(2, C). Here, S 3 denotes the 

group of quaternions of norm 1. And since the image of G in H generates H as an 

R-vector space, Ira(a) must be nonabelian. See also [Re, w for more discussion. [] 

Appendix  D. Finite simple groups of  Lie type 

We give here a very short discussion of groups of Lie type. For more detail, we refer to 

[Stl], [St2], [Ca] or [GLS]. 

The finite simple groups of Lie type consist of the Chevalley groups and their twisted 

analogs. The finite Chevalley groups are analogs of the (complex or compact) Lie groups, 

but realized over a finite field. They thus include the four families of classical groups: 

A,  (q)'~ Ln.+ l (q) = PSL,, + ~ (q), Bn (q) ~ P~t2n+ 1 (q) (the conunutator subgroup of the pro- 
,-~ + jective orthogonal group PG02,,.+I (q)), Cn(q)'~PSp,(q) and D,,(q)=Pfl2n(q ) (the com- 

mutator  subgroup of ttle projective special orthogonal groups with respect to a qua- 

dratic form of "plus type");  as well as the exceptional groups E6(q), ET(q), Es(q), F4(q) 

and G2(q). All of these are defined over any finite field; i.e., for any prime power q. 

The finite twisted groups of Lie type were first treated systematically by Steinberg 

in [Stl] and [St2], where (very roughly) they are obtained as fixed points of certain 

automorphisms of the Chevalley groups--group automorphisms which are associated 

with automorphisms of the Dynkin diagram. Let (]  be one of the symbols An, Bn, Cn, 
etc. Then raG(q) denotes the fixed subgroup of an automorphism of order m of G(q m) 

(or of G(q) when G = B 2 ,  G2 or F4). The finite twisted groups thus consist of the classical 

groups 2A n (q) ~- P S U n + I  (q) = Un+l (q) and 2D,~ (q) ~ 12~n (q) (the commutator  subgroup of 

the projective special orthogonal groups of "minus type"); as well as the Suzuki groups 
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2B2(22k+l), the Ree groups 2G2(32k+l) and 2F4(22k+l), and the Steinberg groups 2E6(q) 
and 3D4 (q). 

To make this more concrete, it is necessary to work with automorphisms of the 

Chevalley groups over the algebraic closure Fp, where p is prime. Let G(~'p) denote a 

simple algebraic group of type G defined over Fp. We will always assume that G(Fp) is of 

adjoint type (i.e., with trivial center), or equivalently that it is a group of automorphisms 

of the corresponding Lie algebra. For q a power of p, the finite Chevalley group G(q) 

can (roughly) be thought of as the fixed subgroup of the automorphism pq of G(FB) 

induced by the field automorphism (t~-~tq). More generally, a Steinberg endomorphism 
of G=G(FB) is defined to be an algebraic endomorphism of G whose fixed subgroup 

Ce(a)={zEG la(x)=x} is finite. (In fact, the Steinberg endomorphisms are all auto- 

morphisms of G as an abstract group, but none of them is invertible as an algebraic 

endomorphism.) The finite twisted groups of Lie type are (roughly) the fixed subgroups 

of Steinberg endomorphisms of G, which are field automorphisms (t~-~tq) "twisted" by 

graph automorphisms. 

More precisely, if a is a Steinberg endomorphism of G=G(Fp) ,  let G~ denote the 

subgroup of Cb(a) generated by its Sylow p-subgroups. Or, equivalently, let G~= 

(Cg(a),Cy(a)), where U, VC_G are subgroups defined in the next paragraph. If G is 

the universal central extension of G, then G~,~-Cd(a)/Z, where Z denotes the center. 

For example, if q is a power of p, then SLn(q)=CsL,(~,)(~q), while PSLn(q) can be a 

proper subgroup o f  CpsL,~(~,p)(~q). For all G and all q=pk, G(q)=G~,. 

To describe the Steinberg endomorphisms, we must first establish notation for certain 

elements of the Chevalley groups. Fix a prime p, and let F C_ Fp be any subfield. Set 

G=G(F) ,  and let Z be the system of roots of type G. Let Z+, }2_ C_Z denote the sets 

of positive and negative roots, respectively. To each rEZ there corresponds a subgroup 

(the root subgroup) X~={xr(t)ItEF}CG, isomorphic to the additive group F. Then 

udcf(x~ I reE+) and v~-f(x~ I rEE_) are both maximal unipotent subgroups of G; they 

are closed and connected if F=~'p, and are Sylow p-subgroups of G if F is finite. Also, 

G=(U, V). The subgroup H~fNG(U)MNG(V) is a maximal torus of G if F=~'v, and is 

called a Cartan subgroup of G when G is finite. This subgroup H is abelian, generated 

by elements h~(t) for simple roots r and tEF*; and its elements are called "diagonal 

elements" of G. Also, NG(U)= UH and NG(V)=VH (Borel subgroups of G). 

For example, when G=An (F)~L,~+~ (F) (of adjoint type), then the roots correspond 

to the pairs (i, j) for i ~ j ,  and the positive roots correspond to the pairs (i, j) for i <j .  In 

this case, x~j(t)=eij(t), the matrix which has l 's on the diagonal, t in position (i, j), and 

O's elsewhere. Thus U and V are the subgroups of (strict) upper and lower triangular 

matrices, and H is the subgroup of diagonal matrices. Note that when we describe 
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elements and subgroups here in terms of matrices, we mean their images under the 

surjection of SL,.+I(F) onto Ln+l (F) =PSLn+I (F). 

Let a be a Steinberg endomorphism of G =  G(Fp)  (still assumed of adjoint type). By 

the Lang-Steinberg theorem [St2, Theorem 10.1], for any gEG, there exists h E G  such 

that  g=a(h)h -1. Hence, all elements in Inn(G)oa  are conjugate in Aut(G).  In other 

words, composing a Steinberg endomorphism a with an inner automorphism of G, does 

not change Ga (up to conjugation). 

Next, Steinberg showed that  for any a, there is some g E G such that  conj (g)o a leaves 

U and V invariant, and permutes the root subgroups Xr. It thus suffices to consider those 

a for which a(Xr)=Xe(r) for some automorphism Q of the root system E of type (], which 

preserves the positive roots; i.e., a permutation of E which preserves angles between the 

roots, such that  Q(E+)=E+. Hence ~ permutes the simple roots, and induces a symmetry 

of the Dynkin diagram of G. By inspection of the Dynkin diagrams, one sees that  if 

Q~Id, then either (]=An, Dn or E6, and Q is the automorphism of order 2 of the root 

system; or G=D4, and Q is an automorphism of order 3; or G = B 2 ,  F4 or G2, and ~ is 

an automorphism of order 2 which interchanges long and short roots. 

If a(Xr) =Xe(r) for such p, then necessarily a(x~ (t)) =xe(r  ) (e~ t q') for some e~ �9 ( F p ) *  

and some q~ powers of p. After composing with conjugation by a diagonal element, we 

can assume that  e~= l  for all simple roots r (and e ~ = •  for all r). Also, by studying 

the action of a on diagonal elements, one can show that  the ratio q~.llrlt/llQ(r)lf is 

constant, independent of r. In particular, if p=Id,  then a=~q (q=q,. for all r) is a field 

automorphism. 

Assume that Q~Id, and that all roots in E have the same length. Then a=~pqOr 
where q=pk> 1 (q=q~ for all r), and where Ce(x~(t))=xe(,.)(t ) for all simple roots r and all 

t �9 F~, (and ~,(x.~ (t)) = xe(,.) (=1= t) for arbitrary r). The  existence of such an automorphism 

CQ is shown in [Stl, Theorem 29] or [Ca, Proposition 12.2.3]. If m is the order of 6, 

then a"=~,j,,,, so G~ . . . .  G(q'") ,  and mG(q)'~fG~ can be viewed as the subgroup of 

CG(qm)(r) generated by its Sylow-p subgroups, where T is the restriction of a to G(qm). 

In other words, we can regard " G (q)= G (q ' )~ ,  where 7 is the field automorphism (t ~-~ t q) 
"twisted" by the "graph automorphism" of G(qm). 

As one example, consider the automorphism r(aij)=(((-1)~+Ja,~+2_j,n+2_i)q) -1 
of Ln+l(q2). This preserves upper and lower triangular matrices, and sends xij(t) to 

Xn+2_j,n+2_i(J=tq). The signs have been chosen so that  r(x~(t))=x~(~)(tq) when r is a 

simple root ( i , i+1)  (but not for all roots). Then 2A,(q)~-~f(L~+l(q2))~=PSU,~+l(q) is 

the projective special unitary group defined with respect to the hermitian form (x, y)--  

u . ~  (--1)i+lx~(yn+2_i) q on (Fq2) ~+1 (where u = l  if n is even, and u q-1 = - 1  if n is odd). 

Note that there can be elements of PSLn+I(q 2) fixed by T which are not represented by 
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unitary matrices, which is why one must define 2An(q)=<Cu(l"),Cv('r)). If one works 

in the universal central extension SLn+l(q2), the subgroup of elements fixed by 7- is 

SUn+l(q). 
If E has roots of distinct lengths and ~ is nontrivial, then as mentioned above, 

G=B2, F4 or G2, and 0 interchanges long and short roots. Set po=2 if G=B2, F4, 
and po--3 if G = G 2 ,  so that  IIQ(r)ii/iHi=(po) +1/2 for each rEE .  Since qr.iirll/iio(r)] ] is 

independent of r (and the qr are all powers of p), this is possible only if p=Po. Hence, 

a=~qor for some q=pk>>.l, where 

~Q(xr(t)) -- ~ xe(r)(tp) if r is a short root, 

( xo(r)(t) if r is a long root. 

Then a2=~q2p, so G~2=G(q2p)=G(p2k+l), and 2G(p2k+l)~fG~ can be regarded as 

the fixed subgroup of an involution on G(p2k+l). This group is sometimes denoted 
2 G ( p k + � 8 9  

As an example, Ono [On] carried out this procedure on Spa(22k+l)=B2(22k+l), 
regarded as the group of (4x4)-matrices which preserve the symplectic form (x,y)= 
xlY4Wx2y3+x3y2+x4Yl. He obtained precisely the matrix presentation of Sz(22k+1) 

described in Proposition 3.6, as the fixed points (Sp4(22k+1))~, where T is the restriction 

of the above a=~qo~Q to Sp4(22k+l). 
The rank of a Chevalley group G(q) is just the rank of G = G ( F p )  in the usual 

sense; i.e., the number of simple roots in its root system, or the number of nodes in 

its Dynkin diagram. The rank of a twisted group raG(q) is equal to the number of 

orbits of roots (or of nodes) under the corresponding automorphism of the root system 

or the Dynkin diagram of G. There are thus four families of finite simple groups of Lie 

type and Lie rank 1: the 2-dimensional projective special linear groups L2(q)~-Al(q), 
the 3-dimensional projective special unitary groups Ua(q)~-2A2(q), the Suzuki groups 

Sz(q)~2B2(22k+l), and the Ree groups 2G2(32k+l ). 

We now return to the internal structure of the groups of Lie type. First let G=G(F) 
be a Chevalley group over any field F,  and let E be a root system of type G. We 

have already discussed the root subgroups Xr={xr(t) ltEF } for each root r E E ,  and the 

subgroups U=(Xr ] rEE+) and V=(Xr ] rEE_) .  For each root r, there is a surjection 

Cr: SL2(F)"'~(Xr, X-r) which sends 

 1)to 
and 
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This allows the definition of elements 0) (01) 
h~(A) = r z~_l and nr = r - 1  0 " 

The elements hr(A), for r E E  and AEF*, generate the subgroup H of diagonal elements 

of G, and together with the n~ they generate the subgroup N = (H, n~ ] r E E) of monomial 

elements. Then N/H~-W, the Weyl group of G (and of its root system), and B ' ~  f 

{U, H} =Nc(U) is a Borel subgroup of G. 

Now s e t  G:G(Fp),  and let a be a Steinberg morphism of G. Set U~=Cu(a) and 

Vo = Cv (a), the subgroups of elements fixed by or, and let G =  (U~, V~} be the correspond- 

ing group of Lie type. Set ~I=CH(Cr)AG, N=CN(a)NG and /~=CB(a)AG.  Let Q be 

the automorphism of the root system E associated to a, as described earlier. In par- 

ticular p permutes the positive roots, and hence the simple roots. By a root (or simple 

root) of G is meant a Q-orbit § (or Q-orbit of simple roots). Note that if p=Id,  then 

is an (untwisted) Chevalley group, and its roots are the roots in the usual sense. We 

write E = E / p  for the set of roots, - §  IRE§ and (g) (when J_CE) for the set of 

p-orbits of roots which are linear combinations of elements rE§ The root subgroup 

X§ corresponding to an orbit P is the subgroup (l-I~r247 X~),  of a-invariant elements. The 

Weyl group of G is the group W=N/H; or equivalently the subgroup of W = N / H  of ele- 

ments which commute with a (cf. [Ca, Proposition 13.5.2]) when both are considered as 

groups of permutations of the roots E (or of the real vector space generated by the roots). 

The Weyl group is generated by elements w.r of order 2, one for each p-orbit ~ of simple 

roots, where the w~-action on E sends s to - s  for all sE~. Tile root subgroups of G are 

discussed in detail in [Ca, Proposition 13.6.3] and [GLS, Table 2.4]; in particular, they 

need not be abelian. The Weyl groups of the twisted groups are described in [Ca, w 

each is isoinorphic to that of some Ctlevalley group except when G= 2F 4 (22k+1), in which 

case W is dihedral of order 16. 

For notational convenience we now drop the "hat" from our notation for the finite 

simple groups of Lie type of the previous paragraph. Thus from now through the end of 

Appendix D, G = G ,  U=U,  etc. Also, we will abuse notation and write r = §  for a p-orbit 

in E. 

Tits has axiomatized the properties of the pairs (B, N)  in groups of Lie type. These 

permit, for example, uniform proofs of the simplicity of these groups in all cases where 

they are simple. See, e.g., [Ca, w or [GLS, w for more detail about such BN-pairs.  

By definition, any group of Lie type is generated by its root subgroups (for a given 

choice of root system). In fact, it suffices to take the simple roots. 

LEMMA D.1. Let G be a finite simple group o/Lie type, with root system E. Then 

G is generated by the root subgroups X~ and X_~ for simple roots sEE+. 
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Proof. See [Ca, Proposition 13.6.5]. Very briefly, when G is a Chevalley group, this 

holds since conjugation by elements of N (or of W = N / H )  permutes the root subgroups 

in the same way as the Weyl group permutes the roots, and each root is in the W-orbit 

of a simple root. Since N/H is generated by the images of the elements n,  E (Xs, X_s ) 

for simple roots s, this shows that  (Xs, X_~ Is simple} contains all of the X~ for rEE,  

and hence is all of G. The same argument works for the twisted groups. [] 

We now turn attention to parabolic subgroups: proper subgroups of G which contain 

a Borel subgroup. For convenience, set B~=VH (and B = U H  as usual). Let E be the 

root system corresponding to G. For each proper subset J of simple roots of G, let 

(J)C_E be as defined above, and set 

Pj = <B,n~ Isc J> = (B,X~ ] r e  <J>>, 
P~ = <B',n~ f sEJ> = <B', X~ [re  <J)>. 

By [Ca, Theorem 8.3.2], the groups P j  are precisely the overgroups of B in G (i.e., the 

parabolic subgroups containing B). 

LEMMA D.2. Let G be a finite simple group of Lie type. Let E be the root system 

associated with G, and let E+ and E_ be the sets of positive and negative roots. Fix 

a set J of simple roots which does not contain all of them, and let L.] be the subgroup 

generated by the diagonal subgroup H together with the root subgroups X,. for all rE (JI. 

Let [/.i and Vj be the subgroups generated by all XT for roots rEE+ or rEE_, respec- 

tively, which are not in (J}. Then Uj<~Pj=UjLj and Vj<~PJ=VjLj, Uj and Vj are 

nilpotent, and (Uj, Vj}=G. 

Proof. When G is a Chevalley group, the nilpotency of U D_ Uj and V_D Vj follows 

from [Ca, Theorem 5.3.3], and L j  normalizes Uj and Vj by [Ca, Theorem 8.5.2]. Both of 

these are consequences of Chevalley's commutator formula, which says that  for any pair 

of roots r, s e E ,  [XT, X~] is generated by the subgroups Xt for all roots t= ir+js  where 

i, j >0. The twisted group case follows immediately by restriction. And Pj =U~Lj and 

PJ=VjL j  since U and V are generated by their root subgroups: by definition when G 

is a Chevalley group, and by [Ca, Proposition 13.6.1] when G is a twisted group. 

This also shows that  (L j, Uj, Vj } ~- ( U ,  V } = G. Thus (Uj, Vj } <1 G, since L.I normal- 

izes Uj and Vj; and so G=(Uj,Vj}  since G is simple. [] 

The decomposition Pj - -UjLj  of Lemma D.2 is called the Levi decomposition of P j,  

and Lj  is called the Levi subgroup. 

We now return to looking at group actions on 2-dimensional acyclic complexes. 
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LEMMA D.3. Let G be a finite simple group of Lie type, and let P ~ G  be one of the 

parabolic subgroups Pj  or P'] of Lemma D.2. Then for any action of G on an acyclic 

2-complex X ,  x P r  

Proof. We can assume X G = O .  By Lemma D.2, there are subgroups Uj<~Pj, 

Vj<1PJ and L j = P j ~ P J  such that  Uj and Vj are nilpotent, Pj=UjL.],  P J = V j L j  and 

(Uj, Vj}=G. In particular, X vJ and X VJ are acyclic, disjoint and L.]-invariant. Then 

x L J r  by Corollary 4.2, applied to the action of Lj  on X with invariant subspaces 

A = X  UJ and B=xV~; and so X PJ and xPJ are nonempty by Lemma 4.3 (a). 

To see this more directly, let Y be the complex obtained by collapsing X UJ and 

X uJ to separate points. Then Y is still acyclic, L j  acts on Y, and y L j  contains at 

least the two collapse points. Thus, y L j  is acyclic by Theorem 4.1, and is in particular 

connected; hence X LJ must intersect with both subcomplexes X vJ and X VJ. It follows 
that  xP']=xL'~ [-'IxU'] ~O a n d  xPJ =xL" ("IxVJ ~I~. [] 

Appendix  E. The four-subgroup criterion 

In [S1] and [AS], very strong restrictions were placed on the finite simple groups which 

could possibly have actions on 2-dimensional acyclic complexes without fixed points. 

The main tool for doing this was a "four-subgroup criterion", which for the sake of 

completeness we present here as Proposition E.1. To illustrate its use, we then describe 

how it was applied to certain multiply transitive groups, and to simple groups of Lie type 

and Lie rank at least 2 - - those  cases of the proof of Theorem A which were not dealt 

with in w167 6 and 7. 

PROPOSITION E.1 [$1, Theorem 3.2]. Fix a finite group G and a 2-dimensional 

acyclic G-complex X .  Let H1,112, H:~, H4C_G be subgroups such that X (H"H~'Hk) 5 0  for 
any i , j ,k .  Then x(HI'H2'H3'H4) ~O. 

Proof. Assume otherwise: that  X (H1,H2,H:',H4)=O. Set 7t={HI, /- /2,  H:t,/-/4}. By 

Theorem 4.1, X n is the union of the acyclic subcomplexes X m, which have the prop- 

erty that any two or three of them have acyclic intersection, but the four have empty 

intersection. This implies that H2(Xn)~-H2(S2)~-Z (see Lemma 0.1, applied using the 

poset S of nonempty proper subsets of {1,2,3,4}).  But this is impossible, since X n 

must be homologically 1-dimensional by Lemma 1.6. [] 

The simplest application of Proposition E.1 is to multiply transitive groups. 

COROLLARY E.2. Assume that G acts 4-transitively on a set S with point stabilizer 

HC_G. Let X be a 2-dimensional acyclic G-complex such that x H r  Then X G r  
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Proof. If ISI=4, then this follows from Theorem 4.1. So assume ]S1~>5 , and fix four 

elements sl, s2, s3, s4 ES. For each i--1, 2, 3, 4, let Hi C_ G be the subgroup of elements 

which fix sj for all j%i. For each {i, j, k, r }=  {1, 2, 3, 4}, (Hi, Hi, Ha} is the point stabi- 

lizer of s~, and hence fixes a point in X by assumption. So X G r  by Proposition E.1. [] 

This is now applied to the alternating groups, as well as most of the Mathieu groups. 

PROPOSITION E.3 [$1, 3.6]. If G~-An for n~6,  or if G is one of the Mathieu 

groups Mll or M12, then every G-action on an acyelic 2-complex has fixed points. The 

same holds for M23 and M24 if it holds for M22. 

Proof. Let X be a 2-dimensional acyclic G-complex. If G=An for n ) 6 ,  then by 

Corollary E.2, X C r  if X A~-I r  By Proposition 6.4, A6~L2(9) must have nonempty 

fixed point set, and the result now follows by induction on n. 

Each of the simple Mathieu groups Mn for n = l l ,  12, 23, 24 acts 4-transitively on 

a set with point stabilizer Mn- i  (cf. [A3, 18.9-10 and 19.4], [Gri, 5.33 and 6.18], [Ma] 

or [Wi]). So by Corollary E.2, the proposition holds for Mn if it holds for Mn-1. Since 

Mlo contains a subgroup Aa of index 2, this proves the proposition when n = l l  or 12; 

and it will follow for the other simple Mathieu groups once it has been shown for M22. [] 

Proposition E.1 can also be applied to simple groups of Lie type of Lie rank at least 2. 

In this case, the subgroups in question come from the root system of the group. Note 

that the following proof applies only to groups of Lie type which are themselves simple. 

The Tits group 2F4(2)', which has index 2 in 2F4(2), is dealt with here in Proposition 7.2, 

as well as in [AS, 5.2]. 

PROPOSITION E.4 [AS, w If G is a simple group of Lie type and Lie rank at 

least 2, then every G-action on an acyclic 2-complex has fixed points. 

Proof. We use the notation of Lemma D.2. Fix a root system E = E + H E _  for G, and 

let J111 J2 be a decomposition of the set of simple roots as a disjoint union of nonempty 

subsets. For each i=1,  2, set 

H [ = < H , X ,  IsEJi ) and H [ = < H , X _ ~ I s E J i  ). 

The subgroup generated by any three of the H i is contained in one of the parabolic 

subgroups Pj~ or P~ (in the notation of Lemma D.2), and hence has nonempty fixed .Is 

point set in X by Lemma D.3. But (H~, H~}=G by Lemma D.1, since it contains all 

subgroups X.~ and X_~ for simple roots s, and hence X c ~ O  by Proposition E.1. [] 
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List  o f  n o t a t i o n  

Groups: 
Cm: a cyclic group of order m; 

D2m: a dihedral group of order 2m; 

An: the alternating group on n letters; 

~ :  the symmetric group on n letters; 

PGL,(q) =GLn(q)/(center): the projective general linear group over Fq; 

L~ (q)=PSL~(q): the projective special linear group over Fq; 

PGU.,(q): the projective general unitary group over tvq2; 

Un(q)=PSU~(q): the projective special unitary group over Fq~. 

Topological spaces: 
I=[0, 1]: the unit interval; 

Dn={xERn[[lxI[<~I}: the unit ball in R";  

Sn={xER'+lll]xll=l}: the unit sphere in R'~+I; 

X~-Y: X and Y are homeomorphic; 

X~-Y: X and Y are homotopy equivalent; 

X-~*: X is contractible; 
H,(x)d--~-fH,(X; Z); 

acyclic means Z-acyclic: X is acyclic if and only if H, (X;  Z)~H, (p t ,  Z). 

Families and sets of subgroups of G: 
S(G): the family of all subgroups of G; 

(H): the conjugacy class of HC_G; 
5rCS(G) is a family r H e Y  implies (H)C_Jc; 

~'C_S(G) is a separating family: see the beginning of w 

SL:V(G): the family of solvable subgroups of G; 

MAX(G) :  the maximal separating family of subgroups of G; 

(G, 9 r )  E H2 (~" separating) r there exists a 2-dimensional Z-acyclic (G, .T')-eomplex. 

For any families .7:, ~, of subgroups of G: 
9Vm~• the set of maximal subgroups of 9v; 

.T>~u={KE.T[KD_H} for all HCG; 

.T>H={KE.~[K~H} for all HC_G; 

.T>H<M--{KE,TIH~K~M}-- for all H~MCG; 
~>~n={KE.TIKD_H for some HE?-/} for all 7/CS(G); 

.T[n]={HE.T[n[[H[} for all n > l ;  

J:AJ:'={HMH']HE3:, H'E bY'}; 

HE9 v is critical in 9 v r Af(~'>H) ~*; 

J:~={HEJ:IH critical in 9r}. 
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I f  X is a G-complex: 

G x = { g E G i g x = x }  for all x E X ;  

X is a (G,~) -complex  r GzEJ:  for all x E X ;  

x H : { x E X i h x = x  for all h EH } :  the fixed point set; 

X >g = {x EX I Gx ~ H }  = UK~H xK; 
XT"t=UHET.txH for all 7/C_$(G); 

x[n] = UnlIHI X H  = { x E X  I iGzI E nZ} for all n >  1; 

x(H) = UgEG xgUg-1; 

Xs : U I~HCG XH = {x E X ] G x r 1 }: the "singular set" of X.  
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