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1. Introduction and main result

Many problems in approximation theory can be connected with the problem of approxi-
mating the function |z|* on a set having the origin as an inner point. One of the main
reasons for that is the fact that |z|* can be seen as a prototype of functions that are
a-Lipschitz continuous. In the present paper we are concerned with the rational approx-
imation of the function z® on [0,1]. It is not difficult to see that this approximation
problem is equivalent to the approximation of |z|?* on [—1, 1], and the asymptotic error
estimates for both cases can easily be transferred from one to the other situation (see
Theorem 2).

We start with the statement of the main result and shall then continue with a
very short review of related investigations in polynomial and rational approximation.
Let P, denote the set of all polynomials of degree at most n€N with real coefhi-
cients, Ro. the set of rational functions {p/q|p€Pm, §€Pn, ¢£0}, m,neN, and r},,,=
7t (fa,[0,1]; )ERmn, m,neN, the rational best approzimant to fo:=x in the uniform
norm on [0, 1]. The minimal approximation error for numerator and denominator degrees

at most m and n, respectively, is denoted by
Ernn = Enn(fa,[0,1]) = ”fa_T;m“[O,l] =r€i71%f ”fa_"'”[o,l} (1.1)

with || - || x denoting the sup-norm on KCR. It is well known that the best approximant
r*  exists and is unique within R, for each m,neN (cf. [15, §§9.1 and 9.2], [14,

mn

Chapter 7.2] or [17, §5.1]). The central task in this paper is to prove
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THEOREM 1. The limit

lim e*™Vo" E,, (2%, [0,1]) =4t |sin ma| (1.2)

n—o0

holds for each a>0.

Since |z|® is an even function, z€R, it is not difficult to verify that the uniquely ex-
isting best approximant 7, =7%.,. (|z|% [-1,1];-) is also an even function. Consequently,
a substitution of z? by x shows that

Eom.an(z[**, [=1,1]) = Epn(2,[0,1])  for all m,neN, (1.3)

and as a corollary to Theorem 1 we have

THEOREM 2. The limit
nligoe"@E,muz]a, [-1,1]) =41*/2sin i ma| (1.4)

holds for each a>0.

The analogue of (1.4) in polynomial approximation is connected with a conjecture
by S.N. Bernstein, which, however, has been disproved in the 1980s by A.S. Varga and
A.J. Carpenter with the help of high-precision numerical calculations (cf. [26], [27]).
Because of its relevance for rational approximation, we will repeat some of the results that
form the background of this conjecture. From Jackson’s and Bernstein’s theorems (cf.
[15, §§5.5 and 5.6]) we know that the polynomial approximation error E,, o(|z|% [—1,1])
behaves like O(m~*) as m-—» 00 and that the exponent —a in the estimate is best possible.
(By O(-) we denote Landau’s big oh.) In [2] and [3] S. N. Bernstein has proved that the
limit

lim m~E,, o(|z]", [-1,1]) =: B(«) (1.5)

m=—>00
exists and is different from zero for each a>0, a¢2N. This result is much stronger and
more difficult to prove than general conclusions of Jackson’s and Bernstein’s theorems,
where only the order of the error development is taken into consideration. In [2] the
special case a=1 of (1.5) had been studied. The existence of the constant 3:=3(1) has
been proved there, and numerical bounds 0.278 < 3<0.286 ([2, p. 41]) had been calculated.
In this connection S.N. Bernstein raised the question, whether the value of 3, which
now carries the name Bernstein constant, could be expressed by known transcendentals.
Since 1/2/m=2. 82(:t0 0005) lies well inside his numerical bounds for 3, he raised the
question whether B=1 /2y/7 (cf. [2, p. 56]). This speculation is now known as Bernstein’s
conjecture, and it has been disproved in {26] by high-precision calculations. An answer to
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Bernstein’s original question about an expression of 3 by known transcendentals is still
open. In [3] only an asymptotic formula has been proved for 8(«). Numerical calculations
of B(a) for a selection of values of o have been presented in [27].

There are two striking differences between polynomial and rational best approxima-
tion to the function |z|* on [—1,1] or [0,1], on which we want to comment. Rational
approximants converge much faster than the polynomial ones, which can rather impres-
sively be seen by a comparison of the two formulae (1.4) and (1.5). It is also quite
surprising that in the somewhat simpler polynomial approximation problem no explicit
formula is known for the constant G(«), while in the rational case we have the compara-
tively simple expression on the right-hand side of formula (1.4). In the case of a=1 we
have the very simple number 8 as leading coefficient in the asymptotic error estimate,
which has been proved in [19].

Bernstein’s investigations [2] and [3] have been published in 1914 and 1938. The
study of best rational approximation of |z| was started only in 1964 by D.J. Newman’s
surprising (at the time) result in [16] that

le VP < Epn(lz],[-1,1]) <3e7V"  forall n=4,5,... . (1.6)
The result already shows that rational approximants converge indeed much faster
than the polynomial analogues.

Newman'’s investigation has triggered a whole series of contributions, we mention

only those that contain substantial improvements of the error estimate in the uniform

norm:

Eun(z%,[0,1)) e~V 4R, ([6), 1967),
Enn(z'/%,[0,1]) <™V, (4], 1968),
Enn(z%[0,1]) <e™ V" aeR,, (8], 1967),

LoV C B (x/2,[0,1]) e mVR 00T (5], 1968),
e VR Bn(2%,[0,1]), @€ Qi\N, (191, 1972),

e—4ﬂ\/ﬁ(1+s)<Enn(xa’ 0,1)<e" an (1— s)

a€Q\N, £>0, n2np(a,e), ([10], 1974),
Enn (z1/2 [0,1)) < cne™ ™V, ([30], 1974),
Le=mV2n L B(2/2,[0,1]) S ce ™V, (131], 1975),
e~ s )‘/_<E,m(\/_ [0,1]) e~ =&VR €N, ([24], 1976).

Here c, c(a), ... denote constants that are independent of n. The estimates are given only
for approximation on [0, 1]; relation (1.3) shows that these results can immediately be
transferred to the problem of approximating |z|® on [-1,1].



244 H.R. STAHL

The sharpest results about asymptotic error estimates for best rational approxi-
mants to fo=x% in the uniform norm on [0, 1] have been obtained independently by
T. Ganelius [7] in 1979 and by N. S. Vyacheslavov [32] in 1980. Both authors proved that
for aeR,\N there exists a constant ¢;=c;(a)>0 such that

liminf e2™Vo" E,.. (2%, [0,1]) = 1 (), (1.7)

n—oo

and conversely that for each positive rational number ac€Q, there exists a constant
ca=cz(a) such that
lim sup e2™Ve™ B, (2%, [0, 1]) < c2(@). (1.8)

n—00
In both investigations it could not be shown that co=cy(a) depends continuously on a.
Thus, the estimate (1.8) remained open for a€ R ,\Q. However, T. Ganelius was able to
prove the somewhat weaker result

Enn(2%,[0,1]) S ca(@) e ?™Vom+eslV™ - for n> ng(ep(a), ea(@)), (1.9)

which holds for all a>0 (cf. [7]). In (1.9), co() and c3() are constants depending only
on a. For approximation in the LP-norm, 1<p<oo, the upper estimate (1.8) has been
proved in [1] for all &>0; however, in the uniform norm the problem seems to have been
solved only for rational a up to now.

The results (1.7)-(1.9) give the correct exponent —2m/an in the error formula,
but not much is said about the coefficient in front of the error formula. This problem
has now been settled by Theorem 1. Like in the analogous situation in polynomial
approximation, it is proved that the limit (1.2) exists and has the value given on the
right-hand side of (1.2). Contrary to the estimate (1.8), the limit (1.2) holds for all a>0.
Theorem 2 has been proved in [19] for the special case of a=1, which corresponds to
a=3% in Theorem 1. A simplified proof of this result has been given in (14, Chapter 8].

The investigation of strong error estimates with precise information about the lead-
ing coeflicient in front of the error formula received a strong impetus from the surprising
numerical results obtained by R.S. Varga, A. Ruttan and R.S. Carpenter in [26], [29]
and [27]. Starting with numerical investigations of the Bernstein conjecture, R. S. Varga
has developed numerical tools that are based on the Remez algorithm, Richardson ex-
trapolation and the use of high numbers of significant digits, which allow mathematical
conjectures to be checked by numerical means (for a survey of different applications,
see [25]). In [28], R.S. Varga and R.S. Carpenter were the first to conjecture the con-
crete form of the right-hand side of (1.2). Independently, formula (1.2) was announced
in [20]. The present research owes much to the impetus it received from Richard Varga’s
discoveries and numerical explorations.
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The present paper is structured as follows: The proof of Theorem 1 will be prepared
by auxiliary results in §§2—4. In §2 we prove several results about the behavior of the

error function f,—7 To a large extent these results are consequences of Chebyshev’s

x
-
theorem on alternation points. The results allow us to derive a rather explicit integral
formula for the approximation error in §3. Besides of that in §3 results about the loca-
tion of poles and zeros of the approximants 77, (o) » are proved. In §4 we study an
auxiliary function r,,. These investigations are rather technical. The proof of Theorem 1
is contained in §5. In the proof, a special logarithmic potential plays an essential role,
which has already been studied in [19] and in [14, Chapter 8].

In the different sections the following mathematical tools are dominant: In §2 these
are mainly results from the theory of best rational approximants, in §3 results from
rational interpolation and multipoint Padé approximation, in §4 different techniques
from complex analysis, and in §5 elements from potential theory.

2. Basic properties of rational best approximants

In the present section we show that the rational best approximants r};,, have maximal
numerator and denominator degree. We further prove that Theorem 1 holds for all
close-to-diagonal sequences if it holds for one of these sequences, and we investigate the
extreme points of the error function z*—r2, (z) on [0,1].

Since 7}, (z)=z* for a€N and m>a, the limit (1.2) is trivial for €N, and we can
assume without loss of generality that a¢N. In the sequel we assume that a€R,\N is

a fixed number, we set f,:=z“.

LEMMA 1. If the limit

lim €™V Ep g on(fas [0,1]) =41 |sin 7al (2.1)

n—o0
holds for one k€Z, then it holds for every k€Z.
Proof. Set Eppn:=FEnn(fa,[0,1]). We have E,p, 2 Eyn if m<M and n<N. For
ki,ko€Z, d:=k1—ko>0, it follows that

e27r\/b¢—ﬁ E, e27r\/_tﬁ E

+ka,n Z n+ky,n

2.2)
> e27r\/a(n+d)E(n+d)+k2 nid 82‘"\/6(\/—_\/"-{-‘1)_ (

Because of the estimate

e2mVa (Vi—vatd) _ girvan(1-y1+d/n) — 14 0(1/y/n)  as n— oo, (2.3)
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it follows from the inequalities (2.2) that we have identical limits in (2.1) for k1>k2. The
case k1 < kg can be treated in the same way. |

Lemma 1 shows that we can use any paradiagonal sequence {r} +k,n}n€N in the
proof of Theorem 1. It turns out that the sequence {r}, . }nen with numerator degree

my:=n+l+[a], neN, (2.4)

is suited best for carrying through the proof of Theorem 1. By [a] we denote the greatest
integer not larger than a. In order to simplify notation in the sequel, the subindex m,,

£ 3
mpn*

will be suppressed, i.e., we write r}; instead of r

Using estimate (2.3) and the inequalities (2.2}, we see that Theorem 1 can be ex-
tended to a rather broad class of close-to-diagonal sequences. Of course, an analogous
generalization of Theorem 2 holds true in the same way. We have

THEOREM 3. For a>0 and any sequence {(nj,m;)€N?|j=1,2,...} satisfying

nj+m;—oo0 and |nj—mj|=o0(\/n;) asj— oo, (2.5)
the limit
lim 2"V E,,. . (2% (0,1]) =4'**|sinra (2.6)
j—oo

holds. By o(-) we denote Landau’s little oh.

It has already been mentioned in the introduction that the approximants r; uniquely
exist for all n€N. In the next lemma more specific properties of the approximants 7},
will be proved.

LEMMA 2. The approzimant v has ezactly the numerator degree m,=n+1+][q]
and the denominator degree n. The error function

en:=fo—-1, meN, (2.7)

has ezactly m,+n+2=2n+3+[a] extreme points n,; on [0,1]. With an appropriate

numeration we can assume that

0= M0 <Mn,1 < ... <Mp,2n+2+[a] = 1, (28)

and we have

(o3

Mg —Tn(Tng) = (=1)7+1+lele  for j=0,...,2n+2+]q] (2.9)

with
en:=Ep, n(fa,[0,1]). (2.10)
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Proof. Set r}:=p,/q, with p, and g, coprime polynomials, m’:=deg(p,) and n’:=
deg(g,). The restriction of the product g,e, to [0,1] belongs to the space

W, :=span{l, 2, ..., 2", 2%, ..., 2°T™'}. (2.11)

Since W, forms a Chebyshev system on [0, 1] of dimension m/+n’'+2 (see [12, Chap-
ter 1, §3]), we conclude that gne, has at most m’+n’+1 zeros on [0, 1], and consequently
e, has also at most m’+n’+1 zeros on [0,1]. Therefore, the error function e, has at
most m’+n'+2 alternation points on [0, 1].

From Chebyshev’s theorem about alternation points for rational best approximants
(see [14, Chapter 7, Theorem 2.6] or [15, Theorem 23]) we know that there exist
mn+n+2—d points satisfying the alternation condition (2.9) and d is given by

d=min(m,-m’,n-n'). (2.12)
From the earlier upper estimate it then follows that
m'+n'+2>m,+n+2-d, (2.13)
which implies that d>0, and with (2.12), it further follows that
d>(mp,—m')+(n—-n') >2d. (2.14)
Hence d=0, m,,=m’, and n=n'.
It remains only to show that the smallest and the largest extreme points 7, ¢ and
Tn,2n+2+a]> TeSPectively, are the end points of the interval [0, 1] and that at 2=1 we have

en(1)=—¢n. Indeed, if one of the two points 7, ¢ or 7, 2n424(a) Were not an end point
of [0,1], then there would exist a constant c€R such that

en—c=fo—(r+c) (2.15)
has at least m,, +n+2 zeros in [0, 1]. But this contradicts the fact that the restriction of

gn(en—c) to [0,1] belongs to W,. For z€R, near infinity we have e,(z)<0. Since e,
can have no sign change on (1, 00), it follows that e,{1)=—¢,. a

As an immediate consequence of Lemma 2 we know that the error function e, has
mp+n+1=2n+2+[a] different zeros z,; in the open interval (0, 1); more precisely, we
have
Mn,j—1<2nj <mmj forj=1,..,2n+2+[0] (2.16)

and
en(2nj) = 2n; —Tn(2nj) =0 for j=1,..,2n+2+[a]. (2.17)
From (2.17) we deduce that the rational best approximant 7, €Rp414[o],n interpolates
fa at the 2n+2+[a] points z,;. In the next section we shall see that this interpolation
property has interesting consequences, and it allows us to prove basic properties of the

rational approximant r;,.
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3. Consequences of the interpolation property

An explicit formula for the approximation error e, = f,—7; will be derived, and some
information about the location of poles and zeros of the approximant r); will be given.
Unfortunately the location of some zeros of 7}, remains unclear. This lack of more precise
knowledge will cause a lot of additional work in §§4 and 5.

We denote by w,, the polynomial

2n+2+|a]

wa(z):= [ (z=2ns); (3.1)

j=1
where the z,; are the zeros of e, introduced in (2.16). Since 2,;€(0,1), j=1,..,
2n+2+[a), we have
signw, (z) = (-1 for ze R_:={zeR|z<0}. (3.2)

For formula (3.3) we make the temporary assumption that —1<a<0. If C is an
integration path in C\R_ surrounding z, then from Cauchy’s integral formula it follows
that the principal branch of f, can be represented as

fa(Z)—i ¢*d¢ :Sinﬂa /0 |x|* dx

o Jo (-2 T r—2z

for ze C\R_. (3.3)
The second equality in (3.3) results from moving C towards R_. The second integral
exists because of our temporary assumption that the integrand has a zero of order 1 —a=
1+|a|>1 at infinity, and a pole of order a>—1 at the origin.

The representation (3.3) shows that f, is a Stieltjes function if a€(—1,0). From the
standard theory of rational interpolants to Stieltjes or Markov functions we have rather
detailed information about the structure of these interpolants (cf. {11} or [22, Chap-
ter 6.1]). If @>0, then the last integral in (3.3) does no longer exist. But, nevertheless,
we can deduce results similar to those that hold in the case of Stieltjes functions (see for
more details [22, Chapters 6.1-6.3]). In the sequel we assume as before that a€ R \N.

LEMMA 3. Set 7";:1)71/%, qn(z)=z"-+-...€’Pn, pnepn+l+{(x]' The denominator poly-
nomial q, satisfies the orthogonality relation

0 «
/ 27 () zl (f)”=0 for j=0,..,n—1. (3.4)

The n zeros Tp 1, ..., Tnn Of qn are all simple and contained in (—o0,0). With an appro-
priate numeration we have

—00 < 1 < oo < Ty < 0. (3.5)



BEST UNIFORM RATIONAL APPROXIMATION OF z® ON [0,1] 249

For the approzimation error e, =fo,—1;, we have the representation

_sinta wn(2)  [° (gngn)(2)|z|*dx o
)= e L e €O @9

where g, €P,\{0} is an arbitrary polynomial.

Remark. Because of (3.2) the measure u, defined by

dpr, sinTa |z
L (z) =

oy = wn(z)dx’ zeR_, (3.7)

is positive. Since w, is of degree 2n+2+[a], and since all zeros of w,, are contained in
(0,1), the mass of p, is finite. We have supp(u,)=R_ for all neN.

Proof. The interpolation property (2.17) of r} implies that the expression

g"f%& (z) is analytic in C\R_. (3.8)

Let C be a positively oriented, closed integration path in C\R_ surrounding all inter-
polation points z,;, and let g,€P,\{0}. Cauchy’s integration formula yields

(gn@iﬂg)(z)_i § ot S 0nl0) &

wy, T 2 wn(€) (—z (3.9)
_ 1 ]g (gngn)(Q)¢PdC 1 ?g (gnPn)(¢) d¢ '
2mi Jo wa(Q)(C=2)  2mi Jo wa(Q)(C—2)

for z€Int(C). The last term on the last line of (3.9) is identically zero since the integrand
is analytic outside of C and has a zero of order >2 at infinity. Hence, we have

qnfoa—DPn _ __1_ (9n9n)(¢)C* dC
(g" w )(Z)_27”:fc wn(O)C=2) (3.10)

For any g, €P, the integrand in (3.10) has a zero of order larger than 1 at infinity.
Therefore, in (3.10) we can shrink the integration path C to R_, which yields

(annf_;;&)(z): sinme /_Ooo (0n00)(2) [zI7dz ¢ co\R_. (3.11)

b wp(z) -2

From that formula, (3.6) follows immediately.
Taking g, (z)=277! with §=0,...,n—1 and considering (3.11) near the origin yields

. 0 o
sinTa j |z|* de 0 for iz 1 19
- /_Oox qn(x)—wn(z) 0 forj=0,..,n-1, (3.12)
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which proves (3.4).

We know from (3.7} that the measure u,, is positive. Since relation (3.12) shows that
gn is orthogonal with respect to this positive measure, it follows from the elementary
theory of orthogonal polynomials that all zeros of g, are simple and contained in the
interior of supp(u,)=R_ (cf. [23, Chapter III]). This proves (3.5). O

Since we know that the best approximant r;, has only simple poles, we have the

partial fraction representation

Anj
“(z)= —_ A
(D) =ha(2) 43 (3.13)
j=1
with h, a polynomial of the form
hn(z)=Anz[°‘]+1+...€73[a]+1. (3.14)

If we multiply the error function e,=f,—r; by z—m,;, j=1,...,n, and choose in
formula (3.6) gn:=¢n/(- —7n;), then we have

_sinma w, () /0 (qn(x) )2 |z|* dx

._An‘] = [(Z_Trnj)e'n.(z)]zzﬂ'nj - T q/ (ﬂ'"J)Q - 1'—77',""7' ’an(.’L‘)

(3.15)

: 0
sin ro |z|* )
= Wy (T li(x)? dz, =1,...,n,
m "( nj)/—oo "J( ) wn(x) I

where l,;€P,,—1 is the Lagrangian basis polynomial satisfying [,,;(m,;)=0;; for i,j=
1,..,n. Formula (3.6) holds only for z¢R_; however, the extension to z=m,;ER_ is
possible from both sides of R_ for the specific choice of g,. Note that the integrand
in (3.6) remains bounded if 2z tends to m,; vertically to the real line. From (3.15), the
positivity of the measure u, in (3.7), and (3.6), it then follows that

(=)l >0 forj=1,..,n. (3.16)

From the error formula (3.6) we can deduce also an expression for the leading coef-
ficient A4,, in (3.14). We have

en(2) = (fa—r2)(2) =2 = A, 2T 4+ O as 2 0. (3.17)

n
Inserting g,:=g, into formula (3.6) and multiplying by z~[*=1 yields

sin Ta T wp(2) /0 Qn($)2|$|d dz

— _[,—[a)-1 =
A,=—|z en(2))z=00 = T emoo 2102, (2)2 | wn(z)(1-2/2)

(3.18)

53 0 2
_ slnﬂa/ gn(z) 12| de,
7r oo Wa{T)

which implies together with (3.7) that A, >0. From (3.13), (3.16) and (3.18) we deduce

the next lemma.
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LEMMA 4. Let (5, j=1,...,n+1+[a], be the zeros of the numerator polynomial py,

i.e.,
n+l+[a]

pa(2) = Apn H (2=Cnj)- (3.19)

The zeros (nj; can be numbered in such a way that the n+1 first zeros of p, lie on R_
and satisfy the inequalities

-0 < Cn,l < TTn,1 < Cn,2 < Tn,2 <...< Cn'n < TMpn < Cn,n+1 < 0. (320)

Remarks. (1) The inequalities in (3.20) complement those from (3.5).

(2) In the lemma nothing has been said about the location of the [a] zeros
Cn,nt2) -1 $nnt1+[a] Of T, which do not appear in (3.20). It will be shown below that
these zeros converge to the origin with a certain speed. It follows from the proof of
Lemma 4 that for [a] odd there exists at least one positive zero of r}; on (0,1).

Proof. From (3.16) we know that all coefficients A;, j=1,...,n, in (3.13) have the
same sign for a given n. Hence, between two adjacent poles 7,,; and 7, 41, j=1,...,n—1,
there lies at least one zero of 7.

Since A,,>0, it follows from (3.16) and (3.14) that

)\n,lr:,(z) >0 (321)

for z€R_ near infinity, and from (3.13) and (3.21) we then deduce that 7} has a sign
change between —oo and 7,,. Hence, there is at least one zero in the interval (—oc, 7,1, ).

If we choose g,,:=g¢, in formula (3.6), then we deduce from the positivity of the
measure p,, defined in (3.7) that

en(2)<0 for all z€([1,00). (3.22)
From (2.8) and (2.9) we know that
72 (0) = —en(0) = (—1)lg,,. (3.23)

This together with (3.13) and (3.16) shows that r} has a sign change between =, ; and
the origin. Hence, there is at least one zero in the interval (7, 1,0).

If [o] is odd, then it follows from &, >0 and (3.23) that % (0)<0 and r7:(1)>0, and
therefore there exists at least one zerc of v}, in the interval (0,1). O
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4, Auxiliary functions I

In the present section a function r, will be studied which is a rational transformation
of the error function e,. This type of function played already a fundamental role in
D.J. Newman’s paper [16]. In the proof of Theorem 1, below, we have to use a further
refined machinery, which includes a quadratic transformation that will be studied in §6.
The results of the present section lay the ground work for these later investigations. Two
of the four lemmas demand quite lengthy and involved proofs.

The auxiliary function r,, is defined as

S =ri(®) | eals)  1-zmi(2)
)T R) (D —en®) - Ieori(2) D

ra(z):=

for ze C\R _.

In the next lemma we assemble properties of r, which follow directly from the
definition in (4.1) or from properties of the extreme points 7,,; of the error function e,, that
have been introduced and studied in Lemma 2. Note that in (2.10) we have introduced

the abbreviation &, :=Ep 11[a),n(fa,[0,1]).
LEMMA 5. We have

_ETL

Tn(Z) P m fOT' FAS [0, 1], (42)
ra(2) S s—2—  for z€[(Len)"" 1] (4.3)
n 2:0_¢, 2¢n )

At the 2n+3+[a] extreme points n,,; of the error function e, the function r, assumes

the values
(_1)j+1+[(x] €

" 2t (- D),

Tr (M) j=0,...,2n+2+|al. (4.4)

At the zeros z,j of the error function e,, and at the poles m,; and the zeros (,; of the
approzimant r,, the function r,, assumes the following values:

Tn(2znj) =0, ji=1,..,2n+2+[al, (4.5)
Tn(Tn;) =rn(0) =rp(c0)=—-1, j=1,..,n, (4.6)
Tn(Cnj) =1 J=1,..,n+1+a]. 4.7)

The function 7, has no other zeros in C\R_ than those given in (4.5).
If K, denotes the disk

1
K,:= zEC‘|z+icot7ra|<_— (4.8)
sin |
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(note that we have assumed a¢N), then we have

{BK(, for zeR_+10,
T (2) (4.9)

0Ky :={2z|2€0K,} for zeR_—i0,
where the two banks of R_ are denoted by R . +£10.

Proof. The assertions (4.2)—(4.7) follow immediately from the definition of 7, in (4.1)
together with (2.8) and (2.9) in Lemma 2, and the assertions (3.17), (3.18) and (3.23).
From (1.1), the error formula (3.6), and the fact that all poles of f, —7% are contained in
R_U{oo}, it follows that the function r, has no other zeros in C\R _ than those given
in (4.5).

The mapping g: R— 8K, defined by

—iTa

1—re _ 1-r?4+2irsinma

',._) = - -
r—g(r) l4re—ima 14724 2rcosma

(4.10)
is bijective, and we have
g(0)=1, g(1)=itan(3ma), g(—1)=—icot(3ma), g(co)=-1. (4.11)

At the values g(1) and g(—1) the smallest and largest modulus on the circle 0K, is
assumed. The assertions in (4.9) follow from a comparison of the last term in (4.1)
with (4.10). Note that r’(2)€R for all zeR _. ]

Since we know from (3.16) that all coefficients A;, j=1,...,n, in the partial fraction
representation (3.13) have identical signs, the value r(z) runs through the extended
real line R when z is moved along the interval (7r,,,]-,7r,,,, j+1) with 7,; and 7, j41 two
adjacent poles. From the definition of the function r,, in (4.1) and the bijectivity of the
mapping (4.10) it follows that argr,(z) grows exactly by 27 if z is moved from 7,; to
Tn,j+1 on R_+140. Correspondingly, argr,(z) grows by 2r if 2 is moved in the opposite
direction from 7, j4+1 to 7,; on the other bank R_—140 of R_. Because of (4.6) the same
conclusions hold for the intervals (—oo,m,,) and (7, 1,0), since from (3.17), (3.18) and
(3.23) we know that at infinity and at the origin 7, is the dominant term in e,,.

The information about the poles of r; established in the inequalities (3.5) of Lemma 3
together with the considerations just made show that argr,(z) grows by 47(n+1) if 2
moves once around the boundary of the domain C\R_. This boundary consists of the
two banks R_+140 and R_—0 of R_. At oo the function r, has the boundary value —1
for all limiting directions. From Lemma 5 we know that 7, has exactly 2n+2+[«] simple
zeros in C\R_. These are the zeros of the polynomial w,. Since the growth of argr,(2)
along the boundary of C\R. is 4w(n+1), it follows from the argument principle that
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the function r, has poles with a total order [a] in C\R_. These poles will be denoted
by
b,,,,l,...,bn’[a] EC\R_. (4.12)

The precise location of the poles b, 1, ..., by, [o) seems difficult to determine, but in the
next lemma we shall show that they converge to the origin with a certain speed as n—oco.
It turns out that the same behavior can be proved for the [a] zeros (, nt2, .-, Cn,n+1+[a]
of the approximant r;, that have not been covered by assertion (3.20) in Lemma 4. As

before, the approximation error E;,114[q),n(fa,[0,1]) is denoted by ep.

LEMMA 6. For each j=1,...,[a] we have

bnj=O(Y*)  as n— oo, (4.13)

Crnr14; = OEY)  as n— oc. (4.14)

Proof. (i) Transformations z—w:=z/a, of the independent variable z will play a
fundamental role. In the first part of the proof the sequence {a,}32; will be chosen in
such a way that it converges to zero slower than {e,}5%,.

We start with the introduction of some technical notations. The function B(z,z) is
defined by

_VZ-vz
B(Z,.’L‘).—m, Z,IEC\R_, (415)

with v/~ denoting the principal branch. We have

|B(z,z)|<1 for z,zeC\R_,
|[B(z,z)|=1 for ze R_=%i0, reC\R_, (4.16)
|B(z,z)|=0 forze C\R_.

If we set

o]
n(2) :=10(2)Qn(2),  Qn(2):=[] B(2,bnj), (4.17)
j=1
then 7, is analytic in C\R_, and it follows from (4.9} in Lemma 5 together with (4.11)
that
|7,.(2)| < max(|tan 7wa|, |cot 3wal) for z€C, (4.18)

where in case of z€ R _ the point 2 can lie on each one of the two banks of R_.
We now assume that the sequence {a,€R, |n=1,...,00} satisfies

lim a,=0 (4.19)

n—oo
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and
el*=o(a,) asn— oo (4.20)
with of -) denoting Landau’s little oh. As new independent variable we define
wi=zfay. (4.21)

Functions or constants resulting from transformation (4.21) are marked by a tilde, i.e.,

we set

Fn(w) :=rp(a,w), fn(w):=fn(anw), Enjzzbnj/an, g i="Nnj/Cn, ... (4.22)

For we((%sn)l/a an,1/an] we deduce from (4.3) that

~ En E’na;a — (X
Fr(w) < = =0O(ena,, as n — 00. 4.23
Fa(0)] € g = G = O(ena;”) (423

Because of (4.20), the estimate (4.23) implies that 7,(w)=0(1) as n— oo uniformly on
compact subsets of (0,00), because of (4.16) and (4.17) the function |7, | dominates |7,
in C\R_, and because of (4.18) the function #,, is analytic and bounded in C\R_. It
therefore follows from (4.23) that

lim 7,,(w)=0 locally uniformly for we C\R._. (4.24)

n—o0
From any infinite sequence NCN we can select an infinite subsequence, which we
continue to denote by NV, such that the limits

l.)nj = bnj/an - 5_7" én,n+l+j = Cn,n-i—l-{-j/an — éj as n—r oo, TlEN, (425)

exist in the cordial metric for j=1, ..., [q], l~)j, C} €C. For the functions én(w):=Q"(a"w)
with @Q,, defined in (4.17), we have

[a]
Qn(w) = Q(w) := H B(w,l;j) as n—o00, nEN, (4.26)
j=1

locally uniformly in C\R_. Note that B(z,x) is invariant under scale changes, i.e.,
B(z,z)=B(az,az) for all acR,. From (4.17), (4.24) and (4.26), we deduce that

Jim 7,(w)=0 locally uniformly for we C\(R-U{b; }gaz]l) (4.27)
neN
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From (4.27), the third term in (4.1), and the definition 7}(w):=r}(arw)/ag, it then
follows that

[ed

Aim 775 (w) =w® locally uniformly for we C\R_. (4.28)
neN
Note that 7 is a rational function with all its poles in R_.

As an immediate consequence of (4.28) it follows that the zeros fn,n+1+j, i=1,..,[q],
of the approximant r; can cluster only on R_. However, this is not good enough for
a proof of (4.13) and (4.14), we have to prove that the [a] zeros (n nt14j, 7=1, ..., [a],
converge to the origin. For this we need a more detailed analysis, which will be carried
out next.

(ii) Let the rational function 7} be defined by the factorization

lo]

Fa=ipn with ph(w)i= [[(w—Cunsres): (4.29)
i=1

It follows from Lemma 4 that 7} is a rational function of numerator degree n+1 and
denominator degree n having all its zeros and poles interlacing and lying on R_. As a
consequence of the interlacing property given in (3.20), and since A,>0 in (3.19), we
have

0<arg 7} (w) < arg(w) for we H,\ {0} (4.30)

with H,:={w|Im(w)>0}. Corresponding inequalities hold for we H_\{0} with H_ de-
noting the lower half-plane. From (4.28), (4.29) and (4.30) it follows that necessarily we
have

lim Gonyrp;=(=0 forj=1,..,]a], (4.31)
nenN
and
Jlim arg p,(w) =[a]arg(w) locally uniformly for we C\R._. (4.32)

neN

Note that because of (4.31) arg p;, is well defined in C\(R_U{|w|<¢}) for any £>0 and
n€N sufficiently large if on (&, 00) we start with the principal branch of the argument
function.

We now assume that {4.14) is false. Then there exists a sequence a, >0, n€N, with
NCN an infinite subsequence such that the sequence {a,},ecn satisfies (4.19), (4.20)
and

an <max{|Cn nt2ls - Cn,ntr14[)l} forall neN. (4.33)

The sequence N contains an infinite subsequence, which we continue to denote by NV, such
that the limits (4.25), (4.26), and consequently also the limits (4.31) and (4.32), exist.
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From the inequalities (4.33) we conclude that at least one of the limits fj, j=1,..,[e],
introduced in (4.31), is of modulus larger than or equal to 1. However, this contradicts
the conclusions made in (4.31), and thus proves (4.14).

(iii) From definition (4.1) and from the definition of 7} made just before (4.28), we
immediately deduce that ff;;(l}nj)=—53j holds for each of the poles listed in (4.12), which
implies that

arg 7% (by;) = aargby;£7 mod(2r) for j=1,...,[a]. (4.34)

Let again {a,}nen be a sequence that satisfies the assumptions (4.19) and (4.20)
with NCN an infinite subsequence substituting N in (4.19) and (4.20), and assume that
the limits (4.25) and (4.26) exist. From (4.29), (4.30) and (4.32) we deduce that the

estimates

|a]arg(w) < liminf arg 7 (w) < limsup arg 7 (w) < (1+[c]) arg(w) (4.35)
n—00 n—00
neN neN

hold for w uniformly on compact subsets of H,\{0}. On H_\{0} corresponding esti-
mates hold. The function arg 7} is well defined in C\(R_U{|w|<¢e}) for any £>0 and
n€eN sufficiently large if on (g,00) one starts with the principal branch of the argument
function. On (—o0, —£)+i0 the function arg) is defined by continuation from both
sides.

From (4.34), (4.35) and the corresponding estimates in H_\{0}, it then follows that
we necessarily have

Jim by; = lim bnj/an =0 for j=1,..,[a]. (4.36)
neN neN

Note that for finite n€N, it follows from Lemma 5 that b,;¢R_ for j=1,...,[a].

Let us now assume that (4.13) is false. Then there exists a sequence a, >0, n€N,
with NCN an infinite subsequence such that the sequence {a,}nen satisfies (4.19),
(4.20), and we have

an <max{|bn1l, ... |bn, o]} forallneN. (4.37)

As a consequence we know from (4.36) that each sequence {b,;/an}nen, j=1,...,[q],
contains an infinite subsequence that converges to 0. However, this contradicts the
inequalities (4.37), and therefore it proves (4.13). O

While the last lemma already demanded a rather involved proof, the next one will
be not less complicated to prove, and in addition also its statements are rather technical
and lengthy.
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LEMMA 7. (i) Any infinite sequence NCN contains an infinite subsequence, which
we continue to denote by N, such that the limits

Jim ez, =:2;€[0,00), (4.38)
neN
nILngoer—Ll/aCn,n+2—j = gj € (_Oov 0)7 (4'39)
neN
Jim ey 1y =17; € (~00,0) (4.40)
neN
exist for j=1,2, ..., the limits
nli—géogr:l/acn,n+l—j =:a;€C\R_, (4.41)
neN
lim e71/*b,; =:b;€ C\R_ (4.42)
neN
exist for j=1,...[a], the limit
. 1/ =
7}16,1%1"71(5” *w) =: F(w) (4.43)

exists in the cordial metric uniformly for w varying on compact subsets of (C\R_)U
(—00,0)£10, and the limit

. 1 * x ~ %
Jim E—rn(s,l/ w) =:7"(w) (4.44)
neN "

exists in the cordial metric locally uniformly for weC. The somewhat complicated for-
mulation (C\R_)U(—00,0)£:0 after (4.43) means that we consider this set as a subset
of the Riemann surface associated with the multivalued function f,(w)=w®.

(i) In (4.38)—(4.42) the points z,;, j=1,...,2n+2+[a|, are the zeros of the func-
tion T, which have been investigated in Lemma 5, the (n;, j=1,...,n+1, and the m,;,
J=1,...,n, are the zeros and the poles that the rational best approzimant r} has on R._,
and which have been investigated in Lemmas 3 and 4, the points (p ny145, =1, ..., [q],
are those [a] zeros of the approzimant v}, from which we know that they exist in C\R._,
and the bnj, j=1,...,(a], are the [a] poles of the function r, in C\R._, which have first
been mentioned in (4.12).

(ili) We have 0=2,=...=%;,<Zj,4+1<Zj,+2<... with an index jo€N that satisfies
0<jo<[a]+1. Further, we have ...<(3<Fa<(a<71<(1<0. With respect to the 2[a]
limit points &j,Bj, Jj=1,...,[a], we only know that dj,BjEC\(—O0,0) for j=1,...,[q].
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(iv) The limit function 7 in (4.43) is analytic in C\(R_.U{by, ...,B[a}}), meromor-
phic in C\R_, at each Z;, > jo+1, it has a simple zero, it is different from zero for all
weC\(R_U{%1, %3, ...}), and it has analytic boundary values F(w) for all we (R _+i0).
The boundary values #{w) are contained in 0K, for we{—o00,0)+10, and contained in
0K, for we(—o00,0)—10.

(v) The limit function 7* in (4.44) is meromorphic in C, it has a simple zero at
each {;, jEN, a simple pole at each 7;, jEN, and [a] zeros at the points @, ey -

(vi) The only cluster point of the sequence {Z;}jen is 0o, and the only cluster point
of the two sequences {(;}jen and {7;}jen is —o0.

(vii) For any R>o0 we have

lim sup card{z,; <eY“R|je{1,...,2n+2+[a]}} < oo, (4.45)
n—oo
lim sup card{n,; <eX*R|j€{0,...,2n+2+[a]}} < oo, (4.46)
n—o0
lim sup card{|Cn;| <eY/*R|j€{1,...,n+1}} < oo, (4.47)
n—00
lim sup card{|m,;| <eY/*R|j€{1,...,n}} < co. (4.48)
n—oo

In (4.46) the n,;, =0, ...,2n+24[a], are the extreme points of the error function e, on
[0,1].

Remarks. (1) As in the proof of Lemma 6 a transformation of the form (4.21) will
play a fundamental role in the proof of Lemma 7, but now it has the special form

w:=E;l/”z, n=1,2,..., (4.49)

which does not satisfy condition (4.20). Transformation (4.21) is implicitly already con-
tained in the limits (4.38) through (4.48). A comparison of the limit (4.27) with (4.43)
shows that the precise form of (4.49) is crucial. If, for instance, one had used transforma-
tion (4.21) with a sequence {a,} satisfying (4.20) instead of transformation (4.49), then
the limit function 7 in (4.43) would have been identically zero, and as a consequence,
most of the results of Lemma 7 could not be formulated.

(2) It follows from (4.42) that limit (4.43) holds in the ordinary metric uniformly on
compact subsets of ((C\R._)U(—o0,0)%i0)\{b1, ...,E[Q]}.

(3) With more effort it could have been proved that the limits (4.38) through (4.44)
hold for the full sequence N and not only for subsequences NCN. However, since the
results of Lemma 7 are only of technical relevance for later proofs, the necessary extra
work for a proof of the stronger result has been avoided.
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(4) With more effort, it could also have been proved that in the inequalities between
the zeros Z; in part (iii) of the lemma the index jj is equal to 0, but again such a stronger
result is not needed in later proofs.

Proof. (a) We start with an investigation of the sequence of functions r,. In the
first step we deduce properties that follow rather immediately from results established
in Lemmas 5 and 4.

In the same way as in the proof of Lemma 6 we denote all functions and constants
that result from an application of transformation (4.49) by a tilde. Thus, we have

Fo(w):= rn(es}/"‘w),

finj :=Mnjen '™ §=0,..,2n+2+]a],

Enji=znjEn /Y =1, 20424 a), (450)
I;nj::bnjefll/", i=1,..1[q, .
Cnji=Cnient/®,  §=1,..,n+1+[a],

frnjzzwnjsgl/"‘, ji=1,..,n.

Under transformation (4.49), the interval (0,1] in the z-variable is transformed into the
interval (0, 5,71/(’] in the w-variable. From (4.2) and (4.3) we deduce that

1
2w -1

|7 (w)] < for we 271/ e 1/, (4.51)

From (4.4) and (4.50) it follows that at the transformed extreme points 7,,; we have

(_1)j+1+[(y]

m, j=0,...,2n+2+[a]. (4.52)
ngj

Fn(ﬁn j ) =
As a consequence of {4.9) in Lemma 5 in combination with {4.10) and (4.11}, it follows

that
mn :=min( |tan 1ma|, |cot mal) < [Fn(z£i0)]
(4.53)
< max([tan 3mal, [cot iral) = M
for all z€R_. Thus, we have a rather good knowledge of the behavior of 7, on R_=+40
and on [2‘1/",6;1/"]. It is immediate that m=1/M. Based on (4.15), we define

-~ [(Y] -~
Qn(w) 1= Qn(ey/"w) = [ Bw, bny). (4.54)

=1

From the asymptotic estimate (4.13) in Lemma 6 it follows that any infinite sequence
NCN contains an infinite subsequence, which we continue to denote by N, such that
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the limits
Jim bo;=b;, j=1,...,[a, (4.55)
neN
o~ ~ [a] —~
Jim Qn(w) =Q(w) =[] B(w,b;) (4.56)
neN 7j=1

exist and are finite. The limits (4.55) are identical with those in (4.42). The limit (4.56)
holds locally uniformly in C\R_. The function 7, is analytic in C\R_ except for the
[@] poles at by, 1, ...,I;n’[a]. Hence, we deduce from (4.16) and (4.53) that

M
’@n(w)l

With (4.56) it follows from Montel’s theorem that we can select an infinite subsequence

[Fr(w)| < for we C\R_. (4.57)

of N, which we continue to denote by N, such that the limit

lim 7, (w)=: 7w 4.58

g (w) =:7(w) (4.58)
exists locally uniformly for we C\(R_U{by, ..., l;[a]}), which partially proves (4.43). The
extension to a proof of uniform convergence in the cordial metric on compact subsets of
(C\R_)U(—00,0)%£i0 will be done below at the end of step (f).

The interlacing property between the transformed extreme points 7,;, j=0,...,
2n+2+[a), and the zeros Z,;, j=1,...,2n+2+[al, of the functions #,, which has been
established in Lemma 5, will be used in the sequel at many places. It is a consequence
of this property that at most [a]+1 extreme points 7j,; and at most [a]+1 zeros 2,; can
lie in the interval [0, 1].

Indeed, it follows from (2.9) in Lemma 2 that if e, has k+1 extreme points
Tn,0s -+ n,[o] iN the interval [0,5,1/ “], then the rational best approximant 77, has at least
k zeros in this interval. From remark (2) to Lemma 4 we know that 7, has at most
[a] zeros outside of R_. Hence, not more than [a]+1 extreme points 7,; can lie in the
interval [0, £3/*]. With transformation (4.49) the assertion then follows for Tnj, and from
the interlacing property together with 7, =0 the assertion follows for the zeros z,;.

By choosing an infinite subsequence of N if necessary, which we continue to denote
by N, we can assume that the limits (4.38), (4.39), (4.40) and (4.41) hold in the cordial
metric. The limits (4.42) have already been assumed in (4.55). From Lemma 6 it follows
that the limits (4.41) and (4.42) exist also in the ordinary metric if they exist in the
cordial one. In case of the limits (4.38), (4.39) and (4.40) we cannot draw this conclusion
at the present stage, and therefore infinity can so far not be excluded as limit point.
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(b) In the next step of the proof we show that any infinite sequence NCN con-
tains an infinite subsequence, which we continue to denote by N, such that the sets
{fnjli=0,...,2n+2+[a]} have necessarily infinitely many cluster points in [0,00) as
n—o0, n€N. The assertion follows from (4.52), {4.51) and an argument that is of a
type used in the proof of the Phragmén—Lindeléf maximum principle. The proof will be
carried out indirectly; conclusions of the results will be drawn in step (c).

Let us assume that there exist only finitely many cluster points of the sets
{n;17=0,...,2n+2+[c]}, n€N, in (0,00). Then there exists an infinite subsequence
of N, which we continue to denote by N, such that there exists j;€IN and

fnj = 7;€[0,00) for j=0,...,71, while
N ) (4.59)
Tinj —> 00 for j=51+1,...
as n—o0, n€N. Because of the interlacing property between the 7j,; and Z,;, we can
further assume that there exists jo €N with jo=34; or jo=j;+1 such that
f,,,, — 2;€[0,00) for ] = 1., ey J2, (460)
Znj —* 00 for 7=72+1, ...
as n—oo, n€N. With the function B{w,z) introduced in (4.15) and already used in
(4.54), we define

2n+2+{q] . 2 B(w 3 )
gnw):= [ Blw.zu), ho(w)=]] =22 (4.61)
J=ja+1 =1 Qn(w)

with é.,.v defined like in (4.54). Siuce 7,/ (g,,,fc,;) is analytic and different from zero in
C\R_, we deduce from (4.53) and m=1/M that

(é,iil")('LU)

m< <M forweC\R._ (4.62)

and all n€N. Note that from the definition of 1, in (4.1) together with (4.6) and (4.9) in
Lemma 5 we know that there exist neighborhoods of 0 and oo such that r,, is continuous
in the intersection of C\R_ with these neighborhoods, and it has continuous boundary
values on R_=40 for any approach from inside of the intersection of C\R_ with the
neighbarhoods.

It is not difficult to deduce from the definition of B(w, z) in (4.15) that 1>|B(w, z)|>
1-2\/]z]/|w] for |w|>|z|. From the estimate (4.13) in Lemma 6 (or equivalently from
the convergence (4.58)) and the estimate (4.16), it follows that there exist R>1 and ¢>0
such that

>|0n(w)|>1- —— for |w| >R, weC\R._. (4.63)

V/wl

o (w)]
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From definition (4.15) we deduce that |B(re®, )| is a monotonically increasing func-
tion of [t for fixed z,r€R, and t€(—m, 7). It may be best for verifying this conclusion
by looking at the map from C\R_ onto the half-plane {Re(w)>0}. Since all zeros z,;,
j=ja+1,...,2n+2+][a), of the function g, lie on (0,00), the function |g,| is also mono-

tonically increasing along circles, i.e., we have
|Gn(re)| < |gn(re™)| if [t <[], r€ Ry, t,t'€(—m, 7). (4.64)

We consider the function

H(w):=exp [z log Z—ﬁ] for we D\R_, (4.65)

i+vw

which is analytic in D\R_ with D denoting the unit disc {jw|<1}, has boundary values

|H(w)| =1 for we (-1,0] %10, (4.66)
[H(w)|=e"™? for |w|=1, largw| <, (4.67)

and there exists ¢ >0 such that
1-3vw < |H(w)|<1-vw for all we[0,¢]. (4.68)

From (4.52), the estimates (4.62), (4.63), and the convergence (4.59), we conclude
that

A\

~ -~ 'Fn ~nu' m C m . _,
lgn(nn,j1+l)l zm I' (7’ jl+1)| > (1_ \/T:I—> T i+ (4'69)
n,ji+1

(o +1)] 2708531 = 1 3
for ne N sufficiently large. We note that from (4.59) we know that 7, ;, 41 —00 as n—o0,
neNn.
The function §, is analytic in the domain {we C\R_ ||w| <y, ,+1}, and both func-
tions |g,| and |H (/% j,+1)| have boundary value 1 on the intervals (—jn j,+1,0]%10.
From (4.67), the inequalities (4.64), (4.69), and the maximum principle, we conclude that

(G ()] = [H (w/ i jy 41)| /1083751100 (4.70)

for we C\R_ with |w|<jn,j,+1. Since 7, j,+1—00 as n—o0, n€N, it follows that

m__q

2 2 3 2a -
—;108:(3%,]‘1“) = —log — +—logn,j,+1 = 00 (4.71)
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as n—o0, n€N. Using the left-hand side estimate of (4.68) and the right-hand side of
(4.70) yields that

(2/7) 10g(3/m)+(2a/7) 10 fin, iy 41
v ) (4.72)

|Gn (w)] 2 <1—3ﬁ
n,J1

for all we(0,00) and neN sufliciently large. For we(0,00) fixed, we therefore have

Ju )(2/7") log(3/m)+(2a/7) log 7in, j; +1
log (1 e
nn7j1+1

2 3 2 log 7, ;
=—(;logE-l-—??-lOgﬁn,jﬁl)—\/E—JrO(Mﬂ) (4.73)

Vv ﬁn,j1+1 Mn,j1+1

log 7
=O<%’J‘—+l) as n— 00, n€N,

V ﬁn,j1+1

which proves
Jim [ga () =1 (474)
neN
for all we(0,00). From the definition of B(z,z) in (4.15) together with (4.17), (4.61),
the estimate (4.13) in Lemma 6, and the assumptions made in (4.60), we conclude that
we have
lim |hn(w) =1 uniformly for ne N. (4.75)

w—00
weC\R -

The limits (4.74) and (4.75) together contradicts the estimate (4.51), and thus the asser-
tion has been proved that the sets {7jn;|j=0,...,2n+2+[a]} have necessarily infinitely
many cluster points in (0,00) as n—o00, n€N.

(c) In the present step we shall draw some conclusions from the assertion proved in
part (b). As a first consequence, we conclude that the limit function 7 in (4.58) is not
identically zero. Indeed, from (4.52) it follows that if we had 7=0 in (4.43), then the sets
{1 3=0,...,2n+2+[a]} could have no cluster points in the interval (0, c0) as n— oo,
neN, since because of (4.52) the values of 7 are bounded away from zero at any point
in (0,00), at which a sequence of extreme points %, ;, clusters as n—oo0, n€N. From
part (b) we know that there exist infinitely many finite cluster points.

Further, it follows from the assertions proved in part (b), together with Hurwitz’s
theorem (or the argument principle) and the locally uniform convergence (4.58), that 7
has infinitely many zeros in (0, 00} and no zero in C\R. Indeed, between two transformed
extreme points 7,; and 7, ;41 there always lies a zero Z,; of 7, which implies that the
limit function 7 has to have infinitely many zeros Z; in (0,00). On the other hand, all
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values 7,,(w), neN, are different from zero for we C\R, which implies that 7 is either
identically zero or different from zero in C\R. Because of (4.52), 7 cannot be identically
zero. It further follows that all limits (4.38) are finite, and therefore they exist also in
the ordinary metric. The zeros Z; of 7 are the limit points in (4.38).

Since the function 7 is analytic in C\R_ except at the [a] possible poles by, ..., I;[a],
and it is not identically zero, we can conclude that the zeros Z; of & can have no cluster
points in (0, 00). We have already earlier proved that each function 7, can have at most
[@]+1 zeros in the interval [0, 1]. Hence, it follows from the locally uniform convergence
(4.58) that the zeros 2;, j=1,2, ..., cannot cluster at w=0. However, we cannot exclude
that up to [a]+1 of the first Z; can be equal to 0. These observations prove limit (4.45)
and the order relations

0=21=..=%j,< Zjo+1 < Zjo42 < ... 0< jo <[] +1. (4.76)

Analogously to the limits (4.38), we can assume that the limits

nlg% e V., :nli_)n]%,o Ting =: 71 (4.77)
ne ne

exist for j=0,1,.... We have 7;€[0, 00} for each j€N, and each 7j; satisfies relation (4.52).
With respect to the limit function 7 it only remains to prove in the present step that
all zeros Z;, j>jo, of 7 are simple, which then proves that all inequalities in (4.76) are
valid in a strict sense, from which the inequalities in part (iii) of the lemma follow.
Indeed, since between two adjacent zeros Z,; and %, j;1 of 7, there lies exactly
one transformed extreme point 7, j;+1, it follows from (4.52) and the locally uniform
convergence in (4.58) that for j€N fixed, the two sequences {Z,;}nen and {Z, j+1}nen
cannot converge to the same limit point as n—oo, n€N. Therefore, all zeros Z; of 7
have to be simple. Of course, it has to be excluded that some of the [a] poles, which the
function 7, has at the points an, may cancel out with zeros Z,; of 7, in the limiting case
as n—00, €N, i.e., that Z;=>b; for some j>jo and [€{1, ..., [e]}. This possibility cannot
be excluded by the locally uniform convergence (4.58) in C\(R_U{by, ...,E[Q]}). But it
will be shown at the end of step (f) that the convergence (4.58) holds locally uniformly
in the cordial metric in C\R_, which implies that the poles and zeros of 7, cannot have
common limit points in C\R_.
As a by-product of the interlacing property between the extreme points 7,; and the
Zeros Zn;, we conclude that the asymptotic estimate (4.46) is a consequence of (4.45).
(d) In the next three steps we investigate the convergence behavior of the sequence
of transformed rational best approximants

1
7 (w) == E—r;;(s;/aw), neN, (4.78)
n



266 H.R. STAHL

and properties of its limit function 7*. In this investigation we use properties of the
approximants r;; and its denominator polynomials g, €P,,, which have been proved in
Lemma 3. Further, a comparison of the convergence behavior of the sequence of approx-
imants {r} with that of the sequence {7, } will be used. This part of the proof is rather
technical and lengthy.

From the boundedness (4.57), the existence of the limits (4.38) and (4.45), the
properties (4.16) of the function B(w,z), and the identities (4.52), we deduce that the
infinite product

H B(w, 3;) (4.79)

exists and is not identically zero in C\R _. Indeed, otherwise the limit function 7 in (4.58)
would be identically zero, but this would contradict (4.52). From (4.15) we deduce that
the product (4.79) is not identically zero in C\R_ if, and only if, we have

i % < 00. (4.80)

j=laj+2 V2

By choosing an infinite subsequence of N, which we continue to denote by N, we
can assume that the limits

7}1}1&#,1,"“_]' =:7t; and nll+n<§o<"'"+2'j =:(j (4.81)
neN n€EN

exist in the cordial metric for j=1, 2, ..., and because of the estimates (4.14) in Lemma 6,

we can further assume that the [a] limits

Aim Coppyj(w) =105, j=1,..,[a], (4.82)
nEN
exist in the ordinary metric, and from (4.14) we know that a;€C for j=1,...,[a]. In

(4.81) the possibilities 7;=—00 or (~j=roo cannot be excluded at the present stage.
From the interlacing property (3.20) in Lemma 4 it follows that

~00<.. <3< <G < <6 <0 (4.83)

With (4.81) and (4.82), the limits (4.39), (4.40) and (4.41) in the lemma are proved.
However, the proof of the strong inequalities between the #; and the fj, which are
stated in part (iii) of the lemma, remains still open. For this purpose, and also for a
complete proof of the limit (4.44), it is necessary to bring more specific properties of the
approximants 7). into play. We start with some definitions.
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Using transformation (4.49) together with definitions introduced in Lemma 3, we
define

1
én(w):= —en(s}/"w) = w7 (w)

€n
4.84
_ Wy(w) sinwa /O dn(2)? |z|* dx weC\R (4.84)
T g(w)? o o Wnl(z) z-w’ o
with the polynomials 0, and §, defined by
W (w) := g, @rt2tle/ag, (cl/agy) = pn+2tlal (4.85)
Gn(w) =g (e w) =uw"+ ..., (4.86)

and the polynomials w, and g, introduced in {3.1) and in Lemma 3, respectively. In
(4.84) the last equality follows from (3.6). Further, we define

: 0 -~ 2 a
- sin o Gn(2)* |x|*dx
I, = — 4.87
(w) TCn /_Oo Wp(z) T—w (4.87)

with constants ¢, >0 determined by the condition

I,(1)=-1 for neN. (4.88)

From (3.2), (4.85) and the fact that all zeros Z,; of the polynomials w,, are contained in
(0, 00), it follows that the measures
_sinma gn(z)?

d~n = - @ , R_, N, .
in () ren (@) |z|*dz, ze€ ne (4.89)

are positive and of finite mass. From standardization (4.88) and the positivity of the
measures fi, we deduce that for each cone C,:={weC|arg(w)<p}, p<m, there exists

a constant ¢, such that
]f,l(w)|<c¢<oo for all weC, and n€ N. (4.90)

By Montel’s theorem we therefore know that there exists an infinite subsequence of N,
which we continue to denote by N, such that the limit

dim In(w) =: I(w) (4.91)
neEN
exists locally uniformly for we C\R_. From standardization (4.88) it follows that we

also have T (1)=-1, and by Hurwitz’s theorem we further conclude that

I(1)=-1 and I(w)#0,00 forallweC\R._. (4.92)
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(e} In the present step we prove limit (4.44) in part. The complete proof will follow
in step (f). We start the analysis by showing that the limit

. Wp(w)
Jim e, — =: g (w) (4.93)
n—é}x}o Gn(w)?

exists locally uniformly for weC\{0} in the cordial metric.

From (4.84), the defining properties (2.9) of the extreme points 7,;, and the trans-
formations (4.50), it follows that |é,(7,;)|=1 for j=1,...,2n+2+[a]. From the fact that
at most [a]+1 of the transformed extreme points 7,; can lie in the interval [0, 1), which
has been proved at the end of step (a), and from the existence of the limits (4.77) together
with limit (4.91) and its properties (4.92), we then deduce that

im cn'f""(_""f)' 1 for each j > [a]+1. (4.94)
e N @n(ns)* (7))

Let R>1 be arbitrary, and let j2€N, j>>[a]+2, be chosen so that Z;>R for all
J>j2. We can assume that R is so large that 2445 <R. We define

2n+2+[al

wn]2 H (w— znj (4.95)

J=Jjz

Then for v, vy € {|w|< R}, vy fixed, the limit

~ 2n+2+(q] - 2n+2+(a]
ti 2 _ e, 5 gim ] <1+ — )
n—=oo 1. n—o0 —3 . n—oo —5 .
nehN ’LL)",‘D(’U()) neEN  j=ja Yo Z',,,] neEN  j=ja Yo 2"1 (4 96)
ad V=7 .
0 ~
= (1+, 3 ) =ig2 72(”)
i Vo — 25
I1=72

exists locally uniformly for ve{|w|< R}, and it is different from zero for |v|<R if, and

only if, we have

> l < 00. (4.97)

2,
i=la]+2 ™7

From (4.80) we know that (4.97) holds true, and therefore the limit (4.96) holds true
locally uniformly for ve{|jw|< R}, and we have

gz’h (’U) #0 for |U| <R. (498)
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Let now j3€N be such that 0<#j, <7;,+1<R. From the properties (2.9) of the
extreme points 7,; together with the transformations (4.50) and the definitions (4.84)
and (4.87}, we conclude that

1 &nlngot1) L (fin,ga+1) Dnlings+1) _Gn(fin,ja)?

én(nn,js) jn(ﬁn,jg) W7, 53) Cjn(ﬁn,js-l—l)z

. n42+4[a] (4.99)

~ n 2
— In~(nn,j3+1) H (1+77n ,ja+1 T nn,js) H (1 Mn,jat+1 1, J3> )
In(ﬁn,js) =1 Min,js ~%nj j=1 77717]34'1 ’/T"J
With the limits (4.77), (4.91), (4.38) and (4.82), it follows that also in the limiting case
we have . - - )
I(7ljs+1) ( s +1 ~7j: Nja+1—1;
1= lstt) 14 B4 s 1— el s ) (4.100)
( ) ]l_I Mjs =% Jl;[l 77]3+1_7TJ

From (4.100) and (4 97), we conclude that besides of estimate (4.97) also the estimate
E;’;l |7 —Tlja+1| 1 <oo holds true, which is equivalent to

=1
< o0 (4.101)
; |75 —1

As one of the consequences of (4.101), we see that the sequence {7;}52, has —oo as
its only cluster point, which together with (4.83) completes the proof of part (vi) in the
lemma.

Let j4€ N be chosen so that |7;|>R for all j2>3j4. We define

n

qmja (U)) = H (w—ﬁ'n,n-b—l—j)' (4102)

J=Ja

From error representation (4.84), the definitions (4.87), (4.95), (4.102), and a considera-
tion of the transformed error function €,, simultaneously at the two points v and 7;,, we
derive that

- 2n+2+ . L. 1 ~ .
Cn Wn 12( v) — nH[a] U= 2Znj fI <77j3_77n,n+1—1) H“ (71 = Ton,mt1— f)2 €n(7j,)
Gn,j (V)2 j=ja Mjs = Znj i=da V=T, nt1-j Hh_ (hjs = Znj) I (7js)

(4.103)
With the same arguments as applied in (4.99), (4.100) and (4.101), we deduce from
(4.103) together with (4.94), (4.97) and (4.101) that the limit

L Ungp(v)
A cn oS yE = 8 (V) (4.104)
neN
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exists locally uniformly for |v]<R, and that we have
Gja,ja(0) #0,00 for all ve {|jw|< R}. (4.105)

Since the left-hand sides of (4.93) and (4.103) differ only in a finite number of factors,
and since R>1 has been chosen arbitrarily, from the limits (4.104), (4.38), (4.39), (4.40)
and (4.41), it follows that limit (4.93) exists locally uniformly in the cordial metric in
C\{0}. Note that the poles 7,; and zeros Z,; of the functions on the left-hand side of
(4.93) are lying on different sides of the origin. The limit function §; in (4.93) has its
zeros in C\{0} at the points Z;, and its poles at the points 7;, j€N.

The following conclusions, which will be used in the next step, follow rather imme-
diately from limit (4.93). Because of (4.91), (4.92) and (4.93), the limit

Aim & (w) =: é(w) (4.106)
neN

exists locally uniformly for we C\R_, and we have
é(w)#0 forall we C\(R.U{3y, 2,,...}).

From (4.93) we deduce that the limit

" ~ 2 o «
L A = Go(v) ;= ST " (4.107)
7:[210\10 TCn  Wn(v) T V)

holds locally uniformly for v€(—o0,0), and because of (3.2), we have
g2(v) >0  for all ve(—o0,0)\{71,72,...}. (4.108)

Since we know from (4.105) that the limit function g;, ;, in (4.104) is different from zero,
it follows that for every >0 there exists a constant c. <oo such that

Gn(v)%]0]"

) < oa—[a]-1),, _~ n2 f —e.0 4.109
cala(o)] <P oA ferve (a0 e

and all n€N. Indeed, limit (4.104) together with the fact that at most [a]+1 zeros Z,,
of the polynomials w, can lie in the interval (0, 1] implies inequality (4.109).
From (4.101) and the interlacing property (4.83), we conclude that we have

i ~'1 0. (4.110)

<
j=1 ¢ —1]



BEST UNIFORM RATIONAL APPROXIMATION OF z® ON [0,1] 271

From (4.106) we derive that the limit

dim 7 (w) =w*—é(w) (4.111)
neN

holds true locally uniformly for we C\R_. With the help of estimate (4.110) and limit
(4.111) we can deduce a weak and preliminary version of limit (4.44).
Indeed, let analogously to §r,;, in (4.102) the monic polynomial p, ;, be defined as

n+1
Dn,ja (w) = H (w—Cn,n+2—j) (4~112)
’ J=ja+1
with j; chosen as in (4.102). Let wo€(0,00) be such that w§—é(wp)7#0, and let v be
arbitrarily chosen from {|w|< R}. By considering simultaneously the two points v and wy,
we can show as in (4.103) and (4.104) that because of (4.101), (4.110) and (4.111), the
limit

ﬁn,y}; (v) ~
m == =:93,5,\V 4.113
A o) P09+ (4113)
exists locally uniformly for |v|<R, and we have
G3,5.(v) #0,00 for all ve {|w| < R}. (4.114)

Since 7 differs from py, j, /Gn,j, only in a finite number of linear factors, it follows from
(4.113), the limits (4.81) and the arbitrary choice of R>1 that the limit

nli_)néof,‘;(w) =: " {(w) (4.115)
neN
exists locally uniformly for we C\{#, 7o, ...}

By this last conclusion we have proved limit (4.44) partially. A complete proof has
to establish locally uniform convergence in the cordial metric throughout C. For this aim
it is necessary to show that all limit points 7y, 72, ..., and (~1, (~2, ..., are pairwise different,
which is equivalent to the assertion that in (4.83) strong inequalities hold true.

(f) In order to prove strong inequalities in (4.83), we use properties of the approxi-
mants ), and its denominator polynomials g, which have been established in Lemma 3,
and also some properties which have been stated immediately after the proof of Lemma 3.
All these properties are consequences of the fact that the approximants ) have been
identified as rational interpolants of the function f,.

From (3.4) in Lemma 3 we know that

/0 —%ma(m:o (4.116)
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for all polynomials g,€P,_;.
Let us assume first that

fj=17;41 for some jeN with 7; <0. (4.117)

From (4.107) and the limits (4.81), it then follows that

. -~ 2 a ~
m BRI ~qn(v) [v] _ _ 92(3))2 (4.118)
200 e, Wp(V)(V—Tnnt1—5)(V—Tnn-;) (v—7;)

locally uniformly for ve(—oc0,0). From (4.81) and (4.107), we know that g» has a zero
of order at least 4 at ;. Therefore, we have

= 2 o
lim max _ Gn(0)"v| _ =0. (4.119)
M2 T SU<Tnnt1-5 Cn |[Wn (V)] (V= Fp n41-5) (V—Tn,n—j)

From (4.116) and the fact that ¢, /(- —#n nt1—;)(: —Fn,n—;) is a polynomial of degree
n—2, we conclude that

H 0 ~ 2 @
lim sm7ra/ _ q,:(a:) |z|*dx _ —o. (4.120)
—00 wn(z)(z_7rn,n+1—j)(z_7rn,n—j)

On the other hand, from Fatou’s lemma, (4.118), (4.119) and (4.108), we deduce that

5i 0 5 21, 0 =~ d
bt bma/ o S >/ G2(0)dr o (4121
7;:6’/%0 TCy —0 wn(x)(x—7rn,71.+1—j)(1‘—7rn’n_j) s (l'_ﬂ-j)

The contradiction between (4.120) and (4.121) shows that assumption (4.117) is wrong,
and we have proved that ;. <7; for all jeN with 7, <0.
Let us now assume that
#1=0. (4.122)

Because of (4.109) and the limits (4.81), we then conclude analogously to (4.119) that

5 PATATeY
lim  max 1) Ul (4.123)
1220 SULO Cp [Wi (V) (V=T )|

Since ¢, /(- —nn) is a polynomial of degree n—1, we can derive a contradiction to (4.123)
in the same way as done in (4.120) and (4.121), which shows that assumption (4.122)
is false, and it is proved that 7; <0. Together with the earlier conclusion, we thus have
shown that

LT <L < Ty < T <0 (4.124)
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In order to prove that the limit points ¢, (s, ... and @1, <y G[q) in (4.81) and (4.82)
are different from the limit points 7, 72, ..., we consider the asymptotic behavior of the
residua S\,Lj of the transformed approximants 7 at its poles 7,,;, j=1,...,n. From (3.13)
we deduce the representation

n

1 " Anj
Frw) = (el ow) = ha(w)+ 30 22, (4125)
n = w—wnj
and from (3.15) we further derive that
N —eol-lay —sinma Wn(fn;) /O ( Gn(v) )2 [v|* dv (4.126)
nj =—¢&g, nj — =~ 7~ = —~ .
’ ’ ™ quz(ﬂ-’ﬂj)2 —oo \VU—Tnj wn('v)

for 7=1, ...,n. The asymptotic behavior of the residua 5\,1,”.,.1_ ; will be studied for n— oo,
neN, and jeN fixed. We use tools that have already been applied in (4.118), (4.119)
and (4.121), but now we use Lebesgue’s theorem on dominated convergence instead of
Fatou’s lemma.

From (4.81) we know that lim, 0, nen #n,nt1-; =7;, and from (4.107) and (4.124),
it follows that the limit
lip S0 ( 4n(v) )2 ) (4.127)

N2 mep \V—Tnnti-j) Wn(v) (v—7;)2

holds locally uniformly for v€(—o00,0). By Lebesgue’s theorem on dominated conver-
gence, it follows from (4.127) that

lim sin Ta /O ( 4n () 2|m|adx=/o M<oo (4.128)
no® Men Jooo\T—Tnnt1-j/) WnlT) J_ooo(z-7;)2 ' '

Indeed, near the origin an integrable upper bound for the integrand in (4.128) is provided
by (4.109). On the lower end of R_, we have the estimate

( dn () )2 |z|* <qn(x)2 || forx<m;—1 (4.129)
T—Tpnti-j ) [Wn(@)] ~ |z—=1| |Wp(z)| T

which shows that the integrand in (4.128) is dominated by that in (4.87). We note
that the integrands in (4.87) and (4.128) are both non-negative, and integral (4.87) is
standardized by (4.88).

From the limits (4.93), (4.104), (4.107), together with the properties (4.105) and
(4.124), it follows that the limit function g, in (4.107) and (4.127) has a zero of order
exactly 2 at the point 7;. Therefore we have
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From (4.130) and (4.127), we then deduce that

{En(frn,nﬂ_j) sinma Iﬁjla

lim ¢, —— = — 4.131
A G o T () a3y
and with (4.126), (4.128) and (4.130), it further follows that the limit
L% sinra |7;]* [0 Ga(z)dz
lim A, _j=—2 7 / —— #0,00 4.132
A1 =TT G e oo P 15

exists and is different from 0 and co.

From (4.132), (4.125), the limits (4.81), (4.82), and the strong inequalities in (4.124),
we deduce that the two sets {41, ..., @|q), fl, Ca, ...y and {71, #g, ...} are disjoint, since other-
wise some of the residua A, ,1+1-; had to converge to zero as n—oc. Hence, we have
proved

e <1 < T <G < <T1 <1 <O (4.133)

The last inequality in (4.133) follows from (2.8) and (2.9) in Lemma 2.

Since the two sets {a1, ...,d[a],fl, Ca, ...} and {71, 7r2,...} are disjoint, it follows that
limit (4.115) holds not only in C\{#1, 72, ...}; instead it holds in the cordial metric locally
uniformly throughout C, which proves limit (4.44).

From the extended validity of limit (4.115), we can then derive an extension of
limit (4.58). Actually, we shall prove slightly more than stated in the lemma.

Let R denote the Riemann surface over C\ {0} which is defined by analytic contin-
uation of the function f,(w)=w®". Like the function f,, so also the function 7, can be
lifted to R. We shall use the same notation for functions defined on C or on R. From
(4.1) and transformation (4.49) we know that

o wt—ia(w)

T,,,(w) =—— 2"/ and f(w) _ w"_f*(w)

=—. 4.134
w+7*{(w) ( )
Since the functions 7, and 7 are Mébius transforms of 77 and 7*, respectively, the con-
vergence in the cordial metric, which has been proved for limit (4.115), implies that the
limit
Jim_ 7n (w) = F(w) (4.135)
neN
holds true also locally uniformly for we€R in the cordial metric. Since the set (C\R_)U
(—00,0)%40 can be embedded into R, limit (4.43) follows from (4.135).
We have #*(w)€R for all weR. From (4.134) and the validity of limit (4.44) in the

cordial metric in C, it then is immediate that
0K, for we(—o0,0)+10,
Fu(w) €

— (4.136)
0K, for we(—o0,0)—10,
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with K, the disc defined in (4.8).
With the completion of the proof of limit (4.43) the proof of the lemma is com-
pleted. a

The last lemma in the present section contains information about the behavior of
the function r, in the domain C\R_ away from the origin.

LEMMA 8. There exists a constant R>0 such that for neN sufficiently large we
have
Irn(0e™)| < Ira(0e™)|  for t,t'e[—m, 7], [t <|t'|, 0> Rel/®, (4.137)
and Vo

" Cl(K,) for0<t<m o2 Rei/",
n(0€")

_ e (4.138)
Cl(Ka) fOT‘ ‘ﬂ'gtgoa Q?an 3

with Cl(-) denoting the closure, and the disc K, has been defined in (4.8) of Lemma 5.
For the error function e, = fo—1), we have the monotonicity

0>z %en(z) > (x') %en(z’) for l<z<a. (4.139)

Remark. The existence of the poles by, 1, ..., by (4] in case of a>1 shows that at least
estimate (4.138) cannot hold for all ze C\R_ if a>1.

Proof. (i) We start with a proof of (4.137). As in the proof of Lemma 7, we use trans-
formation (4.49), and based on this transformation, the notations introduced in (4.50).
Thus, for instance, 7, is defined by Fn(w):=rn(6,1/ “w). An important piece of the proof
of relation (4.137) is the verification of the inequality

9 .
55218 7n(0e") <0 forall o= R, n>ny, t€[0,7). (4.140)
Q
Note that contrary to the function arg 7,, its derivative in (4.140) is single-valued in any
domain in which 7, is analytic and different from zero.
The function 7,, has poles at l;nj, Jj=1,...,[a], and zeros at Z,;, j=1,...,2n+2+[0].
We define

=1 w—wénj =H( _@)’ (4.141)

j=1 j=1
2n+2+a]

Gu(w):= [ (w-2,) (4.142)

<.
]
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and

P (W) := Fp(w) (4.143)

Gn (w) '
The rational function Q,, in (4.141) has similarities with the function (4.54), but both
functions are different. For the next steps of the analysis it is important that the quotient
@n/én has no sign change on R_. Indeed, since l~)n]~ ¢R_, j=1,...,[¢], and since all
Z,;€(0,00), it follows that

wle] M >0 for weR._. (4.144)
n(w
The function 7, is analytic and different from zero in C\R_. From Lemma 5 we know
that it has analytic continuations to (—o0,0)+1%0 and (—o0,0)—10.
From (4.144) we know that arg 7, (w) =arg 7, (w) + (—1)[® 7 for weR _+i0, and from
(4.9) in Lemma 5 and the discussion after Lemma 5, we further know that arg#,(w)
is monotonically increasing for we(—o0,0)+40 and monotonically decreasing for we

(—00,0)—0. From (4.1), (4.141) and (4.144), we conclude that
wl®?, (W) |w=o < 0. (4.145)
From (4.1) it further follows that
arg((— 1)1 7, (w+i0)) = — arg((— 1)+ 17, (w—i0)) (4.146)

for we(—00,0). At the origin w=0, the function arg((—1){*1+1#,(w)) has a jump about
wa] if this function is considered with an argument running along the two banks R_+:0
and R_—i0 of R_.

The two functions arg#, and arg((—1)l/*1#,) are harmonic in C\R_ and have

harmonic extensions to (—oo,0)£:0. Also the expression
0 N AL 0 [o]+1 it it
05, arg(fn(0e™)) = °50 arg((—=1)!*" 7, (ge")), w=pe",
is harmonic in C\R_, which can easily be seen by mapping C\R_ conformally onto
the strip {v||Im(v)|<7}. From the monotonicity of arg{#,) on R_+140 and R_—10, it
follows that o(8/0p) arg(#n(0e'™))<0 and o(8/8p) arg(#,(0e ")) >0 for p€(0c0,0). From

this observation together with the symmetry property (4.146) and the harmonicity of
0(8/80) arg(—+,(0€e")) in C\R _, we conclude that

(%arg(fn(ge“)) <0 for te(0,7], 0>0,

a%arg(fn(ge“)) =0 fort=0, 0>0, (4.147)

Z%arg(f'n(ge“)) >0 for te[-m,0), 0>0.
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It follows from definition (4.143) that we have to study also the behavior of the
arguments of the functions C~2n and Gy, if we want to verify (4.140). For this purpose we

use the identity

0 " —bsint
= )= —— 4.14
B0 arg(pe'* —b) o b (4.148)
which holds for b&(0, 00), ¢€(0,00)\{b}, t€[—n, 7], and the inequality
0 b _, b, 2[b](o+1b])?[sin t|
- 1——e % )[1—=e"})| < = . 4.149
oo 2) (3| < B @

which holds for b€ C\R, ¢>0 and t€(0,n]. Both relations will be verified only after
(4.155), below. ‘

With the help of (4.148) and (4.149) we show that there exist R>0 and no€N such
that

’%arg Qnloe™)| < _(‘% arg G, (0e™) for g =R, n>ng, te(0,7]. (4.150)

Indeed, it follows from the definition of the transformed poles an, i=1,..., [aj, in
(4.12) that we either have l;njE(O, oo) or the l~)nj appear in conjugated pairs {Enjvi)nj}-
From (4.13) in Lemma 6, we know that there exists R>0 such that |b,;|<R for all
Jj=1,...,[a] and neN. Using estimate (4.149) for the conjugated pairs {571j,l:)nj}, and
identity (4.148) for the poles b,;€(0,00), we deduce from (4.141), (4.148) and (4.149)
that there exist R>0, ng€N and a constant ¢<oo such that

‘garg@n(ge”) < élsintl for o2 R, n2ng, te|—m, 7. (4.151)
(44

On the other hand, from (4.142) and (4.148) we deduce that

2n+2+[a] - 2n42+{a} .

0 ~ it . 2nj . znj
—arg G,(pe*") = —sint — 2 < —sint — (4.152
89 n( ) ; lgelt-znjl2 = ; |Q+an|2 )

for all =R and t€(0,7]. With the limits (4.38) in Lemma 7, we conclude that

2n+2+[a] . 2n+2+[a] -
= lo+Zn;] = [1+Zn; /0> ~ 4, =, 4 _Z<
nj X 2;iR0

Since from the inequalities in part (iii) of Lemma 7 together with limit (4.38) in Lemma 7,
we know that there exist infinitely many points z; <oo, j€N, we further conclude that

1
1 Z Zj =00 asn—oo. (4.154)

Z;j<e
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From the relations (4.151) through (4.154), it then follows that (4.150) has to hold true.
From (4.150) together with (4.143) and (4.147), we then deduce inequality (4.140).

By using the Cauchy—-Riemann differential equations in polar coordinates, it follows
that (4.140) implies

o .
alog |7 (0€)] =0 for o> R, n>ny, te(0,n], (4.155)

with R>0, and no€N, chosen as in (4.140). This inequality proves (4.137) for ¢,t'€ (0, 7].
Since the function r, is of real type, the same inequality follows for ¢,t'€[—m, 0].

For a completion of the proof of (4.137) it is still necessary to verify the two relations
(4.148) and (4.149). Identity (4.148) follows rather immediately from considering the
derivative of log(ge~b) and a subsequent taking of the imaginary part. Let now b=
[ble??e C\R. Proceeding as in the verification of (4.148) we arrive at

9 (1t it )(1 b i)} = ltlsin(t—=B) —[blsin(t+)
Imagag((l 0° >(1 0 )) To—Jble— A T o= ple—+A2
_ —2|b|(+b])? cos Bsint+20|b|* sin(2¢)
" o~ Ble T PP lg— e

(4.156)

From (4.156) the estimate (4.149) follows rather directly by trigonometric inequalities.

(i) We now come to the proof of the relations (4.138). Let R;>0 be so large
that (4.137) holds true for all n>no€N. Then for the [a] poles of 7, in C\R_,
we have |an|<Rl, Jj=1,..,[a], and the function 7, is analytic in the domain Dp,:=
C\(R_U{|w|<R:}).

Knowing that the limits (4.39) and (4.40) exist and that the limit (4.43) exists locally
uniformly on R._+1i0, we conclude from the discussion of the behavior of the function
arg7,, on R_+10 after the proof of Lemma 5 that we can choose R> R, such that arg7,
grows by more than 27 on the interval [-R, —R;]+10 for each n2ny.

Let K, be the disc defined by (4.8) in Lemma 5, and let v, € 3K, be the point which
lies closest to the origin. This point is unique if ®+0.5¢ N, and it is not difficult to verify
that

arg(ve) = An(-1)2)  mod(27). (4.157)

In case of @+0.5€N, the point v, is no longer unique, since in this case K,={jw|<1};
however, we can assume that (4.157) holds true.

For each n>ng, we can choose R(,y such that B} <R, <R and arg F,,,(R(n)ei")=
im(~1)122) mod(2r). Since 7,(R(nye") approaches 0K, as t—m—0, it follows from the
monotonicity (4.137) that at a point that lies nearest to the origin, we have

Fn(R(n)e") €CI(K,) for all t€(0, 7). (4.158)
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From (4.9) in Lemma 5, we know that
Fn(gei(”_o)) €0K, for Ri<o< . (4.159)

From (4.2) and (4.3) in Lemma 5, it follows that 7, (w)€(—1,1) for we[Ry,en*], and
from (3.22) together with (4.1), it further follows that 7, (w)€[—1,0] for we[egl/a,oo].

Hence, with (4.158) and (4.159), we have proved that
Fn(w)€CIK,) for wedH(y, (4.160)

with H,):={0€"™| R, <p< 00, 0<t< 7}

Since analytic functions are open mappings, it follows that (4.160) implies 7, (w)€
Cl{K,) for all we H,), and since the function 7, is of real type, it further follows that
7n(w)ECI(Ky) for we{oe'™ | R <o<oo, —m<t<0}. Because of R(,) <R, the last two
assertions imply that (4.138) holds true.

(iii) At last, we prove monotonicity (4.139). From (3.6) in Lemma 3 and definition
(3.7) of the positive measure u,, we have the representation

~a _ wa(2) [ ga(2)? _ _wa(z)
|z en(z)i—z(,q"(z)z — dun(x)—ml(z) (4.161)

with the polynomial w, defined in (3.1) and ¢, being the denominator of r};. Since
supp(un)=R_, it follows that

T 2
1) = [ 2 dyn ) (4.162)

is a strictly monotonically increasing function for z€ (1, 00). Since all zeros of

wn(z)

e (4.163)

are contained in (0, 1) and all poles in R_, function (4.163) is also strictly monotonically
increasing for z€(1,00). The two monotonicities together with (4.161) prove (4.139). O

5. Tools from potential theory

Several aspects in the proofs of Lemmas 6 and 7 were already in spirit of a potential-
theoretic nature; this orientation will become more dominant in the last two sections
of the present paper. In the present section we start with the introduction of some
terminology related to potential theory. We continue with an important result, which
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will be stated in Proposition 1. It deals with the representation of the log-function by a
Green potential. Fortunately, the underlying problem has already been studied in [19]
and in [14, Chapter 8]. Further, some special potential-theoretic results of an auxiliary
nature will be proved.

The (logarithmic) potential of a measure p is denoted by p(y;-) and defined as

p(ys; 2) o= / log ﬁ dpu(z). (5.1)

By cap(-) we denote the (logarithmic) capacity (for a definition see [22, Appendix I]
or [13, Chapter II]). For a domain DCC we denote the Green function in D by gp(z,v),
z,v€C (for a definition see [22, Appendix V] or [13, Chapter IV]). We assume that
gp(-,-) is defined throughout CxC. If D=C\R_, then it follows from (4.15) and

(4.16) that

zZ,V) =10 =10 I\/E+\/6|
gC\R_(v )_l ng(Z,’U)I_l gl\/z_\/—'l_;l (52)

with /- denoting the principle branch. For the domain Dg:={Re(z)>0} the Green

function is given by
|z+v

9py(2,v) =log ol (5.3)

It follows from (5.2) and (5.3) that for v€(0,00) the Green functions gz (re®,v), D=
C\R_ or D=Dy, are monotonically decreasing functions of t| with |¢|€[0, 7] for a given
r>0. For an arbitrary domain DCC and a measure p we define the Green potential as

o(u, D z) = / 90z ) duz). (5.4)

A useful tool in potential-theoretical investigations is the technique of balayage. A def-
inition for logarithmic potentials can be found in [22, Appendix VII], [13, Chapter IV]
or [18, Chapter II.4]. In our investigation we use this technique for Green potentials.
In order to avoid technical subtilities, we assume that all domains involved are regular
(with respect to Dirichlet problems) (cf. [22, Appendix II] or [18, Chapter 1.5]). Let
DCC be a regular domain with cap(C\ D) >0, i a positive measure carried by D, i.e.,
u(D)=|lp|l, and GCD a regular subdomain. Then there exists a positive measure fi,
called the balayage measure, such that

g(f, D;2)=g(p, D;z) for all 2z€ C\G, (5.5)
i is carried by D\G, and we have

llll=(G) = w(D\G) < |lall < Nl (5.6)
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By || - || we denote the total mass of a measure (or the total variation in case of a signed
measure). We have supp()C (supp(u)\GUIG)ND since [ is carried by D\G. The
balayage technique for Green potentials can be seen as a special case of balayage for

logarithmic potentials since Green potentials can be represented as the difference of two
logarithmic potentials (cf. {22, Appendix V] or [18, Chapter IL.4]). The inequalities in
(5.6) are consequences of the possibility that parts of the measure u are swept on pieces
of G that are contained in D, and that the mass swept there becomes irrelevant for the
Green potential g(ji, D;-). Since it is assumed that the balayage measure f is carried
by D\G, these parts of the swept-out measure p are no longer part of the balayage
measure fi.

Green potentials in the domain C\R_, which represent linear transformations
c+alog|-| of the log-function on a given interval [R,z]CR,, will play a fundamen-
tal role in the proof of Theorem 1. These potentials are studied in the next proposition.

PROPOSITION 1. Let c€R, a>0, R>4e~%/* gnd > R. Then there exists a positive
measure V=Vg R With supp(v)=[R,z] such that

g(u,C\R_;z)z/gc\R_(z,x) dv(z)=c+log|2|° for all z€[Ryz],  (5.7)

and for x— o0 we have
7Cli)rr;o(m/201!]1/” —alogz) =c+alogd. (5.8)
Remark. Proposition 1 shows that for z—o00 the total mass ||v| of the measure v

tends to infinity. However, the limit (5.8) shows more; it gives a quantitative estimate
for the growth.

The proof of Proposition 1 follows after the next theorem, which has already been
proved in [19], and with a more transparent and shorter proof in [14, Theorems 8.3.2
and 8.3.3].

THEOREM 4 ([19, Theorem 2]). For the domain Dy={Re(z)>0} and for any
a€(0,1) there exists a positive measure v, with supp(v,)=[a, b(a)], a<b(a)<1, such that
the Green potential

2+T

pompe dve(x) (5.9)

ga(z):=g(1/a,Do;z)=/log

satisfies

ga(2) =log|i2| for z€[a,b(a)],

X (5.10)
ga(2) > log 7 for z€ (b(a), 00).
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We have |vg||>|lve] and ¥'=b(a’)<b=b(a) for a'<a,

$<b(a)<1l  for ac(0,1), (5.11)
Jim b(a) = 1 (5.12)
Vo((ap,b(a)])=O(1) as a—0+ (5.13)
for any 0<a0<%, and
ali}r(r)aa exp(my/|lvall ) =2. (5.14)

The proof of Theorem 4 in [19] is based on a systematic study of the function

_ ¢ (G +t%)dt
fal2) = CO/O / S w0, (5.15)

with the three constants ¢y, c1 >0, c2>1 determined by the three conditions

©  (F-tH)dt
A+2)(G+e2)

< (G+tH)dt
Ja-&a-e)

/°°dcc T (P4t dt
2 [

1
colog —
Vi{1- t2)(('2§—t2 “ g

The proof of Theorem 4 demands delicate estimates of elliptical integrals and will not

(5.16)

be repeated here.

Proof of Proposition 1. The proposition follows from Theorem 4 by choosing the
constant a=a, in the theorem in an appropriate way for each z, and by transforming the
domain of definition Dy of g, in (5.9} into C\R_. Finally, it is necessary to use balayage
in order to make sure that supp(v)={R, z]. The appropriate choice for the parameter a
in Theorem 4 is

e—cla
a=a,:= - (5.17)
With this choice we define the function g as
§(w) :=20ag,, (e_c/za/\/ﬁ)
(5.18)

—-Qa/log

P, (1) = / gorR. (w,v) di(v).
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The second equality in (5.18) follows from (5.9), with 7, the image of the measure v,
in (5.9) under the mapping z+sw=e~*2~2. The third equality in (5.18) follows from
(5.2) and the definition 7:=2a2,. Thus, we have

7] = 2al|va, |- (5.19)

Under z»w=e~%*2~2 the interval [a,,b(a;)] transforms into [e~*/*b(a,)~2, z]. From
(5.11) and the assumptions made in the proposition we deduce that b,:=e~/*b(a,) 2 <
4e~¢/*< R. Hence, we have

supp(9) = [bg, 7] O [R, 2]. (5.20)
From (5.10) and the definition of § in (5.18), we deduce that
§(w):=2alog(e“?*\/w) = c+alog(w) for we(R,z). (5.21)

It is immediate from (5.18) that § is a Green potential defined by the positive measure o.
However, the support [51, z] is larger than [R,z]. Therefore we use balayage to remove
the measure ¥ from the subinterval [BI, R). Let ¥ be the balayage measure of the measure
U resulting from balayage out of the domain C\(R_U[R,z]). We then have supp(d)=
[R,z], and from (5.5) we learn that (5.21) implies (5.7) if we take v:=0. From (5.6) we
deduce that

170- (e, R) < 1511 < 11 (5.22)

It only remains to prove the limit (5.8). The interval [b, R) is the image of
[e=/2¢/V/R,b(a;)) under the mapping z—w=e~*272. From (5.12) and (5.13) we
deduce that

Jim #([bz, R)) =2¢ lim Va,([bz, R)) < 00. (5.23)

From (5.14), (5.9), (5.17), (5.18), (5.22), and taking v=0p, we deduce that

2= lim az exp(my/||va, || ) = lim a2/ exp(m/|[V]|/2a+ O(1))
= lim z7/2e~*/**exp(m/||v]|/22)

=00

(5.24)

since ||¥||—oo0 as x—o0. By taking logarithms and multiplying by 2« it follows from
(5.24) that

Ier;o(n\/2a||u|| —alogz) =c+2alog?2, (5.25)
which proves (5.8). a

The section is closed by two technical lemmas.
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LEMMA 9. (i) For any 0<a<3 and any R>0 there exists a positive measure A, with
supp(Aa)=[R, 0] and ||Aa]l<oco such that the Green potential go(z):=g(Xa,C\R_-;2)
satisfies

9a(2)=2"% for z€[R,00). (5.26)

(ii) Let the function h, be harmonic in the domain Dp:=C\(R_U{|z|<R}) with

0<a<3, R>0, and assume that h, has boundary values ho(z)=|2|=% for 2€8Dg. Then

there exists a constant c=c, such that

0<ha(z)<c|z|™* for z€Dg. (5.27)

Proof. (i) For 0<a<1i, we consider the function

Re(e(-0-5+)7m =) /sinwa  for z€ H,,
§(2) = . (5.28)
Re(e!05—M)m ;=) /sinra  for z€ H_,
define the positive measure A by
SN @ —ta)y g, 10
dA(z):= ;(cot Q)T dr= - 5;g(m+zy)ly=+o dz, x€(0,00), (5.29)

and then show that g=g(A\,C\R_;-). Proving the representation of § by the Green
potential g(S\,C\R_; -) demands some care since § is unbounded in C\R_, and the
measure A has infinite mass. Both problems appear near the origin. We therefore consider
the domains D, /,,=C\(R_U{|z|<1/n}), n€N. Since the normal derivatives 9/0y of §
to both sides of (0, c0) are negative, we see that g is superharmonic in C\R_. From the
Riesz decomposition theorem (cf. [18, Theorem I1.3.1]) we therefore know that § can be
represented as

g(z)=hn(z)-+-/ gDUn(z,v)dj\(v) for z€ Dy, (5.30)
Dl/n

with h, being the solution of the Dirichlet problem in the domain D,,, with bound-
ary values h,=§ on 9D, /,. Actually, the Riesz decomposition theorem only ascertains
that there exists a positive measure defining the Green potential on the right-hand side
of (5.30). However, using the representation of X given after the second equality in (5.29),
it can be shown with the help of the Green formula that the defining measure in the Green
potential in (5.30) has to be the measure A which has been defined in (5.29). A method for
recovering the defining measure of a potential has been shown in detail in Theorem 11.1.5
of [18] under conditions that are applicable in the present situation.

The function ¢(z):=+/z maps the domain C\R_ onto Dg:={Re(z)>0}. Let 4,
be the balayage measure of the Dirac measure 6,, z€ D, /,,, out of Dy, (cf. [22, Appen-
dix VII] or [18, Chapter I1.4]). By considering measures on Dy that correspond to &, ,,
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and §, under the mapping ¢, it is not too difficult to verify that there exists a constant
¢1< 00, which is independent of n, such that

b,m({l2] <1/n}) < % for n. > no (5.31)
and z€ D)/, fixed. Since
g(2) <27 for ze C\R._, (5.32)

a< % and §(z)=0 for all 2z€0D,/,\{|2|<1/n}, it follows from standard tools of potential
theory (the construction of a solution of a Dirichlet problem with the help of harmonic
measures) that

lim h,(z)=0 locally uniformly for 2 C\R_. (5.33)

n— oo
This proves that
§=g(\,C\R_;"). (5.34)

We note that from (5.2) we can deduce that there exists a constant ca<oo such that
go\r_(z,v)<cz Re(\/i_)) for veC, |v|<r, r>0 small, and 2€ C\R_ fixed. This estimate
together with (5.29) and a<% shows that the Green function go\r_(2,-) is A-integrable,
and therefore the Green potential g(A, C\R_;-) is well defined.

Let now R>0 be fixed and let A, be the measure that results from balayage of the
Green potential g(A,C\R_;-) out of the domain C\(R_U[R,00))CC\R_. Then we

have
2z for z€[R, 00),

9a(2) ==g(/\mC\R-;z)={ (5.35)

0 for z€(—00,0].

Since the balayage measure A, is carried by C\(R_U[R, 00)) (cf. the introduction of the

balayage technique in (5.5) and (5.6) for the special situation of a Green potential), we

have supp(Ay)C[R, 00). Thus, it only remains to show that A, is of finite mass.
Indeed, from the definition of balayage (cf. {22, Formula A.15]) we know that

9(Aa, C\R_;") can be presented as

- R ~
9(ha C\R_; 2) =g(A, C\R_; z) - / o\ R_u(Roo (5 V) dA(D).  (5.36)
0

Since C\(R_U[R,0)) is a subdomain of C\R_, we have

JC\(R_U[R,00)) (2, V) L gc\r _(2, V)

for all ve€C and 2€(0, R). Hence, from the M-integrability of gc\r_(z,-) we deduce the
;\-in’cegrability of gc\(R_U[R,oo))(z, -), which shows that the second term on the right-
hand side of (5.36) is bounded in a neighborhood of [R, o] seen as a subset of C, which
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implies that the difference )\0—5\|[R70<,] is a measure of finite mass, and therefore A, is,
like :\I[R,oolv also of finite mass. Note that by a Mobius transform, a neighborhood of
[R, o0] can always be mapped on a neighborhood of a finite interval.
(i) Let the function h be defined by
~ 1

h(z):= p— Re(2~%) for z€ Dg. (5.37)

The function & is harmonic in Dg and has boundary values

h(z)=|2|"* for z € (—o0,0] %10,

h(z)>R™® for |z|=R. (5.38)
Comparing the boundary values of A with those of hq on 8Dg, we see that
h(z)—ha(z) 20 for all z€ Dpg. (5.39)
If we choose c=1/cos max we deduce from (5.37) and (5.39) that
ha(z) <h(z) <clz|~*  for all z€ Dy, (5.40)
which proves (5.27). O

LEMMA 10. Set, as in Lemma 9, Dr:=C\(R_U{|z|<R}), R>0.

(i) Let the function h be harmonic in the domain Dgr with boundary values h(z)=0
for ze{—o00, —R) %0, h(z)=1 for |z|=R, 2#—R, and let h be bounded in a neighborhood
of infinity. Then for every r> R there exists a constant c=cgr, , such that

0< h(z)<cRe(l/vz) forall z€D,. (5.41)

il) For zp€(R,0) and r>zy there exist two constants ci=cy ., >0 and ca=
%0y

€2, 2,7 <00 such that
c1Re(1/v/v) < gpp(z0,v) < c2Re(1/y/v)  for all ve D,. (5.42)
(i) For zp€(R,00) and >R there exists a constant c=c,, rr such that

gc\r_ (20, %) <cgpglz0,2)  for all x€[r, 00). (5.43)
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Proof. (i) We use the function H introduced in (4.65), and define the function A by

2 1

Then it follows from (4.66) and (4.67) that h possesses the required boundary values,
and (5.41) follows from a geometric consideration of the function h.
(ii) Let ¢: Dp— Dy={Re(w) >0} be the Riemann mapping function with ¢(R+1)=1
and ¢(R)=o0c. Near infinity we then have the development
Co 1
go(z)=%+(’)<;> as z— o0, z€ Dp, (5.45)
with ¢9>0. From (5.45) and the concrete form (5.3) of gp,(z,v) the inequalities (5.42)
follow.

(iii) For z€[ry, 00), ro>2p, the estimate (5.43) is an immediate consequence of the
lower estimate in (5.42) and the concrete definition of gc\r _(20,v) in (5.2), from which
we see that there exists a constant c3<oo such that gc\r_(z0,v)<csRe(1/ VIv|) for
v€D,,. For the interval [r,rq] the estimate (5.43) is rather immediate. O

6. Auxiliary functions II

In the present section we introduce and study a quadratic transformation of the func-
tion r,. The function r, is a rational transform of the error function e,, and it has
been investigated in detail in §4. The final form of the quadratic transformation is the
function ¥,,, which will be defined via two intermediate functions R, and ®,,. We define

R, as
qu?*—1 1
Rn(w):=——TUa—rn(E,1/“w)—EE, neN, (6.1)
with 7, defined in (4.1). Comparing (4.1) with (6.1) shows that implicitly in (6.1) the

independent variable w of transformation (4.49) has been used. Based on R, we define

(Rn(w)+v/Ra(w)2—14), neN, (6.2)

d,(w):

- 8w

where the sign of the root is chosen so that R, (w) and the square root \/R,(w)?—4
have the same sign for w€R , near infinity. A Mobius transform ¢ is defined by

z

P(z): (6.3)

T sinwa+i(cosma)z’



288 H.R. STAHL

It is immediate that ¢: K, —-D={|w|<1} is a bijective map of the disc K, introduced
in (4.8) in Lemma 5, onto the unit disc D. Finally, the function ¥,, is defined as

R (6.4)

{wofbn(w) for we H, := {Im(w) >0},
T, (w):=
Yo®,(w) for we H_ :={Im(w)<0}.

In the next three lemmas relevant properties of the functions R,,®,, ¥, will be
proved. Each of these lemmas deals with one of the three functions. The last lemma
(Lemma 13) deals with ¥,,, and it contains all information that is relevant for the proof
of Theorem 1. The two earlier lemmas are only of intermediate interest, like the functions
R,, and ®,, themselves.

LEMMA 11. As in (2.10) and (2.8) of Lemma 2, we denote by &, the minimal
error Eny1y(a),n(fa,[0,1]), by Mny, §=0,...,2n+2+(a], the extreme points of the error
Junction e, and by fnj:=nn;en 1% the transformed extreme points. For the function R,
defined in (6.1), we have

_2<Rn(w)<2 fOT‘ w€[2—1/076;;1/a]’
R7z(ﬁnj):2(—l)j+[a]+1 for j=1,...,2n+2+[a], (6.6)

For R>1 sufficiently large, we further have
|R"(w)| >2 fO’I' all |'LU| = f’n,2k—l+[a]7 w¢R+7 (67)

k€{17 ’n+1}Y and ﬁ?t,?k—l+[tz] 2R7

R,(w)¢[-2,2] for all we C\(R_U{|lw|< R}U[0,e;/*]), (6.8)
Rp(w)< -2 for we (e, 00), (6.9)

the function w™*R,(w) is strictly monotonically decreasing for we(eﬁl/a, o0), the func-
tion R, is analytic in Dp:=C\(R_U{|w|<R}), and it has analytic continuations across
the interval (—oo, —R) from both sides.

Proof. We use the same notation as used in the proofs of Lemmas 7 and 8. The
independent variable w of R, is connected with the original variable 2z via transforma-
tion (4.49). It follows from (4.2) and (4.3) that

-1 -1

fi{w):= o1 < Fp(w) € a1 fa(w) (6.10)
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for w€[2‘1/‘1,£;1/°‘]. If we substitute the functions fi, k=1,2, instead of #,(w)=

rn(ei/ “w) into definition (6.1) of Ry, then this yields the upper and the lower bounds

_Aw?—1 Lt (_hw) e
Fi(w):=—o—fi(w) = o= (fl(w)fz(w)+1>w

=~ (=) 2u*~1+D)w = (-1)*2, k=1,2,

(6.11)

for R, and we[2-1/% &, */*]. From (6.10) and (6.11), we then deduce the bounds (6.5).

From (4.52) we know that at each transformed extreme point 7, j=1,...,2n+2+a],
equality holds in one of the two inequalities in (6.10), and therefore also in (6.5). From
(4.52) together with transformation (4.49) and the inequalities in (6.10) and (6.5), we
then deduce the identities (6.6).

From the monotonicity (4.137) proved in Lemma 8, we know that there exists
R >0 such that |F,| is monotonically increasing and decreasing on the two half-circles
{rett|t€[0,n]} and {re'|te[—m,0]}, respectively, for any > R. For the factor in front
of 7, in definition (6.1) of R,,, we have the lower estimate

4|lw)?* -1

|w]*

for we Dy-1/a D Dy (6.12)

qw?e—1
wa

Hence, it follows from (6.1) and (4.137) in Lemma 8 that the lower estimate (6.7) holds

on circles passing through transformed extreme points 7,; with R,(%,;)=2. Indeed, it
follows from (6.12), (6.1) and the monotonicity proved in (4.137) that for |w|=%,; we

have
4|w|?* -1 1 _ 421 1 N
|Rn(w)] 2~ [rn(eYw)| = —= > —2— 1, (Nj) = = = Ru(7inj) =2. (6.13)
" [w]e " |w|* ae g, !

From (6.6) we know that R,(7,;)=2 holds for j=2k—1+{a], k€{1,...,n+1}. In (6.7),
the index k€{1,...,n4+1} has to be chosen so large that R=1}, sx_14[a] is as large as
required in Lemma 8. It follows from (4.38) in Lemma 7, part (vi) of Lemma 7, and the
interlacing (2.16), that such a choice of k€N is always possible if n€N is sufficiently
large.

From the limits (4.38) and the limit {4.46) in Lemma 7, it follows that for a given
R>1 only a finite number of transformed extreme points 7,; can be contained in the
interval [0, R], and we can choose j, €N so that 7, j, <R <, j.+1. In the sequel we shall
exclude the j, +1 first extreme points #j,;, =0, ..., jr, from our considerations. Note that
the number j, depends on R>1, but it follows from (4.46) in Lemma 7 that there exists
jo€N such that j,<jo for all neN. From the alternation property (6.6), we conclude
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that the function R, has a zero #,; between two adjacent transformed extreme points
Mn,j—1 and fp;, i.e., we have

in,j—1 < Znj <flnj for j=jn+1,...,2n+2+[a]. (6.14)

The zeros I,; are in general different from the zeros Z,;, which have been studied in
Lemmas 5 and 7, but each pair {Z,;, Z,;} always lies in the open interval (7n,j-1,7n;)
for j=jn+1,...,2n+2+a].

Next, we show that relation (6.8) holds true for R>1 sufficiently large. We choose
n€eN fixed, and set

D:=Dr=C\(R_U{[w|<R}) with R:=1ip sk_14[a] (6.15)

and 2k—1+[a]=j,. We have already earlier mentioned that it follows from (4.46) in
Lemma 7 that R>1 can be made arbitrarily large if k€N is chosen sufficiently large.

In a first step we show that the function R, has in D exactly 2(n+1-—k)+1 zeros,
which all lie in the open interval (R, e, 1 “). Indeed, from (6.6) and (6.15) we know that
R,(R)=2. From Lemma 5 together with (6.15), we further know that 7, has no other
zeros in D than the 2(n+1—-k)+1 zeros Z,;, j=2k+[a],...,2n+2+]a]. It is immediate
that the function (4w?*—1)w~*F,(w) has exactly the same zeros in D. From (4.4)
in Lemma 5 we conclude that the zeros Z,; interlace with the 2(n+2—k) transformed
extreme points 7j,;, j=2k—1+[a],...,2n+2+[a], i.e., each zero Z,; is lying in the open
interval (9,41, ;) J=2k+[a), ..., 2n+2+[a].

From (6.7) together with (4.9) in Lemma 5 in combination with (6.12), we deduce
that

|[Rp(w)|>2 for all we dD\{R} (6.16)

and R>1 sufficiently large. Hence, we have

1 1 1
— <1< |2——| < ||Ra(w)]|— < |Ru(w)+—
Ful? ol " e
tu? (6.17)
=|—WT~_1 [ (w)] for wedD

and R>1 sufficiently large. By Rouché’s theorem we therefore deduce from (6.16)
and (6.17) that R, has only the 2(n+1—k)+1 zeros Z,;, j=2k+[a],...,2n+2+]q],
in D which are the ones that have been listed in (6.14) with k and j, chosen so that
2k—1+{a]=jn.

Let us now assume that a€(—2,2) is arbitrary. From (6.16) we deduce

la] < |Rn(w)| for all wedD. (6.18)
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Hence, it follows again from Rouché’s theorem that the two functions R, and R,—a
have the same number of 2(n+1—k)+1 zeros in D. From (6.6) we deduce that R,—a
has these 2(n+1—k)+1 zeros in the interval (R,.s;l/a]. Hence, it follows that R, (w)#a
for all we D\[0, s,fl/a], which proves (6.8) for the open interval (—2,2).

That the conclusion holds also true for the two limiting cases a=2 and a=-2 follows
from the detailed investigation of the zeros of the function R, —a in the domain D that
just has been done for a€(—2,2). Indeed, the zeros of the functions R,—a depend
continuously on a. If R,,~2 or R,,+2 would have a zero at a point wo€ D\ [0, 5;1/“], then
in every neighborhood of wy there should be a zero of R, —a with a€(—2,2). However,
this possibility has already been excluded. Hence, (6.8) is completely proved.

It follows from (6.6) that the largest transformed extreme point 7, 2n424 [a] =€n o i
a zero of the function R,+2, and a zero counting shows that this zero has to be simple.

/ey for

The function R,—a has exactly one zero in the open interval (7, 2n+1+[a] €n
a€(—2,2), and this zero converges to ﬁn12n+2+[a]=€;1/a as a——2+0. From this it
follows that (6.9) has to hold true for all we (e, e 00) since R, —a has no zero in the
interval (e, /%, 00).

It remains to prove that the function w™*R,(w) is strictly decreasing for we
(57—,1/0‘, 00). Inserting the identity 7, (w)=¢&,(w)/(2w*—é,(w)) in (6.1) yields after some

simplifications that

R, (w) =4wFp(w)— (1+7Fp(w))w™®

en (W) — Fw™* w e, (w)— fw2* (6.19)
=—du*————=——— = —4u° -
én(w)—2we w €, (w)—2
Since én(w)=eglen(5,l/aw), it follows from (4.137) in Lemma 8 that 0>w™“&,(w)>
(w')"¥é,(w') for en/*<w<w’. The monotonicity of w*R,(w) then follows from
(6.19). a

LEMMA 12. Let D(R) denote the disc {|w|<R}, and let further Dr and Dg, be
the domains Dg:=C\(R_UD(R)) and DR‘n:=C\(R_UD_(R—3U[O,6;1/a]) with R>1
and neN. As in (2.10) and (2.8) of Lemma 2 (and also in Lemma 11), we denote the
minimal error E,y14(a)n(fas [0,1]) by e,, the extreme points of the error function e,
by Mnj, 3=0,...,2n+2+[c], and the transformed extreme points by ﬁnj=n"js;l/“. For
the function ®,, defined in (6.2), for R=1, and for ng€N sufficiently large, the following
assertions hold true:

(i) We have

|n(w)| = ol for we[27/% e, £i0, n>ny, (6.20)

1/a

and the function |®,(w)| is monotonically increasing in (en, ", 00).
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(ii) The function @, is analytic and different from zero in Drn. It has analytic
continuations across the intervals (27/% e, Y “) and (~00,0) from both sides, there ezists
a constant c¢<oo such that for n>2ng we have

dist(®,,(w), Cl(K4)) < clw|™® for we H\D(R),

— — 6.21
dist(®,, (w), CH{K,)) < clw|™®  for we H.\D(R), (6:21)
with C1(-) denoting the closure, and
dist(®, (w), 0K, ) < clw|™®  for we (—oco, —R)+1i0, 6.22)
dist(®n(w), 0K,) <clw|™*  for we (—oo, —R)~—10. .
(iii) The constant c<oo in (ii) can be chosen so that
1
|®, (w)| 2 p for lw|=R, n=ng. (6.23)
(iv) For log|®,| we have the representation
log |®,(w)|= <pn(w)—/gD(z,x) diin(z) for weDg (6.24)
with a positive measure (i, on [R,e,?l/"] that is defined by
!
d
dji, (x) = Ry(z)dz for xe{R,e,‘Ll/"‘ , (6.25)

- m/4—R2(x)

and the function @, in (6.24) is the solution of a Dirichlet problem, i.e., it is harmonic
in the domain Dgp and has boundary values

en(w):=log|®,(w)| for wedDg. (6.26)

(v) On the intervals [fn;, Tin, j+1] between consecutive extreme points fjn; and M 41,

we have
ﬂ’n([ﬁnj’ ﬁn,j-}—l]) =1 f]nj 2R, (627)

and consequently
fn([Ry e =2n4+0(1)  as n— 0. (6.28)

Proof. (i) Since we know from (6.8) in Lemma 11 that R,,(w)?—4#0 for all we Dg ,,,
it follows that ®,, is analytic in Dg, for R>1 and n€N sufficiently large. Since from
(6.5) and (6.6) we know that R, (w)*—4 has double zeros at 7, j=1, ..., 2n+1+[a], the
function ®,, has analytic continuations across the interval (271/, ¢, Y %) from both sides.
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Only at the last transformed extreme point f, 2n42+a] =&n 1/ the function R, (w)*—4
has a simple zero, and consequently the function ®,, has an algebraic singularity there.
From (6.5) we deduce that

|Rn(w)+ /Ru(w)2—4|" = Ry (w)?+ (4~ Ry(w)?) =4 (6.29)
for we[2-Y/2, e;'/*], which proves (6.20). From (6.9) and the assumption made after

(6.2) with respect to the sign of the square root in the definition of ®,, we conclude
that both functions R, and ®,, are negative on the interval (en 1/ ®,00). From (6.2) we
therefore get

1@ (w)] = 3 (Jw™*Rn(w)|+ /w2 Ry (w)? —dw=2 ) (6.30)

Ja

for we(en '/ 00). Since it has been proved in Lemma 11 that jw™*R,(w)| is strictly

monotonically increasing for we (e, Ve 00), the monotonicity of |®,(w)| on (5;1/ *,00)
follows from (6.30).

(ii) First, we derive estimates for |®,| that hold throughout Dy for R>1 and neN
sufficiently large. These estimates will be derived in the upper half-plane H,; the corre-
sponding results in the lower half-plane H_ then are a consequence of the symmetry of
the function |®,| with respect to R.

Let the two sets D) and Dy be defined as Dy:={weH, ||R,(w)|>2} and D;:=
H\D;. It follows immediately from (6.2) that on the set Dy we have

1B, (w)| < ﬁ (2+v8) < ﬁ for we D,. (6.31)

To prove a corresponding estimate on Dy turns out to be more involved. Because
of (4.13) in Lemma 6 the function R, is analytic in Dp for R>1 sufficiently large.
The set D; is open in H,. From (4.9) in Lemma 5 together with (6.1) it follows that
|R,(z£i0)|>2 for z€(—00, —R] if R21 is sufficiently large. Taking into consideration
(6.7) in Lemma 11, it follows that the domain D;\D(R) is contained in a single com-
ponent of Dy if R>1 is chosen as in (6.7) and sufficiently large. From the assumption
made after (6.2) with respect to the sign of the square root in the definition of ®,,, we
then deduce that

arg[MH<z and ‘—————VR"(’”)Z% <V2 (6.32)

Rn(w) 4 Rn(’IU)
for we D;\D(R). It is immediate that for z€D(1), we have |,.v/1-2% —1|<|z|%. From
(6.2), it then follows that
Rp(w)
4>

&, (w)—

- ”;l"u(;l‘;” |V/1=4/R,,(w)? —1|

4 1 —_
Sl R B O CE PP

(6.33)
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From (4.138) in Lemma 8 we know that there exists ¢;<oco such that |7, (w)|=
Irn(srll/“w)Kcl for we Dy and R >1 sufficiently large. From (6.1) and (6.33) we therefore
conclude that there exist R>1 and ¢; <oo such that

4wa

+ 1 Bn(w) —fn(w)'
) (6.34)
1 |7 (w)|+1 < &

< < f D\D(R).
Swlr T dupe S T weDNDE)

Since 0€ K,, and since from (4.138) in Lemma 8 we know that 7, (w)eCl(K,) for we
DrnH, and R>1 sufficiently large, it follows from (6.31) and (6.34) that there exists
c3<oo such that

dist(®,,(w), CI{K,)) < for we DrNH,, (6.35)

3
W
where R is the same constant as that used in (6.34), and the constant ¢z is the maximum
of g and co. (The closure of the open disc K, has been denoted by Cl(K,,) since the
notation K, has already been used to denote conjugation.) Since ®,, is a function of real
type, a conjugated result of (6.35) holds in H_, which then proves (6.21).

Above, we have seen that (—oo, —R)CD; for R>1 sufficiently large. From (6.34)
and relation (4.9) in Lemma 5, estimate (6.22) therefore follows. The constants ¢ and R
are the same as those in (6.34).

(iii) Choose ki, k2€{1,...,n+1} so that

R(l.'n) = ﬁn.'zkl —1+{] <R< R(2,u) = ﬁ?l.2A72—1+[(Y]

for all n22ng, n€N. Because of the limits (4.77), the limits (4.38) in Lemma 7, and the
interlacing (2.16), such a choice is always possible. Because of (6.7) in Lemma 11, the
half-circles {weH, ||w|=R; n }, j=1,2, are contained in D;. For k),k2€N and neN
sufficiently large, from (6.2) and (6.32) we deduce that

8!W|" 4|w|“
for |lw|=R(; n), and also for |w|=R ). Since ®, is analytic and different from zero in
the half-annulus {we€H, | R(1 n)<|w|<R(2,n)}, it follows from (6.36), (6.20), (6.22) and

R(1,») sufficiently large that |®,(w)|>1/4R ny for weH,, R ny<|w|<R(z ). This
conclusion proves (6.23).
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(iv) Next, we prove (6.24). From definition (6.2) and identity (6.20) we deduce that
0 0 al_ . 0 o
8—y10g|<1>n(w)| = a—loglén(w)Sw |—1a—wlog(<1>n(w)8w )
(Rn++/RZ— R.R,
—i ) (w) = ( R+ )(w) (6.37)
n+\/ R2 n+\/ R2 \/ "4
iR,(w) _ _ Ry(w)

T JRa(wE-4 A-R,w)?

for w=x+z’y€[2_1/"‘,5;1/"]+i0. From (6.5) and (6.6) in Lemma 11 we deduce that at
_1/07651/0[

each transformed extreme point 7,; in the open interval (2 )} both functions
R!, and \/4—R2 have a simple zero. These two zeros cancel out in the quotient in
the last term of (6.37). Consequently, this guotient has no sign changes in the interval
2=V 7Y/*). From (6.9) in Lemma 11 and the assumptions made with respect to the
sign of the square root in (6.2), it follows that the last term of (6.37) is positive imaginary
for we (en Ve o l/Q—HS), d>0small. Since 4— R2 has a simple zero at 551/“=ﬁn12n+2+[a],
it follows that the last term of (6.37) is positive on (271/%, 5;1/“)4-1'0. Hence, the measure
[, defined by

!
2)i= @A g i (6.38)

dﬂn( )‘_ ﬂ_m,

is positive. The constant R>1 in (6.37) has to be chosen large enough so that @, is
analytic and different from zero in Dg, and n€N has to be so large that &, 1«5 R.

Let the function @, in (6.24) be the solution of the Dirichlet problem in Dgr with
boundary values (6.26). The representation (6.24) follows from the Riesz representation
theorem (cf. [18, Theorem I1.3.1]) together with (6.37) and (6.38) in the same way, as this
theorem has been applied for the proof of representation (5.34) in the proof of Lemma 9.
The place of (5.29) is now taken by (6.37). Again, the Riesz decomposition theorem
only ascertains that there exists a representation of the form (6.24); the more specific
assertion that the measure fi,, in (6.24) is given by (6.38) can be shown with the help
of the Green formula. Details of this method for recovering the defining measure from a
potential has been proved in Theorem I1.1.5 of [18] under conditions that are applicable
in the present situation.

1/0}

(v) For two adjacent transformed extreme points fin;, fin,j+1€[R, €5 " |, we have

Titt Ry (x)dz _1 2 dt

n([nnjvnnyj‘*'l]) s /4 — R T J_oVA—1t2

which proves (6.27). In the last equality in (6.39) we have applied the substitution

=1, (6.39)

z—t:=R,(z) and have used (6.6). Note that between two adjacent transformed extreme



296 H.R. STAHL

points the function R,, is monotonic. Since the interval [2~1/%, e, */*] contains 2n+2+[a]
transformed extreme points 7, ;, the estimate (6.28) follows from (4.46) in Lemma 7 for
any R>1. O

LEMMA 13. Let the domain Dr:=C\(R_UD(R)) and the minimal error ¢, be
defined as before in Lemma 12, let further no€IN be chosen so that 5;01/“>R. Then the
following assertions hold true for the function ¥, defined in (6.4):

(i) For R21 sufficiently large, there exists a constant c<oo such that

[log | ¥, (w)|| <clw|™*  for we[~oo0, —R] %10, (6.40)
|log(|4w®sin(ra) ¥, (w)])| < clw|™®  for we[R,e; /] £i0, (6.41)
[log [P, (w)||<c for lw|=R, (6.42)

and n>ng.
(ii) For R>1 sufficiently large, we have the representation

log | ¥, (w)] :wn(w)—/gDR(z,z) dpun(z) for weDp (6.43)

and pn a measure of finite mass defined on [R,00]. On [R,e, V%) the measure pn is

very similar to the positive measure fi,, in representation (6.24) of Lemma 12. With the
same constant ¢ as used in (6.40), (6.41) and (6.42), we have

lttn([R, 2])) = fin([R, z])| S cx™  for all z€[R,e; '], (6.44)
and further we have
;un([jn,j—lyinj]) = ﬂn([-’i‘n,j—la j'nj]) =1 (645)
for j=j1,...,2n+2+[a], where Z,;, j=1,...,2n+2+(a), are the zeros of the function R,
which have been studied in Lemuna 11, and the index j, is determined by the condition
. ji 1 SR<dpn;,. On [en'’®, 00] we have the estimate
||un|[5;1,ayoo)|| <3 for n2ny(R). (6.46)

The function v, in (6.43) is harmonic in the domain Dg and has boundary values

Yn(w)=log|¥,(w)] for wedDg. (6.47)
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Proof. The proof of the lemma will be carried out in the upper half-plane H, =
{weC |Im(w)>0}. The transfer to the lower half-plane H_ is immediate. Since the
Mébius transform ¢ defined in (6.3) is analytic in a neighborhood of the closed disc
Cl{(K,), it follows from {6.21) in Lemma 12 that ¥, is analytic in §+\(b(—mu{5;1/a})
for neN and R>1 sufficiently large. Note that ®, and therefore also ¥, has analytic
continuations across the three subintervals of R\{0,271/% ¢, Y “1.

(i) The Mobius transform i is a bijective map of the circle 0K, onto the unit
circle 0D. Hence, from estimate (6.22) in Lemma 12, it follows that there exists a
constant ¢>0 such that for neN and R>1 sufliciently large, we have

U, (w)|—1]| <clw|]™*  for we (—o0, —R]+10. (6.48)

Since the same considerations can be repeated on H_, estimate (6.40) follows from (6.48).
At the origin the Mobius transform 1 has the development

w 1 cosmo 5, cosma 4
= = — — VN 6.49
v(w) sinTta+i(cosma)w  sin ma sintra sintra * (6.49)
From definition (6.4) it therefore follows that
1
U, (w) = pre— O, (w)+ 0@, (w)?) as &, (w)—>0. (6.50)

Using identity (6.20) of Lemma 12 together with (6.49), we deduce that there exists a
constant ¢>0 such that for n€N and R>1 sufficiently large, we have

|| ¥, (w)dw*sin Ta|— 1| < clw|™*  for we[R, e/ +i0. (6.51)

The same inequality holds for we[R,en 1/ “]—140 since |¥,| is symmetric with respect
to R. Hence, estimate (6.41) follows from (6.51).

From estimate (6.21) and (6.23) in Lemma 12, we deduce that there exists a constant
c1< oo such that for neN and R>1 sufficiently large we have

Cllg 0, (w)| <er for |w|=R. (6.52)
The estimate (6.42) follows from (6.52). Note that in (6.42) the radius R>1 is fixed.
(ii) Repeating the analysis that has been done for proving representation (6.24) in
part (iv) of the proof of Lemma 12, or the derivation of representation (5.34) in the proof
of Lemma 9, we again apply the Riesz representation theorem (cf. [18, Theorem I1.3.1])
for a proof of representation (6.43). Using, as before, Theorem II.1.5 from [18], where
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a technique for recovering the defining measure from a potential has been described in
detail, we see that the measure u, in representation (6.43) is given by

1
dun(z)y=— 56?; log |V, (z+iy)|dz for z€[R,00), y=+0. (6.53)
T
The harmonic function ¥, in (6.43) is the solution of the Dirichlet problem in Dg
with boundary values given by (6.47).
From the Cauchy-Riemann differential equations we know that

(%log O, (z+iy)| = —% argV,(z+iy), w=z+iyeDrnH,. (6.54)

In the simply-connected domain DrNH,, the functions arg ¥, and arg®, are well
defined if we fix their value at one point. From (6.54), (6.53), (6.38) and (6.37), we
deduce that

tn([R,z]) = arg ¥, (R+10)—arg ¥, (z+10),

. , : -1 (6.55)
fn([R, z]) = arg ®, (R+i0) —arg &, (z+40) for z€[R,e;1/*].
From the definition of the Mébius transform 4 in (6.3), it follows that
arg U, (w) = arg @, (w) —arg(sin ra +i(cos 7a) @, (w)) (6.56)

for weDpMH,. From (6.55), (6.56) and identity (6.20) in Lemma 12, it then further
follows that

ln([R, 2)) = fin([R, 2])| <sin”'((cot ma) 2o™®) for ze [R, e/, (6.57)

which proves (6.44). From (6.2) and the definition of the points Z,;, j=1,...,2n+2+[al,
as the zeros of the function R,, it follows that ®,(Z,;)€iR for j=1,...,2n+2+[a),
and therefore the identities (6.45) are a consequence of (6.55) and (6.56).

The Mébius transform ¢ maps the interval [—1,1]CCl(K,) onto the semi-circle

_ tsin(ra)—it?cos(ra)
~ sin®(ma)+t2cos?(ra)

Co: (1) with —1<¢t<1. (6.58)
By {a} we denote dist(a, N). If a€N+1, then we have Y(w)=(=1)w.

From part (i) of Lemma 12 together with (6.9) and the definitions (6.1), (6.2) and
(6.4), we know that ®,(z) is monotonically decreasing from — &, to —1 if z runs through

/ * 00) from e Veto +00. Consequently, arg ¥, (x) varies monotonically

the interval [5;1
if = runs through the interval [e, e 00). The maximal span of this variation is T{a} < 3.

Hence, estimate (6.46) follows from (6.53) together with (6.54). |
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7. Proof of Theorem 1

The proof of Theorem 1 is based on a comparison of the function log|¥,| studied in
the last section with a special Green potential of the type introduced in Proposition 1
of §5. Representation (6.43) of log|¥,| in Lemma 13 contains a Green potential with
defining measure p,,, its total mass ||, || being approximately 2n. The comparison with
the potential from Proposition 1 will allow us to derive an asymptotic estimate of ¢, that
is precise enough to prove the limit (1.1) in Theorem 1.

In Lemma 1 it has been shown that there exists some freedom in choosing the
numerator degree m,, of the approximant r;. Instead of considering identical numerator
and denominator degrees m,=n, as has been done in Theorem 1, it turns out that the
choice of numerator degrees m,=n-+1+[a] is more favorable, and this has indeed been
the degree chosen in (2.4) and used throughout §§ 3, 4 and 6.

The two domains C\R_ and Dg:=C\(R_UD(R)) will frequently be used, where
R>0 is a fixed number chosen large enough so that all the conclusions of Lemmas 13, 9
and 10 hold true. In Proposition 1 of §5 the existence of a Green potential g(v, C\R_;-)
with special properties has been established. In in this proposition we choose for the
constants ¢ and x the values

c:=log(4|sinTal) and z,:=e;'* forneN. (7.1)

We assume that R>4e~%/* and neN so large that en'/*>R. With the special choice
(7.1) the defining measure of the Green potential in (5.7) of Proposition 1 is denoted
by v,. It is a positive measure supported on the interval [R,x,,]=[R,€;1/ “]. Relation

(5.7) in Proposition 1 then has the form
g(vn, C\R_;w) = /gC\R-(w, u) dvp (u) = log(4|sin ma|) + alogw (7.2)

for we[R,e,—,l/a], and from (5.8) in Proposition 1, we know that the total mass ||v,|| of
the measure v, in (7.2) satisfies the relation

llrgo(w\/2a||un|| +loge,,) =log(4]sin ra|) + arlog 4. (7.3)

Note that because of ¢,,—0 as n— 00, we have x,, —00 as n—ooc.
We consider the sum

dp(w):=log |V, (w)|+g(vn, C\R_;w) forweC\R_., neN, (7.4)

and derive estimates for the functions d, on 0Dg. Since g(vn, C\R_;w)=0 for all
wE(~00,0), we deduce from (7.4) and (6.40) in Lemma 13 that there exists c<oo such
that

|dn(w)| < clw]™*  for we(—o0, —R). (7.5)
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From (7.4), (7.2} and (6.41) in Lemma 13, we deduce that
|dn(w)| < clw|™*  for we[R,e; /). (7.6)

The Green function ge\r_( -, %), u€R,, is monotonic on circles around the origin, as
has been discussed after (5.3) and follows directly from (5.2). Since v, is a positive
measure, it follows from the monotonicity that the Green potential g(v,, C\R_;re®) is
a monotonically decreasing function of |¢] for [¢t|€[0, 7] and r>0. We deduce from (6.42)
in Lemma 13 and the monotonicity that the constant ¢ in (7.5) and (7.6) can be chosen
so that

|dn(w)| <cR™% for lw|=R. (7.7)

Putting the estimates (7.5), (7.6) and (7.7) together, we see that |d,(w)|<c|w|™* for
weODg.

The Green potential in representation (6.43) of Lemma 13 for log |¥,| and the Green
potential g(v,, C\R_;-) in (7.2) are defined in two different domains Dr and C\R_.
We will develop estimates for a comparison of both types of Green potentials. With
representation (6.43) in Lemma 13, we rewrite (7.4) as

dn(w) = Yn(w) = [ gpp(w, 1) dpn(u)+ | go\r - (w, u) dvn (u)
/ / (7.8)

= 1/17,,(10) +5n(w) +/gC\R_(w7 u) d(l/n_ﬂn)(u)

with
5u(w) = / lg0\R (W, ) — g (0, )] i (). (7.9)

LEMMA 14. Both functions ¥, and 6, in (7.8) are harmonic in Dg, and there exists
a constant c<oo such that for R>0 sufficiently large we have

[pn(w)| Scw™  for w2 R (7.10)
and
|6 (w)| € c/1/w  for w2 R, (7.11)

with ag:=min(a, %—6) for a given €>0.

Proof. From the definition of ¢, in (6.47) of Lemma 13 and the estimates (6.40)
and (6.42) in Lemma, 13, we know that there exists a constant ¢; <oo such that

[Vn(w)| < ar|w|™® for wedDp and ne N. (7.12)
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By choosing, if necessary, a new constant ¢;, we can assume that (7.12) holds also true
with the exponent —cayg instead of —a. From part (ii) of Lemma 9 we know that there
exists a function Ao, which is harmonic and bounded in Dg, and from (7.12) and (5.27)
in Lemma 9 we deduce that

[n(w)| < c1ha(w) S cg|lw|™*°  for we D, (7.13)

where ¢y <oo is an appropriately chosen constant. Assertion (7.10) follows from (7.13).
Next, we come to the proof of (7.11). We shall show further down that for R3>R
there exists ¢z <oo such that

|9(ttnl(R,00)> Dr;w)| <3 for R<|w|< R3 and all n€N. (7.14)

The difference dr(-,u):=gc\r_(,u)—gpg(-,u) is harmonic in Dg and dgp(-,u)=
gc\r_(-,u) on ODg for all ue Dg. Hence, it follows from (7.9) and (7.14) that

[6n(w)| <ecs  for |lw|=R,

|6n(w)|=0 for we[—o0, —R], (7.15)

for all neN. Since dy,, is harmonic in Dg, it follows from (7.15) and part (i) of Lemma 10
that for R4> R there exists ¢4 <oc such that

|6n(w)| < csRe(y/1/w)  for |w| > Ry, neN. (7.16)

Estimate (7.11) then follows from (7.14) and (7.16).

It remains to verify (7.14). For this purpose we investigate the behavior of the
measure [, as n—o0o. From (4.43) in Lemma 7 together with part (iv) of the same
lemma, we know that the sequence of functions Fn=rn(63,/ “.), neN, converges locally
uniformly in Dg to a function 7 that is analytic in Dg if R>0 is chosen so large that
b1,y 13[0,] €D(R). With definition (6.1) it then further follows that also the sequence R,
n€N, converges to the function ﬁ(w):zw‘°(4w2“—l)F(w)—-w_‘" locally uniformly for
w€ Dpg. From the definitions (6.2) and (6.4) it follows that the two sequences ®, and ¥,
n€N, converge to functions ® and ¥, respectively, uniformly on a neighborhood of every
compact subset of [R,00)+¢0 as n—oo. The limit functions ® and ¥ have analytic
continuations across [R,o00) from both sides, but these continuations define different
branches. All functions involved are analytic and different from zero in a neighborhood
of compact subsets of [R, co).

From representation (6.53) of the measure p, and the convergence of the func-
tions ¥, n€N, we deduce that the density functions

dun(z) 10 .
SnlT) _ 2 9 1o |, , R, 0), .
T = By 0g |¥,(z+10)|, z€[R,0) (7.17)
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of the measures u, converge uniformly on a neighborhood of every compact subset of
[R,00) to the density function
du(z) 1 0

T :;8—ylog|l11(x+20)|, z€[R, 00), (7.18)

of the limit measure p of the sequence of measures {,}. As a uniform limit, the function
U and its derivatives are bounded on compact subsets of [R, o). From (7.18) we therefore
know that the limit measure u has a bounded density function on [R, c0). Consequently,
for any Rs> R there exists ¢5 <oo such that

0< 'g(ﬂ'nl(R,Rs), C\R_; w)l < g(|/1,n”(R,R5)’ C\R_7w)
e (7.19)
:/ go\r_(w,u) d|p,|(v) <cs for weC and neN.
R

In the proof of Lemma 7, and there especially in the proof of (4.81), it has been
shown that the sequence of products H?ZTH[Q]B( -, 2,5), n€N, converges to the infinite
product (4.79) locally uniformly in C as n—oo, and the infinite product (4.79) is not
identically zero. With the same arguments as applied after (4.79), we conclude that there
exist ¢ <oo and ng€N such that

2n+2+{a)

Z ——<¢; for all n>=ng, (7.20)
i=2t[a] V20
where the Z,;, j=1,...,2n+2+[a], are the zeros that the function 7, has in C\R_.
From (7.20) and the estimates (6.44), the equalities (6.45), and estimate (6.46), it
follows that for any R;>R there exist constants ¢7,c5<oo and ny€N such that the

estimate
oo
'g(//'nl(Rpoo)vC\RA;w)lS/R go\r_(w, u) d|p,|(u)

7

2n+1+[a]

< S (eEgor. (w Eay)
J=j7 (7.21)
+(1'5+Cj;,(-3n+2+[a])QC\R—(“”jr—tgn+2+[a})
2n+1+{a]

Ser Z gc\r_(w, Znj) <8
j=jz—1

holds true for |{w|=R and n>nz, where the &,;, j=jr, ..., 2n+2+[a], are the zeros of the
function R, in Dg,, the index j7 is determined by the condition %,, j,—1 <R7<Zn;,, and
the Z,;, 7=Jj7z—1,...,2n+1+ [, are zeros of the function 7,.
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Indeed, the Green function gc\r_(w,u) is monotonically decreasing for u€[R, 0o)
and |w|=R fixed, which implies the second inequality in (7.21). Note that it fol-
lows from (6.44) and (6.45) in Lemma 13 that |p,|([Zn -1, %n;])<1+cZ,%_; for j=

n,j—1
J7, - 2n+1+[a], and from (6.44), (6.45) and (6.46) that |un|([Zn 2n+2+ia),00))<
1.5+ez . o +a)* The third inequality in (7.21) is a consequence of the inequalities

Zn,j=1<Znj, j=2, ..., 2n+2+[a], which follow from (6.14) and the discussion after (6.14).
From the explicit definition of go\r_(w,u) in (5.2), it is immediate that there exists
C9 < 0o such that

0<ge\r_{(w,u) SCQ% for [w|=R and u€ (R, 00)}. (7.22)

The last inequality in (7.21) follows from (7.22) and (7.20). From (7.19) and (7.21), then
inequality (7.14) follows. O

After the completion of the proof of Lemma 14, we come back to the main stream of
the proof of Theorem 1. From (7.8}, (7.10), (7.11) and (7.6) we deduce that there exists
a constant ¢<oo such that

’/gC\R_(w,u)d(Vn—p.n)(u) Lclw|™* for wE[R,s;l/"] (7.23)

with a0:=min(a, %——E), £>0. From the estimate (7.23) we shall deduce a relation be-
tween the two masses ||p,|l and ||| of the measures u, and v,, respectively. Let
fin, denote the measure resulting from balayage of the measure p, out of the domain
C\(R_U[R, e, '™)). From inequality (6.46) in Lemma 13 together with (5.5) and (5.6),
we deduce that

unll =il < - (7.24)

Using the measure \,, and the Green potential g.,(2)=g(Aa,, C\R-;2) introduced be-
fore (5.26) in Lemma 9, it follows from (7.23) and identity (5.26) in Lemma 9 that

dl,n(w) = /gC\R_(ws U) d(”n,_i}'n "'C/\(x())(u) <0 (725)

for we[R,en Y “]. Since the measure )\, is positive, the function d; , is subharmonic in
C\(R_U[R,e,_,l/“]). We have d; ,(w)=0 for weR_. Hence, from (7.25) it follows that
dy n(w) <0 for we C\R_, which implies that (0/0y)d:1 »(x+40)<0 for zeR_. From the
Gauss theorem (cf. [18, Theorem II.1.1]) applied to C\R_ it then follows that

(¥ —fin = Ay ) ([ R, 00)) <O, (7.26)
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which implies with (7.24) that
[l < il 4 5+l Aao - (7.27)

Complementary to (7.25), we consider
da n(w) ::/gD(w,u)d(vn—ﬂn+c)\a0)(u) >0 for we[R,e; ¥, (7.28)

where the estimate again follows from (7.23) and (5.26) in Lemma 9. From (7.28), it
then follows that

(Vn— fin+ g ) ([R, 00)) =0, (7.29)

which implies that
[vall 2 lpnll =5 = clXas]l- (7.30)

From Lemma 9 we know that ||\, || <co. Hence, we deduce from the relations (6.44) and
(6.45) in Lemma 13, the relations (6.27) and (6.28) in Lemma 12, (7.27) and (7.30) that
lvnll=2n+0O(1) asn— oo. (7.31)

From (7.3) (or from (5.8) in Proposition 1) we know that (7.31) implies that

lim (7/2a(2n+0(1)) +loge,) = log(4|sin 7a|) + alog4, (7.32)

n—oo

where (1) denotes the Landau symbol from (7.31). From (7.32) we deduce that

lim (27van +loge,) =log |sinmal+(1+a)log4 (7.33)
n—00

or

lim £,e?"Vo™ = 41%%|sin 1al, (7.34)
n—+oo

which proves (1.2) in Theorem 1. With this last conclusion the purpose of the paper is
completed.
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