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1. Introduction

The study of face numbers of polytopes is a classical problem. For a simplicial d-polytope
P let fi(P ) denote the number of its i-dimensional faces for −16i6d−1 (f−1(P )=1 for
the empty set). The numbers fi(P ) are conveniently described by the h-numbers, de-
fined by hi(P )=

∑i
j=0(−1)i−j

(
d−j
i−j

)
fj−1(P ) for 06i6d. The Dehn–Sommerville relations

assert that hi(P )=hd−i(P ) for all 06i6
⌊

1
2d

⌋
, generalizing the Euler–Poincaré formula.

In 1971, McMullen and Walkup [20] posed the following generalized lower bound con-
jecture (GLBC), generalizing the classical lower bound conjecture for simplicial polytopes
(see [11, §10.2]).

Conjecture 1.1. (McMullen–Walkup) Let P be a simplicial d-polytope. Then
(a) 1=h0(P )6h1(P )6...6hbd/2c(P );
(b) for an integer 16r6 1

2d, the following are equivalent:
(i) hr−1(P )=hr(P );
(ii) P is (r−1)-stacked, i.e. there is a triangulation K of P all of whose faces of

dimension at most d−r are faces of P .
The inequality h1(P )6h2(P ) was proved by Barnette [2], [3] in the early 1970s,

and is called Barnette’s lower bound theorem. Around 1980 the g-theorem was proved,
giving a complete characterization of the face numbers of simplicial polytopes. It was
conjectured by McMullen [18], sufficiency of the conditions was proved by Billera–Lee [4]
and necessity by Stanley [28]. Stanley’s result establishes part (a) of the GLBC.

As for part (b), the implication (ii)⇒ (i) was shown in [20]. The implication (i)⇒ (ii)
is easy for r=1, and was proved for r=2 by Barnette [2] and Billera–Lee [4]. The main

Research of the first author was partially supported by KAKENHI 22740018. Research of the

second author was partially supported by Marie Curie grant IRG-270923 and by an ISF grant.



186 s. murai and e. nevo

goal of this paper is to prove the remaining open part of the GLBC. In particular, it
follows that (r−1)-stackedness of a simplicial d-polytope, where r6 1

2d, only depends on
its face numbers.

McMullen [19] proved that, to study Conjecture 1.1 (b), it is enough to consider com-
binatorial triangulations (see their definition below). Thus we write a statement in terms
of (abstract) simplicial complexes. For a simplicial d-polytope P with boundary complex
∆ (we regard ∆ as an abstract simplicial complex), we say that a simplicial complex K

is a (combinatorial) triangulation of P if its geometric realization is homeomorphic to a
d-ball and its boundary is ∆. A triangulation K of P is geometric if in addition there
is a geometric realization of K whose underlying space is P . For a simplicial complex ∆
on the vertex set V and a positive integer i, let

∆(i) := {F ⊆V : skeli(2F )⊆∆},

where 2F is the power set of F and skeli(2F ) is the i-skeleton of 2F , i.e. the collection of
all subsets of F of size at most i+1.

Theorem 1.2. Let P be a simplicial d-polytope with h-vector (h0, h1, ..., hd), ∆
be its boundary complex and 16r6 1

2d be an integer. If hr−1=hr then ∆(d−r) is the
unique geometric triangulation of P all of whose faces of dimension at most d−r are
faces of P .

Note that the uniqueness of such a triangulation was proved by McMullen [19].
Moreover, it was shown by Bagchi and Datta [1] that if Conjecture 1.1 (b) is true then
the triangulation must be ∆(d−r).

Since the above theorem is described in terms of simplicial complexes, it would
be natural to ask if a similar statement holds for triangulations of spheres, or more
generally homology spheres. Indeed, we also prove an analogous result for homology
spheres satisfying a certain algebraic property called the weak Lefschetz property (WLP,
to be defined later).

Theorem 1.3. Let ∆ be a homology (d−1)-sphere having the WLP over a field
of characteristic 0, (h0, h1, ..., hd) be the h-vector of ∆ and 16r6 1

2d be an integer. If
hr−1=hr then ∆(d−r) is the unique homology d-ball with no interior faces of dimension
at most d−r and with boundary ∆.

Note that an algebraic formulation of the g -conjecture (for homology spheres) as-
serts that any homology sphere has the WLP, see e.g. [29, Conjecture 4.22] for a stronger
variation. If this conjecture holds, then Theorem 1.3 will extend to all homology spheres.
Indeed, the case r=2 in Theorem 1.3 was proved by Kalai [13], without the WLP as-
sumption, as part of his generalization of the lower bound theorem to homology manifolds
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and beyond. Further, note that for r6 1
2d, if a homology (d−1)-sphere ∆ satisfies that

∆(d−r) is a homology d-ball with boundary ∆, then ∆ satisfies all the numerical condi-
tions in the g -conjecture (including the non-linear Macaulay inequalities), as was shown
by Stanley [27].

This paper is organized as follows. In §2 we give preliminaries on triangulations
and prove the uniqueness claim in the above two theorems. In §3 we prove that ∆(d−r)
satisfies a nice algebraic property called the Cohen–Macaulay property. In §4, by using
this result together with a geometric and topological argument, we show that ∆(d−r)
triangulates P in Theorem 1.2. In §5 we prove Theorem 1.3 based on the theory of
canonical modules in commutative algebra. Lastly, in §6 we give some concluding remarks
and open questions.

2. Triangulations

In this section, we provide some preliminaries and notation on triangulations, and prove
the uniqueness statements in Theorems 1.2 and 1.3.

Let ∆ be an (abstract) simplicial complex on the vertex set V, i.e. a collection of
subsets of V such that, for any F∈∆ and G⊂F , one has G∈∆. An element F∈∆
is called a face of ∆, and a maximal face (under inclusion) is called a facet of ∆. A
face F∈∆ is called an i-face if #F =i+1, where #X denotes the cardinality of a finite
set X. The dimension of ∆ is dim ∆=max{#F−1:F∈∆}. For 06k6dim ∆, we write
skelk(∆)={F∈∆:#F 6k+1} for the k-skeleton of ∆. Let fi=fi(∆) be the number of i-
faces of ∆. The h-vector h(∆)=(h0(∆), h1(∆), ..., hd(∆)) of ∆ is the sequence of integers
defined by

hi(∆) =
i∑

j=0

(−1)i−j

(
d−j

i−j

)
fj−1

for i=0, 1, ..., d, where d=dim ∆+1 and where f−1=1. If ∆ is the boundary complex of
a simplicial polytope P , we also call h(∆) the h-vector of P .

Let ∆ be a simplicial complex on the vertex set V. A subset F⊂V is called a missing
face of ∆ if F /∈∆ and all proper subsets of F are faces of ∆. Note that the set of the
missing faces of ∆ determines ∆ itself, since it determines all subsets of V which are not
in ∆. It is not hard to see that, by definition, the simplicial complex ∆(i), defined in
the introduction, is the simplicial complex whose missing faces are the missing faces F

of ∆ with #F 6i+1. In particular, for j6i, one has ∆(j)=∆(i) if and only if ∆ has no
missing k-faces for j+16k6i.

The following relation between face numbers and missing faces will be used in the
sequel. It was first proved by Kalai [15, Proposition 3.6] when d>2r+1, and was later
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generalized by Nagel [23, Corollary 4.8].

Lemma 2.1. Let ∆ be the boundary complex of a simplicial d-polytope. If hr−1(∆)=
hr(∆) then ∆(r−1)=∆(d−r).

Remark 2.2. Nagel [23] states this only for simplicial polytopes, but his proof works
for homology spheres admitting the WLP, which we study in §5.

Next, we prove the uniqueness statements in Theorems 1.2 and 1.3. We start with
some notation and definitions. Let k be a field. For a simplicial complex ∆, let H̃i(∆;k)
be the ith reduced homology group of ∆ with coefficients in k, and let

lk∆(F ) = {G∈∆ :F∪G∈∆ and F∩G = ∅}

be the link of F in ∆. A d-dimensional simplicial complex ∆ is said to be a homology
d-sphere (over k) if the homology groups H̃d−#F−i(lk∆(F );k) are isomorphic to k for
i=0 and vanish for all i>0, for all F∈∆ (including the empty face ∅). Also, a homology
d-ball (over k) is a d-dimensional simplicial complex ∆ such that the homology groups
H̃d−#F−i(lk∆(F );k) are either k or 0 for i=0 and vanish for i>0, for all F∈∆, and
moreover, its boundary complex

∂∆ = {F ∈∆ : H̃d−#F (lk∆(F );k) = 0}

is a homology (d−1)-sphere. We say that a simplicial complex ∆ is a triangulation of
a topological space X if its geometric realization is homeomorphic to X. Note that a
triangulation of a d-sphere (resp. d-ball) is a homology d-sphere (resp. d-ball) over any
field. See e.g. [22, Lemma 63.2].

Let ∆ be a homology d-ball. The faces in ∆−∂∆ are called the interior faces of ∆.
If ∆ has no interior k-faces for k6d−r then ∆ is said to be (r−1)-stacked. An (r−1)-
stacked sphere (resp. homology sphere) is the boundary complex of an (r−1)-stacked
triangulation of a ball (resp. homology ball).

Recall that a triangulation K of a simplicial d-polytope P with boundary complex ∆
is a triangulation of a d-ball such that ∂K=∆. McMullen [19, Theorem 3.3] proved that,
for r6 1

2 (d+1), an (r−1)-stacked triangulation K of a simplicial d-polytope P is unique.
Moreover, Bagchi and Datta [1, Corollary 3.6] proved that such a triangulation must be
equal to ∆(d−r). We generalize these statements for homology spheres based on an idea
of Dancis [6] who proved that a homology d-sphere is determined by its

⌈
1
2d

⌉
-skeleton

(generalizing previous work of Perles who showed it for polytopes). In particular, our
result answers [1, Question 6.4].
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Theorem 2.3. Let ∆ be a homology (d−1)-sphere and 16r6 1
2 (d+1) be an integer.

(i) If ∆(d−r) is a homology d-ball with ∂∆(d−r)=∆ then it is (r−1)-stacked.
(ii) If ∆′ is an (r−1)-stacked homology d-ball with ∂∆′=∆, then ∆′=∆(d−r).

Proof. (i) is obvious, since ∆(d−r) and ∂∆(d−r)=∆ have the same (d−r)-skeleton.
We prove (ii). Since ∆′ is (r−1)-stacked, ∆′ has the same (d−r)-skeleton as ∆, and
therefore has the same (d−r)-skeleton as ∆(d−r) by definition. Thus, what we must
prove is that ∆′ has no missing faces of cardinality >d−r+1. Let F be a (k+1)-subset
of [n] with k>d−r such that all its proper subsets are in ∆′. We claim that F∈∆′.

Consider the homology d-sphere S=∆′∪({v}∗∆), where v is a new vertex and
where {v}∗∆=∆∪{{v}∪G:G∈∆} is the cone of ∆ with vertex v. For a subset W⊂V ,
where V is the vertex set of S, let S|W ={G∈S :G⊂W} be the induced subcomplex of S

on W . Since all proper subsets of F are in ∆′ and ∆′ is an induced subcomplex of S, to
prove that F∈∆′ it is enough to show that S|F is not a (k−1)-sphere, equivalently that
H̃k−1(S|F ;k)=0.

Since S−S|F is homotopy equivalent to S|V \F (see e.g. [22, Lemma 70.1]), by
Alexander duality (see e.g. [22, Theorem 71.1]) and the universal coefficient theorem
with field coefficients, we have

H̃k−1(S|F ;k)∼= H̃d−k(S−S|F ;k)∼= H̃d−k(S|V \F ;k),

so we need to show that H̃d−k(S|V \F ;k)=0. Since d−k6r−16d−r, we have

skeld−k(S|V \F ) = skeld−k(({v}∗∆)|V \F )

and S|V \F⊃({v}∗∆)|V \F . Then, by the definition of the simplicial homology, we have

dimk H̃d−k(S|V \F ;k)6dimk H̃d−k(({v}∗∆)|V \F ;k).

Recall that v /∈F . The right-hand side of the above inequality is equal to zero since
({v}∗∆)|V \F ={v}∗(∆|V \(F∪{v})) is a cone. Hence H̃d−k(S|V \F ;k)=0.

Unlike (r−1)-stacked polytopes with r6 1
2d, 1

2 (d−1)-stacked simplicial d-polytopes
cannot be characterized by their h-vectors, since h(d−1)/2=h(d+1)/2 holds for all simplicial
d-polytopes when d is odd. On the other hand, Theorem 2.3 says that 1

2 (d−1)-stacked
simplicial d-polytopes still have a nice combinatorial property. It would be of interest to
have a nice combinatorial characterization of these polytopes.
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3. Cohen–Macaulayness

In this section, we prove that the simplicial complexes ∆(d−r)=∆(r−1) in Theorems 1.2
and 1.3 (the equalities hold by Lemma 2.1 and Remark 2.2, respectively) satisfy a nice
algebraic condition, called the Cohen–Macaulay property. We first introduce some basic
tools in commutative algebra.

Stanley–Reisner rings

Let S=k[x1, ..., xn] be a polynomial ring over an infinite field k. For a subset F⊂[n]=
{1, ..., n}, we write xF =

∏
k∈F xk. For a simplicial complex ∆ on [n], the ring

k[∆] =S/I∆,

where I∆=(xF :F⊂[n] and F /∈∆), is called the Stanley–Reisner ring of ∆.
The simplicial complex ∆(i) has a simple expression in terms of Stanley–Reisner

rings. For a homogeneous ideal I⊂S, let I6k be the ideal generated by all elements in I

of degree 6k. Since the missing faces of ∆ correspond to the minimal generators of I∆

and since ∆(i) is the simplicial complex whose missing faces are the missing faces F of
∆ with #F 6i+1, one has

I∆(i) =(I∆)6i+1.

Cohen–Macaulay property

Let I⊂S be a homogeneous ideal and R=S/I. The Krull dimension dim R of R is the
minimal number k such that there is a sequence of linear forms θ1, ..., θk∈S such that

dimk S/(I+(θ1, ..., θk))<∞.

If d=dim R, then a sequence Θ=(θ1, ..., θd) of linear forms such that dimk S/(I+(Θ))<∞
is called a linear system of parameters (l.s.o.p. for short) of R. A sequence of homogeneous
polynomials f1, ..., fr of positive degrees is called a regular sequence of R if fi is a non-
zero divisor of S/(I+(f1, ..., fi−1)) for all i∈[r]. We say that R is Cohen–Macaulay if
every (equivalently, some) l.s.o.p. of R is a regular sequence of R.

A simplicial complex ∆ is said to be Cohen–Macaulay (over k) if k[∆] is a Cohen–
Macaulay ring. The following topological criterion for the Cohen–Macaulay property was
proved by Reisner [24].

Lemma 3.1. (Reisner’s criterion) A simplicial complex ∆ is Cohen–Macaulay (over
k) if and only if, for any face F∈∆, H̃i(lk∆(F );k)=0 for all i<dim ∆−#F .
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The weak Lefschetz property

Let I⊂S be a homogeneous ideal such that R=S/I has Krull dimension 0. We write
R=

⊕s
i=0 Ri, where Ri is the homogeneous component of R of degree i and where Rs 6=0.

We say that R has the weak Lefschetz property (WLP for short) if there is a linear form
w∈R1, called a Lefschetz element of R, such that the multiplication ×w:Rk!Rk+1 is
either injective or surjective for all k.

We say that a ring R=S/I of Krull dimension d>0, where I is a homogeneous ideal,
has the WLP if it is Cohen–Macaulay and there is an l.s.o.p. Θ of R such that S/(I+(Θ))
has the WLP. Also, a simplicial complex ∆ is said to have the WLP (over k) if k[∆] has
the WLP. It is known that the boundary complex of a simplicial polytope has the WLP
over Q. See [8, §5.2].

For a homogeneous ideal I⊂S, the Hilbert series

H(S/I, t) =
∞∑

i=0

(dimk(S/I)i)ti

of the ring S/I can be written in the form

H(S/I, t) =
h0+h1t+...+hst

s

(1−t)d
,

where d=dim S/I and hs 6=0. See [5, Corollary 4.1.8]. The vector h(S/I)=(h0, h1, ..., hs)
is called the h-vector of S/I. If S/I has the WLP then its h-vector is unimodal, i.e. it
satisfies h06...6hp>hp+1>...>hs for some p. Indeed, let R=S/(I+(Θ)), where Θ is an
l.s.o.p. of S/I. Then we have hk=dimk Rk for all k. Observe that the multiplication
×w:Rk!Rk+1 is surjective if and only if (S/(I+(Θ, w)))k+1=0. In particular, since S

is generated by elements of degree 1, if the multiplication map is surjective for some k=t,
then it is also surjective for all k>t. Thus, if R has the WLP then hp>hp+1 implies that
×w:Rk!Rk+1 is surjective for all k>p, and we have hp>hp+1>...>hs.

Generic initial ideals

Here we briefly recall generic initial ideals. We do not give details on this subject. [10]
and [12, §4] are good surveys on generic initial ideals.

Let >rev be the degree reverse lexicographic order induced by x1>rev ...>revxn. For
a homogeneous ideal I⊂S, let in>rev(I) be the initial ideal of I with respect to >rev. Let
GLn(k) be the general linear group with coefficients in k. Any ϕ=(aij)∈GLn(k) induces
an automorphism of S, again denoted by ϕ,

ϕ(f(x1, ..., xn))= f

( n∑
k=1

ak1xk, ...,
n∑

k=1

aknxk

)
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for any f∈S. It was proved by Galligo that in>rev(ϕ(I)) is constant for a generic choice
of ϕ∈GLn(k). See [10, Theorem 1.27]. This monomial ideal in>rev(ϕ(I)) is called the
generic initial ideal of I with respect to >rev, and denoted by gin(I). We need the
following well-known result on the WLP.

Lemma 3.2. Let I⊂S be a homogeneous ideal and d=dim S/I.
(i) S/I is Cohen–Macaulay if and only if S/gin(I) is Cohen–Macaulay.
(ii) S/I has the WLP if and only if S/gin(I) has the WLP. Moreover, if S/I has

the WLP, then xn, ..., xn−d+1 is an l.s.o.p. of S/gin(I) and xn−d is a Lefschetz element
of S/(gin(I)+(xn, ..., xn−d+1)).

See [12, Corollary 4.3.18] for the first statement. The second statement follows from
[12, Lemma 4.3.7] together with the facts that, for generic linear forms θ1, ..., θd+1∈S,
θ1, ..., θd is an l.s.o.p. of S/I and θd+1 is a Lefschetz element of S/(I+(θ1, ..., θd)), and
that for a generic choice of ϕ∈GLn(k) the linear forms xn, ..., xn−d are generic for S/ϕ(I).

The following result due to Green [10, Proposition 2.28] is crucial to proving the
Cohen–Macaulay property of ∆(r−1).

Lemma 3.3. (Crystallization principle) Suppose that char(k)=0. Let I⊂S be a
homogeneous ideal generated by elements of degree 6m. If gin(I) has no minimal gen-
erators of degree m+1, then gin(I) is generated by elements of degree 6m.

Theorem 3.4. Suppose that char(k)=0. Let I⊂S be a homogeneous ideal such
that S/I has the WLP, and let h(S/I)=(h0, h1, ..., hs). Suppose that h06...6hp. If
hr−1=hr=hr+1 for some 16r6p−1, then S/I6r is Cohen–Macaulay of Krull dimension
dim S/I+1.

Proof. Let J=gin(I) and d=dim S/I. We first claim that S/J6r is Cohen–Macaulay.
Observe that J is a monomial ideal. By Lemma 3.2, S/J is Cohen–Macaulay of Krull
dimension d, and J has no minimal generators which are divisible by one of xn, ..., xn−d+1.
Also, since h06...6hr+1, the WLP shows that the multiplication

×xn−d:S/(J+(xn, ..., xn−d+1))j −!S/(J+(xn, ..., xn−d+1))j+1 (1)

is injective for j6r, which implies that J has no minimal generators of degree 6r+1
which are divisible by xn−d. Indeed, if there is a minimal generator of the form uxn−d,
then u is in the kernel of the map (1). Thus J6r has no minimal generators which are
divisible by one of xn, ..., xn−d. Hence xn, ..., xn−d is a regular sequence of S/J6r. In
particular, we have dim S/J6r>d+1 since the length of a regular sequence is bounded
by the Krull dimension ([5, Proposition 1.2.12]).
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It is left to show that the quotient by this regular sequence is a finite-dimensional
vector space over k. Since the multiplication map (1) is surjective when j=r−1,

(S/J+(xn, ..., xn−d))r =0,

and J contains all monomials in k[x1, ..., xn−d−1] of degree r. Thus

dimk S/(J6r+(xn, ..., xn−d))<∞,

and S/J6r is Cohen–Macaulay of Krull dimension d+1 with an l.s.o.p. xn, ..., xn−d.
Next, we prove gin(I6r)=gin(I)6r. By the crystallization principle, what we must

prove is that gin(I6r) has no minimal generators of degree r+1. Since I6r⊂I and
(I6r)r=Ir, it is enough to prove that gin(I) has no minimal generators of degree r+1.
Indeed, we already showed that J=gin(I) has no minimal generator of degree r+1 which
is divisible by one of xn, ..., xn−d+1, xn−d. We also showed that J contains all monomials
in k[x1, ..., xn−d−1] of degree r. These facts guarantee that J=gin(I) has no minimal
generators of degree r+1, as desired.

We proved that S/gin(I6r)=S/gin(I)6r is Cohen–Macaulay of Krull dimension d+1.
Then the desired statement follows from Lemma 3.2 (i).

Corollary 3.5. Suppose that char(k)=0. Let ∆ be a homology (d−1)-sphere hav-
ing the WLP over k. If hr−1(∆)=hr(∆) for some r6 1

2d, then ∆(r−1) is Cohen–
Macaulay over k and has dimension d.

Proof. Recall that the h-vector of ∆ coincides with the h-vector of its Stanley–
Reisner ring k[∆]. Since the h-vector of ∆ is symmetric, the WLP shows that

hr−1(∆) =hr(∆) = ...=hd−r+1(∆) and h0(∆) 6 ...6hr+1(∆).

As I∆(r−1)=(I∆)6r, Theorem 3.4 says that k[∆(r−1)] is Cohen–Macaulay of Krull di-
mension d+1. Thus ∆(r−1) is a Cohen–Macaulay simplicial complex of dimension d.

Remark 3.6. The weaker assertion that dim ∆(d−r)6d for r6 1
2d is true for any sim-

plicial (d−1)-sphere ∆, and more generally for any simplicial complex ∆ which embeds
in the (d−1)-sphere.

This can be shown using van Kampen obstruction to embedability, see [16], [26],
[30], and for cones over Flores complexes [7]. If we assume that dim ∆(d−r)>d then, for
d even, ∆ contains skeld/2(2[d+2]), and hence it contains the cone over Flores complex
L=skeld/2−1(2[d+1]). (Here 2[i] is the power set of [i]={1, ..., i}.) By the non-vanishing
on L of the van Kampen obstruction to embedability in the (d−2)-sphere, we conclude
that the cone over L does not embed in the (d−1)-sphere, a contradiction. The argument
for d odd is similar.
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4. GLBC for polytopes

In this section we prove the existence part of Theorem 1.2.

Theorem 4.1. Let P be a simplicial d-polytope with h-vector (h0, h1, ..., hd), ∆
be its boundary complex and 16r6 1

2d be an integer. If hr−1=hr then ∆(d−r) is a
geometric triangulation of P .

In the rest of this section, we fix a simplicial d-polytope P satisfying the assumption
of Theorem 4.1, and prove the theorem for P .

We may assume that P⊂Rd. Let V ={v1, ..., vn}⊂Rd be the vertex set of P and
let ∆ be the boundary complex of P . For a subset T ={vi1 , ..., vik

}⊂V , we write [T ]=
conv(vi1 , ..., vik

) for the convex hull of the vertices in T . Let ∆′=∆(r−1). Recall that,
under the assumptions of Theorem 4.1, ∆(d−r)=∆(r−1).

Lemma 4.2. The set {[F ]:F∈∆′} is a geometric realization of ∆′, i.e.
(i) [F1]∩[F2]=[F1∩F2] for all F1, F2∈∆′;
(ii) dim[F ]=#F−1 for all F∈∆′.

Proof. The proof is similar to that of [1, Proposition 3.4].
(i) Assume by contradiction that F1, F2∈∆′ form a counterexample to (i) with the

size #F1+#F2 minimal. Then, by Carathéodory’s theorem, [F1] and [F2] are simplexes
with dim[F1]=#F1−1 and dim[F2]=#F2−1. Also, the convex set [F1]∩[F2] is not con-
tained in the boundary of P , as otherwise it would equal a single face [F ] with F∈∆ and
thus F1∩F2=F , which says that (i) holds for F1 and F2. In particular, we have F1 /∈∆
and F2 /∈∆. We prove the following properties for F1 and F2:

(a) any p∈[F1]∩[F2]\[F1∩F2] is in the relative interior of both [F1] and [F2];
(b) F1∩F2=∅;
(c) [F1] and [F2] intersect in a single point.
We first prove (a). Suppose to the contrary that p is in the boundary of [F1]. Then

there is a u∈F1 such that p∈[F1\{u}]. Since p /∈[F1∩F2], we have

p∈ [F1\{u}]∩[F2]\[(F1\{u})∩F2],

contradicting the minimality of F1 and F2. Hence (a) holds.
Next we show (b). Let p∈[F1]∩[F2]\[F1∩F2]. By (a), there are convex combinations

with positive coefficients
∑

v∈F1
avv=p=

∑
v∈F2

bvv with #F1>2 and #F2>2. If there is
u∈F1∩F2, say with au6bu, then by subtracting auu from both sides and by normalizing
them, we get a point q which is contained in [F1\{u}]∩[F2]. Since q is in the relative
interior of [F1\{u}] by the construction and since F1 6⊂F2, we have q /∈[(F1\{u})∩F2],
contradicting the minimality. Hence (b) holds.
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We finally prove (c). Suppose to the contrary that [F1]∩[F2] contains two different
points p and q. Let ` be the line through them. Then the endpoints of the line segment
`∩[F1]∩[F2] must be on the boundary of either [F1] or [F2], contradicting (a) as [F1∩F2]
is empty by (b). Hence (c) holds.

We now complete the proof of (i). By (a) and (c), the intersection of [F1] and
[F2] equals the intersection of their affine hulls, as otherwise the neighborhood of p in
[F1]∩[F2] is not a single point. This fact and (b) imply that #F1+#F26d+2. However,
since F1 and F2 are not in ∆ and since ∆′=∆(d−r) and ∆ have the same (d−r)-skeleton,
we have #F1>d−r+2 and #F2>d−r+2, a contradiction. Hence we conclude that (i)
holds.

(ii) Lemma 2.1 and Theorem 3.4 show that ∆′ is d-dimensional and pure, i.e. all of
its facets have cardinality d+1. Thus it is enough to show that if F ={vi1 , ..., vid+1} is a
facet of ∆′ then dim[F ]=d. Suppose to the contrary that dim[F ]<d. Then vi1 , ..., vid+1

are in the same hyperplane in Rd. Therefore, by Radon’s theorem, there is a partition
F =F ′∪F ′′ such that [F ′]∩[F ′′] 6=∅. This contradicts (i).

Let [∆′]=
⋃

F∈∆′ [F ] be the underlying space of the geometric simplicial complex
{[F ]:F∈∆′}. To complete the proof of Theorem 4.1, it is left to show the following.

Lemma 4.3. [∆′]=P .

Proof. Observe that [∆′]⊆P . Assume by contradiction that there is p∈P \[∆′].
We assume that [∆′] and P are embedded in Sd via the natural homeomorphism Rd∼=
Sd\{v}⊂Sd, where v is a point in Sd. Let q∈Rd\P . Since [∆′] contains the boundary
of P , p and q are in different connected components in Sd\[∆′]. Thus Sd\[∆′] is not
connected. By Alexander duality, we have H̃d−1([∆′]; Q)∼=H̃0(Sd\[∆′]; Q) 6=0.

Recall that ∆ has the WLP over Q. Thus ∆′ is Cohen–Macaulay over Q of dimension
d by Corollary 3.5. By Lemma 4.2, [∆′] is the underlying space of a geometric realization
of ∆′. By Reisner’s criterion (Lemma 3.1), we have H̃d−1([∆′]; Q)=0, a contradiction.

5. GLBC for Lefschetz spheres

In this section we prove the existence part in Theorem 1.3. The proof is algebraic and
we assume familiarity with Zn-graded commutative algebra theory. See e.g. [21] for the
basics of this theory.

First, we set some notation. Let ei∈Zn be the ith unit vector of Zn. We consider the
Zn-grading of S=k[x1, ..., xn] defined by deg xi=ei. For a Zn-graded S-module M and
for a=(a1, ..., an)∈Zn, we denote by Ma the graded component of M of degree a∈Zn.
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Let m=(x1, ..., xn) be the graded maximal ideal of S. We regard k as a graded S-module
by identification k=S/m. We recall a few known properties on TorS

i (k, ·).

Lemma 5.1. Let C be a graded S-module. If Ck=0 for all k6r then one has
Tor i(k, C)i+j =0 for all i and j6r.

Proof. Let K
�
=K

�
(x1, ..., xn) be the Koszul complex of x1, ..., xn (see e.g. [5, §1.6]).

Since K
�

is the minimal free resolution of k,

Tor i(k, C)i+j
∼=Hi(K�

⊗C)i+j .

On the other hand, all the elements in Ki have degree >i and all the elements in C have
degree >r+1 by the assumption. These facts imply that (Ki⊗C)i+j =0 for j6r. Hence
Hi(K�

⊗C)i+j =0 for all j6r.

The following fact on generic initial ideals is well known. See [10, Theorem 2.27].

Lemma 5.2. (Bayer–Stillman) Suppose that char(k)=0. Let I⊂S be a homogeneous
ideal. If gin(I) is generated by monomials of degree 6m then TorS

i (k, S/I)i+j =0 for all
j>m.

We also recall some basic facts on canonical modules. For a subset F⊂[n], let
eF =

∑
i∈F ei. For a Cohen–Macaulay Zn-graded ring R=S/I of Krull dimension d, the

module ωR=Extn−d
S (R,S(−e[n])) is called the canonical module of R. An important

property of a canonical module is that it is isomorphic to the Matlis dual of the local
cohomology module Hd

m(R) by the local duality (see [5, Theorem 3.6.19]). Now suppose
that R=k[∆]. Then the local duality and the Hochster’s formula for local cohomology
[5, Theorem 5.3.8] imply that, for any F∈∆, one has

dimk(ωk[∆])eF
=dimk(Hd

m(k[∆]))−eF
=dimk H̃d−1−#F (lk∆(F )). (2)

Recall that, by Reisner’s criterion, homology balls and spheres are Cohen–Macaulay.
The next result and Theorem 2.3 prove Theorem 1.3.

Theorem 5.3. Suppose that char(k)=0. Let ∆ be a homology (d−1)-sphere having
the WLP. If hr−1(∆)=hr(∆) for some r6 1

2d, then ∆(r−1) is a homology d-ball whose
boundary complex is ∆.

Proof. Step 1. Let ∆′=∆(r−1) and C=I∆/I∆′ . For a graded S-module M , let
annS(M)={g∈S :gf=0 for all f∈M}. We first show that C satisfies the following con-
ditions:

(i) annS(C)=I∆′ ;
(ii) C is Cohen–Macaulay of Krull dimension d+1;
(iii) TorS

n−d−1(k, C)∼=k(−e[n]).
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(i) The inclusion annS(C)⊃I∆′ is clear. It is enough to show that there is an element
f∈I∆ such that gf /∈I∆′ for all g∈S with g /∈I∆′ . Let F1, ..., Fs be the facets of ∆′. By
Corollary 3.5, each Fi is of size d+1. We claim that the polynomial f=

∑s
i=1 xFi

∈I∆

satisfies the desired property.
To prove this, since C contains

s⊕
i=1

xFi
·(S/(xk : k /∈Fi))

as a submodule, it is enough to show that, for any g /∈I∆′ , gxFi
6=0 in

xFi
·(S/(xk : k /∈Fi))

for some i. Moreover, since xFi
·(S/(xk :k /∈Fi)) is Zn-graded, we may assume that

g =xa1
i1

... xat
it

,

where a1, ..., at are non-zero. Since xa1
i1

... xat
it

/∈I∆′ , we have {i1, ..., it}∈∆′. Then, as ∆′

is Cohen–Macaulay, ∆′ is pure and there is a facet Fi which contains {i1, ..., it}. Thus
we have xa1

i1
... xat

it
xFi

6=0 in xFi
·(S/(xk :k /∈Fi)) as desired.

(ii) Consider the short exact sequence

0−!C −!S/I∆′ −!S/I∆−! 0. (3)

Since S/I∆′ is Cohen–Macaulay of Krull dimension d+1 and as S/I∆ is Cohen–Macaulay
of Krull dimension d, we conclude that C is Cohen–Macaulay of Krull dimension d+1
(e.g. use the depth lemma [5, Proposition 1.2.9]).

(iii) It remains to prove that

TorS
n−d−1(k, C)∼=k(−e[n]).

Note that TorS
n−d(k, S/I∆′)=0 since S/I∆′ is Cohen–Macaulay of Krull dimension d+1.

Then the short exact sequence (3) induces the exact sequence

0−!TorS
n−d(k, S/I∆)j −!TorS

n−d−1(k, C)j −!TorS
n−d−1(k, S/I∆′)j −! ...

for all j>0. As ∆ is a homology (d−1)-sphere,

TorS
n−d(k, S/I∆)∼=k(−e[n])
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by Hochster’s formula for Betti numbers [5, Theorem 5.5.1]. On the other hand, since
gin(I∆′) has no generators of degrees >r+1, as we showed in the proof of Theorem 3.4,
we have TorS

n−d−1(k, S/I∆′)j =0 for j>n−d−1+r by Lemma 5.2. These facts and the
exact sequence imply that ⊕

j>n−d−1+r

TorS
n−d−1(k, C)j

∼=k(−e[n]).

On the other hand, since I∆′ =(I∆)6r, we have Ck=0 for k6r. This implies that

TorS
n−d−1(k, C)j =0

for j<n−d−1+r by Lemma 5.1, and (iii) follows.

Step 2. We show that

C ∼=Extn−d−1
S (k[∆′], S(−e[n]))= ωk[∆′].

It is standard in commutative algebra that conditions (i)–(iii) imply this isomorphism,
but we include its proof. Since C is Cohen–Macaulay of Krull dimension d+1, it follows
from [5, Theorem 3.3.10] that

Extn−d−1
S (Extn−d−1

S (C,S(−e[n])), S(−e[n]))∼=C. (4)

On the other hand, by the duality on resolutions of C and Extn−d−1
S (C,S(−e[n])), we

have

TorS
0 (k,Extn−d−1

S (C,S(−e[n])))a∼=TorS
n−d−1(k, C)e[n]−a for all a∈Zn

(see [5, Corollary 3.3.9]). Then (iii) of Step 1 implies that Extn−d−1
S (C,S(−e[n])) has a

single generator in degree 0, so Extn−d−1
S (C,S(−e[n]))∼=S/J for some ideal J .

We claim that J=I∆′ , or equivalently

annS(Extn−d−1
S (C,S(−e[n])))= I∆′ .

Since annS(M)⊂annS(HomS(M,N)) for all S-modules M and N , (4) says that

annS(C)⊂ annS(Extn−d−1
S (C,S(−e[n])))⊂ annS(C),

which implies that annS(Extn−d−1
S (C,S(−e[n])))=annS(C)=I∆′ by (i) of Step 1. Now,

the isomorphism
C ∼=Extn−d−1

S (k[∆′], S(−e[n]))
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follows from (4), as Extn−d−1
S (C,S(−e[n]))∼=S/I∆′ =k[∆′].

Step 3. We now prove the theorem. By Hochster’s formula (2), for any F∈∆′ we
have

dimk H̃d−#F (lk∆′(F ))= dimk(ωk[∆′])eF
=dimk(I∆/I∆′)eF

=
{

1, if F /∈∆,
0, otherwise.

Clearly the above equation together with ∆′ being Cohen–Macaulay imply that ∆′ is a
homology ball whose boundary complex is equal to ∆.

The proof given in this section is quite algebraic. It would be of interest to have a
combinatorial or a topological proof of Theorem 5.3.

6. Concluding remarks

It is easy to see that (1-)stacked spheres are boundaries of stacked polytopes, and that
their stacked triangulations are shellable. So it is natural to ask the following questions.

Question 6.1. Let ∆ be an (r−1)-stacked d-ball with r6 1
2 (d+1).

(i) Is it true that ∂∆ is polytopal?
(ii) Is it true that ∆ is shellable?

The next examples show that the answers to the above questions are negative.

Example 6.2. Let B be Rudin’s non-shellable triangulation of a 3-ball [25]. Its f -
vector is (1, 14, 66, 94, 41) and its h-vector is (1, 10, 30, 0, 0). Let K be the join of B and
a simplex σ of dimension k>2. Then K is a (k+4)-ball. Also, the interior faces of K

are exactly those containing both σ and an interior face of B. Then, since B contains no
interior vertices, K is 2-stacked.

On the other hand, K is not shellable since B is not shellable. Indeed, a shelling
order on K would induce a shelling order on B by deleting σ from all facets in the shelling
order of K.

Also, ∂K is non-polytopal. Indeed, assume the contrary, then for a vertex v of σ,
lk∂K(σ\{v})=B∪({v}∗∂B) is the boundary complex of a polytope. Thus, there is a
Bruggesser–Mani line shelling of lk∂K(σ\{v}) which adds the facets with v last (see [31,
§8.2] for details), so first it shells B, a contradiction.

Example 6.3. There exists a large number of shellable (r−1)-stacked d-balls with
r6 1

2d whose boundary is non-polytopal. Indeed, fixing d, Goodman and Pollack [9]
showed that the log of the number of combinatorial types of boundaries of simplicial
d-polytopes on n vertices is at most O(n log(n)). On the other hand, the log of the
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number of Kalai’s squeezed (d−1)-spheres satisfying hr−1=hr, where r6 1
2d, is at least

Ω(nr−2) (see [14] for the details). Since Kalai’s squeezed spheres satisfying hr−1=hr are
known to be the boundaries of (r−1)-stacked shellable balls (see [14] and [17] for details),
they give a large number of (r−1)-stacked triangulations of a d-ball whose boundary is
non-polytopal when r>4.

Although the answers to Question 6.1 are negative in general, it would be of interest
to study these problems for special cases. Below, we write a few open questions on
stacked balls and spheres.

Conjecture 6.4. Let P be an (r−1)-stacked d-polytope with r6 1
2 (d+1).

(i) (McMullen [19]) The (r−1)-stacked triangulation of P is regular.
(ii) (Bagchi–Datta [1]) The (r−1)-stacked triangulation of P is shellable.

Note that Conjecture 6.4 (i) implies Conjecture 6.4 (ii). McMullen’s original con-
jecture considered the case r6 1

2d, but we want to include the case r= 1
2 (d+1), in view

of Theorem 2.3. Also, it would be of interest to study the geometric meaning of the
triangulation given in Theorem 1.2.

We see that there exists a non-shellable 2-stacked ball whose boundary is non-
polytopal in Example 6.2, and that there even exists a shellable 3-stacked ball whose
boundary is non-polytopal in Example 6.3. But the following question is open.

Question 6.5. Let ∆ be a 2-stacked triangulation of a d-ball which is shellable. Is
∂∆ polytopal?

Finally, we raise the following question concerning Theorem 1.3.

Question 6.6. With the same notation as in Theorem 1.3, is it true that if ∆ is a
triangulation of a sphere then ∆(d−r) is a triangulation of a ball?

It seems to be plausible that if ∆ is a PL-sphere then ∆(d−r) is a PL-ball. But we
do not have an answer even for this case.
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