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1. Introduction

We consider the initial-boundary problem for the Stokes equations

vt−∆v+∇q=0 in Ω×(0, T ), (1.1)

div v=0 in Ω×(0, T ), (1.2)

v=0 on ∂Ω×(0, T ), (1.3)

v(x, 0) = v0 on Ω×{0}, (1.4)

in a domain Ω in Rn with n>2. It is well known that the solution operator

S(t): v0 7−! v(t) = v( · , t)

forms an analytic semigroup in the solenoidal Lr space Lr
σ(Ω) for r∈(1,∞) for various

kind of domains Ω including smoothly bounded domains [27], [55]. However, it has been
a long-standing open problem whether or not the Stokes semigroup {S(t)}t>0 is analytic
in L∞-type space even if Ω is bounded. When Ω is a half space it is known that the
Stokes semigroup {S(t)}t>0 is analytic in L∞-type space since explicit solution formulas
are available [14], [45], [58].

The goal of this paper is to give an affirmative answer to this open problem at least
when Ω is bounded as a typical case. For a precise statement let C0,σ(Ω) denote the
L∞-closure of C∞

c,σ(Ω), the space of all smooth solenoidal vector fields with compact
support in Ω. When Ω is bounded, C0,σ(Ω) agrees with the space of all solenoidal vector
fields continuous in 	Ω and vanishing on the boundary ∂Ω [43]. The following is one of
our main results.
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Theorem 1.1. (Analyticity in C0,σ) Let Ω be a bounded domain in Rn with C3

boundary. Then the solution operator (the Stokes semigroup) S(t): v0 7!v(t) (t>0) is a
C0-analytic semigroup in C0,σ(Ω).

A key observation is a gradient estimate of harmonic pressure of the form

sup
x∈Ω

dΩ(x)|∇q(x, t)|6C‖∇v‖L∞(∂Ω)(t), (1.5)

with C depending only on Ω, where dΩ is the distance function from ∂Ω. The estimate
(1.5) follows from a property of the Helmholtz decomposition or the inhomogeneous
Neumann problem for the Laplace equation. Such a property is not limited to a bounded
domain, so we call such a domain admissible; for a precise definition see Definition 2.3.

Based on (1.5), we are able to derive a necessary bound for

N(v, q)(x, t) = |v(x, t)|+t1/2|∇v(x, t)|+t|∇2v(x, t)|+t|∂tv(x, t)|+t|∇q(x, t)|,

which is a key to prove analyticity results. We state such a-priori estimates in a general
domain (not necessarily bounded) for L̃r-solutions, introduced by R. Farwig, H. Kozono
and H. Sohr [16], [17], [18], with L̃r

σ=Lr
σ∩L2

σ (r>2), where Lr
σ is the closure of C∞

c,σ(Ω)
in Lr. (The L̃r theory is useful to handle the Navier–Stokes equations in a general domain
[21].) It is by now well known [24] that if a uniformly C3-domain admits the Helmholtz
decomposition in Lr, then there exists an Lr-solution and the Stokes semigroup S(t) is
analytic in Lr

σ. However, in general, the Helmholtz decomposition in Lr space may not
hold (see [11] and [46]). Fortunately, L̃r theory is available for a general domain so we
establish a-priori estimates for an L̃r-solution.

Theorem 1.2. (A priori L∞-estimates) Let Ω be an admissible, uniformly C3-
domain in Rn and let r>n. Then there exist positive constants C and T0 depending
only on Ω such that the bound

sup
0<t<T0

‖N(v, q)‖∞(t) 6C‖v0‖∞ (1.6)

holds for all L̃r-solutions (v, q) of (1.1)–(1.4) with v0∈C∞
c,σ(Ω).

This estimate together with a density argument enables us to extend the solution
semigroup S(t) for (1.1)–(1.4) to C0,σ(Ω) so that it becomes analytic. We thus obtain a
general result which includes Theorem 1.1 as a particular case.

Theorem 1.3. (Analyticity for a general domain) Let Ω be an admissible, uniformly
C3-domain in Rn. Then the Stokes semigroup S(t) is uniquely extendable to a C0-
analytic semigroup in C0,σ(Ω). Moreover, the estimate (1.6) holds with some C>0 and
T0>0 for v=S(t)v0, v0∈C0,σ(Ω), with a suitable choice of pressure q.
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It is natural to extend the Stokes semigroup to L∞σ , the solenoidal L∞ space.

Theorem 1.4. (Analyticity in L∞σ for a bounded domain) Let Ω be a bounded C3-
domain in Rn. Then the Stokes semigroup S(t) is a (non-C0-)analytic semigroup in
L∞σ (Ω).

For the Laplace operator or general elliptic operators it is well known that the
corresponding semigroup is analytic in L∞-type spaces. The first pioneering work goes
back to K. Yosida [66] for second-order operators on R. Unfortunately, it seems difficult
to extend his method to multi-dimensional elliptic operators. K. Masuda [48], [47] (see
also [49]) first proved the analyticity of the semigroup generated by a general elliptic
operator (including higher-order operators) in C0(Rn), the space of continuous functions
vanishing at the space-infinity. A key idea is to derive a corresponding resolvent estimate
by a localization method together with Lp-estimates and interpolation inequalities. It
was extended by H. B. Stewart to Dirichlet problems [61] and for more general boundary
conditions [62]. (A complete proof is given in [6, Appendix].) The reader is referred to
the book by A. Lunardi [42, Chapter 3] for this Masuda–Stewart method which applies to
many other situations. By now, analyticy results in L∞ spaces are established in various
settings [6], [8], [37], [42], [63]. However, their localization argument does not directly
apply to the Stokes equations and this may be a reason why the analyticity in C0,σ had
been left open for a long time. Very recently, M. Hieber and the authors [2] found a way
to prove Theorem 1.1 by the Masuda–Stewart type argument based on (1.5).

Although there are several results on analyticity of S(t) in Lr
σ for various domains

such as a half space, a bounded domain [27], [55], an exterior domain [12], [35], an
aperture domain [20], a layer domain [3], a perturbed half space [19] (even with variable
viscosity coefficients [4], [5]), the result corresponding to Theorem 1.3 is available only
for a half space [14], [45], [58] (and the whole space, where the Stokes semigroup agrees
with the heat semigroup).

We do not touch on the problem of the large time behavior of the Stokes semigroup
except in the case when Ω is bounded. In particular, we do not know in general whether
or not the Stokes semigroup is bounded in time. This is known for a half space [14], [45],
[58]. For a bounded domain it is not difficult to derive even exponential decay as t!∞.
In fact, for a bounded domain we prove that S(t) is a bounded analytic semigroup in
C0,σ (Remark 5.4 (i)). Moreover, the operator norm ‖S(t)‖ is bounded in t when Ω is
bounded. Such a result is called a maximum modulus result and has been studied in the
literature [56], [57], [65] (Remark 5.4 (ii)). Very recently, P. Maremonti [44] proved the
boundedness of ‖S(t)‖ when Ω is an exterior domain using our Theorem 1.1.

To extend analyticity in L∞σ to general admissible domains we have to construct
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S(t) in L∞σ in a unique way, since L̃r
σ does not contain L∞σ . This attempt is so far carried

out for a half space in [14], where an explicit solution formula is available. Moreover,
it is also shown in [14] that S(t) is a C0-analytic semigroup in BUCσ(Ω) when Ω is a
half space; see also [58]. Here BUCσ(Ω) denotes the space of all solenoidal, bounded,
uniformly continuous vector fields in Ω vanishing on the boundary ∂Ω. Recently, the
authors [1] extended Theorem 1.4 (and Theorem 1.1) to the case when Ω is an exterior
domain and proved that S(t) is a C0-analytic semigroup in BUCσ(Ω). The analyticity,
as well as (1.6), is fundamental to study the Navier–Stokes equations. So far L∞-type
theory is only established when Ω=Rn [30], [32] and Ω=Rn

+ [9], [58]. We shall also
discuss the non-linear problem in forthcoming papers.

Our approach to establish (1.6) is completely different from conventional approaches.
We appeal to a blow-up argument which is often used in the study of non-linear elliptic
and parabolic equations.

We argue by contradiction. Suppose that (1.6) were false for any choice of T0 and C.
Then there would exist a sequence {(vm, qm)}∞m=1 of solutions of (1.1)–(1.4) with v0=v0m

and a sequence τm#0 such that ‖N(vm, qm)‖∞(τm)>m‖v0m‖∞. There is tm∈(0, τm) such
that ‖N(vm, qm)‖∞(tm)> 1

2Mm with Mm=sup0<t<τm
‖N(vm, qm)‖∞(t). We normalize

vm and qm by dividing by Mm to observe that

sup
0<t<tm

‖N(ṽm, q̃m)‖∞(t) 6 1, (1.7)

‖N(ṽm, q̃m)‖∞(tm) > 1
2 , (1.8)

‖ṽ0m‖∞<
1
m
, (1.9)

with ṽm=vm/Mm and q̃m=qm/Mm. We rescale (ṽm, q̃m) around a point xm∈Ω satisfying

N(ṽm, q̃m)(xm, tm) > 1
4 (1.10)

to get a blow-up sequence of (vm, qm) of the form

um(x, t) = ṽm(xm+t1/2
m x, tmt), pm(x, t) = t1/2

m q̃m(xm+t1/2
m x, tmt).

(Such an xm exists because of (1.8).) Because of the scaling invariance of the equations
(1.1) and (1.2), the rescaled function (um, pm) solves (1.1)–(1.2) in a rescaled domain
Ωm×(0, 1). Note that the time interval is normalized to a unit interval and Ωm tends to
either a half space or the whole space Rn as m!∞.

The basic strategy is to prove that the blow-up sequence {(um, pm)}∞m=1 (after taking
a subsequence) converges to a solution (u, p) of (1.1)–(1.4) with zero initial deta. If the
convergence is strong enough, (1.10) implies that N(u, p)(0, 0)> 1

4 . If the limit (u, p) is
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unique, it is natural to expect that u≡0 and ∇p≡0. This evidently yields a contradiction
to N(u, p)(0, 0)> 1

4 . The first part corresponds to “compactness” of a blow-up sequence
and the second part corresponds to “uniqueness” of a blow-up limit. (A similar rescaling
argument is explained in detail in the recent textbook [26].) When the problem is the
heat equation, this strategy is easy to realize. However, for the Stokes equations it turns
out that this procedure is highly non-trivial because of the presence of the pressure.

The situation is divided into two cases depending on whether the limit of Ωm is a
half space or the whole space Rn. Let us consider the case when the limit is the whole
space. To have necessary compactness for {(um, pm)}∞m=1 it is enough to prove that a
local space-time Hölder bound for um, ∇um, ∇2um and ∇pm holds near (0, 1) as m!∞.
We are tempted to derive such an interior regularity estimate from (1.7) by localizing the
problem. This idea works for the heat equation but for the Stokes equations it does not
work (Remark 3.3 (i)). We invoke admissibility of Ω to control the pressure term by (1.5)
and derive necessary a-priori estimates from the standard parabolic regularity theory
[41]. The uniqueness of the blow-up limit is easy, since the limit equation is the heat
equation. Note that the constant in (1.5) is independent of the rescaling procedure, so
our Hölder estimate is uniform. The case when Ωm tends to a half space is more involved.
We use Schauder estimates for the Stokes equations developed by V. A. Solonnikov [60]
instead of the usual parabolic theory [41]. To show that the blow-up limit (u, p) is trivial,
we invoke the uniqueness result for spatially non-decaying velocity in a half space due
to Solonnikov [58]. Note that to assert the uniqueness of solutions (u, p) of the Stokes
equations (1.1)–(1.4) in a half space with zero initial data and a bound for ‖N(u, p)‖∞(t),
we need to assume some decay for ∇p far from the boundary, since otherwise there is a
counterexample (Remark 4.2). We invoke (1.5) to deduce necessary decay for ∇p for the
limit.

A blow-up argument was first introduced by E. De Giorgi [13] to study regularity
of a minimal surface. B. Gidas and J. Spruck [25] adjusted the blow-up argument to
derive a-priori bounds for solutions of a semilinear elliptic problem. It seems that the
first application to (semilinear) parabolic problems to get an a-priori bound goes back
to [28] (see also [31]). The method has been further developed in recent years to obtain
several a-priori bounds; see e.g. [50] and [51]. However, it is quite recent to apply it to
the Navier–Stokes equations. For example, a blow-up argument was used to conclude
non-existence of type-I blow-up for axisymmetric solutions [38], [52] and solutions having
continuously varying vorticity directions [34].

In this paper we use a blow-up argument to prove that a bounded C3-domain is
admissible so that Theorem 1.3 yields Theorem 1.1. It is easy to prove that a half space
is admissible. It is possible to prove that an exterior domain (see the recent paper [1]) or
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a perturbed half space is admissible, but we do not discuss these problems in the present
paper. We conjecture that an unbounded domain is admissible if Ω is not quasicylindrical
(see [7, §6.32]), i.e. lim|x|!∞dΩ(x)=∞.

This paper is organized as follows. In §2 we define an admissible domain and prove
that a bounded C3-domain is admissible by a blow-up argument. In §3 we derive local
Hölder estimates, both interior and up to the boundary, which are key to derive necessary
compactness for our blow-up sequence. In §4 we review a uniqueness result for spatially
non-decaying solutions for the Stokes equations as well as the heat equation. In §5 we
prove key a-priori estimates (Theorem 1.2) by a blow-up argument. As an application we
prove Theorem 1.3 (and Theorem 1.1 as a particular case). In §6 we prove Theorem 1.4.

Acknowledgements. The authors are grateful to Professor Kazuaki Taira for inform-
ing them of early stages of L∞-theory for elliptic operators. The authors are also grateful
to the anonymous referee for his/her careful reading of the article. The work of the sec-
ond author was partly supported by Grant-in-Aid for Scientific Research No. 21224001
(Kiban S), No. 23244015 (Kiban A) and No. 25610025 (Houga) of the Japan Society for
the Promotion of Science.

2. Admissible domains

In this section we introduce the notion of an admissible domain and prove that a bounded
domain is admissible by a blow-up argument. We also give a short proof that a half space
is admissible. We first recall the Helmholtz decomposition.

2.1. Helmholtz decomposition

Let Ω be an arbitrary domain in Rn (n>2). Let Lr
σ(Ω) (1<r<∞) denote the Lr-closure

of C∞
c,σ(Ω), the space of all smooth solenoidal vector fields with compact support in Ω.

The Helmholtz decomposition is a topological direct sum decomposition of the form

Lr(Ω) =Lr
σ(Ω)⊕Gr(Ω), Gr(Ω) = {∇p∈Lr(Ω) | p∈Lr

loc(Ω)}.

We do not distinguish between spaces of vector-valued and scalar functions.
Although this decomposition is known to hold (see e.g. [22, §III.1]) for various do-

mains like bounded or exterior domains with smooth boundary, in general there is a
domain with (uniformly) smooth boundary such that the Lr-Helmholtz decomposition
does not hold (cf. [11] and [46]). Note that this decomposition is an orthogonal decom-
position if r=2 and that the case r=2 is valid for any domain Ω.
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In [16] Farwig, Kozono and Sohr introduced the L̃r space and proved that the
Helmholtz decomposition for L̃r is valid for any uniformly C2-domain for n=3. Later,
it was generalized to arbitrary uniformly C1-domains for n>2 [17]. Let us recall their
results. We set

L̃r(Ω) =
{
L2(Ω)∩Lr(Ω), 2 6 r <∞,
L2(Ω)+Lr(Ω), 1<r< 2.

Note that L̃r1⊂L̃r for r1>r. We define L̃r
σ and G̃r in a similar way. We then recall the

definition of uniformly Ck-domains for k>1; see e.g. [54, §I.3.2].

Definition 2.1. (Uniformly Ck-domain) Let Ω be a domain in Rn with n>2. Assume
that there exist α, β,K>0 such that for each x0∈∂Ω there is a Ck-function h of n−1
variables y′ such that

sup
|l|6k

|y′|<α

|∂l
y′h(y

′)|6K, ∇′h(0)= 0, h(0)= 0,

and denote a neighborhood of x0 by

Uα,β,h(x0) = {(y′, yn)∈Rn |h(y′)−β <yn<h(y′)+β and |y′|<α}.

Assume that, up to rotation and translation, we have

Uα,β,h(x0)∩Ω = {(y′, yn) |h(y′)<yn<h(y′)+β and |y′|<α}

and
Uα,β,h(x0)∩∂Ω = {(y′, yn) | yn =h(y′) and |y′|<α}.

Then we call Ω a uniformly Ck-domain of type α, β,K. Here ∂l
x=∂l1

x1
... ∂ln

xn
with multi-

index l=(l1, ..., ln) and ∂xj =∂/∂xj as usual and ∇′ denotes the gradient in y′∈Rn−1.

Proposition 2.2. ([16], [17]) Let Ω be a uniformly C1-domain of type α, β,K>0
and let 1<r<∞. Then L̃r(Ω) has a topological direct sum decomposition

L̃r(Ω) = L̃r
σ(Ω)⊕G̃r(Ω).

Let P (=Pr) be the projection to L̃r
σ(Ω) associated with this decomposition. Then there

is a constant C=C(r, α, β,K)>0 such that the operator norm of P is bounded by C.

The operator P is often called the Helmholtz projection. In this paper we shall use
the L̃r space for r>2, where the L̃r norm is given as

‖f‖L̃r =max{‖f‖Lr , ‖f‖L2}.
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2.2. Definition of an admissible domain

We give a rigorous definition of an admissible domain. Let dΩ(x) denote the distance
function from ∂Ω, i.e.

dΩ(x) = inf{|x−y| | y ∈ ∂Ω}.

Let Qr=I−Pr be the projection to G̃r(Ω) associated with the Helmholtz decomposition.
We shall suppress the subscript r of Qr.

Definition 2.3. (Admissible domain) Let Ω be a uniformly C1-domain in Rn (n>2),
with ∂Ω 6=∅. We call Ω admissible if there exist r>n and a constant C=CΩ such that
the bound

sup
x∈Ω

dΩ(x)|Q[∇·f ](x)|6CΩ‖f‖L∞(∂Ω)

holds for all matrix-valued functions f=(fij)16i,j6n∈C1(	Ω) which satisfy

∇·f
(

=
n∑

j=1

∂jfij

)
∈ L̃r(Ω)

and
tr f =0 and ∂lfij = ∂jfil (2.1)

for all i, j, l∈{1, ..., n}, where ∂j =∂xj .

Remark 2.4. (i) We note that ∇q=Q[∇·f ] is formally obtained by solving the Neu-
mann problem  ∆q=div(∇·f) in Ω,

∂q

∂nΩ
=nΩ ·(∇·f) on ∂Ω,

where nΩ is the exterior unit normal of ∂Ω. In particular q (and also ∇q) is harmonic in
Ω, since

div(∇·f) =
n∑

i,j=1

∂i∂jfij =
n∑

i,j=1

∂j∂jfii =0.

(ii) The left-hand side of the inequality in Definition 2.3 is always finite. Indeed,
since ∇q is harmonic, the mean-value theorem (see e.g. [15, §2.2.2]) implies that

∇q(x) =
1

|B%(x)|

∫
B%(x)

∇q(y) dy for %<dΩ(x),

where B%(x) is the closed ball of radius % centered at x and |B%(x)| denotes its volume.
Applying the Hölder inequality yields

|∇q(x)|6 |B%(x)|−1/p‖∇q‖p 6C%−n/p‖∇·f‖L̃r for 26 p6 r,
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by Proposition 2.2. If dΩ(x)<1, we take p=n. If dΩ(x)>1, we take p=2. Since n>2, this
choice implies that |∇q(x)|dΩ(x) is bounded in Ω. Although |∇q(x)|dΩ(x) is continuous
in Ω, this quantity may not be continuous up to the boundary.

(iii) Although the constant C=CΩ in Definition 2.3 depends on the domain, it is
independent of dilation and translation. In other words, CλΩ+x0 =CΩ for x0∈Rn and
λ>0.

(iv) It is easy to see that the half space Rn
+={(x′, xn)|xn>0} is admissible. In this

case
Q[∇·f ] =∇q, q(x′, xn) =

∫ ∞

xn

Ps[nΩ ·(∇·f)] ds,

where Ps denotes the Poisson semigroup, i.e.

Ps[h] =Ps∗h with Ps(x′) =
as

(|x′|2+s2)n/2
, x′ ∈Rn−1,

where 2/a is the surface area of the (n−1)-dimensional unit sphere. Since

−nΩ ·(∇·f) =
n∑

j=1

∂jfnj =
n−1∑
j=1

∂jfnj−
n−1∑
i=1

∂nfii =
n−1∑
j=1

∂j(fnj−fjn)

by (2.1), we end up with

∇q(x) =−
n−1∑
j=1

∇∂j

∫ ∞

xn

Ps[fnj−fjn] ds.

By the explicit form of the Poisson semigroup, it is easy to see that

‖∂jPs[h]‖L∞(Rn−1)(s) 6
c‖h‖L∞(Rn−1)

s
for s> 0 and 16 j6n−1,

with c>0 independent of s and h. Thus, with hj =fnj−fjn,

‖∂kq‖L∞(Rn−1)(xn) 6
n−1∑
j=1

∫ ∞

xn

‖∂k∂jPs[hj ]‖L∞(Rn−1) ds

6 c2(n−1)
∫ ∞

xn

1
s2
ds max

16j6n−1
‖hj‖L∞(Rn−1) 6

C ′‖f‖L∞

xn

for k6n−1. For k=n it is easier to obtain a similar estimate, so we observe that the
half space is admissible since xn=dΩ(x).

2.3. Blow-up arguments

Our goal in this subsection is to prove the following result.
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Theorem 2.5. A bounded domain with C3 boundary is admissible.

We shall prove this theorem by an indirect method—a blow-up argument—although
it might be possible to prove directly. For this purpose we first derive a weak formulation
for ∇Φ=Q[∇·f ].

Lemma 2.6. Let Ω be a C1-domain. Assume that f=(fij)∈C1(	Ω) satisfies (2.1)
with ∇·f∈L2(Ω) so that ∇Φ=Q[∇·f ]∈G2(Ω). Then

−
∫

Ω

Φ∆ϕdx=
n∑

i,j=1

∫
∂Ω

fij(x)(n
j
Ω(x)∂iϕ(x)−ni

Ω(x)∂jϕ(x)) dHn−1 (2.2)

for all ϕ∈C2
c (	Ω) satisfying ∂ϕ/∂nΩ=0 on ∂Ω, where dHn−1 is the surface element of

∂Ω, and nΩ(x)=(n1
Ω(x), ..., nn

Ω(x)).

Proof. The L2-Helmholtz decomposition says that for h=∇·f there exist unique
h0∈L2

σ(Ω) and Q[h]∈G2(Ω) such that h=h0+Q[h] with Q[h]=∇Φ. Multiply ∇ϕ with
h and use the orthogonality to get∫

Ω

h·∇ϕdx=
∫

Ω

∇ϕ·∇Φ dx. (2.3)

Since ∂ϕ/∂nΩ=0 on ∂Ω, we have∫
Ω

∇ϕ·∇Φ dx=−
∫

Ω

Φ∆ϕdx (2.4)

by integration by parts. (Note that Φ∈L2
loc(	Ω) by the Poincaré inequality, see e.g. [15].)

We now calculate the left-hand side of (2.3). We observe that

(∂jfij)(∂iϕ) = ∂j(fij∂iϕ)−fij∂i∂jϕ,

fij∂i∂jϕ= ∂i(fij∂jϕ)−(∂ifij)∂jϕ

for all 16i, j6n. Since
n∑

i=1

∂ifij =
n∑

i=1

∂jfii =0

by (2.1), we now obtain the identity∫
Ω

h·∇ϕdx=
n∑

i,j=1

∫
∂Ω

fij(ni
Ω∂iϕ−ni

Ω∂jϕ) dHn−1. (2.5)

The identities (2.3)–(2.5) yield (2.2).
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Proof of Theorem 2.5. We argue by contradiction. Suppose that the condition were
false. Then there would exist a sequence {f̃m}∞m=1⊂C1(	Ω) satisfying (2.1) such that

∞>Mm = sup
x∈Ω

dΩ(x)|∇Φ̃m(x)|>m‖f̃m‖L∞(∂Ω)

with ∇Φ̃m=Q[∇·f̃m]. (Note that Mm is always finite by Remark 2.4 (ii).) We normal-
ize Φ̃m and f̃m by Φm=Φ̃m/Mm and fm=f̃m/Mm. There exists a sequence of points
{xm}∞m=1⊂Ω such that

sup
x∈Ω

dΩ(x)|∇Φm(x)|=1, (2.6)

dΩ(xm)|∇Φm(xm)|> 1
2 , (2.7)

‖fm‖L∞(∂Ω)<
1
m
. (2.8)

Since 	Ω is compact, a subsequence of {xm}∞m=1 converges to some x∞∈	Ω as m!∞.

Case 1. x∞∈Ω. We may assume that Φm(x∞)=0. Since ∇Φm is harmonic, (2.6)
implies that a subsequence of {Φm}∞m=1 converges to some function Φ∈C∞(Ω) locally
uniformly in Ω with all its derivatives. By (2.6) the sequence {Φm}∞m=1 is bounded
in Lr(Ω) for any r∈[1,∞) so a subsequence of {Φm}∞m=1 converges to Φ weakly in Lr

(1<r<∞). We apply Lemma 2.6 with Φ=Φm and f=fm and let m!∞ to observe that
Φ∈L1(Ω)∩C∞(Ω) satisfies ∫

Ω

Φ(x)∆ϕ(x) dx=0

for all ϕ∈C2
c (	Ω)(=C2(	Ω)) satisfying ∂ϕ/∂nΩ=0 on ∂Ω since the right-hand side of (2.2)

converges to zero by (2.8). Thus Φ formally solves the homogeneous Neumann problem
so that ∇Φ≡0. (In fact, we apply Lemma 2.8 in the next subsection for a rigorous proof.)

Since a subsequence of {∇Φm}∞m=1 converges to ∇Φ locally uniformly in Ω, (2.7)
implies that dΩ(x∞)|∇Φ(x∞)|> 1

2 . This contradicts the fact that ∇Φ≡0 so we get a
contradiction for the case 1.

Case 2. x∞∈∂Ω. By taking a subsequence, we may assume that xm!x∞. We
rescale Φm and fm around xm so that the distance from the origin to the boundary
equals 1. More precisely, we set

Ψm(x) =Φm(xm+dmx) and gm(x) = fm(xm+dmx),

with dm=dΩ(xm). It follows from (2.6)–(2.8) that

sup
x∈Ωm

dΩm(x)|∇Ψm(x)|=1, (2.9)

|∇Ψm(0)|> 1
2 , (2.10)

‖gm‖L∞(∂Ωm)<
1
m
. (2.11)
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Here Ωm is the rescaled domain of the form

Ωm =
{
x∈Rn

∣∣∣∣x=
y−xm

dm
and y ∈Ω

}
.

We apply (2.2) with Ψm, gm and Ωm, and letm!∞. Since the domain is moving, we
have to take ϕm satisfying ∂ϕm/∂nΩm =0 so that it converges to some function ϕ. If ∂Ω
is Ck (k>2), there exists µ>0 such that dΩ(x)∈Ck(ΓΩ,µ) with a tubular neighborhood
ΓΩ,µ={x∈	Ω|dΩ(x)<µ} and that, for any z∈ΓΩ,µ, there is a unique projection zp∈∂Ω
to ∂Ω, i.e. |z−zp|=dΩ(z); cf. Proposition 3.6 (i). Let xp

m∈∂Ω be the projection of xm to
∂Ω for sufficiently large m. The sequence of unit vectors (xm−xp

m)/dm converges to a
unit vector e. By translation and rotation we may assume that e=(0, ..., 0, 1). Then Ωm

converges to a half space Rn
+,−1, where

Rn
+,c = {(x′, xn)∈Rn |xn>c}.

More precisely, for any R>0, there is m0 such that for m>m0 there is hm∈C2(Bn−1
R (0))

converging to −1 up to third derivatives with the property that

Ωm∩(Bn−1
R (0)×[−R,R])= {(x′, xn)∈Rn |R>xn>hm(x′) and x′ ∈Bn−1

R (0)},

where Bn−1
R (0) denotes the closed ball in Rn−1 with radius R centered at the origin. Let

ϕ∈C2
c (
Rn

+,−1) satisfy ∂ϕ/∂xn=0 on {(x′, xn)|xn=−1}. We may assume that ϕ∈C2
c (Rn)

by a suitable extension. TakeR>0 so large that the support of ϕ is included in the interior
of Bn−1

R (0)×[−R,R]. We take a normal coordinate associated with Ωm. Let Fm be the
mapping defined by

x=(x′, xn) 7−!X = z+xn∇dΩm(z), with z=(x′, hm(x′)).

We set ϕm(X)=ϕ(F−1
m (X)). This is well defined for sufficiently large m. We further

observe that ∂ϕm/∂nΩm =0 on ∂Ωm, as nΩm =−∇dΩm . If ∂Ω is C3, then F−1
m is still C2.

Thus ϕm∈C2
c (	Ωm) for sufficiently large m. Here we invoke C3 regularity.

Since we may assume that Ψm(0)=0, by (2.9) the sequence {Ψm}∞m=1 is bounded
in Lr(Ωm∩(Bn−1

R (0)×[−R,R])), r∈(1,∞), for any R>1. As ∇Ψm is harmonic in Ωm,
a subsequence of {Ψm}∞m=1 converges to some function Ψ∈C∞(Rn

+,−1) locally uniformly
with all its derivatives and weakly in Lr

loc(
R
n
+,−1) (1<r<∞). Since (2.11) implies that

gm!0 uniformly, we apply (2.2) with Ψm, ϕm and gm, and let m!∞ to get∫
Rn

+,−1

Ψ∆ϕdx=0, (2.12)
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as F−1
m converges to the identity in C2 so that ϕm!ϕ in C2 in a neighborhood of the

support sptϕ. We thus observe that (2.12) is valid for all ϕ∈C2
c (Rn

+,−1) with ∂ϕ/∂xn=0
on {(x′, xn)|xn=−1}. We apply a uniqueness result for the Neumann problem with the
estimate supxn|∇Ψ|(x′, xn)61 obtained from (2.9) to get ∇Ψ≡0. (One should apply
Lemma 2.9 below for a rigorous proof.)

Since a subsequence of {∇Ψm}∞m=1 converges to ∇Ψ locally uniformly in Rn
+,−1,

(2.10) implies that |∇Ψ(0)|> 1
2 . This contradicts the fact that ∇Φ≡0, so the proof is

now complete.

Remark 2.7. (i) Even in case 1 the estimate (2.6) does not imply that {∇Ψm}∞m=1

is uniformly bounded in any Lebesgue spaces on Ω. Thus it is not clear that∫
Ωm

∇Φm ·∇ϕdx!
∫

Ω

∇Φ·∇ϕdx,

though we know that

−
∫

Ωm

Φm∆ϕdx!−
∫

Ω

Φ∆ϕdx,

since Φm converges weakly in all Lr spaces (1<r<∞) as m!∞ by taking a subsequence.
This is the reason we need to assume that ϕ is at least C2 and that ∂ϕ/∂nΩ=0 on the
boundary.

(ii) The proof of Theorem 2.5 actually yields the estimate

sup
x∈Ω

dΩ(x)|Q[∇·f ](x)|6CΩ‖nΩ ·(f−tf)‖L∞(∂Ω),

which is stronger than (1.5). Here,

nΩ ·f =
n∑

j=1

nj
Ωfij and tfij = fji.

If fij =∂jv
i with div v=0, the quantity nΩ ·(f−tf) is nothing but the tangential trace

of the vorticity, i.e. ω×nΩ when n=3. Moreover, the right-hand side of (2.2) equals∫
∂Ω

(ω×nΩ)·∇ϕdHn−1.

Since ∂ϕ/∂nΩ=0 so that ∇ϕ=∇tanϕ and since ω×nΩ is a tangent vector field on ∂Ω,
the above quantity equals

−
∫

∂Ω

(div∂Ω(ω×nΩ))ϕdHn−1.
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This implies formally that Φ with f=∂jv
i solves −∆Φ = 0 in Ω,

∂Φ
∂nΩ

=−div∂Ω(ω×nΩ) on ∂Ω,

where div∂Ω denotes the surface divergence; see e.g. [29] and [53]. In general, since the
quantity nΩ ·(f−tf) is tangential, we have

∂Φ
∂nΩ

=−div∂Ω(nΩ ·(f−tf)) on ∂Ω.

2.4. Uniqueness of the Neumann problem

We shall state and prove uniqueness results which are used in the proof of Theorem 2.5.

Lemma 2.8. (Uniqueness for bounded domains) Let Ω be a bounded domain with
C3 boundary. Assume that Φ∈L1(Ω)∩C(Ω) satisfies∫

Ω

Φ(x)∆ϕ(x) dx=0 (2.13)

for all ϕ∈C2(	Ω) satisfying ∂ϕ/∂nΩ=0 on ∂Ω. Then Φ is constant.

Proof. We consider the dual problem −∆ϕ=divψ in Ω,
∂ϕ

∂nΩ
=0 on ∂Ω.

For arbitrary ψ∈C∞
c (Ω), there exists a solution ϕ∈W 3,r(Ω) for all r>1 (see e.g. [35,

Lemma 2.3]), where Wm,r(Ω) denotes the Lr-Sobolev space of order m. By the Sobolev
embedding we conclude that ϕ∈C2(	Ω). From (2.13) it follows that∫

Ω

Φ divψ dx=0

for all ψ∈C∞
c (Ω). This implies that ∇Φ=0, so Φ is constant.

Lemma 2.9. (Uniqueness for the half space) Let Φ∈L1
loc(
R

n
+) satisfy∫

Rn
+

Φ(x)∆ϕ(x) dx=0

for all ϕ∈C∞
c (
Rn

+) satisfying ∂ϕ/∂xn=0 on {(x′, xn)|xn=0}. Assume that Φ satisfies

sup
x∈Rn

+

xn|∇Φ(x)|<∞. (2.14)

Then Φ is constant.
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Proof. The problem can be reduced to the whole space. Let Φ̃ be an even extension
of Φ to the whole space, i.e. Φ̃(x′, xn)=Φ(x′,−xn) for xn<0. For arbitrary ϕ∈C∞

c (Rn)
let ϕeven and ϕodd be the even and odd parts of ϕ, i.e.

ϕeven(x) =
ϕ(x′, xn)+ϕ(x′,−xn)

2
and ϕodd(x) =

ϕ(x′, xn)−ϕ(x′,−xn)
2

.

Integration by parts yields∫
Rn

Φ̃(x)∆ϕ(x) dx=
∫
Rn

Φ̃(x)∆(ϕeven(x)+ϕodd(x)) dx

=
∫
Rn

Φ̃(x)∆ϕeven(x) dx=2
∫
Rn

+

Φ(x)∆ϕeven(x) dx.

Since ϕeven satisfies ∂ϕeven/∂xn=0 on {(x′, xn)|xn=0}, we conclude that∫
Rn

Φ̃(x)∆ϕ(x) dx=0. (2.15)

By (2.14) we know that Φ̃ is locally integrable in Rn. As (2.15) says that Φ̃ is weakly
harmonic, Φ̃=ηε∗Φ̃ by the mean-value theorem if ηε is a symmetric mollifier, i.e. ηε is
radially symmetric (see e.g. [15, §2.2.3]). Moreover, by integrating Φ̃ from x0=(0, (x0)n)∈
Rn, with (x0)n 6=0, to x, we observe that (2.14) yields

|Φ̃(x)|6C
(
1+

∣∣log |xn|
∣∣+|x|∣∣log |xn|

∣∣)
for x′∈Rn and |xn|< 1

2 with some constant C independent of x. This implies that

∇Φ̃ =∇ηε∗Φ̃

satisfies the estimate
|∇Φ̃(x)|6Cε(1+|x|) (2.16)

for x′∈Rn−1 and |xn|<2ε with Cε independent of x. By (2.14) we conclude that ∇Φ̃
satisfies (2.16) for all x∈Rn. As Φ̃ is weakly harmonic, (2.16) implies that∇Φ̃ is harmonic
in Rn. By (2.16), the classical Liouville theorem implies that ∇Φ̃ is a polynomial of
degree 1. However, by the decay estimate (2.14) for |xn|!∞, this polynomial must be
zero. Thus ∇Φ̃=0, i.e. Φ is constant.

Remark 2.10. We actually need only C2-regularity of the boundary ∂Ω in case 1 of
the proof of Theorem 2.5. Note that identity (2.2) (which is independent of the uniqueness
results in this subsection) is still valid for ϕ∈W 2,2(Ω) having compact support in 	Ω.
When ∂Ω is C2, a slightly modified version of Lemma 2.8 is valid. In fact, for Φ∈L2(Ω)
we still assert that ∇Φ≡0 if (2.13) is satisfied for all ϕ∈W 2,2(Ω) with ∂ϕ/∂nΩ=0 on ∂Ω.
(The constructed ϕ in the proof is now in W 2,2(Ω), but not necessarily in W 3,r(Ω).)
Based on these assertions the proof of case 1 goes through with trivial modifications.
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3. Uniform Hölder estimates for pressure gradients

The goal of this section is to establish local Hölder estimates for second spatial derivatives
and the time derivative of the velocity solving the Stokes equations, both interior and up
to boundary. This procedure is a key to derive the necessary compactness for blow-up
sequences. Unlike the heat equation the result is not completely local even in the interior
case, since we need a uniform Hölder estimate in time for pressure gradients. For this
purpose we invoke admissibility of domains.

3.1. Interior Hölder estimates for pressure gradients

We use conventional notation [41] for Hölder (semi)norms for space-time functions. Let
f=f(x, t) be a real-valued or an Rn-valued function defined in Q=Ω×(0, T ], where Ω is
a domain in Rn. For µ∈(0, 1) we set several Hölder seminorms

[f ](µ)
(0,T ](x) = sup

{
|f(x, t)−f(x, s)|

|t−s|µ

∣∣∣∣ t, s∈ (0, T ] and t 6= s

}
,

[f ](µ)
Ω (t) = sup

{
|f(x, t)−f(y, t)|

|x−y|µ

∣∣∣∣x, y ∈Ω and x 6= y

}
and

[f ](µ)
t,Q = sup

x∈Ω
[f ](µ)

(0,T ](x) and [f ](µ)
x,Q =sup

t
[f ](µ)

Ω (t).

In the parabolic scale for γ∈(0, 1) we set

[f ](γ,γ/2)
Q = [f ](γ/2)

t,Q +[f ](γ)
x,Q.

For later convenience we also define the case γ=1 so that

[f ](1,1/2)
Q = ‖∇f‖L∞(Q)+[f ](1/2)

t,Q .

If l=[l]+γ, where [l] is a non-negative integer and γ∈(0, 1), we set

[f ](l,l/2)
Q =

∑
|α|+2β=[l]

[∂α
x ∂

β
t f ](γ,γ/2)

Q

and the parabolic Hölder norm

|f |(l,l/2)
Q =

∑
|α|+2β6[l]

‖∂α
x ∂

β
t f‖L∞(Q)+[f ](l,l/2)

Q .

When f is time-independent, we simply write [f ](µ)
x,Q by [f ](µ)

Ω .
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Let Ω be a uniformly C2-domain in Rn. For a given v0∈L̃r
σ(Ω), 1<r<∞, it is

proved in [16] and [18] that there exists a unique solution (v, q) of the Stokes equations
(1.1)–(1.4) satisfying vt,∇q,∇2v,∇v, v∈L̃r(Ω) at each t∈(0, T ) such that the solution op-
erator S(t): v0 7!v( · , t) is an analytic semigroup in L̃r

σ(Ω). Here T>0 is taken arbitrarily
large. In this paper we simply say that (v, q) is an L̃r-solution of (1.1)–(1.4). Note that
∇q=Q[∆v] for an L̃r-solution.

Lemma 3.1. Let Ω be an admissible, uniformly C2-domain in Rn (with r>n). Then
there exists a constant M(Ω)>0 such that

[dΩ(x)∇q](1/2)
t,Qδ

6
M

δ
sup{(‖vt‖∞(t)+‖∇2v‖∞(t))t | δ6 t6T}

holds for all L̃r-solutions (v, q) of (1.1)–(1.4) and all δ∈(0, T ), where Qδ=Ω×(δ, T ).
The constant M can be taken uniformly with respect to translation and dilation, i.e.

M(λΩ+x0) =M(Ω)

for all λ>0 and x0∈Ω.

Proof. By an interpolation inequality (see e.g. [64] and [40, §3.2]) there is a dilation-
invariant constant C such that for any ε>0 the estimate

‖∇v‖∞(t) 6 ε‖∇2v‖∞(t)+
C

ε
‖v‖∞(t)

holds. Since our solution is an L̃r-solution, we have

∇q=Q[∇·f ], f =(fij) = ∂jv
i,

and moreover
∇q(x, t)−∇q(x, s) =Q[∆v(x, t)−∆v(x, s)].

As Ω is admissible, we have

dΩ(x)|∇q(x, t)−∇q(x, s)|

6C(Ω)‖∇(v( · , t)−v( · , s))‖∞

6C(Ω)
(
εmax{‖∇2v‖∞(t), ‖∇2v‖∞(s)}+C

ε
‖v( · , t)−v( · , s)‖∞

)
.

Since

‖v( · , t)−v( · , s)‖∞ 6 |t−s| sup{‖vt‖∞(τ) | τ is between t and s},

6 |t−s|1
δ

sup{τ‖vt‖∞(τ) | δ6 τ 6T}

for t, s>δ, the desired inequality follows by taking ε=|t−s|1/2. As CΩ is also dilation
and translation invariant by Remark 2.4 (iii), so is M(Ω).
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Proposition 3.2. (Interior Hölder estimates) Let Ω be an admissible, uniformly
C2-domain in Rn (with r>n). Take γ∈(0, 1), δ>0, T>0, R>0. Then there exists a
constant C=C(M(Ω), δ, R, d, γ, T ) such that the estimate

[∇2v](γ,γ/2)
Q′ +[vt]

(γ,γ/2)
Q′ +[∇q](γ,γ/2)

Q′ 6CNT (3.1)

holds for all L̃r-solutions (v, q) of (1.1)–(1.4) provided that BR(x0)⊂Ω and x0∈Ω, where
Q′=intBR(x0)×(δ, T ] and d denotes the distance of BR(x0) and ∂Ω. Here

NT = sup
0<t<T

‖N(v, q)‖∞(t)<∞ (3.2)

and M(Ω) is the constant in Lemma 3.1.

Proof. Since ∇q is harmonic in Ω, the Cauchy-type estimate implies that

sup
x∈BR+d/2(x0)

|∇2q(x, t)|6 C0

d
‖∇q‖L∞(Ω)(t) and BR+d/2(x0)⊂Ω,

where C0 depends only on n. This together with Lemma 3.1 implies

[∇q](1,1/2)
Q′′ 6

(
C0

d
+

4M
d

)
1
δ
NT

for any x0∈Ω, R>0 and δ>0, where Q′′=intBR+d/2(x0)×
(

1
2δ, T

]
. By the standard local

Hölder estimate for the heat equation

vt−∆v=−∇q in Q′′,

this pressure gradient estimate implies estimates for ∇2v and vt in Q′ [41, Chapter IV,
Theorem 10.1].

Remark 3.3. (i) We are tempted to claim that if (v, q) solves the Stokes system
(1.1)–(1.2) without boundary and initial condition, then the desired interior Hölder es-
timate would be valid. Such a type of estimate is in fact true for the heat equation [41,
Chapter IV, Theorem 10.1]. However, for the Stokes equations this is no longer true.
In fact, if we take v(x, t)=g(t) and p(x, t)=−g′(t)·x with g∈C1[0,∞), this is always a
solution of (1.1)–(1.2) satisfying NT1<∞ for any T1>0. However, evidently vt may not
be Hölder continuous in time unless ∇p is Hölder continuous in time. This is why we use
a global setting with admissibility of the domain.

(ii) In the constant C the dependence of Ω is through M(Ω) so it is invariant under
dilation provided that d and R are taken independent of the dilation.
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3.2. Local Hölder estimates up to the boundary

The regularity up to the boundary is more involved. We begin with the statement and
give a proof in subsequent sections.

Theorem 3.4. (Estimates near the boundary) Let Ω be an admissible, uniformly
C3-domain of type (α, β,K) in Rn (with r>n). Then there exists R0=R0(α, β,K)>0
such that for any γ∈(0, 1), δ∈(0, T ) and R6 1

2R0 there exists a constant

C =C(M(Ω), δ, γ, T,R, α, β,K)

such that (3.1) is valid for all L̃r-solutions (v, q) of (1.1)–(1.4) with

Q′ =Q′
x0,R,δ =Ωx0,R×(δ, T ], Ωx0,R = intBR(x0)∩Ω,

provided that x0∈∂Ω.

The proof is more involved. We first localize the Stokes equations near the bound-
ary by using the cut-off technique and the Bogovskĭı operator [22, §III.3] to recover the
divergence-free property. Then we apply a global Schauder estimate for the Stokes equa-
tions in a localized domain. As in the interior case we use the admissibility of the domain
to obtain the Hölder estimate for the pressure in time.

We begin with Hölder estimates for q in time since we are not able to control the
Hölder norm of ∇q up to the boundary.

Lemma 3.5. Assume the same hypotheses as in Lemma 3.1. Then there exists R0=
R0(α, β,K)>0 such that for ν∈(0, 1) and R∈(0, R0] there exists a constant

C0 =C0(M(Ω), ν, α,R, β,K)

such that
[q](ν,ν/2)

Q′ 6
C0NT

δ
(3.3)

is valid for all L̃r-solutions (v, q) of (1.1)–(1.4) and Q′=Q′
x0,R,δ for x0∈∂Ω.

For this purpose we prepare a basic fact for the distance function.

Proposition 3.6. Let Ω be a uniformly C2-domain of type (α, β,K).
(i) There is a constant R∗=R∗(α, β,K)>0 such that every

x∈ΓΩ,R∗ = {x∈Ω | dΩ(x)<R∗}

has a unique projection xp∈∂Ω (i.e. |x−xp|=dΩ(x)) and x is represented as

x=xp−dnΩ(xp)
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with d=dΩ(x). The mapping x 7!(xp, d) is C1 in ΓΩ,R∗ .
(ii) There is a positive constant R1=R1(α, β,K)6R∗ such that Ωx0,R1⊂Uα,β,h(x0)

and the projection xp of x∈Ωx0,R1 is on x0+graph(h).
(iii) For each R∈(0, R1) and ν∈[0, 1) there is a constant C=C(α, β,K,R, ν) such

that

|q̃(x)−q̃(y)|6C‖dν
Ω∇q̃‖L∞(Ω)

(
|dΩ(y)1−ν−dΩ(x)1−ν |+ |xp−yp|

max{dΩ(x)ν , dΩ(y)ν}

)
for x, y∈Ωx0,R and for all q̃∈C1(Ω) and x0∈∂Ω.

Proof. (i) This is non-trivial but well known. See e.g. [36] or [39, §4.4].
(ii) This is easy by taking R small. The smallness depends on a bound for the second

fundamental form of ∂Ω.
(iii) For x∈Ωx0,R (R6R1) we consider its normal coordinate (xp, d). Since Ωx0,R⊂

Uα,β,h(x0), there is a unique x′p∈Rn−1 such that xp=(x′p, h(x
′
p)). Moreover, we are able

to use (x′p, d) as a coodinate system. For x, y∈Ωx0,R with x=(x′p, dΩ(x)), y=(y′p, dΩ(y))
and dΩ(y)>dΩ(x), we estimate

|q̃(x)−q̃(y)|6 |q̃(x)−q̃(z)|+|q̃(z)−q̃(y)|

with z=(x′p, dΩ(y)). Thus we connect x and z by a straight line which is parallel to
nΩ(xp) and observe that, with xτ =x(1−τ)+τz (06τ61),

|q̃(x)−q̃(z)|6 |z−x|
∫ 1

0

1
dν
Ω(xτ )

|dν
Ω∇q̃(xτ )| dτ 6

∫ dΩ(y)

dΩ(x)

1
sν
ds ‖dν

Ω∇q̃‖L∞(Ω)

6
dΩ(z)1−ν−dΩ(x)1−ν

1−ν
‖dν

Ω∇q̃‖L∞(Ω).

It remains to estimate |q̃(z)−q̃(y)|. We connect z and y by a curve Cz,y of the form

Cz,y = {x(τ) | 0 6 τ 6 1, x′p(τ) =x′p(1−τ)+τy′p and dΩ(x(τ))= dΩ(y)}

so that the projection in Rn−1 is a straight line connecting x′p and y′p. We now estimate

|q̃(z)−q̃(y)|6
∫

Cz,y

1
dΩ(y)ν

dν
Ω(y)|∇q̃|(x) dH1(x) =

1
dΩ(y)ν

H1(Cz,y)‖dν
Ω∇q̃‖L∞(Ω).

Since H1(Cz,y)6C|xp−yp|, the proof is now complete.

Proof of Lemma 3.5. We take R1>0 as in Proposition 3.6. For x0∈∂Ω we take
x̃0=x0− 1

2R1nΩ(x0). We may assume that q(x̃0, t)=0 for all t∈(0, T ). Since

[dΩ(x)ν∇q](ν/2)
t,Qδ

6 ([dΩ(x)∇q](1/2)
t,Qδ

)ν(2‖∇q‖L∞(Qδ))1−ν ,
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Lemma 3.1 implies that

‖dΩ(x)ν∇q̃(x, ·)‖L∞(Ω)(t, s) 6
MνNT 2

δ

1−ν

|t−s|ν/2 for t, s∈ (δ, T ],

with q̃(x, t, s)=q(x, t)−q(x, s). We now apply Proposition 3.6 (iii) with y=x̃0 to get

|q(x, t)−q(x, s)|6C(dΩ(x̃0)1−ν +|xp−x0|dΩ(x̃0)−ν)
MνNT 2

δ

1−ν

|t−s|ν/2

for t, s∈(δ, T ] and all x∈Ωx0,R, R6R0= 1
4R1. Since dΩ(x̃0)=2R0 and |xp−x0|<R, the

above inequality implies that

[q](ν/2)
t,Q′ 6

C0NT

δ
, C0 =C((2R0)1−ν +R(2R0)−ν)Mν21−ν .

For the Hölder estimate in space we simply apply Proposition 3.6 (iii) with ν=0 to
get

|q(x, t)−q(y, t)|6C‖∇q‖L∞(Ω)(t)(|dΩ(y)−dΩ(x)|+|xp−yp|) 6C‖∇q‖L∞(Ω)(t)|x−y|

for x, y∈Ωx0,R, R6R0, and t∈(0, T ). This implies that

[q](ν)
x,Q′ 6

C0NT

δ

so the proof is now complete.

3.3. Helmholtz decomposition and the Stokes equations in Hölder spaces

To prove local Hölder estimates up to the boundary (Theorem 3.4) we recall several known
Hölder estimates for the Helmholtz decomposition and the Stokes equations established
in [55] and [60] via a potential-theoretic approach; see also [59]. We recall notions for the
spaces of Hölder continuous functions. By Cγ(	Ω) with γ∈(0, 1) we mean the space of all
continuous functions in 	Ω with [f ](γ)

Ω <∞. Similarly, we use Cγ,γ/2(
Q) for the space of
all continuous functions in 
Q with [f ](γ,γ/2)

Q <∞.

Proposition 3.7. (Helmholtz decomposition) Let Ω be a bounded C2+γ-domain in
Rn with γ∈(0, 1).

(i) For f∈Cγ(	Ω) there is a (unique) decomposition f=f0+∇Φ with f0,∇Φ∈Cγ(	Ω)
such that ∫

Ω

f0 ·∇ϕdx=0 for all ϕ∈C∞(	Ω). (3.4)
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(ii) There is a constant CH>0 depending only on γ and Ω only through its C2+γ

regularity such that

|f0|(γ)
Ω +|∇Φ|(γ)

Ω 6CH |f |(γ)
Ω for all f ∈Cγ(	Ω), (3.5)

where |f |(γ)
Ω denotes the Hölder norm of f , i.e. |f |(γ)

Ω =[f ](γ)
Ω +‖f‖L∞(Ω).

(iii) For each ε∈(0, 1−γ) there is a constant C ′
H>0 depending only on γ, ε and Ω

only through its C2+γ regularity such that

|f0|(γ,γ/2)
Q +|∇Φ|(γ,γ/2)

Q 6C ′
H |f |

(γ+ε,(γ+ε)/2)
Q for all f ∈Cγ+ε,(γ+ε)/2(
Q). (3.6)

Proof. The parts (i) and (ii) are established in [55] and [60]; the dependence of the
constant is not explicit but can be seen from the proof.

In [60, Corollary on p. 175] it is proved that the left-hand side of (3.6) is dominated
by a (similar type) constant multiple of

|f |(γ,γ/2)
Q + sup

x,y∈Ω

t,s∈(0,T ]

|(f(x, t)−f(x, s))−(f(y, t)−f(y, s))|
|x−y|µ|t−s|γ/2

(3.7)

for arbitrary µ∈(0, 1). By the Young inequality we get

1
|x−y|ε|t−s|γ/2

6
ε

γ+ε
1

|x−y|γ+ε
+

γ

γ+ε
1

|t−s|(γ+ε)/2
.

Thus we take µ=ε to see that the second term of (3.7) is dominated by

2ε
γ+ε

sup
t∈(0,T ]

[f ](γ+ε)
Ω (t)+

2γ
γ+ε

sup
x∈Ω

[f ]((γ+ε)/2)
(0,T ] (x).

Hence the estimate (3.6) follows and (iii) is proved.

Remark 3.8. The operator f 7!f0 is essentially the Helmholtz projection P for
Hölder vector fields, since (3.4) implies that div f=0 in Ω and f ·nΩ=0 on ∂Ω. The
estimate (3.5) shows the continuity of P in the Hölder space Cγ(	Ω). However, it is men-
tioned in [60] (without a proof) that P is not continuous in Cγ,γ/2(
Q). In other words,
one cannot take ε=0 in the estimate (3.6).

We next recall the Schauder-type estimates for the Stokes system

vt−∆v+∇q= f0 in Ω×(0, T ), (3.8)

div v=0 in Ω×(0, T ), (3.9)

v=0 on ∂Ω×(0, T ), (3.10)

v=0 on Ω×{0}. (3.11)
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Proposition 3.9. Let Ω be a bounded C2+γ-domain in Rn with γ∈(0, 1) and T>0.
Then, for each f0∈Cγ,γ/2(
Q) satisfying (3.4), there is a unique solution

(v,∇q)∈C2+γ,1+γ/2(
Q)×Cγ,γ/2(
Q)

(up to an additive constant for q) of (3.8)–(3.11). Moreover, there is a constant CS

dependeng only on γ, T and Ω only through its C2+γ regularity such that

|v|(2+γ,1+γ/2)
Q +|∇q|(γ,γ/2)

Q 6CS |f0|(γ,γ/2)
Q . (3.12)

Remark 3.10. (i) This result is a special case of a very general result [60, Theo-
rem 1.1], where the viscosity constant in front of ∆ in (3.8) depends on space and time
and the boundary and initial data are inhomogeneous. Note that the divergence-free
condition (3.4) for f0 is assumed in order to establish (3.12).

(ii) If the domain is a bounded C3-domain, clearly it is a uniformly C3-domain of
type (α, β,K) for some (α, β,K). The constants CH , C ′

H and CS in Propositions 3.7
and 3.9 depend on Ω only through (α, β,K) when Ω is a bounded C3-domain (which is
of course a C2+γ-domain for all γ∈(0, 1)).

3.4. Localization procedure

We shall prove Theorem 3.4 using Lemma 3.5 and a localization procedure with necessary
Hölder estimates (Propositions 3.7 and 3.9). We first recall the Bogovskĭı operator BE

in [10]. Let E be a bounded subdomain in Ω with Lipschitz boundary. The Bogovskĭı
operator BE is a rather explicit operator but here we only need a few properties. This
linear operator BE is well defined for average-zero functions, i.e. such that

∫
E
g dx=0.

Moreover, divBE(g)=g in E and if the support spt g⊂E, then sptBE(g)⊂E.

The operator BE satisfies the estimates

‖BE(g)‖W 1,p(E) 6CB‖g‖Lp(E) for g ∈Lp(E) satisfying
∫

E
g dx=0, (3.13)

‖BE(g)‖Lp(E) 6CB‖g‖W−1,p
0 (E) for g ∈W−1,p

0 (E) =W 1,p′(E)∗, (3.14)

with some constant CB independent of g, where 1/p′+1/p=1 and 1<p<∞. In particular
BE is bounded from Lp

av={g∈Lp(E)|
∫

E
g dx=0} to the Sobolev space W 1,p(E). The es-

timate (3.14) is a special case of [23, Theorem 2.5] which asserts that BE is bounded from
W s,p

0 (Ω) to W s+1,p
0 (Ω) for s>−2+1/p. The bound CB depends on p but its dependence

on E is through the Lipschitz regularity constant of ∂E.
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Proof of Theorem 3.4. We take R0 as in Lemma 3.5 and take R6 1
2R0. For x0∈∂Ω

we take a bounded C3-domain Ω′ such that Ωx0,3R/2⊂Ω′⊂Ωx0,2R. Evidently ∂Ωx0,R∩∂Ω
is strictly included in ∂Ω′∩∂Ω. Moreover, one can arrange that Ω′ is of type (α′, β′,K ′),
where (α′, β′,K ′) depends on (α, β,K) and R. Such an Ω′ is constructed for example by
considering Ω′′=Ωx0,7R/4 and mollifying near the set ∂B7R/4(x0)∩∂Ω in a suitable way
to get Ω′.

Let θ be a smooth cut-off function of [0,1] supported in
[
0, 3

2

)
, i.e. θ∈C∞[0,∞) such

that θ≡1 on [0, 1] and 06θ61 with spt θ⊂
[
0, 3

2

)
. We set θR(x)=θ(|x−x0|/R) which is

a cut-off function of Ωx0,R supported in Ω′. By construction, its derivatives depend only
on R. We also take a cut-off function %δ in the time variable. Let %∈C∞[0,∞) satisfy
%≡1 on [1,∞) and %=0 on

[
0, 1

2

)
with 06%61. For δ>0 we set %δ(t)=%(t/δ). We set

ξ=θR%δ and observe that u=vξ and p=qξ solves{
ut−∆u+∇p= f,

div u= g,

in U=Ω′×(0, T ) with

f = vξt−2∇v ·∇ξ−v∆ξ+q∇ξ and g= v ·∇ξ(=div(vξ)).

We next use the Bogovskĭı operator BΩ′ to make the vector field solenoidal. We set
u∗=BΩ′(g) and ũ=u−u∗. Then (ũ, p) solve{

ũt−∆ũ+∇p= f̃ ,

div ũ=0,

in U with f̃=f+u∗t−∆u∗. We shall fix Ω′ so that C ′
H in (3.6) and CS in (3.12) depends on

Ω′ only through (α, β,K) and R. If we know that f̃∈Cγ+ε,(γ+ε)/2(
U) with ε∈(0, 1−γ)
then by the Helmholtz decomposition in Hölder spaces (Proposition 3.7), one obtains
f̃=f0+∇Φ with f0∈Cγ,γ/2(
U) satisfying (3.4) and

|f0|(γ)+|∇Φ|(γ) 6C ′
H |f̃ |(γ+ε), (3.15)

where we use the shorthand notation |f |(γ)=|f |
(γ,γ/2)
U . If we set p̃=p−Φ, then (ũ, p̃)

solves (3.8)–(3.11) with Ω=Ω′, where f0 satisfies the solenoidal condition (3.4). Applying
the Schauder estimate (3.12) yields

|ũ|(2+γ)+|∇p̃|(γ) 6CS |f0|(γ). (3.16)

By the definition of f̃ we observe that

|f̃ |(γ+ε) 6 |f |(γ+ε)+|u∗t |(γ+ε)+|∆u∗|(γ+ε)

6 c0(|v|(γ+ε,(γ+ε)/2)
Ω′×(δ/2,T ] +|∇v|(γ+ε,(γ+ε)/2)

Ω′×(δ/2,T ] +|q|(γ+ε,(γ+ε)/2)
Ω′×(δ/2,T ] )+|u∗|(2+γ+ε),
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where c0 depends only on R, T , δ and γ+ε. Since NT in (3.2) is finite, by an interpolation
inequality as in the proof of Lemma 3.1, we have [∇v](1/2)

t,Qδ
6CNT /δ with C depending

only on (α, β,K). We now apply this estimate together with estimate (3.3) for q in
Lemma 3.5 to get

|f̃ |(γ+ε) 6CNT +|u∗|(2+γ+ε) (3.17)

with a constant C=C(M(Ω), γ+ε, α, β,K,R, δ). Since

|v|(2+γ,1+γ/2)
Q′ 6 |u|(2+γ) 6 |ũ|(2+γ)+|u∗|(2+γ) and |∇q|(γ,γ/2)

Q′ 6 |∇p̃|(γ)+|∇Φ|(γ),

the desired estimates follow from (3.15)–(3.17) once we have established that

|u∗|(2+γ+ε) 6CNT

with C=C(M(Ω), γ+ε, α, β,K,R, δ).
We shall present a proof for

[u∗t ]
(µ/2)
t,U 6CNT (3.18)

for µ∈(0, 1) since the other quantities can be estimated in a similar way and are even
easier. By (3.13) and (3.14) we have

‖u∗t ‖Lp(Ω′) 6CB‖div ut‖W−1,p
0 (Ω′), (3.19)

‖u∗t ‖W 1,p(Ω′) 6CB‖div ut‖Lp(Ω′). (3.20)

To estimate ‖div ut‖W−1,p
0 (Ω′) we use the equations vt−∆v+∇q=0 and div v=0. For an

arbitrary ϕ∈W 1,p′(Ω′) we have∫
Ω′
ϕ div ut dx=

∫
Ω′

(ϕvt ·∇ξ+ϕ∇ξt ·v) dx

=
∫

Ω′
(ϕ∇ξ ·(∆v−∇q)+ϕ∇ξt ·v) dx

=
∫

Ω′

(
−

n∑
i=1

∂xi(ϕ∇ξ)·∂xiv+q div(ϕ∇ξ)+ϕ∇ξt ·v
)
dx

+
∫

∂Ω′

(
ϕ∇ξ · ∂v

∂nΩ′
−qϕ ∂ξ

∂nΩ′

)
dHn−1.

This implies that∣∣∣∣∫
Ω′
ϕ div ut dx

∣∣∣∣ 6Cξ(‖∇v‖∞+‖q‖∞+‖v‖∞)(‖ϕ‖W 1,1(Ω′)+‖ϕ‖L1(∂Ω′)) (3.21)
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with Cξ depending only on R and δ (independent of t), where the L∞-norm is taken on
Ω′. By a trace theorem (e.g. [15, §5.5, Theorem 1]) there is a constant C (depending
only on the Lipschitz regularity of the domain) such that

‖ϕ‖L1(∂Ω′) 6C‖ϕ‖W 1,1(Ω′).

By the Hölder inequality, ‖ϕ‖W 1,1(Ω′)6C ′‖ϕ‖W 1,p(Ω′) with C ′ depending on the volume
of Ω′. Thus (3.21) yields

‖div ut‖W−1,p
0 (Ω′) 6C0(‖∇v‖∞+‖q‖∞+‖v‖∞)

with C0 depending only on δ, R and Ω′ through (α, β,K). By (3.19) this yields

‖u∗t ‖Lp(Ω′) 6CBC0(‖∇v‖∞+‖q‖∞+‖v‖∞). (3.22)

We next estimate ‖u∗t ‖W 1,p . By (3.20) a direct computation shows that

‖u∗t ‖W 1,p(Ω′) 6C0CB(‖v‖∞+‖vt‖∞) (3.23)

since div ut=div ∂t(ξv)=∂t(∇ξ ·v) as div v=0.
We now apply the Gagliardo–Nirenberg inequality (see e.g. [26])

‖u∗t ‖∞ 6 c‖u∗t ‖1−σ
Lp(Ω′)‖u

∗
t ‖σ

W 1,p(Ω′), σ=
n

p
,

to (3.22) and (3.23) to get

‖u∗t ‖∞ 6C1CB(‖v‖∞+‖vt‖∞)σ(‖∇v‖∞+‖v‖∞+‖q‖∞)1−σ

with C1 depending only on δ, R and Ω′ through (α, β,K). We replace u∗ by

u∗( · , t)−u∗( · , s)

and observe that

‖u∗t ( · , t)−u∗t ( · , s)‖∞ 6C1CB

(
‖∇v( · , t)−∇v( · , s)‖∞+‖q( · , t)−q( · , s)‖∞

+‖v( · , t)−v( · , s)‖∞
)1−σ

(
2NT

min{t, s}

)σ

,
(3.24)

for t, s>0. As observed at the end of the proof of Lemma 3.1, we have

[∇v](1/2)
t,Qδ

6
CNT

δ
.

By (3.3) we now conclude that

sup
x∈Ω′

[∇v](µ
′)

t,Ω′×(δ/2,T ]+ sup
x∈Ω′

[q](µ
′)

t,Ω′×(δ/2,T ] 6
CNT

δ
, µ′ =

µ

2(1−σ)
,

provided that µ′< 1
2 (i.e. p>n/(1−µ)). Dividing both sides of (3.24) by |t−s|µ/2 and

taking the supremum for s, t> 1
2δ we get (3.18) since u∗=0 for t6 1

2δ.
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4. Uniqueness for the Stokes equations in a half space

The goal of this section is to establish a uniqueness theorem for the Stokes equations in a
half space Rn

+={(x′, xn)|xn>0} to be able to characterize the limit of rescaled limits in
our blow-up argument. The result presented below is by no means optimal but convenient
to apply.

Theorem 4.1. (Uniqueness) Assume that (v, q) satisfies

v ∈C(
Rn
+×(0, T ))∩C2,1(Rn

+×(0, T )), ∇q ∈C(Rn
+×(0, T )) (4.1)

and ∫ T

0

∫
Rn

+

(v ·(ϕt+∆ϕ)−ϕ·∇q) dx dt=0 (4.2)

for all ϕ∈C∞
c (Rn

+×[0, T )) with (1.2)–(1.3) for Ω=Rn
+. Also assume that

sup
0<t<T

‖N(v, q)‖∞(t)<∞ (4.3)

and
sup

x∈Rn
+

0<t<T

t1/2xn|∇q(x, t)|<∞. (4.4)

Then v≡0 and ∇q≡0.

Remark 4.2. Without decay condition (4.4) for the pressure gradient there is a non-
trivial solution. In fact, let vi=vi(xn, t) be the solution of the heat equation

vi
t−∂2

xn
vi = ai in {xn |xn> 0}×(0, T ),

vi =0 on {0}×(0, T ),

vi =0 on {xn |xn> 0}×{0},

for i=1, ..., n−1 with ai∈C1[0, T ] (independent of x). We set v=(v1, ..., vn−1, 0) and

q(x, t) =−
n−1∑
i=1

ai(t)xi.

Then (v, q) solves the Stokes equations (1.1)–(1.4) with Ω=Rn
+ and v0=0. It satisfies

(4.3) but it does not satify (4.4). This is a non-trivial solution unless ai≡0 for all
i=1, ..., n−1. Note that (4.2) is satisfied for this (v, q), since (v, q) satisfies (1.1)–(1.4)
with v0=0. So this example shows that the uniqueness of Theorem 4.1 is no longer true
without (4.4).



28 k. abe and y. giga

This result is easily reduced to a uniqueness theorem which is essentially due to
Solonnikov [58]. Although it is stated in a different way [58, Theorem 1.1], his proof,
based on the duality argument (proving the solvability of the dual problem), yields the
following uniqueness result (Lemma 4.3). Note that for a half space the Stokes semigroup
is not bounded in L1 (for each t>0) [14] although the derivative satisfies the usual
regularizing effect

‖∇S(t)v0‖L1(Rn
+) 6Ct−1/2‖v0‖L1(Rn

+)

as proved in [33].

Lemma 4.3. Assume that (v, q) satisfies (4.1)–(4.2) and (1.2)–(1.3) with Ω=Rn
+.

Also assume that
sup

δ<t<T
‖N(v, q)‖∞(t)<∞ (4.5)

for any δ∈(0, T ). Also assume that |∇q(x, t)|!0 as xn!∞ for t∈(0, T ). If v( · , t)
converges ∗-weakly to 0 in L∞(Rn

+) as t#0, then v≡0 and ∇q≡0.

Proof of Theorem 4.1. To apply this uniqueness result it suffices to prove that

v( · , t)! 0 (*-weakly in L∞) as t # 0.

Since (v, q) solves (1.1), multiplying by ϕ∈C∞
c (Rn

+×[0, T )) and integration by parts yield∫ T

δ

∫
Rn

+

(v ·(ϕt+∆ϕ)−ϕ·∇q) dx dt+
∫
Rn

+

v(x, δ)·ϕ(x, δ) dx=0.

By (4.2) we easily observe that∫
Rn

+

v(x, δ)·ϕ(x, δ) dx! 0

as δ!0. In particular, ∫
Rn

+

v(x, δ)·ψ dx! 0

for all ψ∈C∞
c (Rn

+). Since v is bounded by (4.3) and C∞
c (Rn

+) is dense in L1(Rn
+), this

implies that v( · , t)!0 (∗-weakly in L∞).

Remark 4.4. (i) The continuity assumption (in Theorem 4.1 and Lemma 4.3)

v ∈C(
Rn
+×(0, T ))

in (4.1) is redundant if one assumes (4.3) or (4.5).
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(ii) Without the decay condition on the pressure gradient ∇q as xn!∞, one still
concludes that v depends only on xn and t; see [58, proof of Theorem 1.1]. Since div v=0
and v vanishes on the boundary, this implies that the normal component vn (of v)
vanishes identically so that ∂q/∂xn=0. Thus vi (16i6n−1) solves the heat equation
with a spatially constant external source term ai which agrees with the counterexample
for uniqueness without decay of ∇q as xn!∞. This observation shows that to establish
uniqueness it suffices to assume the decay of ∂q/∂xj (j=1, ..., n−1) as xn!∞.

We conclude this section by giving a uniqueness result for the heat equation which
is very easy to prove.

Lemma 4.5. Assume that u∈L1
loc(R

n×[0, T )) satisfies

∫ T

0

∫
Rn

u(x, t)(ϕt(x, t)+∆ϕ(x, t)) dx dt=0 (4.6)

for all ϕ∈C∞
c (Rn×[0, T )). Also assume that

sup
t∈(0,T )

‖u‖∞(t)<∞. (4.7)

Then u≡0.

Proof. We prove this statement by a duality argument. We first observe that (4.6)
holds for

ψ ∈C∞(Rn×[0, T )) with ψ,∇ψ,∇2ψ,ψt ∈L1(Rn×[0, T )) (4.8)

and sptψ⊂Rn×[0, T ). This is easily proved by setting ϕ=θRψ in (4.6) and by let-
ting R!∞, where θR is the cut-off function defined in the proof of Theorem 3.4. The
procedure is justified by (4.7).

For an arbitrary f∈C∞
c (Rn×[0, T )), we solve

{
ψt+∆ψ= f in Rn×[0, T ),
ψ(x, T ) = 0 for x∈Rn.

It is not difficult to see that ψ∈C∞(Rn×[0, T )) satisfies (4.8), so we conclude that

∫ T

0

∫
Rn

uf dx dt=0

for all f∈C∞
c (Rn×[0, T )). This implies that u≡0.
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5. Blow-up arguments—a-priori L∞ estimates

In this section we shall prove Theorem 1.2 by a blow-up argument. We then derive Theo-
rem 1.3 which implies Theorem 1.1 since a bounded domain is admissible (Theorem 2.5).

5.1. A-priori estimates under stronger regularity assumption

Proposition 5.1. The assertion of Theorem 1.2 holds under the extra restrictions
that v( · , t)∈C2(	Ω) for t∈(0, 1) and ‖N(v, q)‖∞(t) is bounded in (0, 1) as a function of t.

Proof. We argue by contradiction. Suppose that (1.6) were false for any choice of
T0 and C. Then there would exist an L̃r-solution (vm, qm) of (1.1)–(1.4) with v0=v0m∈
C∞

c,σ(Ω) and a sequence τm#0 (as m!∞) such that ‖N(vm, qm)‖∞(τm)>m‖v0m‖∞.
There is tm∈(0, τm) such that

‖N(vm, qn)‖∞(tm) > 1
2Mm, Mm = sup

0<t<τm

‖N(vn, qm)‖∞(t).

Note that, due to our extra assumption, Mm is finite. We normalize vm and qm by
defining ṽm=vm/Mm and q̃m=qm/Mm. Then (ṽm, q̃m) satisfies estimates (1.7)–(1.9).
Since (ṽm, q̃m) is an L̃r-solution, we have ∇q̃m=Q[∆ṽm]. As Ω is admissible so that
(1.5) holds, (1.7) implies that there is a dilation- and translation-invariant constant CΩ

independent of m such that

sup{t1/2dΩ(x)|∇q̃m(x, t)| |x∈Ωm and t∈ (0, tm)}6CΩ. (5.1)

Here we have invoked the assumption v( · , t)∈C2(	Ω) to be able to apply the estimate for
Q. We rescale (ṽm, q̃m) around a point xm∈Ω satisfying (1.10) to get a blow-up sequence
(um, pm) of the form

um(x, t) = ṽm(xm+t1/2
m x, tmt), pm(x, t) = t1/2

m q̃m(xm+t1/2
m x, tmt).

By the scaling invariance of the Stokes equations (1.1)–(1.2), this (um, pm) solves the
Stokes equations in the rescaled domain Ωm×(0, 1], where

Ωm =
{
x∈Rn

∣∣∣∣x=
y−xm

t
1/2
m

and y ∈Ω
}
.

It follows from (1.7), (5.1) and (1.10) that

sup
0<t<1

‖N(um, pm)‖L∞(Ωm) 6 1, (5.2)

sup{t1/2dΩm(x)|∇pm(x, t)| |x∈Ωm and 0<t< 1}6CΩ, (5.3)

N(um, pm)(0, 1) > 1
4 . (5.4)
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Moreover, for initial data v0m the condition (1.9) implies that ‖u0m‖L∞(Ωm)!0 (as
m!∞). The situation is divided into two cases depending on whether or not

cm =
dΩ(xm)

t
1/2
m

tends to infinity as m!∞. This cm is the distance from zero to ∂Ωm, i.e. cm=dΩm
(0).

Case 1. limm!∞ cm=∞. We may assume that limm!∞ cm=∞ by taking a sub-
sequence. In this case the rescaled domain Ωm expands to Rn. Therefore, for any
ϕ∈C∞

c (Rn×[0, 1)), the blow-up sequence (um, pm) satisfies∫ 1

0

∫
Rn

(um ·(ϕt+∆ϕ)−∇pm ·ϕ) dx dt=−
∫
Rn

um(x, 0)·ϕ(x, 0) dx

for sufficiently large m>0. By (5.2) and Proposition 3.2 we have a necessary compactness
to conclude that there exists a subsequence of solutions still denoted by (um, pm) such
that (um, pm) converges to some (u, p) locally uniformly in Rn×(0, 1] together with ∇um,
∇2um, umt and ∇pm. (Note that the constant C in (3.1) is invariant under dilation and
translation of Ω so (3.1) for (um, pm) gives equicontinuity of ∇2um, umt and ∇pm.) As,
for each R>0,

inf{dΩm(x) | |x|6R}!∞ as m!∞,

the estimate (5.3) implies that ∇p=0. Thus the limit u∈C(Rn×(0, 1]) solves∫ 1

0

∫
Rn

u·(ϕt+∆ϕ) dx dt=0

for all ϕ∈C∞
c (Rn×[0, 1)) since ‖u0m‖L∞(Ωm)!0 as m!∞. Since u is bounded by

(5.2), applying the uniqueness of the heat equation (Lemma 4.5) we conclude that u≡0.
However, (5.4) implies that N(u, p)(0, 1)> 1

4 which is a contradiction, so case 1 does not
occur.

Case 2. limm!∞ cm<∞. By taking a subsequence, we may assume that cm con-
verges to some c0>0. We may also assume that xm converges to a boundary point x̂∈∂Ω.
By rotation and translation of coordinates, we may assume that x̂=0 and that the ex-
terior normal nΩ(x̂)=(0, ..., 0,−1). Since Ω is a uniformly C3-domain of type (α, β,K),
the domain Ω is represented locally near x̂ on the form

Ωloc = {(x′, xn)∈Rn |h(x′)<xn<h(x′)+β and |x′|<α}

with a C3-function h such that ∇′h(0)=0 and h(0)=0, where derivatives up to third
order of h are bounded by K. If one rescales with respect to xm, Ωloc is expanded as

(Ωm)loc

= {(y′, yn)∈Rn |h(t1/2
m y′+x′m)<t1/2

m yn+(xm)n<h(t1/2
m y+x′m)+β and |t1/2

m y′|<α}.
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Since dΩ(xm)/(xm)n!1 as m!∞ and x′m!0, the domain (Ωm)loc converges to

Rn
+,−c0

= {(x′, xn)∈Rn |xn>−c0}.

In fact, if one expresses

(Ωm)loc = {(y′, yn)∈Rn |hm(y′)<yn<βm+hm(y′) and |y′|<αm}

with αm=α/t1/2
m , βm=β/t1/2

m , hm(y′)=h(t1/2
m y′+x′m)/t1/2

m −(xm)n/t
1/2
m , then hm!−c0

locally uniformly up to third derivatives and αm, βm!∞. Note that |∂µ
xhm| for µ,

16|µ|63, is uniformly bounded by K.
Thus, (um, pm) solves (1.1)–(1.4) in (Ωm)loc×(0, 1]. By (5.2) and Theorem 3.4 we

have the necessary compactness to conclude that there exists a subsequence (um, pm)
converging to some (u, p) locally uniformly in 
Rn

+,−c0
×(0, 1] together with ∇um, ∇2um,

umt and ∇pm as in the interior case. (Note that Ωm is still of type (α, β,K) which is
uniform in m.)

Now we observe that the limit (u, p) solves the Stokes equations (1.1)–(1.4) in a half
space with zero initial data in a weak sense. In fact, as (um, pm) satisfies∫ 1

0

∫
Rn

+,−c0

(um ·(ϕt+∆ϕ)−ϕ·∇pm) dx dt=−
∫
Rn

+,−c0

um(x, 0)·ϕ(x, 0) dx

for all ϕ∈C∞
c (Rn

+,−c0
×[0, 1)), we note that (5.2) and (5.3) are inherited by (u, p), and

in particular

sup{t1/2(xn+c0)|∇p(x, t) |x′ ∈Rn−1, xn>−c0 and t∈ (0, 1)}6CΩ.

Since the convergence of um is up to the boundary, the boundary condition is also
preserved. The limit (u, p)∈C(Rn

+,−c0
×[0, 1]) solves a weak form of the Stokes equations

with zero initial data:∫ 1

0

∫
Rn

+,−c0

(u·(ϕt+∆ϕ)−ϕ·∇p) dx dt=0 for all ϕ∈C∞
c (Rn

+,−c0
×[0, 1)).

We thus apply the uniqueness to the Stokes equations in a half space (Theorem 4.1) to
conclude that u≡0 and ∇p≡0.

However, (5.4) implies that N(u, p)(0, 0)> 1
4 which is a contradiction, so case 2 does

not occur either.
We have thus proved (1.6).
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5.2. Regularity for L̃r-solutions

We shall prove that the extra conditions for v in Proposition 5.1 can be removed. For
example we have the following result.

Proposition 5.2. Let Ω be a uniformly C3-domain in Rn. Let (v, q) be an L̃r-
solution of (1.1)–(1.4) for r>n. Assume that v0∈D(Ãr), where Ãr is the Stokes operator
in L̃r

σ(Ω), i.e. −Ãr is the generator of the Stokes semigroup in L̃r
σ(Ω). Then v( · , t)∈

C2(	Ω) for all t>0. Moreover, for each T>0, we have

sup
0<t<T

‖N(v, q)‖∞(t)<∞. (5.5)

Proof. We shall claim a stronger statement

sup
0<t<T

(‖v‖W 1,r
ul

(t)+t1/2‖∇v‖W 1,r
ul

(t)+t(‖∇2v‖W 1,r
ul

(t)+‖∂tv‖W 1,r
ul

(t)+‖∇q‖W 1,r
ul

(t)))

6C‖v0‖D(Ãr)

(5.6)

with C=C(T,Ω, r). Here W 1,r
ul is a uniformly local W 1,r space defined by

W 1,r
ul (Ω) = {f ∈Lr

ul(Ω) |∇f ∈Lr
ul(Ω)}, ‖f‖W 1,r

ul
= ‖f‖Lr

ul
+‖∇f‖Lr

ul
,

and

Lr
ul(Ω) =

{
f ∈Lr

loc(Ω)
∣∣∣∣ ‖f‖Lr

ul
= sup

x∈Ω

(∫
Ωx,R

|f(y)|r dy
)1/r}

,

where Ωx,R=intBR(x)∩Ω and R is a fixed positive number. The norm depends on R

but the topology defined by the norm is independent of the choice of R. The norm of
the domain D(Ãr) is defined by

‖u‖D(Ãr) = ‖u‖L̃r(Ω)+‖Ãru‖L̃r(Ω), ‖u‖L̃r(Ω) =max{‖u‖Lr(Ω), ‖u‖L2(Ω)},

when r>2. As proved in [16] and [18], this norm is equivelent to the norm

‖u‖
W̃ 2,r(Ω)

=
∑
|l|62

‖∂l
xu‖L̃r(Ω).

Note that once we have proved (5.6), the inequality and v( · , t)∈C2(	Ω) follows from
the Sobolev embedding. (One can even claim that ∇2v( · , t) is Hölder continuous with
exponent γ=1−n/r.)

We shall prove (5.6). We first observe that by the analyticity of the semigroup

S(t) = e−tÃr ,
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we have
sup

0<t<T
t‖vt‖D(Ãr)(t) 6C1‖v0‖D(Ãr),

since Ãrvt=−Ãre
−tÃr Ãrv0. It is easy to see that

sup
0<t<T

‖v‖D(Ãr)(t) 6C2‖v0‖D(Ãr) (5.7)

with Cj depending only on T , Ω and r. Thus we have proved that

sup
0<t<T

(‖v‖
W̃ 1,r(Ω)

(t)+‖∇v‖
W̃ 1,r(Ω)

(t)+t‖vt‖W̃ 2,r(Ω)
(t))6C3‖v0‖D(Ãr), (5.8)

as the D(Ãr)-norm and the W̃ 2,r-norm are equivalent. The estimate (5.8) controls the
terms

‖v‖W 1,r
ul
, t1/2‖∇v‖W 1,r

ul
and t‖vt‖W 1,r

ul

in (5.6).
To show (5.6) it remains to prove that

sup
0<t<T

t(‖∇2v‖W 1,r
ul

(t)+‖∇q‖W 1,r
ul

(t))6C4‖v0‖D(Ãr). (5.9)

We take R sufficiently small so that Ωx,3R⊂Uα,β,h(x0) for any x0∈∂Ω. We normalize q
by taking

q̂(x) = q(x)− 1
|Ω′′|

∫
Ω′′
q(x) dx, Ω′′ =Ωx0,3R.

It follows from the Poincaré inequality [15, §5.8.1] that

‖q̂‖Lr(Ω′′) 6 c‖∇q‖Lr(Ω′′) (5.10)

with c independent of x0. Since Ω is C3 and (v, q) solves

−∆v+∇q=−vt and div v=0 in Ω′′

with
v=0 on ∂Ω′′∩∂Ω,

the local higher regularity theory for elliptic systems (see [22, Chapter V]) shows that

‖∇3v‖Lr(Ω′)+‖∇2q‖Lr(Ω′) 6C(‖vt‖W 1,r(Ω′′)+‖v‖W 1,r(Ω′′)+‖q̂‖Lr(Ω′′))

with Ω′=Ωx0,2R. Here the dependence with respect to t is suppressed. The last term is
estimated by (5.10), so we observe that

‖∇3v‖Lr(Ω′)+‖∇2q‖Lr(Ω′) 6C(‖vt‖W 1,r(Ω)+‖v‖W 1,r(Ω)+‖∇q‖Lr(Ω)) (5.11)
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with C depending only on Ω, R and r, but independent of x0∈∂Ω. If x0∈Ω is taken so
that B2R(x0)⊂Ω, then interior higher regularity theory yields (5.11) with Ω′=BR(x0)
(by taking Ω′′=B2R(x0)). As Ω is covered by Ωx0,2R, x0∈∂Ω, and BR(x0), with x0∈Ω
such that B2R(x0)⊂Ω, the estimate (5.11) implies that

‖∇3v‖Lr
ul(Ω)+‖∇2q‖Lr

ul(Ω) 6C(‖vt‖W 1,r(Ω)+‖v‖W 1,r(Ω)+‖∇q‖Lr(Ω)). (5.12)

Since ∇q=Q[∆v] implies that

‖∇q‖L̃r(Ω) 6C ′‖∆v‖L̃r(Ω),

with C ′=C ′(Ω, r), the estimate (5.12) together with (5.8) now yields (5.9).

Proof of Theorem 1.2. Combining Propositions 5.1 and 5.2 yields Theorem 1.2, as
C∞

c,σ(Ω) is included in D(Ãr).

5.3. Analyticity of the Stokes semigroup in C0,σ

We shall prove Theorem 1.3. To show the C0-property of the semigroup, we start with
the following result.

Proposition 5.3. Let Ω be a uniformly C2-domain in Rn. Also let (v, q) be an
L̃r-solution of (1.1)–(1.4) with r>n and v0∈D(Ãr). Then

lim
t#0

‖v( · , t)−v0‖∞ =0. (5.13)

In other words,
lim
t#0

‖e−tÃrv0−v0‖∞ =0.

Proof. By the Gagliardo–Nirenberg inequality, we have

‖v(t)−v0‖L∞(Ω) 6C‖v(t)−v0‖1−θ
Lr(Ω)‖v(t)−v0‖

θ
W 1,r(Ω) (5.14)

with θ=1−n/r, where v(t)=v( · , t). Since

‖f‖W 1,r(Ω) 6 ‖f‖W 2,r(Ω) 6 ‖f‖
W̃ 2,r(Ω)

6C ′‖f‖D(Ãr),

we have by (5.7) that

‖v(t)−v0‖W 1,r(Ω) 6C ′(‖v(t)‖D(Ãr)+‖v0‖D(Ãr)) 6C ′′‖v0‖D(Ãr). (5.15)

As e−tÃr

is strongly continuous in L̃r, (5.14) with (5.15) yields (5.13).
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Proof of Theorem 1.3. By the a-priori estimate (1.6), the operator S(t) is uniquely
extended to a bounded operator S̃(t) in C0,σ at least for small t, say t∈[0, T0). Since
S(t) is a semigroup in L̃r, we have

S̃(t1)S̃(t2) = S̃(t1+t2) as long as t1+t2<T0. (5.16)

We extend S̃(t) to t>T0 by S̃(t)=S̃(t1) ... S̃(tm) so that ti∈(0, T0) and t1+...+tm=t.
This is well-defined in the sense that S̃(t) is independent of the division of t by the
semigroup property (5.16). Thus we are able to define the Stokes semigroup S̃(t) for all
t>0 which we simply write by S(t) (since it agrees with S(t) on C0,σ∩L̃r). Our estimate
(1.6) is inherited by S(t). Moreover, by the semigroup property, the estimate (1.6) yields
‖S(t)v0‖∞6CT ‖v0‖∞ with CT independent of v0∈C0,σ(Ω) and t∈(0, T ) for arbitrary
T>0. As dS(t)/dt=S(t−s) dS(s)/ds for s∈(0, t), the estimate (1.6) together with an
L∞ bound for S(t) yields

sup
0<t<T

t

∥∥∥∥ ddtS(t)v0

∥∥∥∥
∞

6C ′
T ‖v0‖∞,

with a constant C ′
T independent of v0∈C0,σ(Ω). This implies that S(t) is an analytic

semigroup in C0,σ(Ω).
It remains to prove that S(t) is a C0-semigroup in C0,σ(Ω). Since C∞

c,σ(Ω) is dense in
C0,σ(Ω), for each v0∈C0,σ(Ω) there is v0m∈C∞

c,σ(Ω) such that v0m!v0 in L∞(Ω). Since
‖S(t)v0‖∞6CT ‖v0‖∞ for 0<t<T , we have

‖S(t)v0−v0‖∞ 6 ‖S(t)v0−S(t)v0m‖∞+‖S(t)v0m−v0m‖∞+‖v0m−v0‖∞

6 (CT +1)‖v0m−v0‖∞+‖S(t)v0m−v0m‖∞.

By Proposition 5.3, letting t#0 yields

lim
t#0

‖S(t)v0−v0‖∞ 6 (CT +1)‖v0m−v0‖∞.

Letting m!∞, we conclude that S(t) is a C0-semigroup in C0,σ(Ω).

As a bounded domain is admissible, Theorem 1.3 yields Theorem 1.1.

Remark 5.4. (i) In general, we do not know whether or not S(t) is a bounded
analytic semigroup in the sense that∥∥∥∥ ddtS(t)v0

∥∥∥∥
∞

6
C

t
‖v0‖∞ (5.17)
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for some C independent of t>0. When Ω is bounded, one can claim such boundedness.
In fact, multiplying v with (1.1) and integrating by parts we obtain the energy equality

1
2
d

dt
‖v‖2

L2(t)+‖∇v‖2
L2(t) = 0.

Since Ω is bounded, the Poincaré inequality implies that

‖∇v‖2
L2 > ν‖v‖2

L2

with some ν>0. Thus
‖S(t)v0‖2

L2 6 e−2νt‖v0‖2
L2 .

If Ω is sufficiently smooth, by the Sobolev inequality and the property of the Stokes
semigroup in L2 (see [54, §III.2.1]), we have

‖S(t)v0‖L∞ 6C1‖S(t)v0‖W 2k,2 6C2‖Ak
2S(t)v0‖L2

for an integer k> 1
4n with Cj (j=1, 2, ... ) independent of t and v0∈L2

σ(Ω). As S(t) is an
analytic semigroup in L2

σ, this yields

‖S(t)v0‖L∞ 6C3‖S(t−1)v0‖L2 for t> 1.

We have thus proved that

‖S(t)v0‖L∞ 6C4e
−νt‖v0‖L2 6C5e

−νt‖v0‖L∞ , t> 1. (5.18)

Similarly,∥∥∥∥ ddtS(t)v0

∥∥∥∥
L∞

6C1

∥∥∥∥ ddtS(t)v0

∥∥∥∥
W 2k,2

6C2‖Ak+1
2 S(t)v0‖L2 6C6e

−νt‖v0‖L∞ for t> 1.

Since ∥∥∥∥ ddtS(t)v0

∥∥∥∥
∞

6
C7

t
‖v0‖∞ for t6 1,

this yields (5.17). Thus S(t) is a bounded analytic semigroup in C0,σ(Ω) and L∞σ (Ω) (see
the next section) when Ω is a smoothly bounded domain. If one uses Lr-theory (r>n)
instead of L2-theory, the result is still valid for a bounded domain with C3 boundary.

(ii) Since we have (5.18) for t>T0>0, our a-priori estimate (1.6) in particular implies
that

‖S(t)v0‖∞ 6C‖v0‖∞ for all t> 0 and v0 ∈C0,σ(Ω),

with C depending only on Ω when Ω is bounded. This type of result is often called a
maximum modulus result in the literature.
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The maximum modulus theorem was first stated in [65] when Ω is a bounded, convex
domain with smooth boundary for v0∈C∞

c,σ(Ω). Later a full proof was given in [56]. It was
extended by [57] to a general bounded domain with C2 boundary. It was also extended
by [43] to v0∈C0,σ(Ω), but with ∂Ω assumed to be C2+γ with γ∈(0, 1).

By our extension to the L∞σ space in the next section, we conclude that

‖S(t)v0‖∞ 6C‖v0‖∞, v0 ∈L∞σ (Ω),

for all t>0, with C depending only on Ω when Ω is bounded and of C3 boundary.
(iii) It is interesting to discuss whether or not our semigroup S(t) is a 1

2π-type
analytic semigroup (i.e. it is extendable to a holomorphic semigroup in Re t>0). Our
results say that S(t) is an ε-type analytic semigroup for some ε>0. If we are able to
prove (1.6) for Re t∈(0, T0) with |arg t|<α for α∈

(
0, 1

2π
)

where analyticity is valid, then
we conclude that S(t) is a 1

2π-analytic semigroup. This idea would work provided that
the Schauder-type estimate for complex t with |arg t|<ε would be available. It is of
course likely but there seems to be no explicit reference. Very recently, M. Hieber and
the authors [2] proved a necessary resolvent estimate to conclude that S(t) is a 1

2π-type
analytic semigroup (without proving (1.6) for complex t).

(iv) A closer examination of the proof of Proposition 5.1 shows that it suffices to
apply the estimate

sup
x∈Ω

dΩ(x)|Q[∇·f ](x)|6C‖f‖L∞(Ω),

which is weaker than (1.5) in the sense that the norm in the right-hand side is over Ω,
not only over ∂Ω.

6. Results for L∞
σ

In this section we shall prove that the Stokes semigroup is a (non-C0-)analytic semigroup
in L∞σ (Ω) when Ω is bounded, as stated in Theorem 1.4. The space L∞σ (Ω) is defined by

L∞σ (Ω) =
{
f ∈L∞(Ω)

∣∣∣∣ ∫
Ω

f ·∇ϕdx=0 for all ϕ∈ Ŵ 1,1(Ω)
}
,

where Ŵ 1,1(Ω) is the homogeneous Sobolev space of the form

Ŵ 1,1(Ω) = {ϕ∈L1
loc(Ω) |∇ϕ∈L1(Ω)}.

6.1. Approximation

We begin with an approximation result when Ω is star-shaped (with respect to some
point a∈Rn, i.e. λ(Ω−a)⊂Ω−a for all λ∈(0, 1)).
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Lemma 6.1. (Approximation) Let Ω be a bounded, star-shaped domain in Rn. There
exists a constant C=CΩ such that for any v∈L∞σ (Ω) there exists a sequence

{vm}∞m=1⊂C∞
c,σ(Ω)

such that
‖vm‖∞ 6C‖v‖∞ (6.1)

and
vm! v a.e. in Ω (6.2)

as m!∞. If in addition v∈C(	Ω), then the convergence is locally uniform in Ω. And if
furthermore v=0 on ∂Ω, then the convergence is uniform in 	Ω.

Proof. Since Ω is star-shaped, we may assume that

λ	Ω⊂Ω for all λ∈ [0, 1)

after a translation. We extend v∈L∞σ (Ω) by zero outside Ω and observe that the extension
(still denoted by v) is in L∞σ (Rn) with spt v⊂	Ω. We set vλ(x)=v(x/λ) and observe that
spt vλ⊂λ	Ω⊂Ω. Since vλ!v a.e. as λ"1, it is easy to find the desired sequence by
mollifying vλ i.e. considering vλ∗ηε. Here C in (6.1) can be taken to be 1.

To establish the above approximation result for a general bounded domain we need
a localization lemma.

Lemma 6.2. (Localization) Let Ω be a bounded domain with Lipschitz boundary in
Rn. Also let {Gk}N

k=1 be an open covering of 	Ω in Rn and let Ωk=Gk∩Ω. Then there
exists a family of bounded linear operators {πk}N

k=1 from L∞σ (Ω) into itself satisfying
u=

∑N
k=1 πku and, for each k=1, ..., N ,

(i) πku|Ωk
∈L∞σ (Ωk) and πku|Ω\Ωk

=0 for u∈L∞σ (Ω);
(ii) πku∈C(	Ωk) and πku|∂Ωk\∂Ω=0 for u∈C(	Ω)∩L∞σ (Ω);
(iii) πku|∂Ωk

=0 if u|∂Ω=0, for u∈C(	Ω)∩L∞σ (Ω).

Proof. We proceed by induction on N . If N=1, the result is trivial by taking π1 as
the identity.

Assume that the result is valid for N . We shall prove the assertion when the number
of operators is N+1. We set

D=
N+1⋃
k=2

Ωk and U =
N+1⋃
k=2

Gk

and observe that Ω=Ω1∪D and {G1, U} is a covering of 	Ω.
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Let {ξ1, ξ2} be a partition of unity of Ω associated with {G1, U}, i.e. ξj∈C∞
c (Rn)

with 06ξj 61, spt ξ1⊂G1, spt ξ2⊂U and ξ1+ξ2=1 in 	Ω. For E=Ω1∩D let BE denote
the Bogovskĭı operator. We set

π1u=


uξ1−BE(u·∇ξ1) in E,
uξ1 in Ω1\D,
0 in Ω\Ω1.

Since u∈L∞σ (Ω), ξ1=0 in Ω\Ω1 and ∇ξ1=0 in Ω1\D, we see that∫
E

u·∇ξ1 dx=
∫

Ω

u·∇ξ1 dx=0. (6.3)

By the Sobolev inequality and (3.13), we observe that, with p>n,

‖BE(u·∇ξ1)‖L∞(E) 6C‖BE(u·∇ξ1)‖W 1,p(E) 6CCB‖u·∇ξ1‖Lp(E)

6CCB‖∇ξ1‖Lp(E)‖u‖L∞(Ω),

with a constant C independent of u and ξ1. We thus observe that

‖π1u‖L∞(Ω1) 6C1‖u‖L∞(Ω) for all u∈L∞σ (Ω),

with C1 independent of u.
By (6.3), we see that divBE(u·∇ξ1)=u·∇ξ1 in E. Moreover, BE(u·∇ξ1)=0 on

∂(Ω1∩D). Thus, for each ϕ∈L1
loc(	Ω1) with ∇ϕ∈L1(Ω1), we have∫

Ω1

π1u·∇ϕdx=
∫

Ω1

u ξ1 ·∇ϕdx−
∫

E

BE(u·∇ξ1)·∇ϕdx

=
∫

Ω1

u ξ1 ·∇ϕdx+
∫

E

(u·∇ξ1)ϕdx=
∫

Ω

u·∇(ξ1ϕ) dx=0.

By the Poincaré inequality, if ϕ∈Ŵ 1,1(Ω1) then ϕ∈L1
loc(	Ω1) (not only ϕ∈L1

loc(Ω1)).
Thus the above identity implies that π1u|Ω1∈L∞σ (Ω1). By definition, π1u=0 in Ω\Ω1. If
u∈C(	Ω), it is easy to see that the term BE(u·∇ξ1) is always Hölder continuous by the
Sobolev embeddings.

For u∈L∞σ (Ω) we set

πDu=


uξ2−BE(u·∇ξ2) in E,
uξ2 in D\Ω1,
0 in Ω\D.
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By definition,
u=π1u+πDu

and as for π1 this πD satisfies all properties of πk in (i)–(iii) with Ωk replaced by D. Since

D is covered by {Gk}N+1

k=2 , by our induction assumption there is a family of bounded linear
operators {π̂k}N+2

k=2 in L∞σ (D) satisfying v=
∑N+1

k=2 π̂kv and (i)–(iii) with u replaced by v
and with πk replaced by π̂k for k=2, ..., N+1. If we set

π1 =π1 and πk = π̂k �πD (k=2, ..., N+1),

then it is rather clear that this πk satisfies all desired properties.

Lemma 6.3. (Approximation) The assertion of Lemma 6.1 is still valid when Ω is
a bounded domain with Lipschitz boundary in Rn.

Proof. If Ω is a bounded domain with Lipschitz boundary, then it is known that
there is an open covering {Gk}N

k=1 of 	Ω such that Ωk=Gk∩Ω is bounded, star-shaped
with respect to an open ball Bk, with 
Bk⊂Ω (i.e. star-shaped with respect to any point
of Bk) and Gk has a Lipschitz boundary; see [22, §III.3, Lemma 4.3]. In the sequel we
only need the property that Gk is bounded and star-shaped with respect to a point.

We apply Lemma 6.2 and set uk=πku to observe that uk|Ωk
∈L∞σ (Ωk) and that

uk|Ω\Ωk
=0. Since Ωk is star-shaped, by Lemma 6.1 there is {uk,j}∞j=1⊂C∞

c,σ(Ωk) such
that

‖uk,j‖L∞(Ωk) 6 ‖uk‖L∞(Ωk) and uk,j!uk a.e. in Ω.

(The constant C in (6.1) can be taken to be 1.) We still denote the zero extension of
uk,j on Ω\Ωk by uk,j .

If we set um=
∑N

k=1 uk,m, then by construction uj∈C∞
c,σ(Ω),

um!
N∑

k=1

uk =u a.e. in Ω

and

‖um‖L∞(Ω) 6
N∑

k=1

‖uk,m‖L∞(Ω) 6
N∑

k=1

‖uk‖L∞(Ω) 6

( N∑
k=1

‖πk‖
)
‖u‖L∞(Ω),

where ‖πk‖ denotes the operator norm of πk in L∞σ (Ω). We thus conclude that there is
a desired approximating sequence {um}∞m=1 for u∈L∞σ (Ω).

If u∈C(	Ω)(∩L∞σ (Ω)), then uk∈C(	Ωk) and uk|∂Ωk\∂Ω=0. Thus for any compact set
Kk⊂Ωk such that d(Kk)=infx∈Kk

dΩ(x)>0, we see that uk,m converges to uk uniformly
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in Kk by Lemma 6.1 as m!∞. Let K be a compact set in Ω. Then d(Kk)>d(K)>0
for Kk=	Ωk∩K. Hence

‖u−um‖L∞(K) 6
N∑

k=1

‖uk−uk,m‖L∞(K) =
N∑

k=1

‖uk−uk,m‖L∞(Kk)! 0 as m!∞.

Thus we have proved that um converges to u locally uniformly in Ω. If u|∂Ω=0 so that
uk|∂Ωk

=0, then uk,m converges to uk uniformly in 	Ωk by Lemma 6.1. Arguing in the
same way by replacing K by 	Ω, we conclude that um converges to u uniformly in 	Ω.

Remark 6.4. This lemma in particular implies that

C0,σ(Ω) = {v ∈C(	Ω)∩L∞(	Ω) |div v=0 in Ω and v=0 on ∂Ω}

when Ω is bounded. This gives an alternative and direct proof of a result of [43], where
the maximum modulus result for the stationary problem is invoked.

Proof of Theorem 1.4. Since Ω is bounded so that L∞σ ⊂Lr
σ for any r>1, S(t) is well

defined from L∞σ to Lr
σ. It suffices to transfer the estimate for v=S(t)v0 in (1.6) to the

case v0∈L∞σ (Ω). By Lemma 6.3, there is a sequence v0m∈C∞
c,σ(Ω) approximating v0.

Our estimate (1.6) implies that

sup
0<t<T0

(‖vm‖∞(t)+t(‖vmt‖∞+‖∇2vm‖∞)(t))6C‖v0m‖∞

is valid for such v0m, by Theorem 1.2. Here T0 and C are independent of m. Since
v0m!v0 in Lr, by (6.2) and the Lebesgue dominated convergence theorem, we see that
vm!v in Lr uniformly in t∈[0, T ]; note that S(t) is a semigroup in Lr

σ. Thus we obtain

sup
0<t<T0

(‖v‖∞(t)+t(‖vt‖∞+‖∇2v‖∞)(t))6 lim
m!∞

‖v0m‖∞.

By (6.2), one is able to replace the right-hand side by a constant multiple of ‖v0‖∞, so
we obtain the desired estimate for claiming the analyticity of S(t) in L∞σ (Ω).

This semigroup S(t) is a non-C0-semigroup. Indeed, suppose the contrary to get

S(t)v0! v0 in L∞ as t # 0

for all v0∈L∞σ (Ω). Our estimate for ∇2v implies that S(t)v0 (for t>0) is at least continu-
ous in 	Ω. However, if S(t)v0 converges uniformly, then v0 must be (uniformly) continuous,
which is a contradiction.
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[10] Bogovskĭı, M.E., Solution of the first boundary value problem for an equation of con-
tinuity of an incompressible medium. Dokl. Akad. Nauk SSSR, 248 (1979), 1037–1040
(Russian); English translation in Soviet Math. Dokl., 20 (1979), 1094–1098.

[11] — Decomposition of Lp(Ω;Rn) into a direct sum of subspaces of solenoidal and potential
vector fields. Dokl. Akad. Nauk SSSR, 286 (1986), 781–786 (Russian); English transla-
tion in Soviet Math. Dokl., 33 (1986), 161–165.

[12] Borchers, W. & Sohr, H., On the semigroup of the Stokes operator for exterior domains
in Lq-spaces. Math. Z., 196 (1987), 415–425.

[13] De Giorgi, E., Frontiere Orientate di Misura Minima. Seminario di Matematica della
Scuola Normale Superiore di Pisa, 1960–61. Editrice Tecnico Scientifica, Pisa, 1961.

[14] Desch, W., Hieber, M. & Prüss, J., Lp-theory of the Stokes equation in a half space.
J. Evol. Equ., 1 (2001), 115–142.

[15] Evans, L. C., Partial Differential Equations. Graduate Studies in Mathematics, 19. Amer.
Math. Soc., Providence, RI, 2010.

[16] Farwig, R., Kozono, H. & Sohr, H., An Lq-approach to Stokes and Navier–Stokes
equations in general domains. Acta Math., 195 (2005), 21–53.

[17] — On the Helmholtz decomposition in general unbounded domains. Arch. Math. (Basel),
88 (2007), 239–248.

[18] — On the Stokes operator in general unbounded domains. Hokkaido Math. J., 38 (2009),
111–136.

[19] Farwig, R. & Sohr, H., Generalized resolvent estimates for the Stokes system in bounded
and unbounded domains. J. Math. Soc. Japan, 46 (1994), 607–643.

[20] — Helmholtz decomposition and Stokes resolvent system for aperture domains in Lq-
spaces. Analysis (Munich), 16 (1996), 1–26.

[21] Farwig, R. & Taniuchi, Y., On the energy equality of Navier–Stokes equations in general
unbounded domains. Arch. Math. (Basel), 95 (2010), 447–456.

[22] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations.
Vol. I. Springer Tracts in Natural Philosophy, 38. Springer, New York, 1994.



44 k. abe and y. giga

[23] Geißert, M., Heck, H. & Hieber, M., On the equation div u=g and Bogovskĭı’s opera-
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[30] Giga, Y., Inui, K. & Matsui, S., On the Cauchy problem for the Navier–Stokes equations

with nondecaying initial data, in Advances in Fluid Dynamics, Quaderni di Matematica,
4, pp. 27–68. Dept. Math., Seconda Univ. Napoli, Caserta, 1999.

[31] Giga, Y. & Kohn, R.V., Characterizing blowup using similarity variables. Indiana Univ.
Math. J., 36 (1987), 1–40.

[32] Giga, Y., Matsui, S. & Sawada, O., Global existence of two-dimensional Navier–Stokes
flow with nondecaying initial velocity. J. Math. Fluid Mech., 3 (2001), 302–315.

[33] Giga, Y., Matsui, S. & Shimizu, Y., On estimates in Hardy spaces for the Stokes flow
in a half space. Math. Z., 231 (1999), 383–396.

[34] Giga, Y. & Miura, H., On vorticity directions near singularities for the Navier–Stokes
flows with infinite energy. Comm. Math. Phys., 303 (2011), 289–300.

[35] Giga, Y. & Sohr, H., On the Stokes operator in exterior domains. J. Fac. Sci. Univ.
Tokyo Sect. IA Math., 36 (1989), 103–130.

[36] Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order.
Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin–Heidelberg,
1983.

[37] Heck, H., Hieber, M. & Stavrakidis, K., L∞-estimates for parabolic systems with
VMO-coefficients. Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 299–309.

[38] Koch, G., Nadirashvili, N., Seregin, G.A. & Šverák, V., Liouville theorems for the
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Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel, 2001.
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