Adaptive Partitioning of Urban Facades

Chao-Hui Shen!  Shi-Sheng Huang! Hongbo Fu?  Shi-Min Hu!
ITNList, Tsinghua University, Beijing

(a)

(b)

2City University of Hong Kong

(0

Figure 1: Given input unorganized point clouds of 3D urban facades, a recursive adaptive partitioning is automatically performed to build a
hierarchy of building blocks upon them (from left to right). The splitting direction, number and location of splitting planes are all adaptively
determined in each step. Repetitive patterns are indicated by different colors.

Abstract

Automatically discovering high-level facade structures in unorga-
nized 3D point clouds of urban scenes is crucial for applications
like digitalization of real cities. However, this problem is chal-
lenging due to poor-quality input data, contaminated with severe
missing areas, noise and outliers. This work introduces the con-
cept of adaptive partitioning to automatically derive a flexible and
hierarchical representation of 3D urban facades. Our key obser-
vation is that urban facades are largely governed by concatenated
and/or interlaced grids. Hence, unlike previous automatic facade
analysis works which are typically restricted to globally rectilin-
ear grids, we propose to automatically partition the facade in an
adaptive manner, in which the splitting direction, the number and
location of splitting planes are all adaptively determined. Such an
adaptive partition operation is performed recursively to generate a
hierarchical representation of the facade. We show that the con-
cept of adaptive partitioning is also applicable to flexible and ro-
bust analysis of image facades. We evaluate our method on a dozen
of LiDAR scans of various complexity and styles, and the image
facades from the eTRIMS database and the Ecole Centrale Paris
database. A series of applications that benefit from our approach
are also demonstrated.
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1 Introduction

With the recent advances in LiDAR scanning devices, the acquisi-
tion of 3D point clouds from urban buildings is getting more ef-
ficient and more convenient. However, the captured point cloud
often suffers from severe missing data, noise and outliers, making
the reconstruction of architectural models with faithful geometry
and topology from such data rather challenging. The key to this
problem is to explore and utilize the characteristics of urban scenes
as prior knowledge, especially repetition of building elements in
facades. To obtain such architectural characteristics, the state-of-
the-art works [Zheng et al. 2010; Nan et al. 2010] rely on user as-
sistance, which would be labor intensive for applications like digi-
talization of real cities.

There exist automatic solutions for discovering facade structures in
single- or multi-view facade images [Miiller et al. 2007; Xiao et al.
2009; Musialski et al. 2010]. A common assumption made in those
works is that facades are inherently governed by global rectilin-
ear structures. That is, a facade can be split into building blocks
(e.g., windows) by a single rectilinear grid. Although there indeed
exist many real facades satisfying such assumption, it is not gen-
eral enough to handle many other patterns like asymmetric patterns
(Figure 1), which are also ubiquitous in urban scenes.

This work aims for a more flexible representation of high-level fa-
cade structures, which is based on the key observation: the high-
level structure of a facade is largely governed by either a rectilinear
grid or a mixture of rectilinear grids by concatenation and/or in-
terlacing. For examples, Figure 2 shows facades with concatenated
grids and interlaced grids. Therefore, how to identify different grids
of repetitive elements and their relations is our core problem.

To address the problems, the concept of adaptive partitioning of ur-
ban facades is introduced in this paper (Figure 1). Explicitly search-
ing for repetitive patterns over the entire facade is challenging given
poor data quality and complex hidden structures. The underlying
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Figure 2: Facades with concatenated grids and/or interlaced grids
of architectural elements are ubiquitous in urban scenes.

rectilinear mixture model largely implies that facade elements are
often globally aligned along at least one direction (i.e., either hor-
izontal or vertical) but not necessarily both horizontal and vertical
directions. Therefore, we propose to automatically partition the fa-
cade into multiple sub-facades in an adaptive manner, each of which
is possibly governed by a rectilinear grid of architectural elements
and thus then grouped by similarity for further partitioning. Apply-
ing such partition recursively leads to a hierarchical representation
of the facade, which benefits various applications such as facade
consolidation, manipulation and admixture (Section 4.2).

1.1 Overview

As summarized in Figure 3, each partition step consists of three
phases: splitting, grouping and rectification. It can be carried out
recursively to generate a top-down hierarchical subdivision of the
facade. The same pipeline is applicable to both 3D facade scans
and image facades. For brevity, we first focus our discussions on
the case of unorganized 3D point clouds as input and discuss its
extension to the image domain only in Section 4.3.

Structure Splitting. This step begins with the whole piece of in-
put point cloud and detects horizontal or vertical splitting planes
perpendicular to the facade surface, which divide the facade to a
list of sub-facades (Section 3.2). The splitting strategy is mainly
based on weak prior knowledge of urban buildings, formulated as
penalty functions of placing horizontal and vertical splitting planes.
Each splitting step tackles one direction only (i.e., either horizontal
or vertical), which is adaptively chosen by comparing the penalty
costs with respect to horizontal and vertical splitting. We also use
the penalty functions to adaptively determine the initial number and
location of splitting planes, which are later rectified in the rectifica-
tion step.

Element Grouping. The goal of this step is to group the set of sub-
facades resulted from the previous step by similarity (Section 3.3).
The grouping of repetitive elements is necessary not only for future
applications like non-local consolidation but also for further parti-
tion in a consistent manner. The grouping is achieved by geometric
registration, followed by iterative bottom-up clustering of pairs of
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Figure 3: System overview.

sub-facades.

Splitting Rectification. The third step is to rectify the number and
location of splitting planes by using the grouping information ob-
tained in the second step (Section 3.4). This is important since
the initial splitting planes are determined using local strategies and
might result in imperfect boundaries of repetitive patterns or miss
certain splitting planes in noisy regions. We use the grouping infor-
mation to first recover the missing splitting planes and then perform
a global optimization toward optimal alignment of repetitive facade
elements in a least-squares sense. Since to some extent the result of
the grouping step is dependent on the splitting position, the group-
ing and rectification steps are then iterated until convergence.

2 Related Work

There is a large amount of literature on facade, building and archi-
tectural analysis and modeling. The review here mainly focuses on
existing works involving in-depth analysis of facade structures in
urban images/models and discovery of repetitive/symmetry patterns
in general 3D models. Reviewing shape analysis works of gen-
eral point-sampled surfaces [Yamazaki et al. 2010; Bucksch et al.
2010] or modeling-oriented works like procedural facade model-
ing [Wonka et al. 2003; Miiller et al. 2006] is beyond the scope of
this paper.

Following early surface reconstruction works like [Levoy et al.
2000], reconstructing urban scenes from terrestrial LiDAR scan-
ning data is an emerging technology in the area of point cloud pro-
cessing. An automatic data-driven facade reconstruction by cell
decomposition is introduced in [Becker and Haala 2009], which,
however, requires an additional coarse 3D building model as input.
Their algorithm focuses on flat facades containing only windows of
shadow depth and thus cannot handle facades with complex geome-
try (e.g., of balconies). The work of [Ning et al. 2010] also aims for
the recovery of a coarse architectural model. To recover more com-
plicated and detailed geometry of buildings, very recent works [Nan
et al. 2010; Zheng et al. 2010] require a moderate amount of user
intervention to discover underlying architectural structures as repet-
itive patterns. As an automatic preprocessing tool, our work is com-
plementary to those works.

A few techniques have been specifically designed for discovering
facade structures in single images [Miiller et al. 2007; Musialski
et al. 2010] or multi-view images [Xiao et al. 2008; Xiao et al.
2009]. Such techniques consider the unique characteristics of fa-
cade structures such as regularity and orthogonality, and thus often
outperform general methods for analysis and detection of repeti-
tive patterns in terms of robustness. However, those techniques are
largely based on a strong assumption that a facade is governed by
a hidden global rectilinear grid. For example, based on such as-
sumption, Miiller et al. [2007] encode the symmetry of a facade
by forming an irreducible facade, where the splitting of different
repetitive patterns is searched for, always first along the horizon-
tal direction and then the vertical direction. The works of [Xiao
et al. 2008; Xiao et al. 2009] decompose the facade along detected
image edges, which might lead to an over-segmented partition es-
pecially for facades with for example balconies. In addition, the
poorer quality of captured geometric data (e.g., much lower reso-
lution, reduced precision or higher level of noise) and additional
dimension of data (e.g., due to balconies) make the extension of
such image-based methods to 3D facade point clouds challenging.

Our problem is relevant to semantic segmentation of facade im-
ages in computer vision (see [Teboul et al. 2011] and the references
therein), which aims to not only divide a facade into facade ele-
ments (our main goal) but also assign each of them a particular
semantic label (e.g., walls, windows, roofs etc). To achieve such
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semantic parsing, the state-of-the-art works [Teboul et al. 2011;
Teboul et al. 2010] heavily rely on supervised multi-class classi-
fication, combined with prescribed shape grammars. In contrast,
our focus is on facade partitioning of both facade 3D scans and
images, with target applications like facade modeling and manipu-
lating. Our technique is model-free, completely unsupervised and
simpler to implement.

Our work is also related to regularity or symmetry detection for
general 3D models. Most of early works regard the problem as
voting for dominant transformations in the space of pairwise sim-
ilarity transformations [Mitra et al. 2006; Pauly et al. 2008], mak-
ing isolating interlaced symmetries challenging especially when the
number of symmetry groups grows. Based on spatial coherence of
symmetry patterns, Bokeloh et al. [2009] present a symmetry de-
tection algorithm that can find rigid symmetries in more general
configurations, even for completely irregular patterns of symmetry.
Instead of defining suitable similarity measure and matching simi-
lar elements directly, as done in those works, our technique intends
to find splitting boundaries between similar elements, patterns, and
even non-repetitive components, which to some extent is in a spirit
of the work of inverse procedural modeling [Bokeloh et al. 2010].

3 Adaptive Partition of Urban Facades

The input to our framework is noisy and incomplete scans of urban
buildings acquired by the state-of-the-art terrestrial LIDAR devices,
represented as unorganized point clouds. We assume that the point
clouds have already been segmented into facades, which will be the
focus of our partition algorithm. By construction facades have a
dominant planar structure, with the depth variation on the plane.
To ease the discussion in this section, we consider the input point
cloud of a facade to have a ar dominant plane. Extending to gen-
eral developable surfaces (e.g., cones, cylinders) is trivial given the
dominant planar structure detected (Figure 8). Below we first dis-
cuss one partition step consisting of three stages (namely, splitting,
grouping and rectification), which is performed recursively to form
a top-down hierarchical subdivision of the facade.

3.1 Preprocessing

An input facade is first rectified and aligned with three orthogo-
nal axes in the Cartesian coordinate system, corresponding to the
ground plane and two additional orthogonal axes [Nan et al. 2010].
The ground up-vector is aligned to the Z-axis, with the front direc-
tion to the X -axis and the horizontal direction to the Y -axis.

Next we explicitly detect plane pieces in the original unorganized
point cloud using a RANSAC approach [Schnabel et al. 2007] and
boundary points [Zheng et al. 2010], which will be shortly used to
define penalty functions (Section 3.2). Every boundary point is as-
signed a direction that approximates the tangent of its associated
underlying boundary line. Let A2 and A; be the largest and second
largest eigen-values of the covariance matrix of the local neighbor-
hood of boundary point p; (10-nearest boundary points used in our
implementation), respectively. The direction p; at p; is then set to
be the eigen-vector corresponding to A2. A confidence value indi-
cating the likelihood that a point lies along a true boundary is also
assigned to p;: conf(p;) = 1 i—; The confidence values lie in
the range of [0, 1], with con f(p;) = 1 indicating perfect line dis-
tribution. Figure 4 shows an example of detected boundary points,
colored by confidence.

3.2 Structure Splitting

In this stage we aim at splitting the current building block into a set
of sub-building blocks. For example, when starting from the whole
facade as the current block, the facade is expected to be partitioned
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Figure 4: From left to right: input facade, detected boundary points
with confidence, penalty function for horizontal splitting, identified
initial horizontal splitting planes.

into a set of horizontal or vertical slices, depending on which split-
ting direction is used. The splitting direction, initial number and lo-
cation of splitting planes are adaptively determined based on some
weak prior knowledge of urban buildings, originally observed by
Miiller et al. [2007]: horizontal (vertical) splitting planes should
be placed where vertical (horizontal) lines are rare and horizontal
(vertical) lines are dense.

To incorporate such prior knowledge into our approach, the degree
to which a splitting plane is preferred should be evaluated. Instead
of simply counting the number of intersections between a possi-
ble splitting plane and the detected boundaries, which is typically
fragile, we measure the accumulated effect of vertical/horizontal
boundary lines to a certain splitting plane P in a more continuous
manner. Taking vertical boundary lines for example, it is formu-
lated as follows:

i, Vyer

2
(D
i B
where B is the index set of the detected boundary points within
the current building block, vver = (0,0, 1) refers to the vertical
direction, and the plane P is either horizontal or vertical. The in-
ner product between the direction p; of every boundary point and
Vyer measures the contribution of p; along the vertical direction,
which is weighted by the Gaussian kernel ¢(d) = ¢ @?/20% | with
d(p;, P) defined as the Euclidean distance of a boundary point p;
to the plane P. The parameter o is related to the size of architec-
tural tiles (¢ 0.5m in all our examples). The confidence of the
boundary points is also included. p(p;) = k/V (k) is the local
point density around p;, where V (k) is the volume of the bounding
ball of its k-nearest points in the original point cloud (k = 10 used
in our implementation, since our LiDAR data roughly samples 10
points in 100cm? at moderate height). This factor is crucial to com-
pensate the influence of non-uniform point distribution in LiDAR
data. For fair comparison of the accumulation in different regions,
boundary points in sparser regions (lower density) are thus com-
pensated by larger weights, in reverse proportional to their local
density. The accumulated effect Ch,o,(P) of horizontal boundary
lines to a certain splitting plane P is defined similarly by replacing
Vyer With vper = (0,1,0).

For ease of discussion, below we first fo- Z ow e ieH
cus on how to place a horizontal split-
ting plane P, := P p,Vyer = 2 .
Note that lower values of Clyer(P;) occur
where there is weaker presence of verti-
cal boundary lines, as illustrated in a 2D
example on the right, with lower satura-
tion indicating lower value of Cyer(P).
In contrast, Chor (P;) has higher values at
places where horizontal boundary lines are denser. Therefore, to pe-
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nalize placing of P, at places with dense vertical lines and/or sparse
horizontal lines, the penalty function is formulated as follows:

F‘Z(F)z):Cfver(F)z)*A Chor(Pz)y (2)

where ) is a small value (A 0.2 in our experiments), as avoiding
vertical boundary lines is more important. We prefer to insert hori-
zontal splitting planes at places with small values of F, (P, ). Anal-
ogously, the penalty function of placing a vertical splitting plane
Py, := p p,vnor =1y isdefined as follows:

Fy(Py) :Chor(Py) - A Cver(Py)v (3)

with smaller values of Fy(P,) corresponding to higher preference
of placing vertical splitting planes.

Initial Number and Location of Splitting Planes. Let
[Ymins Ymaz]  [2min, Zmaz] denote the bound-
ing volume of the current building block. For placing horizontal
splitting planes, we first explicitly evaluate the penalty values of
F.(P.) in the range of [2min, Zmaz] (Figure 4). The corresponding
z-coordinates zi, z2,... of the local minima are then identified as
the initial horizontal splitting planes. The strategy of determining
the location of vertical splitting planes is identical. As the penalty
functions reflect the accumulated effect of vertical and horizontal
boundary lines, they can provide generally reasonable initial split-
ting planes even for highly contaminated data like the one in Fig-
ure 4. The number and position of the splitting planes will be re-
fined later in stage 3 (Section 3.4) to further rectify and improve the
results.

[xminy xmaz]

Direction of Splitting. Penalty functions F, and F, can also be
used to adaptively determine the optimal splitting direction. Spe-
cially, we first evaluate the average of the local minima of F, and
that for F),. For fair comparison of the two directions with unequal
sizes, the average values are thus divided by 2zpmae — Zmin and

Ymaz — Ymin Tespectively. The splitting direction is then chosen
as the one with the smaller average penalty.

3.3 Element Grouping

The identified splitting planes subdivide the current building block
into slices in the adaptively determined splitting direction. The goal
of this step is to group similar slices together, so as to identify
repetitive facade elements and split them consistently in the next
level. This step also provides the information needed to rectify the
splitting planes in the next step. For brevity, our discussion below
focuses on the grouping of a series of horizontal slices, since the
process of grouping in the vertical direction is identical.

Let z1,22,...,2r denote the identified k horizontal splitting
planes organized in an ascending order and S1,S2, ..., Sk4+1  the
split £+ 1 horizontal slices, with the z-coordinate of slice S; falling
in the range of [z;—1, z;] (With 20 = Zmin and 2x+1 = Zmaz). The
grouping is achieved by a greedy bottom-up clustering algorithm,
where the similarity measure between pairs of slices plays an im-
portant role.

To measure the similarity between slices S; and S;, we first align
them together by computing the optimal rigid transformation 77
using a standard ICP algorithm [Besl and McKay 1992]. Here,
T;; is restricted to be a translational transformation (i.e., captur-
ing z-component for horizontal slices and y-component for vertical
slices), since the underlying facade structure is governed by axis-
aligned grids, possibly with interlacing or concatenation.

The similarity between S; and S; is defined over their aligned ver-
sions. To tolerate poor quality of input data, we quantize the space
of the overlapping region of the aligned slices and measure the over-
lapping ratio between S; and S; in this quantized space as their
similarity. Specifically, the aligned slices S; and S; are embedded
into a volumetric grid whose size is determined by the bounding

box B of the overlapping region of S; and S;. The grid reso-
lution is set to be 0.2m in each dimension. For each voxel, we
define two boolean functions v;(k) and v;(k), indicating whether
a voxel k is covered by S; and Sj, respectively: v;(k) = 1,
if there is enough points from S; in voxel k£ (5 used in our ex-
periments); v;(k) = 0, otherwise. The overlapping ratio of S;
with respect to \S; in such quantized space can then be defined as
Rs, = Y, vi(k)vj(k)/ ", vi(k). The ratio with respect to S;
is defined similarly. The average value of these two ratios is finally
used to measure the similarity of two slices, defined as follows:

1
Xij = i(RSi + st)7 4

Note that such similarity measure lies in the range of [0, 1], with
larger values indicating higher similarity. It also supports partial
matching of two slices, since the similarity is defined on the over-
lapping region of their aligned versions. In practice, to eliminate
meaningless partial matching (e.g., piece of narrow flat wall with
the margins of a window), slices of small size (< 1m) are filtered
out, and will not be merged with others or participate in the simi-
larity computation and the grouping process thereafter.

Once the similarity is measured for every pair of slices, we then iter-
atively cluster the pairs of slices that have the maximum similarity
using a greedy bottom-up method until no more clusters can be cre-
ated. The clustering process is stopped until x;; < 7. (typically
0.65 used in our examples).

3.4 Splitting Rectification

We use a sufficiently large value for o (i.e., 0 = 0.5m) in Equa-
tion 1, successfully suppressing excessive splitting planes (see sup-
plementary). This is mainly because noise or outliers alone are
unlikely to form local minima of the penalty functions given such
large kernel size, while architectural elements are typically of size
larger than 0.5m [Miiller et al. 2007]. However, due to the local
nature of our splitting strategy, local minima might still be cor-
rupted by noisy structures, possibly leading to imperfect position of
splitting planes or even fail to detect desired splitting planes (e.g.,
Figure 5). In addition, our local splitting strategy might also fail to
identify structures which are clear only from a more global perspec-
tive (e.g., the two splitting planes at the two sides of the facade). To
address the problems, we resort to some global information to first
recover the missing splitting planes and then perform a global op-
timization operation to make (approximately) perfect alignment of
the splitting planes. Both operations are based on the grouping in-
formation obtained in the previous step. Again, we describe the
algorithm in context of the horizontal splitting planes.

The key idea of identifying missing splitting planes for a slice is
to borrow splitting planes from the slices within the same group
(Figure 5). We observed that slices of smaller sizes are typically
more likely to be desired facade elements in the current level (e.g.,

1
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Figure 5: Adding missing splitting planes (dashed lines) by bor-
rowing splitting planes from the slice of the smallest size.
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the highlighted element in Figure 5(top)). For each slice S;, we
thus find the slice S; that belongs to the same group as S; and
is of the smallest size among all the grouped slices (except for
Si). We then align them together by applying the optimal trans-
formation 7T}; between S; and S; (Section 3.3). Let z}_; and 2}
denote the transformed two boundaries of S;. An extra splitting
plane in S; is then added in the position of z§ (Figure 5(bottom))
if z; — min(z;, 2:;) / zi — zi—1 is above a certain threshold 7.
(typically 25% used in our experiments). Extra slices are created
accordingly to replace the original one. The newly created slice
corresponding to the overlapping region between S; and \S; inherits
the grouping information of .S;, while the rest of the newly created
slices form individual new groups. Similarly, a splitting plane in
the position of z%_; is added if necessary.

After adding the missing splitting planes, we then intend to refine
the position of all the splitting planes using a global optimization.
The rationale is to make pairs of already grouped slices aligned as
perfectly as possible. The perfect alignment between S; and S;
means that when S; and S; are optimally aligned under 75; (Sec-
tion 3.3), the corresponding boundaries (i.e., the splitting planes) of
the slices should be exactly matched under T3, i.e., z; — z; = Tj;
and zj_1 — z;—1 = Tj;. It naturally leads to the following energy
function to be minimized:

1
Buar = 3% biwij 2k —zk—Ty > (5
i 0

i k=

where z(l), zll, ey z; 41 are the new positions of the splitting
planes, and ;; = 1, if S; and S; are of the same group; d;; = 0,
otherwise. wi; = 3 (conf(S;)+ conf(S;)) is included here to en-
courage slices with good sampling rate, which is defined as the av-
erage of the confidence weight of the two slices. Specifically, simi-
lar to the definition of the boundary point confidence (Section 3.1),
for each point p; in a slice, we define con f(p;) = %, which mea-
sures the local uniformity of its local neighborhood. The confidence
of a slice is then defined as the sum of the point confidence over all

the points within the slice.

We introduce another energy so that the splitting planes adhere to
their original positions to some extent, which are also weighted by
the slice confidence:

Egre = Zconf(si) 2 — 2 2 6)

The optimization for splitting refinement is finally defined as the
following minimization problem:

argmin s s r aBar + (1 — @) Egpe, @)

EaFp gy

’ ’
subject to 29 = Zmin, 241 = Zmaz a0d 2; — 2i—1 = 25 — zj—1 if
S; and S; belong to the same group. This makes the two ends of the

rectificatibn

grouping

Figure 6: The iterated grouping and rectification steps for refining the initial splitting planes.

splitting planes stick to the original positions and slices of the same
group have strictly the same size. The weight o (0.9 in our ex-
periments) balances the influence between the refinement and data
terms. The above optimization is a linear least-squares minimiza-
tion problem and its global solution can be efficiently obtained.

The grouping and rectification steps are interdependent. Thus af-
ter the rectification of the splitting planes, the slices are re-grouped
again. The grouping and rectification steps are iterated in an alter-
nating manner until convergence. Figure 6 shows an example of the
grouping and rectification results after several iterations for a given
facade.

3.5 Hierarchy Construction

To construct a hierarchical representation of the entire facade, we
start from the whole piece of an input point cloud as the initial
building block and apply the adaptive partition operations described
in Section 3.2-3.4 recursively. Suppose the current building block
has been adaptively partitioned to a set of sub-building blocks. To
consistently partition each group of repetitive elements in those
sub-building blocks, we align the boundaries of adjacent elements
and concatenate all the elements in the same groups as a whole for
further partitioning. The generated splitting planes are then mapped
back to individual elements. The recursive partition process is con-
tinued until it reaches a certain prescribed level (2 used in our ex-
ample), or the width/height of the current building block is below
a given threshold (2m used in our examples), or no initial splitting
planes can be found in the structure splitting step.

4 Results and Applications

In this section, we first show some partition results on 3D urban fa-
cades, together with several applications that can benefit from our
approach. We then discuss its extension to image domain for adap-
tive partitioning of image facades. We have tested our method on
various LiDAR scans and facade images of different complexity
and styles. In all our examples, we represent the partitioned build-
ing blocks using different boxes with repetitive elements sharing
the same colors. The running time of our method depends on the
number of points (pixels for image extension) in input facades and
the levels of recursive partition. For the stop criteria used in this
paper, it typically takes around 3 minutes for a facade scan with
300K points and 10 seconds for a facade image in the resolution of
800 600, measured on an Intel Core 2 Duo 3GHz computer with
4GB RAM.

Parameters. Although our method involves a few parameters,
only two parameters: 7. for clustering threshold and 7, for adding
splitting, sometimes need user intervention. The default values of
these two parameters typically give good results. However, for very
noisy input (e.g., Figure 7(e)), 7. should be decreased to encourage
grouping. Since for certain examples (e.g., Figure 7(a)) there is a
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Figure 7: Result gallery of adaptive partitioning of 3D urban facades with various styles. See additional results at the project page.

Figure 8: Extension to an approximately conical facade.

tradeoff between finding missing splitting and avoiding superfluous
splitting, 7 has to be manually tuned for such cases.

4.1 Adaptive Partitioning of 3D Urban Facades

We first evaluate our method on facades from low-rise buildings.
Figure 1(a) gives an example with severe missing data in the lower

half. Nevertheless, the hierarchical structure is successfully identi-
fied using our top-down approach. A similar example but with quite
different grid layout is exhibited in Figure 7(a). Figure 1(b) shows
another example, where the facade has multiple groups of repetitive
elements. Note that it exhibits several concatenated grids and two
sets of grids are separated by another one. Due to the flexibility
of our approach, it is capable of discovering such facade structure
as well. Our approach is also applicable to facades with only a few
repetitions even along in one dimension (e.g., Figure 7(c) and 7(f)),
since our method is largely insensitive to the number of repetitions.
We then give examples of some high-rise buildings. Figure 1(c)
shows the result of applying our method to a tall building. Note
that the interlaced floors are discovered in the first level of the hi-
erarchy and the repetitive balconies in the middle part of the facade
are found out in the second level. Two other examples are presented
in Figure 7(b) and 7(d), which also have interlaced patterns in the
vertical direction. Figure 7(e) gives an example with concatenated
grids in the horizontal direction. Although we mainly describe our
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Figure 9: Automatic non-local consolidation of urban facades.
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Figure 10: Manipulation gallery of urban facades.

algorithm on facades with dominant flat planes, our method can
be easily extended to general developable surfaces by changing the
parameter domain accordingly, given the dominant planar structure
detected. Figure 8 shows an example of extending our method to a
facade with approximately conical structure. The individual repet-
itive tiles along the surface are faithfully partitioned out. Please
refer to the project page for additional results.

4.2 Applications

Facade Consolidation. By exploiting our method as an auto-
matic preprocessing tool, the non-local consolidation of urban fa-
cades [Zheng et al. 2010] can be performed in a fully automatic
manner. Specifically, we use the automatically extracted repetitive
building blocks as the input to the main stages of non-local consoli-
dation. Figure 9 shows two examples of applying such a mechanism
to the point clouds in Figure 1(a) and Figure 7(d).

Facade Manipulation. After adaptive partitioning, a set of shape
grammars can be inferred from the input facades by tracing the par-
tition process and exploiting the repetitive building blocks, as is
close in spirit to [Bokeloh et al. 2010]. The original urban facade
can then be intelligently manipulated by instancing the shape gram-
mars once again. Figure 10 shows the manipulation gallery of sev-
eral facade models presented in this paper.

Facade Admixture. Since the adaptive partition process splits the
whole piece of facade into a hierarchy of architectural elements,
these elements can be combined together to create urban facades
with mixed features. Figure 11 shows two such admixture exam-
ples: the mixture of elements of Figure 1(a) and Figure 1(b), and
the replacement of a group of windows in Figure 1(a) with elements
from Figure 1(c). In all these examples, the size of the facade ele-
ments is automatically adjusted to fit the target positions.

4.3 Extension to Image Domain

Our method can also be directly extended to image domain for flex-
ible subdivision of facade images. Compared with the above 3D
version, adaptive partitioning of facade images can be carried out

Adaptive Partitioning of Urban Facades ¥ 184:7

Figure 11: Admixture of different elements of urban facades.

with the following modifications: a) In the preprocessing step, we
first rectify the input facade image using the approach described in
the appendix of [Miiller et al. 2007]. The boundary points are then
found out using the Canny edge detector [Canny 1986]. The direc-
tion and confidence weight of each boundary point are estimated
using the same approach described in Section 3.1. b) For comput-
ing the penalty functions on images, we simply set p(p;) = 1 in
Equation 1, due to the uniform sampling of images. c) To register
and compare two image slices, we search for the optimal transla-
tion that maximizes the normalized cross correlation [Lewis 1995]
of their overlapping region. Two image slices are considered repet-
itive instances and thus grouped together if that maximized nor-
malized cross correlation is above a given threshold (typically 0.7
used in our examples). In this paper, we use the Canny edge detec-
tor and normalized cross correlation mainly as a proof of concept
to demonstrate the effectiveness of our framework. We expect im-
provement if more advanced techniques are adopted.

Figure 14 shows some results of adaptive partitioning of facade im-
ages. Our approach successfully identifies the underlying rectilin-
ear mixture model in those images. Note that our method is also ap-
plicable to facades with round windows, which do not have strong
vertical/horizontal lines, since we have already taken into account
boundary points of different directions in the computation of the
accumulation (via inner product in Equation 1).

To further evaluate the effectiveness of our approach, we tested our
method on the eTRIMS Image Database [Kor¢ and Forstner 2009],
which is composed of 60 facade images of various styles and con-
figurations. We provide the results of all the 60 examples at the
project page, including intermediate results like initial splitting. For
48 out of the 60 tested images, our automatic processing method
produces satisfactory results. For the rest of the images, the results
are more or less problematic, mainly caused by strong mirror re-
flection, dark shadow, extensive sundries (e.g., flowerpot) around
the windows (which could confuse the grouping of image patches
in our current implementation), and strong self occlusion due to
significant deviation of the shooting angle (which could lead to in-
terleaved edges and thus influence the splitting step).

Our method has also been tested on a more challenging data set,
CVPR 2010 data set in the Ecole Centrale Paris Database [Teboul
et al. 2010]'. See a few representative results at the project page.
Although both the eTRIMS and CVPR 2010 data sets contain im-
ages of street scenes captured in European cities, the facades in the
latter data set are of more classic architectures and many of them
have Haussmannian or similar building style. Such classic archi-
tectures often contain excessive ornaments between tiles in certain
floors (Figure 13), e.g., balcony railings spanning entire floors or
repeated decorative lines between facade elements. Those orna-
ments might introduce undesired edges and thus confuse our tech-
nique. Although our method is generally able to successfully di-

Data source: http://www.mas.ecp.fr/vision/Personnel/teboul/data.php
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vide facades into floors, it is less robust for partitioning floors into
horizontal tiles due to such undesired edges (see Figure 13 mid-
dle and right). Around 20% of the results are problematic. On
the other hand, unlike the facades in the eTRIMS database, which
vary more in architectural structure, the Haussmannian or similar
building facades often carry a more consistent typology and com-
position rhythm, and present rather regular elements. Therefore the
techniques that explicitly incorporate the architectural knowledge
of the Haussmannian style [Liu and Gagalowicz 2010] or use pre-
scribed shape grammars [Teboul et al. 2011; Teboul et al. 2010]
might be more effective and stable.

Comparison with Previous Work. In terms of algorithm design,
our work is the most related to that of [Miiller et al. 2007]. Since
our method is designed based on a weaker assumption of facade
structure, it can generate more flexible facade subdivision. Fig-
ure 14 shows the results of such comparison. Note that some tiles
are over-partitioned by [Miiller et al. 2007] due to their global rec-
tilinear grid assumption. In contrast, our approach is capable of
subdividing them into reasonable hierarchal structures due to its
adaptability.

4.4 Limitations

Our method is not applicable to facades which cannot be described
by our rectilinear mixture model, e.g., facades with completely ir-
regular repetitive patterns (Figure 12(left)). In our current imple-
mentation, tiles that are essentially similar may not be grouped if
their parent slices have already been separated into different groups
in the previous level, such as the facade with round windows in the
middle of Figure 14. Such problem might be addressed by an extra
bottom-up grouping (post-)process. Our approach is purely geo-
metric, possibly leading to imperfect partitioned building blocks in
some cases (e.g., the right-most balconies in Figure 1(c)). This is
mainly due to the existence of the extra dense vertical boundaries
along the current splitting plane. Although our method is applicable
to facades with few or no repetitive elements (e.g., Figure 12(right))
given our focus on splitting instead of searching for repetitive pat-
terns directly (cf. [Wu et al. 2010]), our method is less robust in
such cases. Lastly, our system relies heavily on the first splitting
step and there is currently no way for recovering from severe er-
rors in this stage (e.g., over-splitting planes). Revisiting this step
by employing the grouping information from the second and third
steps (potentially demanding an outer iteration) might be a possible
direction to address this problem.

Figure 12: Tivo challenging examples.

5 Conclusion

This paper investigates the problem of generating a flexible and hi-
erarchical representation of urban facades. Our key observation is
that facades with concatenated and/or interlaced grids are ubiqui-
tous in urban scenes. We provide an effective solution to this prob-
lem by introducing the concept of adaptive partitioning. The split-
ting direction, number and location of splitting planes are adap-
tively determined in the structure splitting step. It is then followed

Figure 13: Testing our approach on the CVPR 2010 data set.

by iterated grouping and rectification steps to find repetitive ele-
ments and improve the splitting positions. These steps are car-
ried out recursively to obtain a high-level facade structure. Due
to the flexibility of our approach, we are able to handle urban fa-
cades with various complexity and styles, represented as either 3D
facade scans or image facades. We also show a series of appli-
cations that can benefit from our method. Currently, our method
is purely geometric based. It might be possible to introduce extra
prior knowledge obtained from a training process. With the increas-
ing popularity of LiDAR data, that could be an interesting problem
to be investigated in the future.
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