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Detecting and Removing Visual Distractors
for Video Aesthetic Enhancement

Fang-Lue Zhang, Member, IEEE, Xian Wu, Rui-Long Li,
Jue Wang, Senior Member, IEEE, Zhao-Heng Zheng, Shi-Min Hu, Senior Member, IEEE

Abstract—Personal videos often contain visual distractors, which are objects that are accidentally captured that can distract viewers from focusing
on the main subjects. We propose a method to automatically detect and localize these distractors through learning from a manually labeled
dataset. To achieve spatially and temporally coherent detection, we propose extracting features at the Temporal-Superpixel (TSP) level using a
traditional SVM-based learning framework. We also experiment with end-to-end learning using Convolutional Neural Networks (CNNs), which
achieves slightly higher performance than other methods. The classification result is further refined in a post-processing step based on graph-cut
optimization. Experimental results show that our method achieves an accuracy of 81% and a recall of 86%. We demonstrate several ways of
removing the detected distractors to improve the video quality, including video hole filling; video frame replacement; and camera path re-planning.
The user study results show that our method can significantly improve the aesthetic quality of videos.

Index Terms—video distractor, machine learning, visual quality
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1 INTRODUCTION

In recent years, with the rapid development of digital technology,
the public can capture and produce high-quality visual media
content, such as photos, videos, digital art and newsletters. Pro-
ducing such things is no longer limited to professionals who have
access to complex and expensive equipment. Therefore, the media
content created by all users often has diverse visual qualities.
Internet multimedia services, such as on-line video services [1]
and multimedia transportation [2] want to automatically assess
the aesthetic quality of their acquired materials. The users of
capture devices also want to improve their results but often do
not know how. Thus, researchers in the multimedia community
have proposed intelligent methods to evaluate the visual quality of
variant media, such as images [3][4][5], videos [6], paintings [7]
and webpages [8][9]. They both utilize state-of-the-art techniques,
such as deep learning [4], to rate aesthetic quality and investi-
gate how the intrinsic features contribute to the final perceptual
quality [10][11].

For capturing both photos and videos, professionals always care-
fully plan the scene and exclude all unwanted objects. In contrast,
it is hard for amateur users to avoid capturing unintended objects,
especially in videos, because users cannot have total control of
all dynamic objects. Therefore, it is quite common that a personal
video unintentionally captures some other objects that are visually
distracting. We call such objects visual distractors. These distrac-
tors often draw viewers’ attention away from the main characters
and can make the video unpleasant to watch. The mechanism of
visual attention is also brought into sharp focus by the multimedia
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community [12]. They try to find the connection between the
visual saliency and subjective comfort [13] and use it to improve
the quality of the generated media content [14]. Additionally, the
community provides cues on how to detect the distractors, but
these methods cannot be directly used to distinguish the distracting
objects from the main objects that should be kept in videos.

Recently, Zhang et al. [15] proposed a method of multi-objective
camera path optimization that can simultaneously stabilize the
video camera path while cropping out distractors. Distractor
detection is done in a trivial way in this work. It uses a heuristic
thresholding approach on the local motion contrast of temporal
super-pixels extracted from the video. However, the reasons why
the human visual system identifies some video objects as distrac-
tors could be far more complex. They may involve many factors
such as the color distributions of the scene, the motion of the
camera, the motion consistency among moving objects, the spatial
location of objects, and the length of each object appearing in the
video. As we will show later, a simple heuristic method based
on individual features is insufficient to achieve high accuracy for
video distractor detection.

In this paper, we develop a machine learning-based approach for
detecting and localizing visual distractors in video. Instead of
imposing heuristic hypotheses on the distractors, we propose to
learn a distractor detector from a manually labeled dataset. This
is similar to the work of Fried et al. [16], where a LASSO-
based learning system was proposed to detect visual distractors
in images. However, applying image distractor detection frame-
by-frame or on a few key frames does not yield good video
distractor detection, given that motion and temporal continuity
play a critical role in video saliency analysis. For instance, in an
interview video where the camera is static, a person dancing in the
remote background may not be a distractor if we only look at a
single frame, but it could be quite distracting when watching the
full video. In general, video distractor detection requires exploring
spatio-temporal features and thus is not a trivial extension of image
distractor detection.
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We explore two different approaches for learning a good distractor
classifier from the video distractor dataset we collect. Given that
video content has high inter-frame consistency, we first decompose
a video into Temporal-Superpixels (TSPs) [17] and extract color,
motion, and spatio-temporal distribution features from them. We
then use these features to train a traditional SVM classifier. We
also experiment with a recent end-to-end deep neural network
model SegNet [18], which uses the video frames and feature
maps as the multi-channel data layer. Finally, a graph-cut-based
post-processing step is applied to refine the detection results.
Experimental results show that both learning methods achieve
very similar performances, and the best F-score is 83.8% on the
test dataset. Finally, we demonstrate three different approaches
for removing the distractors from the video, including video hole
filling; video frame replacement and camera path replanning.

Our main technical contributions include:

• A new video distractor dataset with manually labeled
masks of distractors on each frame.

• New machine learning approaches for learning a distractor
classifier.

• Exploration of various approaches for removing distractors
for video enhancement.

2 RELATED WORK

Much work has been devoted to the visual aesthetic evaluation
and measurements of videos. Hammeed et al.[2] and Jang et
al. [6] put great efforts into converting problems of subjective
video quality assessment into computational ones. Scott et al.
improved the computational model by considering personality and
cultural influences[19]. Computational quality evaluation models
have shown effectiveness in applications such as online video
recommendations [1], communications [2] and video editing [20].
With the deepening research, content-based features were intro-
duced into the video quality evaluation models [21]. Then the
content-based methods to improve the aesthetic quality were also
proposed. Xiang et al. [22] showed how to utilize the video
retargeting method to improve the composition of video contents.
Temporal information [23] and camera stability [24] were also
considered to improve video aesthetic quality. More recently, Lu
et al. proposed a spatio-temporally consistent color and structure
optimization method[25]. However, in spite of being important
factors in video aesthetic quality, the detection of distractors, and
their uses to improve video quality have been minimally explored.

Our work is closely related to saliency detection. Based on
the theoretical supports from visual psychology, Yu at al.[13]
proposed a computational model to obtain object-based saliency.
For real-time detection, rule-based methods similar to in [26] are
proposed and have achieved good performance. To further improve
the precision, machine learning methods have also been applied to
predict salient image regions. In [27], initial salient regions or
seeds are extracted using models trained on color-space features.
Liu et al. [28] processed multiple manual labels to train a CRF
model to predict saliency. More recently, a deep neural network
improved the capability of the learned models in salient object
detection [29][30]. Researchers have started to investigate how to
utilize the correlation among the salient regions from different

images to improve the detection accuracy [31]. However, these
methods are constrained to a single image.

The visual attention mechanism is different for videos because of
the dynamic contents. Kim et al.[32] showed that motion features
also play an important role (along with appearance features) in the
video saliency. In addition, Rudoy et al. [33] found that temporal
redundancy makes the video saliency sparsely distributed. Thus,
video saliency detection methods heavily rely on both motion
features and temporal coherency. Zhai and Shah [34] use spatio-
temporal cues to calculate the saliency map on each frame. Rahtu
et al. [35] and Liu et al. [36] employed optimization frameworks
such as CRFs to detect saliency using energy minimization, since
they can be applied to data that are multi-dimensionally correlated.
There are also methods that are designed for special video data.
With the fast development of the capabilities of multimedia
hardware, HDR videos are becoming available to common users.
Dong et al. [14] proposed a method to find salient objects in the
wide luminous range of HDR videos. To facilitate the saliency
analysis in compressed videos, Fang et al. [37] utilized the feature
sets extracted from the compressed domain to detect the salient
regions. In general, video saliency analysis provides useful cues
to the task of distractor detection. However, on its own, it is
insufficient to solve the problem, given that not all visually salient
objects are distractors.

A similar task to saliency detection is distinctive video object
extraction. Tang et al. [38] proposed a method to automatically
annotate discriminative objects in weakly labeled videos. Jain et
al. [39] represent discriminative video objects at the patch level.
Segmentation masks of the extracted objects can be tracked and
refined in other frames by the method proposed in [40] and [41].
These methods provide important cues to find objects that can
attract the visual attention. The segmentation of moving objects
and their dense masks is another related topic. In addition to
directly using motion-based dense features such as optical flow for
segmentation in the spatio-temporal domain[42], researchers also
perform long term motion analysis on tracked sparse feature points
to extract the dynamic foreground objects [43][44]. However,
these methods cannot tell whether the foreground objects are
visually unpleasant.

Abnormal event detection in video is another related topic. Earlier
approaches [45] were mostly semi-supervised. Recently, sparse
representation was introduced to represent local events for auto-
matic abnormal detection [46]. Adam et al. [47] proposed a system
that integrated decisions from multiple cameras. These methods
are designed to detect unusual actions of the main objects, and
cannot be directly used to detect distractors.

Convolutional neural networks (CNNs) have achieved state-of-
the-art performance in many computer vision tasks, including
video applications such as large-scale classification [48] and action
recognition [49]. By jointly encoding spatio-temporal information
in the learning process, 3D convolutional networks [50] have
achieved good performance in semantic video short classification.
Other works use 2D CNN structures to perform recognition and
detection tasks in video by fine-tuning the networks using video
frames [51], or by combining video frames and optical flow maps
as the input layer [42][52]. Gkioxari and Malik [53] proposed
an action tube detection method that learns bounding boxes of
actions frame-by-frame using a 2D CNN structure. In this work
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we propose a method of training CNNs for directly generating
pixel-level video distractor maps.

3 THE DATASET

To the best of our knowledge, there is no existing video dataset
that contains labeled video distractors. Fried et al. [16] provided a
distractor dataset for still images only. Existing video saliency
datasets or eye-tracking databases [54] contain the labeling of
the spatial and temporal parts of a video that will gain viewers’
attentions when watching it, but both the main subjects and the
distractors can have high visual saliency. On the other hand, even
if a video contains only one object, the object could still be a
distractor. For instance, if the intention of a video is to capture
a static scene, a pedestrian that incidentally passes by should be
treated as a distractor. Therefore, the saliency measurement and
eye-tracking data are not directly related to the occurrences of
distractors.

3.1 Data collection

In videos that contain multiple objects, both the main object and
the distractor can have high saliency compared to the background.
Thus, we construct a video dataset that contains manually labeled
video distractors. We have collected approximately 2000 personal
videos from the internet. Ten participants (5 males and 5 females,
aging from 18 - 30) were asked to watch each video, and decide if
there were visually intruding distractors that do not appear to be
intentionally captured. If such an object exists, they were requested
to roughly mask out the distracting objects on one keyframe. There
were 102 videos that contained labeled distractors and were used
to form our dataset. We then recruited another set of volunteers
to create the distractor masks in each video. This was done using
the interactive RotoBrush tool in Adobe After Effects, which is
an efficient implementation of Video SnapCut [55]. The whole
dataset contains over 60,000 video frames. Some labeled examples
are shown in Fig. 1.

The reasons for discarding all the videos which do not have
distractors are as follows: 1) This dataset is designed to perform
the specific task of distractor detection. Because the ”distracting”
is a relative feeling about objects, only in the videos which contain
both main objects and distracting objects, we can get the useful
negative and positive samples to train the learning model. 2) The
distractors usually exist for a shorter time, and take smaller areas
than the main subjects. If we add all these videos in our dataset,
there will be 95% of videos containing only negative samples. It
is normally not recommended in any machine learning models.

3.2 Data processing

The distractor mask contains per-pixel labels of 0 or 1, indicating
whether each pixel belongs to a distractor. However, features
extracted at the pixel level are too local to encode the charac-
teristics of distractors. Pixel-level tracking is also erroneous using
optical flow. To extract meaningful features, we use the Temporal-
Superpixel (TSP) [17] as our basic representation unit, which
captures both spatial and temporal local coherence. The input
video is decomposed into a set of TSPs. When extracting the TSPs,
we resize the videos so that the smaller dimension is 200 pixels.

Fig. 1. Manually labeled distractors in our dataset. For each distracting object,
an accurate distractor mask is provided on each frame it appears.

Our dataset contains 0.75 million TSPs in all, including 70,000
positive TSP samples. For the i-th TSP Pi, we denote its covered
region on the t-th frame as Pt

i , the starting frame of Pi as si, and
the ending frame as ei. Its temporal length is li = ei − si.

Next, we assign distractor labels to TSPs according to manually-
labeled masks. To decide whether a TSP belongs to a distractor,
on each frame in the lifespan of Pi, we calculate the proportion
of pixels inside it that have label 1. If more than 0.75× li frames
whose distractor proportion is larger than 0.5, we label Pi as
distractor.

4 FEATURE EXTRACTION

As discussed earlier, objects with high visual saliency are not nec-
essarily distractors, but distractors typically have higher saliency
than the background of the video, so that they can attract viewers’
attentions. Distractors also tend to have different motion charac-
teristics compared to the main objects and background. Moreover,
as discovered in previous works [16], [56], objects belonging to
some special categories may draw people’s attention more easily
in videos, such as human faces and cars. Considering all these
factors, we extract features related to visual saliency, motion
features and object detection labels as part of the overall feature
descriptor.

Different from previous works, to preserve the temporal coherency
of the detection result, we extract all features at the TSP level. As
mentioned earlier, visual saliency is an important indicator for
detecting distractors. Given that our feature extraction uses TSP
as the basic detection unit, we first propose a method that can
estimate visual saliency for TSPs. We then introduce the other
features that are used to learn the prediction model.

4.1 TSP saliency

Previous video saliency methods [33], [37] can generate frame-
based saliency maps that are temporally smooth. However, for our
task, besides rough distribution maps of saliency, we want to know
how distinctive each TSP element is. Using the post-processed
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Fig. 2. Some results of TSP-saliency.

results of the frame saliency maps to get each TSP’s saliency,
may cause errors especially at the boundary regions of moving
objects. Therefore, we need a method to directly calculate each
TSPs saliency value. We propose a method that considers TSP
saliency in both the appearance and motion spaces. Specifically,
we use the differences of motion and appearance features between
the target TSP and all others to measure its saliency:

Sa(Pi) =
∑n

j=1 lje
− d(i,j)

σ2 Da(i, j)

Sm(Pi) =
∑n

j=1 lje
− d(i,j)

σ2 Dm(i, j)
(1)

where lj is the length of the lifespan of Pj , d(i, j) is the
Euclidean distance in 3D space of (x, y, t), σ = 0.5. Here,
following the common strategy used in the previous saliency
extraction method [26], we use d(i, j) to make those spatially
and temporally further TSPs contribute less to the current TSP’s
saliency value. Compared with the uniform weighted scheme, it
can achieve better results in the appearance space and in the
motion saliency estimation [26]. For example, when the camera
is zooming in on a video, the motion vectors of the background
TSPs at different parts will have varying orientation. If we use
uniform weights for all the TSPs, the background TSPs will also
have very high motion saliency value. For motion saliency, the
feature distance Dm(i, j) is computed as the L2 distance between
the two average motion vectors of two TSPs. For appearance
distance Da(i, j), it is computed as the L2 distance between
the two average colors in Lab space. d(i, j) and tj are used
to control the contribution of each TSP: the TSPs with longer
lifespan and smaller spatial-temporal distance to Pj will have
larger contribution to the calculating of the saliency value. Some
example saliency results are shown in Fig. 2.

4.2 Feature set

By visually examining the distractors in the collected dataset, we
have the following observations about their characteristics. (1)
Visual saliency: Distractors typically have high visual saliency
and are thus easily noticed when watching videos. (2) Lifespan:
The lifespans of distractors are usually shorter compared to the

main objects in a video. (3) Motion contrast: Most distractors
have quite different moving speeds or directions compared to the
main objects in the scenes. (4) Spatial distribution: Normally, the
distractors appear and disappear near the border of video frames.
(5) Semantic information: Some specific objects can more easily
draw attention, such as human faces and cars. Based on these
observations, we extract the following set of features:

1) Visual saliency. We extract both the motion and appear-
ance saliency of each TSP according to Eqn. 1.

2) Lifespan. Denote the frame number of the whole video as
L, we use the following features for Pi:

t1i = li/L, t
2
i = si/L, t

3
i = ei/L,

where li, si and ei are the lifespan, starting and ending
frames of the TSP, respectively.

3) Motion. We extract the following motion features for each
TSP:
a) Moving distance in its lifespan:

m1
i = psi − pei ,

where psi and pei are the starting and ending center
positions of Pi, respectively.
b) Moving speed, calculated as the offset of the TSP’s
center position between adjacent frames.
c) Relative speed, calculated as dividing the average
moving speed by the background moving speed. We use
the maximum, minimum, mean and median values in both
b) and c) as features.
d) The spatial variance of the center trajectory, to describe
if the movement is stable and regular. It is calculated as:

di =
∑
t∈li

(pti − pi)2.

4) Spatial distribution. We compute the normalized distance
between the center of the TSP and the center of the frame.
We then use the maximum, minimum, mean and median
value of it during the lifespan of the TSP as features.

5) Semantic labeling. The object detection results of “car”,
“person” and “face” using methods mentioned in [56] are
used as features. If in the lifespan of a TSP, it is detected
as within one of those objects, the label will be set to 1
in that dimension.

Inspired by previous work in image and video saliency detection,
we also add appearance features. First, each feature is calculated
on every frame. For every TSP, we then use the max, min, mean
and median values of that feature in its covered region as features:

• Direction controllable pyramids in 3 directions and 4
scales [56].

• RGB values, RGB probabilities, and the probability of
each color, computed from 3D color histograms of the
image filtered by a median filter at 6 different scales [56].

• Horizon detection results using the method in [56].

By combining all above feature descriptors together, we extract a
177 dimensional feature vector for each TSP.
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Fig. 3. Overview of TSP-level learning and predicting framework.

5 TRAINING

We explore two different learning and classification models in-
cluding the TSP-level supporting vector machine (SVM) classifier
and the pixel-level end-to-end CNN.

5.1 TSP-level SVM

First, we train an SVM classifier with RBF kernel directly on the
extracted features from labeled TSPs, as shown in Fig. 3. We
randomly split the dataset into a training set that contains 80%
videos and a test set with the remaining ones. All the TSPs with
positive distractor labels in the training set are used as positive
samples. We then randomly choose the same number of negative
TSPs from the training videos to make a balanced training sample
set. When training the RBF-SVM model, we use grid search to
get the optimized parameters γ and C. We follow the method
introduced in [57] to do the 5-fold cross validation. On the training
data for each iteration, we randomly pick a subfolder as validation
data, and then we perform a grid search on the model trained by
other training data. In the classification stage, the input video is
first decomposed into TSPs, and each is then tested by the trained
SVM model.

5.2 Pixel-level CNN

Most existing deep neural networks are designed for processing
images, especially in end-to-end learning tasks such as detection
and segmentation [18][58]. Tran et al. [50] proposed a 3D convo-
lutional network for video classification. However, this structure
does not produce the pixel-level labeling that is required in our
task. Inspired by the work of [42], which uses original frames and
corresponding optical flow maps as input layers for the CNN, we
combine video frames with extracted feature maps as input layers
for our task. We choose to use SegNet [18], the state-of-the-art
image segmentation network to predict a distractor map in every
video frame.

Encoder-Decoder Pairs

Saved pool indices

Soft-max
  

Neighboring frames

Feature maps

Output
 labels

Pooling Conv+Norm+ReLUUpsampling

Fig. 4. The structure of the SegNet model. Encoder-decoder pairs at different
scales are trained. Our multi-channel input layer contains both video frames
and TSP-level feature maps.

As shown in Fig. 4, the SegNet model is composed of several
decoding and encoding layers to capture features at different
spatial scales. The data layer supports multi-channel inputs for
images. We can use the neighboring frames as different chan-
nels to the current frame, which helps capture appearance and
local motion characteristics of distractors. To encode long-range
temporal features, we generate several pixel-wise feature maps as
extra channels by propagating the TSP-level feature values down
to pixels. The final input layers contain 12 channels with a size of
200× 200 pixels, which are:

• 5 grayscale frames centered at the current frame (5 chan-
nels).

• The lifespan length of the TSP that each pixel belongs to
(1 channel).

• Average motion speed of each TSP that each pixel belongs
to (2 channels).

• The spatial distance to the center of the frame (1 channel).
• Pixel-level saliency (2 channels, including the motion and

appearance saliency).
• The object detection labels at pixel-level (1 channel).

One problem of our training dataset is the unbalanced numbers
of positive and negative samples. For a more balanced input, we
only use video frames that contain distractors when training the
neural network. We use 5 encoder-decoder pairs in our experiment.
Most parameters are set as with the defaults in [18]. For the i-th
encoder-decoder pair, we use 32 × 2i kernels. We chose a batch
size of 8. We use the SGD method as our training algorithm, with
150K epochs. The trained Caffe model of this 5-layer SegNet for
distractor detection is included in the supplementary materials.

Note that the features are still extracted from the full-length video.
In the prediction stage, the input frames are first decomposed into
TSPs to generate multi-channel feature maps. Given a test video,
we use videos from 8 × 8 = 64 overlapping sliding windows as
inputs for the SegNet model. Each window has a size of 240×160
and centers from (120, 80) to (360, 240). The final label for each
pixel is achieved by voting. If the pixel is detected as the distractor
in more than half of the windows including it, it will be marked
as a distractor. To maintain spatio-temporal coherency, we assign
distractor labels to TSPs if more than 50% of its pixels are marked
as a distractor. Using sliding windows, the noises in detecting
results can be reduced by averaging the possibilities from different
windows. Thus, we can reduce the number of false-positive results
compared with just using the full-frame to test. In our tests, we
find it achieves a similar recall but an 1-2% improvement in
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accuracy. Therefore, we choose the sliding-window strategy when
testing our model. In our experiments, 4 × 4 windows have a
lower accuracy by 0.5%; while 16× 16 windows obtain a similar
performance with 4 times the computation costs. Thus we choose
8× 8 windows as our default window setting.

5.3 Post-processing

The prediction result from the classifiers are further refined in
a post-processing step. A distractor usually contains a set of
TSPs, and one would expect strong spatial labeling continuity.
Neighboring TSPs with similar motion and appearance features
should have the same label. Based on this observation, we employ
a graph-cut based method to further improve the detection results.

We build a graph where each TSP is a node. If a pair of TSPs
(Pi,Pj) are spatially adjacent in more than 50% of their lifespans,
we mark them as neighbors and add a link between them, as shown
in Fig. 5. The set of all such neighboring pairs is denoted as N . It
is a graph-based optimization problem. So we follow the objective
definition in [59] to solve our problem. Each TSP is given a label
of 0 (non-distractor) and 1 (distractor) to minimize the following
graph energy:

E(L) =
∑
Pi∈Ω

DPi(Li) +
∑

(Pi,Pj)∈N

T(i,j)(Li, Lj), (2)

where Ω is the set of all the TSPs, Li is the label of Pi. The
data term DPi is derived from the classification confidence of that
sample. For SVM-based TSP level method, the confidence can
be measured as the distance to the classification boundary of the
RBF-SVM:

DPi(Li) = |
N∑
j

αjK(xj , xi) + b|−1 ∗ |Lo
i − Li|, (3)

where Lo
i is the prediction label provided by the classifier,

K(xj , xi) is the RBF-kernel function, xj is the j− th supporting
vector and αj is the weight. For results from SegNet, we use the
proportion of the pixels that are labeled as distractor in a TSP as
its confidence value. By doing so, TSPs with lower classification
confidences will have lower cost to switch labels.

The coherence term T(i, j) in Eqn. 2 encourages neighboring
TSPs that are similar to have the same label. Here we use the
appearance and motion features to measure the similarity as:

T(i,j)(Li, Lj) =

{
0, if Li = Lj

‖Fi −Fj‖−1, otherwise
(4)

Where we use Fi to represent the feature vector of a TSP. It is
worth mentioning that since there are connected edges between
TSPs with different lifespans, the distance measurements are
not metrics. We thus use alpha-beta swap to solve the graph
cuts problem as proposed in [59]. As Fig. 6 shows, graph cuts
optimization removes errors caused by noisy TSPs, and at the
same time recovers missing parts of distractors, leading to more
accurate distractor labeling.

Initial graph     After optimization

    
A TSP with its
 living period

    
Graph nodes
with different

                     labels

A

A A

Fig. 5. Illustration of using graph-cut optimization for detection refinement.
Each node represents a TSP. Node A is initially predicted as non-distractor.
Since it has similar features to its neighboring nodes, its label changes after
optimization.

6 EXPERIMENTAL RESULTS

6.1 Distractor prediction

We use 80% of the videos in our datasets to train the classifier.
This contains approximately 60,000 positive TSP samples and
48,000 frames. The remaining 20% of videos are used as the test
dataset. When testing, we use all the positive and negative samples
in these testing videos. Note that there is a serious imbalance in
the numbers of positive and negative samples. Normally, 85%-
90% of TSPs in a video are negative samples, and only approx-
imately 10%-15% of TSPs are distractors. This suggests that in
our experiments, recall is more important than accuracy when
measuring the performance. For example, even a classifier marks
all the input testing samples as negative, the accuracy will be above
0.85, but the recall is 0. On the other hand, if the accuracy is too
low, there will be too many false alarms, and the post-processing
can minimally improve the final results. Thus, to evaluate the
performance using a more balanced strategy, we use the F-score
as the first measurement. Then we compare their recalls if they
have same F-scores.

We conduct a 5-fold cross-validation, and the results are shown in
Tab. 1. The SegNet model achieves a slightly better performance
than SVM with a similar recall and a higher accuracy. We suspect
that with more training data, the SegNet model would eventually
perform better than the SVM model. The graph-cut optimization in
the post processing step also significantly improves the detection
results.

Post-process (Original) SVM SegNet
Recall 0.863(0.842) 0.859 (0.841)

Accuracy 0.806(0.721) 0.814 (0.731)
F-score 0.834(0.777) 0.838 (0.782)

TABLE 1
Performance of our method on our dataset.

In terms of computational efficiency, our SegNet model runs on a
computer with Intel i7 CPU and an NVidia GTX980 display card,
which takes 28 hours for training and 30 minutes for examining all
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Fig. 6. Some post-processing results. The detected distractors before and after post-processing are marked in blue. The manually labeled ground-truth are
marked in pink.

testing video frames. We use LibSVM [60] to train the SVM clas-
sifier, which takes about 50 minutes for learning. The prediction
time is about 0.5 seconds per frame with pre-segmented TSPs. For
a video resized to 320× 240, the average TSP segmentation time
is about 30 minutes using the code provided in [17].

6.2 Comparisons and discussion

6.2.1 TSP-level classification

In addition to SVM, we have also tested a number of other clas-
sifiers such as Random Forest, Bayesian Network, and Adaboost.
We also varied the size of the training and testing datasets to
examine the sensitivity of different methods to the training data
size. For fair comparisons, we use the same training and testing
datasets for all methods. The results are shown in Tab. 2. Although
Adaboost yields the highest recall, its accuracy is also the lowest,
indicating that its detection result is quite noisy. It also has a lower
F-score. In the end we choose to use SVM given its overall good
performance.

We conduct a more detailed comparison between SVM and
LASSO [16], which was previously used for image distractor
detection. For LASSO, we use different thresholds for deciding
whether a TSP is a distractor. We also adjust the parameters in
SVM to produce results with different recall and precision values.
The performance curves are shown in Fig. 7. Considering that
recall is more important for our task, we thus choose SVM as our
classifier.

In the experiments reported in Tab. 2, we also test different sizes of
training sets when learning the classifiers, to see the data quality
of our dataset. The results suggest that the overall performance
of each method improves with more training data when the
training dataset is small. When the dataset size reaches 60%,
the improvement becomes much smaller and the performances
of different methods become stable.

1.00
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0.60

0.80

0.95

0.85

0.90

0.80

0.700.60 0.650.625 0.675 0.725

Recall

Precision
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Precision

0.80

1.000.40 0.600.20

0.20

0

SVM

LASSO

Fig. 7. Recall and precision curves of LASSO and SVM.

Classifier data(%) 20 40 60 80

Adaboost
Recall 0.71 0.76 0.89 0.92

Accuracy 0.64 0.68 0.67 0.66
F-score 0.67 0.71 0.76 0.77

Bayes
Recall 0.52 0.67 0.63 0.71

Accuracy 0.67 0.71 0.71 0.72
F-score 0.58 0.68 0.67 0.72

Lasso
Recall 0.67 0.63 0.63 0.69

Accuracy 0.64 0.72 0.74 0.73
F-score 0.65 0.67 0.68 0.70

Random Forest
Recall 0.55 0.73 0.73 0.72

Accuracy 0.75 0.79 0.80 0.81
F-score 0.63 0.75 0.76 0.76

SVM
Recall 0.48 0.71 0.85 0.84

Accuracy 0.71 0.68 0.70 0.72
F-score 0.57 0.69 0.76 0.78

TABLE 2
Performance of different methods using datasets with different sizes.

6.2.2 Experiments on CNN

We have experimented with different training strategies for the
SegNet model, as summarized in Tab. 3. The results suggest
that only using video frames in the input layer generates worse
results. As mentioned earlier, this is because long-term temporal
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(a)

(b)

Ground truthZhang et al. [25] Our method

Fig. 8. Comparison with the rule-based method in [15]. The detected TSPs belonging to distractors are highlighted in red (Zhang et al.[15]) and blue (our
method), respectively. The ground truth masks are shown in green.

information is not captured in the input data. The feature maps
thus play an important role in distractor detection. On the other
hand, having too little (0/3) or too many (7) frames in the input
layer does not improve the detection, which suggests that local
motion information can be well captured in 5 frames.

Recall Accuracy F-score
Only 3 frames 0.812 0.471 0.642
Only 5 frames 0.823 0.584 0.701
Only 7 frames 0.816 0.592 0.707

Only feature maps 0.742 0.783 0.762
3 frames + feature maps 0.764 0.697 0.734
5 frames + feature maps 0.841 0.731 0.782
7 frames + feature maps 0.750 0.681 0.716

TABLE 3
Performance changes of our CNN model by using different training data.

6.2.3 Compare with rule-based method and image-based
method

Zhang et al. [15] proposed a rule-based distractor detection
method. In this method, the decision is made by checking the
TSP’s saliency value and position. If a TSP has high saliency and
is near the frame boundary, it will be labeled as a distractor. As
shown in the example in Fig. 8(a), this method will miss those
distractors with relatively low saliency thresholds. However, if the
threshold is lower, there will be many false alarms as shown in
Fig. 8(b). Our learning-based method can utilize more clues for
distractor detection, which will avoid ad-hoc parameter tweaking.
The performances of the two methods for the examples shown
in Fig. 8 are reported in Tab. 4. We also show the comparison
results on the full dataset. Considering near 90% of the TSPs
in input videos are non-distractors, recall is much more impor-
tant when evaluating performance. It suggests that our method
outperforms the rule-based method on recall with an acceptable
accuracy. We also compared our method with the image distractor
detection method proposed in [16]. However, since the image-
based method cannot utilize the motion information, which has
shown importance in the video distractor detection, it fails to

successfully extract the distracting object, based on the lowest
recall.

Input Data Rule-based Image-based Ours

(a)8082 TSPs
Accuracy 0.82 0.86 0.79

Recall 0.37 0.18 0.97

(b)7195 TSPs
Accuracy 0.79 0.85 0.81

Recall 0.51 0.26 0.86

Full (728K TSPs)
Accuracy 0.76 0.87 0.86

Recall 0.47 0.24 0.81
TABLE 4

(a)(b)Quantitative results on the two examples in Fig. 8. The numbers of
TSPs in those two videos are also shown. The comparison results for the full

dataset are shown at the bottom. videos.

6.3 Feature importance

To explore how much each feature contributes to the detection
results, we conduct a series of experiments where we use different
feature combinations in each. We group the features into the
following categories: 1. Visual saliency features (VS); 2. Spatial
and temporal positions (POS); 3. Motion features (MOV); 4.
Appearance features (APP); 5. Object detection labels (OBJ). In
each experiment, we use 4 out of these 5 groups of features to
train our classifier and test the performance. The results are shown
in Tab. 5.

The results show that the spatial-temporal distribution of objects
(POS group) plays an important role in the distractor prediction.
Removing these features leads to the largest drops in both recall
and accuracy. This is intuitively natural given that most of the
distractors are in the border region of video frames and have
relatively short lifespans. The appearance features are important
to distinguish the distractors from the main objects. The object
detection features also have significant contribution in detecting
distractors. They carry semantic-level information related to visual
attention, which can help to extract distractors like the van in
Fig. 13(a).

Interesting, when removing the motion-based features, the accu-
racy decreased by 3.2%, but the recall increases. That is because
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Removed Performance Decrease(%)

VS
Recall 0.827 1.26

Accuracy 0.707 1.94

POS
Recall 0.772 8.31

Accuracy 0.694 3.74

MOV
Recall 0.871 -3.44∗

Accuracy 0.698 3.19

APP
Recall 0.765 9.14

Accuracy 0.710 1.53

OBJ
Recall 0.781 7.24

Accuracy 0.716 0.69
TABLE 5

Performance of different feature sets in which one group of features are
removed.

Inpainting result

Input

Fig. 10. Removing distractors (highlighted by red arrows) by inpainting.

in some videos, the distractors do not have significant motion, thus
motion features tend to group them with the background. But the
decreased accuracy shows that the motion features can help avoid
more false alarms. Considering the imbalanced data distribution,
we choose to keep the motion features. Finally, we find that visual
saliency features only improve the results marginally. That is
because the distractors and main objects both have high saliency,
thus they are not quite separable in saliency space.

7 DISTRACTOR REMOVAL

Given the video distractor detection results, we propose different
methods to remove or exclude distractors from an input video to
improve its aesthetic quality.

7.1 Frame replacement

Distractors could seriously deteriorate an interview video. Inspired
by the recent tools for editing interview videos [61], we use our
approach to detect and remove the frames containing distractors
from an interview video, and then generate smooth transitions to
fill the temporal gaps. Given the frames indices with distractors,
we use Berthouzoz et al.’s method [61] to find seamless hidden
transition frames by building a transition graph. The frames
without distractors in the original video are used to form the
optimal path in which the body and facial components have the
smoothest in between changes. Different from this method, we fur-
ther consider the case where the camera is moving while recording
the interview video. We estimate the homography transformations
between frames by tracking feature points in the background, and
align video frames before processing. An example is shown as

Input

Optimized path

[Zhang 2015]

Fig. 11. Re-planning the camera path to exclude distractors (highlighted by red
arrows) from the final video frames.

in Fig. 9. Compared with inpainting, replacing frames can avoid
hole filling artifacts when a large region of the foreground object is
occluded by the distractor, such as the middle frame in Fig. 9. This
method is limited to long interview videos where the foreground
and background are relatively stable.

7.2 Inpainting

A straightforward way to remove the detected distractors is to
apply video completion, or hole filling methods in regions that
are detected as distractors. Similar to previous image hole filling
systems, in order to avoid masking errors, we expand the distractor
mask to produce a larger region to fill using the method in [62].
Such an example is shown in Fig. 10. This method usually works
well when the distractor is relatively small and similar textures
can be found in other parts of the video frame to fill in the holes.

7.3 Camera Path re-planning

Zhang et al. [15] propose a camera path re-planning method to
exclude the distractors from the final video frames. We further
extend this idea by constraining the position of the main object
when re-planning the camera path. The camera path is represented
by a sequence of homography matrices between frames. The
objective of the original L1-optimization framework in [15] is
to produce a new homography matrix sequence that are smooth,
while ensuring that the distractors are excluded. Please refer to the
original paper for more details. Because their approach does not
consider the final position of the main subject, it often becomes
too close to the border after cropping, as shown in Fig. 11. To
avoid this problem, we add an extra energy term on the most
salient object (excluding the distractors) to constrain it to be at a
better position. According to cinemagraphy rules, the main object
should lie in the intersection points of 4 one-third lines. Thus, we
add slack variables on each frame to optimize the final distance
with the nearest intersection:

(−θtx,−θty)T < P tct − qt < (θtx, θ
t
y)T (5)
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Input

Cutting & Replacing

Fig. 9. Replacing video frames that contain distractors (highlighted by red arrows) in an interview video.

Fig. 12. Distribution of average scores for the aesthetic quality comparison
between original video and our improved version.

Score A. Replacement B. Inpainting C. Re-planning All
Mean 1.48 0.69 1.13 1.09
Std 0.30 1.14 0.76 0.74

T-Test A vs. B A vs. C B vs. C All∗

P-Value 0.036 0.58 0.048 0.0027
H 1 0 1 1

TABLE 6
Statistics of the user study results. Paired-samples t-tests are performed
between each pair of the 3 removal methods. H = 1 indicates that the

scores are different at significance level α = 0.05. ∗ This is the result of
one-sample t-test.

where P t is the transformation to be optimized for frame t, ct is
the center of the most salient object, qt is the nearest intersection
point. Slack variables θ will be minimized in the L1-optimization
framework (see [15]). In the example shown in Fig. 11, the baby
is detected as the main object in the video (shown by the green
arrow). Our path re-planning method generates a cropped video
with a better composition than the original method of [15].

7.4 User Study and Discussion

A user study was performed to evaluate our proposed distractor
detection and removal method, to see whether it can improve
the video aesthetic quality. For the method of frame replacement,
since it only works on interview videos, we first randomly selected
5 out of the 16 interview videos in the dataset. Then for the
completion and path re-planning, we randomly choose 10 videos
out of the other 86 videos. Then fifteen pairs of videos were
prepared. Each pair contains the original video and the result
after distractor removal. We invited twenty participants, with no
expertise in photography and visual psychology. The original and
result videos were randomly placed next to each other for each pair

when they were played for the participants. We did not tell them
anything about the operation we performed to change the video.
To eliminate bias, the participants were selected from different
age and gender groups. There were 10 males and 10 females in
both age 18-30 and age 31-45 groups. They were asked to assign
an integer rank from -3 to 3, to indicate how much one was more
pleasing than the other. They were asked to assign a 0 if they think
the qualities were equal. A positive score meant the video on the
right was more appealing than the one on the left and vice versa.

The user study outcome is shown in Fig. 12, where we show the
distribution of the average scores of 15 video pairs after changing
the orders by putting the original video on the left. It can be
seen that our method effectively improves the aesthetic quality,
with 86.7% percent of videos judged to be improved to differing
extents. The statistics are shown in Tab. 6. The mean of the scores
is 1.09. Since the scores are given for each video pair, to test
whether the scores show a significant difference in terms of the
visual quality, we perform one sample t-test. Here, we assume that
the average score of the video pairs with equivalent quality should
be zero. Then the one sample t-test shows that the improvement is
significant.

There are two typical failure cases where the users give negative
scores for our results. One is the result from the optimal path
planning, where the video is over-cropped due to the large size
of the distractor. The second failure case is from the inpainting
method. There are noticeable artifacts in the inpainting area for
a shaking video. From the bottom table of Tab. 6, we find that
the inpainting method gets significantly lower scores than the
others. That is because the noticeable artifacts in some inpainting
examples are more unpleasant. In contrast, the replacement is only
performed on interview videos. The replanning method is based
on warping, so they hardly introduce new artifacts if the camera
is not very shaky. Therefore, the methods of replacement and path
re-planning are recommended to remove distractors.

We may also fail to improve the visual quality because of changing
the original semantic structure. Like the examples in Fig. 8 (right)
and 10, although the ”distractors” are unintentionally captured,
they actually have semantic connections with the behaviors of
the main objects. If we just remove them, the semantic structure
will not be preserved. To determine whether they have semantic
relationships with the behaviors of the main objects, we need
better perceptual models to describe the features. It is another lim-
itation of our method and the important future work of distractor
detection.
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Ground truths

Detection results

Input

(d)

Fig. 13. More distractor detection results. Detected distractors are highlighted in blue. The ground truth are shown in green.

8 CONCLUSION

In this paper, we have proposed a learning-based method to
detect visual distractors in videos. To learn a classifier, we also
build a dataset that contains manually labeled distractors. The
experimental results show that our learned classifier achieves high
precision and recall for this dataset, and the results can be further
improved in a post-processing step. This method can be applied
for aesthetic video enhancement and in intelligent video editing
tools to improve the visual quality of videos.

As a future work, we plan to explore more features for improving
the performance, especially those features related to long-range
temporal coherence. We also plan to collect more data containing
video distractors in order to create a better prediction model that
can cover more types of distractors. Distractor detection also
has the potential to improve many important video processing
tasks even when distractors are hard to remove. For example,
by just using non-distractor regions or objects, we can obtain a
more robust camera path for video deblurring and stabilization,

and make content-based video retrieval more accurate. A better
aesthetic quality evaluation model can be established considering
distractors.
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objects from images and videos,” in ECCV, 2010, pp. 366–379.

[36] T. Liu, N. Zheng, W. Ding, and Z. Yuan, “Video attention: Learning to
detect a salient object sequence,” in IEEE ICCV, 2008, pp. 1–4.

[37] Y. Fang, W. Lin, Z. Chen, C.-M. Tsai, and C.-W. Lin, “A video saliency
detection model in compressed domain,” IEEE TCSVT, vol. 24, no. 1, pp.
27–38, 2014.

[38] K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei, “Discriminative
segment annotation in weakly labeled video,” in IEEE CVPR, 2013, pp.
2483–2490.

[39] A. Jain, A. Gupta, M. Rodriguez, and L. S. Davis, “Representing videos
using mid-level discriminative patches,” in IEEE CVPR, 2013, pp. 2571–
2578.

[40] D. Zhang, O. Javed, and M. Shah, “Video object segmentation through
spatially accurate and temporally dense extraction of primary object
regions,” in IEEE CVPR, 2013, pp. 628–635.

[41] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology
for video object segmentation,” in IEEE CVPR, 2016, pp. 724–732.

[42] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to
segment moving objects in videos,” in IEEE CVPR, 2015, pp. 4083–
4090.

[43] P. Ochs, J. Malik, and T. Brox, “Segmentation of moving objects by long
term video analysis,” IEEE TPAMI, vol. 36, no. 6, pp. 1187–1200, 2014.

[44] F.-L. Zhang, X. Wu, H.-T. Zhang, J. Wang, and S.-M. Hu, “Robust
background identification for dynamic video editing,” ACM Transactions
on Graphics, vol. 35, no. 6, p. 197, 2016.

[45] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-
supervised adapted hmms for unusual event detection,” in IEEE CVPR,
vol. 1, 2005, pp. 611–618.



13

[46] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,”
in IEEE ICCV, 2013, pp. 2720–2727.

[47] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, “Robust real-time
unusual event detection using multiple fixed-location monitors,” IEEE
TPAMI, vol. 30, no. 3, pp. 555–560, 2008.

[48] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in IEEE CVPR, 2014, pp. 1725–1732.

[49] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in IEEE CVPR, 2015, pp. 4305–
4314.

[50] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in IEEE ICCV,
2015, pp. 4489–4497.

[51] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann, “Devnet:
A deep event network for multimedia event detection and evidence
recounting,” in IEEE CVPR, 2015, pp. 2568–2577.

[52] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in IEEE CVPR, 2015, pp. 4694–4702.

[53] G. Gkioxari and J. Malik, “Finding action tubes,” in IEEE CVPR, 2015,
pp. 759–768.

[54] P. K. Mital, T. J. Smith, R. L. Hill, and J. M. Henderson, “Clustering of
gaze during dynamic scene viewing is predicted by motion,” Cognitive
Computation, vol. 3, no. 1, pp. 5–24, 2011.

[55] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video snapcut: robust video
object cutout using localized classifiers,” ACM Transactions on Graphics
(TOG), vol. 28, no. 3, p. 70, 2009.

[56] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict
where humans look,” in IEEE ICCV, 2009, pp. 2106–2113.

[57] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support
vector classification,” 2003.

[58] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE CVPR, 2015, pp. 3431–3440.

[59] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” IJCV, vol. 96, no. 1, pp. 1–27,
2012.

[60] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[61] F. Berthouzoz, W. Li, and M. Agrawala, “Tools for placing cuts and
transitions in interview video,” ACM Transactions on Graphics (TOG),
vol. 31, no. 4, p. 67, 2012.

[62] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Pérez, “Video
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