WALDSPURGER FORMULA OVER FUNCTION FIELDS

CHIH-YUN CHUANG AND FU-TSUN WEI

ABsTRACT. In this paper, we derive a function field version of the Waldspurger formula
for the central critical values of the Rankin-Selberg L-functions. This formula states that
the central critical L-values in question can be expressed as the “ratio” of the global toric
period integral to the product of the local toric period integrals. Consequently, this result
provides a necessary and sufficient criterion for the non-vanishing of these central critical
L-values, and supports the Gross-Prasad conjecture for SO(3) over function fields.

INTRODUCTION

In 1985, Waldspurger [I5] established a fundamental formula for the central critical value
of the Rankin-Selberg L-function associated to an automorphic cuspidal representation of
GLy over a given number field F' convolved with a Hecke character on the idele class group
of a quadratic field extension over F'. This formula asserts that “global toric period integrals”
can be written as the central critical L-value in question multiplying the product of “local
toric period integrals.” From this result, these critical L-values now have been studied exten-
sively over number fields and lead to plenty of arithmetic consequences (cf. [2], [3], and [22]).
The main purpose of this paper is to derive a function field analogue of Walspurger’s formula.

Let k£ be a global function field with odd characteristic, and denote the adele ring of k
by ks. Let D be a quaternion algebra over k, and K be a separable quadratic algebra over
k with an embedding ¢ : K < D. We put Dy and K4 to be the adelization of D and K,
respectively. Let II? be an infinite dimensional automorphic representation of D} (cuspidal if
D is the matrix algebra) with a unitary central character 1. Given a unitary Hecke character
X : K*\K; — C*, suppose 7 - X’kg = 1. Let PXD € HomKAx (TP, x~1) be the global toric
period integral:

PXD(f) ::/X f(ua))x(a)d*a, VfeTIIP.
KX R\K

The measure d*a chosen here is the Tamagawa measure (cf. Section [1.2). This then gives
us a linear functional 77}2 :TIP @ IP — C (where IIP is the contragredient representation of
1IP) defined by:

PP(f® f):=PP(f)- PP.(f), Vf®felP oIP.

On the other hand, write II? = ®,II7, and P = ®Uﬁf. We may assume that the
identification between II? (resp. I1P) and ®,I12 (resp. ®II?) satisfies the following equality:

2L(1,11, Ad) .
D y D . HD D
< ’ >Pet Ck(Q) ];[< ) >v )
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where:

e the pairing (-,-)T, is induced from the Petersson inner product (with respect to the
Tamagawa measure, i.e. the total volume of Dk \D; is 2, cf. Section .

e for each place v of k, (-,-)? is the natural duality pairing between I1Z and ﬁUD

e II is the automorphic cuspidal representation of GLy(ky) correspoding to I1P via the
Jacquet-Langlands correspondence.

e L(s,1I,Ad) is the adjoint L-function of II.

e (i(s) is the Dedekind-Weil zeta function of k.
Write x = ®,X». Then for each v, the local toric period integral ,@gv 1P ® ﬁUD — Cis
given by:
PRMfoo )= [ IR (a) fos oo ()
K3 ks
Here d*a, is the Tamagawa measure on K /k (chosen in Section , and * is a product
of “local L-factors” so that 27, (f, ® f,) = 1 when v is “good” (cf. Lemma. These local

toric period integrals induce another linear functional ﬁf = ®3”€ , P ® I° — C. We
now state the main theorem of this paper as follows (cf. Theorem [5.2):

Theorem 0.1. Under the above assumptions, we have

1
PL = L(Q,H xx) 2L,

where L(s,II X x) is the Rankin-Selberg L-function associated to II and x.

We remark that L(s,II x x) can be identified with L(s,IIx ® x), the L-function of Il
twisted by x, where Ik is Jacquet’s lifting of IT to GLa(Ky) (cf. [7, Theorem 20.6]).

Let ¢x be the quadratic Hecke character of K/k and put SKp 1= gK}kX. From the work

D

v 18 not

of Tunnell [13] and Waldspurger [I5, Lemme 10], the local toric period integral &
trivial if and only if

(I X x) = nv(_1)§K,v(_1)€v(D)- (%)

Here €, (IT x x) is the local root number of L(s,II x x) at v and €,(D) is the Hasse invariant
of D at v. This leads us to the following consequence.

Corollary 0.2. Suppose [[,e,(II x x) = 1. Let D be the unique (up to isomorphism)
quaternion algebra over k so that the equality (x) holds for every place v of k. Then the
non-vanishing of L(1/2,11 x x) is equivalent to the existance of an automorphic form f € P
so that

PP = [ f@)xa@da o
KX E\K ]

In particular, via the isomorphism PGLy 22 SO(3), Corollarysupports the Gross-Prasad
conjecture for the SO(3) case over function fields (cf. [6]).

The proof of Theorem basically follows Waldspurger’s approach in [I5] for the number
field case. Suppose first that K is a quadratic field over k. Let (Vp, Qy,) be the quadratic
space (D, Nrp ), where Nrp /;, is the reduced norm from D to k. Given ¢ € IT and a Schwartz
function ¢ € S(Vp(ky)), suppose ¢ and ¢ are both pure tensors. From the Rankin-Selberg
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method, we have (cf. Corollary [3.3] (2))
(0.1) L(2s,5x) - Z(s50,0) = L(s,TIx x) - [[ 22(s; 6w, 00),

where the zeta integral Z(s; ¢, ¢) (resp. Z2(s; ¢y, @y )) is defined in the beginning of Section
(resp. Corollary (2)). Applying the Siegel-Weil formula in Theorem and the seesaw
identity (cf. the diagram (4.2)), we may connect L(1,sx) - Z(1/2; ¢, ) with a global toric
period integral T (¢, ¢) (cf. the equation and Proposition [£.3). On the other hand, the
local zeta integral Z2(1/2; ¢y, ¢,) can be rewritten as a local toric period integral Ty, (¢, ©v)
(cf. Proposition [4.1)). The global (resp. local) Shimizu correspondence in Theorem (resp.
Section then enables us to connect T (resp. T,) with PP (resp. 27 ), which completes
the proof. Note that in our approach, we always take the original Schwartz functions (i.e.
functions in S(V (ka)), cf. Section [2), instead of using the “extended ones” (i.e. functions in
S(V(ka) x k) as in [15, Section 3]. This simplifies the arguments.

One ingredient of the above proof is to decompose the global Shimizu correspondence as
the tensor product of local ones (cf. Section and Appendix |A]). To achieve this, we need
to verify the Siegel-Weil formula for the dual pair (SLQ, O(D?)), where SL, is the metaplectic
cover of SLy, and D° consists of all the pure quaternions in D (cf. Appendix .

When K = k x k, the existance of the embedding ¢ : K < D forces that D = Mats. We
may write y = x1 X x2 where y; are unitary Hecke characters on k*\k; . In this case we have

L(s,IIx x) =L(s,II® x1) - L(s, I ® x2).

Note that the assumption 7 - X|k§ = 1 says that II ® yo = e Xfl. The global (resp. local)
toric period integrals can then be easily identified with the product of the special values of
the global (resp. local) zeta integrals of forms in II ® x; and e x; ' at s = 1/2. Therefore
Theorem follows immediately (cf. Appendix |C).

Identifying II” with the space { f f € IP} via the Petersson inner product on M7, we

put ||fHPet = (f, f)F,et (resp. || fu | : (fv,ﬁ,)F). For non-zero pure tensors ¢ = ®,¢, € Il
and f = ®,f, € 1P, from Theorem n we obtain that
|P?(f)? L(1/2,11 x x)
(02) = a av ¢vva
£ Be Il per® H
where
av(d)vva)

Co(2) Ly(1/2,1T % x) 1foll?

Taking suitable ¢ and f, it is possible to calculate the local quantities o, (¢y, f,) in concrete
terms. Therefore the equality (0.2]) leads us to an explicit formula of L(1/2,II x x). This will
be studied in a subsequent paper.

— M Mats | | M <H11;)(L(av))fvvﬁ1>v «
- ( o) < o Yolau)d )

The content of this paper is given as follows. In Section [T} we first set up basic notations
used throughout this paper, and fix all the Haar measures in the paper to be the Tamagawa
measures. In Section [2, we recall needed properties of theta series associated to quadratic
fields and quaternion algebras, and state the Shimizu correspondence in the version used
here. In Section |3} we apply the Rankin-Selberg method to show the equation . In
Section |4} we first rewrite Z2(1/2; ¢, ¢, ) in terms of the local toric period integral T, (¢, ©y)
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associated to ¢, and ¢, in Section Applying the seesaw identity, the special value
L(1,sx) - Z(1/2; ¢, ) equals to the global toric period integral 7 (¢, @) associated to ¢ and
® in Section We thereby arrive at the main theorem in Section [5| by applying the global
and local Shimizu correspondence. In Appendix [A] we recall the decomposition of the global
Shimizu correspondence into the tensor product of local ones. In Appendix [B] we verify the
Siegel-Weil formula for the dual pair (éi2, O(D?)), where SL, is the metaplectic cover of SLo,
and D° consists of all the pure quaternions in a division quaternion algebra D. The case when
K =k x k for Theorem [0.1]is proven in Appendix [C]

1. PRELIMILARIES

1.1. Basic settings. Give a ring R, the multiplicative group of R is denoted by R*. By
#(S) for each set S, we mean the cardinality of S.

Let k be a global function field with finite constant field F,. Throughout this paper, we
always assume ¢ to be odd. For each place v of k, let k, be the completion of k£ at v, and O,
be the valuation ring in k,. Choose a uniformizer w, once and for all. Set F, := O, /w,O,,
the residue field at v, and put g, := #(F,). The valuation on k, is denoted by ord,, and we

normalize the absolute value | - |, on k, by |ay|, :== qv orduv(@v) fo. every a, € k,.

Let k4 be the ring of adeles of k, i.e. ky = H; k., the restricted direct product of k, with
respect to O,. The maximal compact subring of ky is denoted by O,. The group of ideles of k
is k;, with the maximal compact subgroup O;. For a = (a,), € k;, we put |als =[], |ay|o-

Finally, fix a non-trivial additive character @ : ky — C* which is trivial on k. For each
place v of k, put 9, := z/;|k . Let 4, be the “conductor” of v, i.e. ¥, is trivial on w;‘sv O,
but not trivial on w; % ~10,. Then >y 0y - degv = 2g;, — 2, where gy, is the genus of k.

1.2. Tamagawa measures. For each place v of k, choose the self-dual Haar measure dz,
on k, with respect to the fixed additive character v, i.e. vol(O,,dx,) = qv_é”/z. The Haar
measure dx = [[, dz, on ky is then self-dual with respect to ¢, and vol(k\ks,dx) = 1. For
the multiplicative group k)¢, we take the Haar measure

dz,

: T
|xv|v

d*zy, = (1)

where (,(s) = (1 — g, *)! is the local zeta function of k at v. Then vol(OX,d*z,) = qv_(s“/Q.
This gives us a Haar measure d*z =[], d*z, on kj .

Given a separable quadratic algebra K over k, let Tk, and Nk, be the trace and norm
from K to k, respectively. Put K, := K ®j k,. The Haar measures on K, and K¢ are chosen
as above for each place v of & (with respect to the character 1, o Tg/;). This induces a
Haar measure d*h, on K /k), and one has vol(Ox. /O ,d*h,) = gy I RETON/2 here
0k € Div(k) is the discriminant divisor of K over k. Let K, := K ®j ka. We then take the
Haar measure on K /k; to be d*h := [[, d*h,. Let sk be the quadratic character of K/k,
ie ¢x : k*\kg — C* is the character with the kernel precisely equal to k* - Ng/,(K}).
When K is a field, one has

Vol(KX\K [ /k},d*h) = 2 L(1, sk).
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By Hilbert’s theorem 90, we may identify K*/k* with K' := {a € K* | Ng/x(a) = 1}.
Thus the chosen Haar measure d*h on K /k; can be identified with a Haar measure d* h!
on K}. In particular, for each place v of k, we have

vol(Ok ,d*hl) = (ord, (V) + 1) - g (Crdr@r)+:)/2,

Given a quaternion algebra D over k, let Trp/, and Nrp ;. be the reduced trace and norm
from D to k, respectively. Put D, := D ®y k, for each place v of k. The Haar measure db,
on D, for each v is taken to be self-dual with respect to ¢, o Trp,;. For the multiplicative
group DX

X, we choose

db,
. | NrD/k(bv)lv .
Globally, put Dy := D ®j, ka. We choose the Haar measure d*b on D) satisfying that for
each maximal compact open subgroup K =[], K, C Dy, one has

vol(KC, d*b) = [ [ vol(Ky, d*by).

d*by = Cy(1)

Via the exact sequence

15D 5D 5k —1
the chosen Haar measures d*b on D) and d*z on k determine a Haar measure d*b; on Dj.
Moreover, it is known that (cf. [21, Theorem 3.3.1])

vol(D*k;\D),d*b) =2 and  vol(D'\Dj,d”b;) = 1.

2. THETA SERIES

2.1. Weil representation. Let (V,Qy) be a non-degenerate quadratic space over k with
even dimension (then dimy V' < 4). Set
<x7y>V = QV(xJ'_y)_QV(x)_QV(y)a Vﬂ%ye Va

the bilinear form associated to Qv . Given an arbitrary k-algebra R, set V(R) := V ®; R. For
our purpose, the (local) Weil representation w) of (SLa x O(V))(k,) on the Schwartz space
S(V(ky)) is chosen with respect to ), for every place v of k. We denote by w" := ®,wY the
(global) Weil representation of (SLz x O(V))(ka) on the Schwartz space S(V (ka)).

Let GO(V) be the orthogonal similitude group of V' over k. Put
[GLy x GO(V)] := {(g,h) € GL2 x GO(V) | det(g) = v(h)}.

Here v(h) is the factor of similitude for h € GO(V). We extend w" to a representation
(still denoted by w") of [GLa x GO(V)](ks) on S(V(ka)) by the following: for every pair
(g,h) € [GLy x GO(V)](ka) and ¢ € S(V (ky)), set

(" (9, h)p) (@) = | det(g)[, * - (wV(((l) det((;)1> 9)¢)(h~"x), Vo € V(ka).
Given (g, h) € [GL2 x GO(V)](ks) and ¢ € S(V(ka)), let
0" (g, h:0) = > (WY (9,h)¢)(x).
zeV (k)

For every ¢ € S(V(ky)), the theta series 6V (-, -; ¢) is invariant by [GLy x GO(V)](k) via left
multiplications.



6 CHIH-YUN CHUANG AND FU-TSUN WEI

2.2. Quadratic theta series. Let K be a quadratic field extension of k. Given vy € k*,
let (Viy),Qy)) = (K,7 - Ng/), where Ng . is the norm form on K/k. Then one has
GO(V(y)) = K* x (1x), where Tx(x) := T for every x € K = V(,)(k). We may identify
K':={h € K | Ng(h) = 1} with the special orthogonal group SO(V,)).

Let GLJ;K be the image of natural projection of [GLy x GO(V(,))] into GLz. Given a unitary
Hecke character y on K*\K; and ¢ € S(V{)(ks)), set

+
0;7)(9;@) ::/1\ 9V<7>(g,rhg;g0)x(rhg)dr, Vg € GLQK (ka).
K1\K}

Here hy € K is chosen so that N ,(hy) = det(g). Then 99)(-;@) is invariant under
GLEK (k) by left multiplications, and has a central character equal to gk - x|kx, where ¢x is
A

the quadratic Hecke character of K/k. When v = 1, we will denote by 6% (-, -; ¢) and Hf(-; ®)
the quadratic theta series 8V (-, ;) and 9;1)(~; ), respectively.

2.2.1. Whittaker functions. Given v € kX, the Whittaker function (with respect to 1) at-
tached to 9;7)(-; @) for ¢ € S(V,(ka)) is:

Wger= [ 00 (g §) o) vonin

1 n S
Wy ((0 1) g;w> =9(n)- W (g:@), Vg€ QLY (k) and 1 € ka.

It is straightforward that:

Then

Lemma 2.1. Suppose ¢ = @y, € S(V,(ks)) is a pure tensor. Then Wy)(gap) is fac-
torizable. More precisely, for g = (gv)y € GLEK (Ay), choose hy = (hgy)y € K so that
det(g) = Nic/u(hg)- One has Wi (g:0) = IT, Wil (9u: 0v), where

V’Y
Wx,g(QvQ‘Pv) = /Kl (wﬂ( )(gv»rvhg,v)cpv)(l) 'Xv(rvhg,v)drzw

v

2.3. Quaternionic theta series. Let D be a quaternion algebra over k, and denote by
Nrp i, (resp. Trpy) the reduced norm (resp. trace) on D/k. Let (Vp,Qvy,) := (D, Nrpyy).
Then we have the following exact sequence:

1— k" — (D* xD*) x (rp) — GO(Vp) — 1.

Here:

e k> embeds into D* x D* diagonally;

e every pair (by,be) € D* x D* is sent to

[b1,b2] := (x = biaby ', € D) € GO(Vp);
e mp(v) =7 = Trp(x) — x for every z € D.
Let II” be an infinite dimensional automorphic representation of D} which is cuspidal if

D = Maty. Suppose the central character of IT” is unitary. Let IT be the automorphic cuspidal

representation of GLy(ky) corresponding to IIP via the Jacquet-Langlands correspondence.
Given ¢ € S(Vp(ka)) and ¢ € II, for by, by € DS we set

07 (b1, bo; ¢, ) = d(g'a(biby ")) - 0Y7 (g'a(biby ), (b1, ba]; @) dg'.

/SLz(k)\ SLa(ka)
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1 0
Here a(b) :=
® (0 Nrp . (b)
(cf. Section. It is clear that 67 (-, ; ¢, ) is invariant by D* x D* via left multiplications.
Put

> for every b € D, and dg* is the Tamagawa measure on SLa(ky )

GD _{HD 77¢1 )|¢6H7¢€S(VD(I€A))}

The Shimizu correspondence says (cf. [I2, Theorem 1]):

Theorem 2.2. Given an infinite dimensional automorphic representation IIP of D} (cusp-
idal if D = Maty ), suppose the central character of 1P is unitary. Then

(2.1) OPM) = {fi®f:D; xDS = C| fi,f2 € TP }c_span-

Here f1 ® fo (b,b') := f1(b) - f2(V) for every b,b' € DY . Consequently, let P be the contra-
gredient representation of 1P . Identifying TIP with the space {f | f € I} wia the Petersson
inner product, the equality (2.1) induces an isomorphism

Sh : ©P(I1) ~ I1”  IIP.

2.3.1. Local Shimizu correspondence. We may identify II with ®,II, naturally via the Whit-
taker model of IT (with respect to v). Let v be a place of k. For ¢,, € II, and ¢, € S(Vp(ky)),
put

07°° by, bly; Pus )

o W, (gha(bub)) - (P (gba(bub™). (b, by o) (1)

Lv(l I Ad) (ko )\ SLa(hs) Pv \Yv vy v \Yv w0y )y [Yvy Uy ])Po v
Here Wy, is the Whittaker function of ¢, (with respect to 1,), the map « is defined in the
above of Theorem [2:2] and U C SL is the standard unipotent subgroup. Observe that when
v is “good” we have 07:°(by, bl ; ¢y, 0,) = 1 (cf. Theorem (1)). Moreover, for pure tensors
¢ =Qyd, €Il and ¢ = Ry, € S(Vp(ka)) we have (cf. Theorem [A.3)

(2.2) / 07 (bby, bby; ¢, ©)d*b
DX k\DJ

2L(1,11, A
= w-He?"’(bl,v,bz,v;@,%), Vb1, by € Df.
k

Put
0 () = {05775 6w, 00) | 60 € T, o0 € S(Vp(ko))}-
Then the above equality implies that (cf. Proposition
OF (L) = {fo® fu : D} x DF = C| fo €17, fu € I} }e-span.
Here f, ® f, is viewed as a matrix coefficient:
Fo ® Folbo,by) = (I (bo) £o, TID W) fu)7, Vb, b, € D,
where (-,-)D : TP x ﬁUD — C is the natural duality pairing. Consequently, we have an

isomorphism Sh,, : ©P(I1,) = 1P © II7.

Remark 2.3. Let (-,)5 : TP x I — C be the Petersson pairing. The equality ,
together with Sh and Shv7 provide us a way to 1ndent1fy P (resp HD) with ®,I1P (resp
®UHD) so that for pure tensors f = ®va ell? and f = ®,f, € HD we have

2L(1,11, Ad) | .
(fs F)Bot = T L) 1:[<fv,fv>y
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3. ZETA INTEGRALS AND RANKIN-SELBERG METHOD

3.1. Siegel Eisenstein series. Let K be a quadratic field over k. Fix v € k*. Recall that
we put (Vi4), Q) = (K,v-Ng/ ). Given ¢ € S(V(,)(ks)), the Siegel section associated to
@ is defined by

Bo(g,5) = U8 (5) - (Y0 () (0)

0]
for every g = (g Z) k € GLa(ky) with a,b € kS, n € ka, k € SLa(04), and s € C. Here
sk is the quadratic character of K/k. The Siegel Eisenstein series associated to ¢ is
E(g,s,9):= Y. ®,(y9,5), Vg€ GLa(ka),
YEB(k)\ GLz (k)

which converges absolutely for Re(s) > 1. It is known that E(g, s, ¢) has meromorphic con-
tinuation to the whole complex s-plane and satisfies a functional equation with the symmetry
between s and 1 — s. Note that F(g, s, ¢) is always holomorphic at the central critical point
s =1/2, and the following formula holds (cf. [I7, Theorem 0.1]):

Theorem 3.1. (The Siegel-Weil formula) Fiz v € k*. Given ¢ € S(V(,(ka)), one has

L LERC)

+K
E(g,?@)—m- 1.(9,0), Vge GLy (ky),

where 1k is the principal character on K.

3.2. Zeta integrals. Let D be a quaternion algebra over k. Given a quadratic field extension
K over k with an embedding K < D, we write D = K + Kj where j2 = v € k* and jb = bj
for every b € K. Set (Vp, Qvy,) := (D,Nrp;). Then

(Vp, Q) = (V1), Q1)) @ (Vi—q), Q(—))-

Let II be an automorphic cuspidal representation of GLy(ka) with a unitary central char-
acter denoted by 7. Given a Hecke character x : K*\K; — C*, suppose that x is unitary
and 7 - X’kx = 1. For ¢ € Il and ¢ € S(Vp(ka)), we are interested in the following (global)

A

zeta integral: writing ¢ = >, @1, ® w2 with 13 € S(V(1)(ka)) and @25 € S(V(_(ka)), we
set

Z(s;0,p) = B(9)05 (9, 1,6) E(g, s102,:)dg.

: /zum) GLES (k)\ GL* ()
Here Z is the center of GLo, and dg is the Tamagawa measure on GLo(ks) restricting to

GL;K (ka) (cf. Section . This integral is a meromorphic function on the complex s-plane.
Moreover, one asserts:

Proposition 3.2. Given pure tensors ¢ = Qu,¢, € Il and ¢ = Q,p, € S(Vp(ka)), one has
(s;, HZ Fbus ),

where Z,(8; y, ©y) is equal to

/Kvx </SL2(OU) . ((NK/Ok(h) ?) Hi) ' (w’?(ﬁi)%)(ﬁ) d’@i) o (B N/ ()2 b

and Wy, is the local Whittaker function associated to f, (with respect to ¥, ).
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Proof. Without loss of generality, assume ¢ = @1 @ pa. Let B" .= Bn GLJ;K =17 TTK -U,

where
* 0 +K +K 1 =%
T, := 0 1 , Ty =T1NGLy , and U := 0 1)

Put GLJ;K (On) :== GL2(0O4) N GL+2K (ka). From the Iwasawa decomposition
QL (ka) = B” (ka) - GL; (On).
we write the zeta integral Z(s; ¢, ) as
Z(s;¢,9)
-/ / W (RO (0% 1) (0 () oa) (0) e 0t
Z(04)\ GLE (O) 5 (k)
det(k)~t 0

0 1
place v of k, we have the following exact sequence:

where for every k € GL(O,), we put k! := ( ) k € SLy(Oy). Note that for each

e oy
1 {il} SL2(Ov) > Z(Ov)\GLZ(Ov) dot (O:)z L.
Therefore when ¢ and f are pure tensors, one has
Hz  bus Pu)s
where
i) = [ o / W, RS 010) (o7 ()2 O o
Lo

By Lemmam 2.1} the local zeta mtegral Z!(8; ¢y, py) becomes

83 Gu, o)
/SLQ(O )/*K(kq,)W% (tor,)
' </K (wf(ﬂi)wl,v)(Mt,v)xv(mht,u)dm> (@S (55 92.) Ot d by
= ZU(S;;MOJ

The following results are straightforward.

Corollary 3.3. (1) Suppose v is “good”, i.e. the conductor of 1V, is trivial, I, is an unramified
principal series, ¢, € IL, is spherical with Wy, (1) = 1, v is unramified in K, x, is unramified,
ord, () = 0, and ¢ = @1 © 2 with 1 = Y2 = 1o, . We have

L,(s,1I x x)

Zy(8; vy p0) = Ly,(2s,5K)

(2) Given ¢, € I, and ¢, € S(Vp(ky)), put

L,(2s,5K)

m : Zu(3§ ¢va§0v)~

Z9(85 Pu, o) ==
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Then Z2(8; ¢y, pu) = 1 for all but finitely many v, and

stX o
2(s:0.9) = 755" Hz bu. p0)

for every pure tensors ¢ € Il and ¢ € S(Vp(ka)).
(3) The (local) zeta integral Z(s; ¢y, py) always converges at s = 1/2.
4. CENTRAL CRITICAL VALUES OF ZETA INTEGRALS

Let D, K, II, n, and x be as in the above section. For pure tensors ¢ = ®,¢, € II and
© = Qp, € S(Vp(ks)), we shall express Z(1/2; ¢, @) (resp. Z,(1/2; ¢y, o)) in terms of global
(resp. local) “toric period integrals” of the pair (¢, ¢) (resp. (¢, py)).

4.1. Local case. We may rewrite Z,(1/2; ¢y, ¢, ) for ¢, € IL, and ¢, € S(Vp(k,)) as follows:

Proposition 4.1. Given ¢, € II,, and ¢, € S(Vp(k,)), we have

1 L,(1,I1, Ad o
Zv(*ﬂbvﬂpv) = g : / QUD’ (h‘U7 1;¢U7@U)Xv(hv)d><hv~
2 G(2) Kk

Here 02°(-, 5 ¢y, ) is defined in Section 2311
Proof. Given h, € K¢ and gl € SLa(k,), one has
wy (goa(h), [ho, 1) o (1) = [ Nip(ho) - @) (alhe) ™ ggalhe)) (hy ).
From the Iwasawa decomposition:
SLa(k,) = B (k) - (a(h,) SLa(O,)a(h,) ™),

we may write

dgs = | N/ (ho)lv - diby, - drks,.

Thus
L(”;)Ad) 07 (ho, 1; 6, 00)
Lo Lo B ean) (5 20
- /k </SL2(Ou) We. ((NK/k(()%hv) (1)) Ki) (MUD(%)%)(%’%)%Q Xo(ay)d™ ay
Therefore the result follows immediately. 0

Let TP = ®,10P be, if exists, the automorphic representation of D} corresponding to II
via the Jacquet-Langlands correspondence. For ¢, € II,, and ¢, € S(Vp(k,)), we may view
0D:°(-, - ¢, py) as a matrix coefficient of II? @ IID (cf. Proposition . Define the local
toric period integral of the pair (¢, ,) by
L,(1,6x)L, (1,11, Ad)

Ly (5,11 % x)Go(2)

Then the above proposition says

1
Zg(i; $us ‘Pv) = 7:)((251;7 801;)~

(A1) To(dnen) = o PP 15600 e (e
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4.2. Global case. Put
[GO(V1)) X GO(V(—y))] := {(h1, h2) € GO(V(1)) x GO(V(_)) | v(h1) = v(h2)},

(=
which is viewed as a subgroup of GO(Vp). Note that GO(V(4)) = K* x (7k) for every a € k*,
and we have the following exact sequence

11—k — (D* xD*) x (rp) — GO(Vp) — 1.

Here k™ embeds into D* x D* diagonally, and every pair (by,bs) € D* x D* is sent to
(x> biaby ', €V =D) € GO(Vp). Let

[K* x K*] = {(h1,h2) € K* x K* | Ng/g(h1) = Ng/(h2)}
= KX xK*N[GO(Vy)) x GO(Vi—)]-
Define ¢ : [K* x K*] < D* x D* by sending (h1, ho) to (hih',h') € (D* x D*)/k*, where
h' € K* such that h'/h/ = hy/h;. Then the following diagram commutes:
[K* x KX]C— = DX x D*

|

[GO(Viy)) X GO(V] )| GO(Vp).

Suppose ¢ = @1 @ @2 € S(Vp(ka)), where o1 € S(V(1)(ka)) and @2 € S(V(_y)(ka)). In
Section [2.1] we put

+
0?(9;901) = / 0V<1)(g,7"hg;cpl)x(rhg)dr, Vg € GLQK (ka).
K\K}
The Siegel-Weil formula in Theorem [3.1] says

1 1
E(g,Z5p2) = ——— - 0V (g, mhg; po)dr.
(ga 27¢2) L(].,§K) \/I\(l\KAi (g,’l" gvg02) T

Note that the following lemma is straightforward.
Lemma 4.2. Given g € GLJ;K (ka) and hi,he € K;° with det(g) = Ng/p(h1) = Ngi(ha),
one has

0V (g, has 1) - 0V (g, has o) = 0V (g, [k, W] 01 @ 2).
Here I/ € K is chosen so that I/ /W = hay/h1, and [hih/, k'] € (D x DY) /k} is considered
as an element in GO(Vp)(ky).

Applying the “seesaw identity” (cf. [I0]) with respect to the following diagram

(4.2) GLy [GO(Viyy) X GO(V(_))]
diagonal£ >< \[
[GLy x GLj'] GO(Vp)'™,

where [GL;K X GL;K} (resp. [GO(V(1)) x GO(V(_))]) is the subgroup of GLZK X GLEK (resp.
GO(V(1y) x GO(V(_,))) consisting of all pairs (g1, g2) where g1 and g» have the same deter-
minants (resp. the factor of similitudes), we then obtain that:

Proposition 4.3. Given ¢ € I1, and ¢ € S(Vp(ka)), we have

1

1
2(5: ¢ =7-/ / 0P (ha, ha; ¢, ) - x(hihy ' )dhydhs.
(33 ¢,%) L) Jiwrvser e (hy has ¢, 9) - x(hahy " )dhidhy
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Proof. The above discussion says that

Z(%;qé, @) = #(9)

L(LCK /Z(kA GIE (k)\ G (ks)

/ / 670 (g, rihg; 01)8" (g, rahgs 02)X(rihy >dndr2>d
Kl\Kl KI\K}

: V(N (B
L(1,5x) CK) /SL2(k)\SL2(kA)¢(g a(Nk/i(h)))

. / / HD(gla(NK/k(h))a [hhlvh/]7<ﬂ)X(h)dhdh/ dgl
K RAK) SR RO K
T L(Lek) 07 (h1, ha; ¢, ) - x(h1hy )dhidh
L(]'ng) ka-g\K;: ka,g\K; ( 1 2 ) ( 1 ) 1 2.

(]

For each pair (¢, ¢) with ¢ € II and ¢ € S(Vp(ka)), define the global toric period integral
by:

@3 TG = [ [ 6P xluhs ddhe
K k\K? JK ES\K*
Then by Corollary [3:3] Proposition [.1] and [£:3] we arrive at:

Corollary 4.4. Given pure tensors ¢ = ®@,¢, € Il and ¢ = Ry, € S(Vp(ka)), we have

T(6.0) = Lz T x X) - [ (60, 00).

v
5. WALDSPURGER FORMULA

Let II be an automorphic cuspidal representation of GLa (ks ) with a unitary central charac-
ter . For a quaternion algebra D over k, let II? be, if exists, the automorphic representation
of D corresponding to II via the Jacquet-Langlands correspondence. Let K be a separable
quadratic algebra over k together with an embedding ¢ : K — D. Given a unitary Hecke
character x : K*\K; — C*, suppose 1 - X|ICAX = 1. For each f € IIP, put

PP = [ Hm)xmah.
KX EX\K

This induces a linear functional PXD ‘P @ II? — C defined by
D A ._ pD D (7 & D o 11D
Py(fef)=P (f) - P(f), Vf@fell"®I".

On the other hand, write II? = ®,II7 and n? = ®vﬁ£’. For each place v of k, let
{-,")p : TI? x IP? — C be the natural duality pairing. We assume that the identification
between IT7 (resp. I17) and ®,I17 (resp. ®,I17) satisfies:

(5.1) (- Yot = W T e

where (-, )pe @ TP x 2 — C is the pairing induced from the Petersson inner product on
IP. The local toric period integral @Q , P @ P — C is defined by:

b - L(s)Lu(1, T, Ad) | )
SCCCRTE wivix xR LU LR AR

v
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Lemma 5.1. Suppose v is “good,” i.e. the additive character 1, has trivial conductor, the
quaternion algebra D splits at v, the local representation 117 = I, is an unramified principal
series, the place v is unramified in K, the character x., is unramified. Take f, € TIY and
fo € IP to be spherical and invariant by (O, ) with (fy, fo)» = 1. Then

PP, (fo® fo) = 1.

Proof. Suppose v is inert in K. Then the choices of f, and fv satisfy

sy Ly(1,6x) Ly (1,11, Ad)
PR =T iR oG ®

It is straightforward that the right hand side of the above equality equals to 1 under the
above assumptions on v.

Suppose v splits in K, i.e. K, =k, x k,. Write x,, = Xv,1 X Xv,2 o0 k5 x k5. Then
1 1 1 1 1 ~ 1
Lv(iaH X X) = Lv(ivnv & Xv,l) : Lv(ivnv ® Xu,2) = Lv(§7Hv ® Xv,l) : L’U(§7H’U ® Xv’1)~

The last equality follows from the assumption 7, - x,
of II,. The pairing (-, ), can be realized by

| wx = 1, where 7, is the central character

N G(2) . a, 0 ; (aw O0) D 7 D
o de = mmmimg LW (5 )W (5 ) anvn en?. fen?,

where Wy, (resp. W}’; ) is the Whittaker function of f, (resp. f,) with respect to 1, (resp.

¥,). We may assume the embedding ¢ : K,, — D, satisfies

tay,al,) = (cg O,) € Mata(ky) = Dy,  V(ay,al) € ky X ky.

v

Then

D i o 1 / a, 0 x
'@Xm(fv 0 fv) = (Lv(]./Q, M, ® Xv,l) o va 0 1 Xv,l(av)d Gy

1 a, 0
. — W (U ) “Nay)d ay | .
(Lv(l/zm@x;j)/kz alo 1)l

Therefore when f, and f, are spherical and invariant by +(Og,) with (fy, fo)» = 1, we get
y)?v(fv(@fv):l- U

Set 95 = Qy @ZZU TP @ TIP — C. We finally arrive at:

Theorem 5.2. The linear functionals 77)? and f@XD on TP @ IIP satisfy

1
PP =L(51Ixx) 27,

Proof. The case when K = k x k is proven in Appendix [C] Suppose K is a quadratic field
over k. Take pure tensors ¢ = ®,¢, € Il and ¢ = ®,p, € S(Vp(ka)). Applying the global
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and local Shimizu correspondence (cf. Theorem and Section , Corollary implies
1
= L(§7 IT x X) : HIEJ(¢U7 9011)

1
= L5 xx): 1127, (Sh,(67°(, s ¢u, ¢0)))
1
= L(§7HXX)‘@XD(0D(77¢790))
Therefore the result holds. O

5.1. Non-vanishing criterion. For each place v of k, we have:

Lemma 5.3. (cf. [I3]) The space Hom  x (TP, x;1) is at most one dimensional. Moreover,
Hom . x (TP, x; 1) # 0 if and only if

(5'2) 6v(l_[v X Xu) = Xv(_l)gK,v(_l) : GU(D)'

Here ¢,(I1, X x,) is the local root number of L,(s,II X x), and €,(D) is the Hasse invariant
of D at v.

It is clear that 227, lies in Hom M2 x;h ® Hom ;. x (12, x,). Moreover, following

Waldspurger [15, Lemme 10] one gets

Lemma 5.4. 27 is a generator of the C-vector space Hom  x (2, Xy ") @Hom (M2, x,).

Consequently, @f generates the space Hom KX (ITP, x 1) ® Hom (ﬁD, X), in which PXD
lies. Therefore Theorem [5.2] implies:

Corollary 5.5. Let II be an automorphic cuspidal representation of GLo(ka) with a unitary

central character n. Given a separable quadratic algebra K over k and a unitary Hecke

character x : K*\K; — C* with 7 - X|kx =1, assume ], €,(IL, X xv) = 1. Let D be the
A

quaternion algebra over k satisfying for every place v of k, and IIP be the automorphic
representation of D) corresponding to I via the Jacquet-Langlands correspondence. Choose
an embedding  : K < D. Then the non-vanishing of the central critical value L(1/2,1I x x)
is equivalent to the existence of f € IP so that

PR = [ em)xmin£o.
K k;j\Kg

APPENDIX A. LOCAL SHIMIZU CORRESPONDENCES

Recall the Shimizu correspondence stated in Theorem [2:2}

Theorem A.1l. Given an infinite dimensional automorphic representation IIP of D) which
is cuspidal if D = Mata, suppose the central character of IIP is unitary. Then

GD(H) = {fl ®f_2 : Dg X Dg — C ‘ flaf? S HD}Cfspan~

Here f| & fo is viewed as the function ((b7 b') — f1(b) - fg(b’)), Consequently, let P be the
contragredient representation of TIP. Identifying TIP with the space {f | f € TP} via the
Petersson inner product, the equality (2.1)) induces an isomorphism

Sh: 0PI =1 @ 7.
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Recall that for ¢, € I, and ¢, € S(Vp(ky)), we define 2:°(b,, b; ¢, p,) for by, b, € DX
in Section 2.3.1] by
af’o(bva b;; Do, <Pv)

Cv(2> / 1 /—1 D/ 1 /—1 / 1
_v\s W, (g,a(b, b, (wy (gya(byby, ), [0y, 0] ww) (1)dg,,.
Lo(LTLAD)  Jygo ) staten) (g )) - (@ (g ): o, 2] e0) (1)

Lemma A.2. Suppose v is “good,” i.e. 1, has trivial conductor, the representation Il is

0 1
quaternion algebra D, = Matay(k,), and the Schwartz function @, = Iniat,(0,)- One has

07 (by, by, p0) = 1, by, b, € GLy(O,).

. L . . . . 1 0
an unramified principle series, the vector ¢, € Il, is spherical with Wy, ( > =1, the

Proof. From the Iwasawa decomposition SLa(k,) = B'(k,) - SL2(O,), the above assumptions
imply that for b,,b, € GL2(O,), we have

D.o ’ Cv(2) / Qy 0 X
) . — - 7 . 1
91) (bv7 bw ¢v7 (pv) Lv(L H, Ad) X W¢7v 0 a;l O, (a’U)d Ay

=1

The aim of this section is to show:

Theorem A.3. Given pure tensors ¢ = Qu,d, € II and o = R0, € S(Vp(ka)), we have
2L(1,11, Ad) )
T@) : 1:[91? (bl,v;bz,v§¢v7¢v)a Vb, b2 € D§-

The proof of the above theorem is given in Section[A.T]when D = Mats, and in Section[A22]
when D is division.

/ 0P (bby, bba; b, p)d* b =
kagf \Dg

Via the Petersson pairing (-,-)5, : [I” x ﬁD, the representation II” @ 7 is isomorphic to
the space of the matriz coefficients of IIP ® II7:

fof—my; Vi@ felP xIP,
where
M7 (0,6) = (P (0) £, TP (V) fyper, V0,0 € A,

On the other hand, for each place v of k, we may also identify II? ® ﬁUD with the space of
matrix coefficients, i.e. for f, € II” and f, € IIZ, the matrix coefficient m Fo®F associated to
M oF, 18 defined by

My o7 (0o, ) == (10 (by) £o, TID (V) fo)7 . Wba, b, € D
Here (-,-)0 : TI? x II? — C is the natural duality pairing. Put
07 (L) = {05775 6w, 90) | 60 € T, o0 € S(V(ko))}-
Proposition A.4. We have the following equality:
Oy (L) = {my o7 | fo €117, fo € I} e span-

This induces an isomorphism Sh,, : ©P(IL,) = P @ IIP.
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Proof. Pick ¢° = ®,¢9 € II and ¢° = ®,¢° € S(Vp(ka)) so that
C(¢°, ¢°) ::/ 0P (b, b; ¢°, °)db # 0.
DX \DS

Then for each place vy of k, the space of matrix coefficients of HUD0 can be generated by
Mg (Pugs Pug) fOr Py € Iy, and gy, € S(Vp(ky)), where my,(du,, Pu,) is defined by:

10 (G 900 (g B, ) o= / 67 (bbyy bV, s b p)db, by B, € DL,
DXEX\DX

where ¢ = ¢y @uto, 09 € IT and @ = Yy, Qury, ¢5 € S(Vp(ka)). By Theorem we may
assume that the chosen ¢° and ¢ satisfy

C(¢°,9°%) = 02°(1,1569,, ¢5,)-

Then
fDX X\ DX QD(bbvo, bb., ; b, )db
Mo (P Puo ) (Dug s b;;O) = S C(¢°, p°) - -C(¢%¢°)
_ 91?070(171,0 s b;m; ¢'UU s QOUO) ] C(¢O, 4,00) (by Theorem '

D,o o o
0vy” (1,15 ¢v0> 901;0)
= va(fo(bvg ; b;m; ¢v07 @vo)-
O

A.1. Proof of Theorem when D = Maty. Given ¢ € IT and ¢ € S(Vp(ka)), consider
the Whittaker function associated to ¢ and ¢:

W(j),gp(blabQ)
/ / 9D<(1 ul)bp(l uz)bz;qs,so)w(uz—undulduz» Vb1,b2 € GLa(ka).
E\ka JE\ky 0 1 0 1

Proposition A.5. When ¢ and ¢ are both pure tensors, we have

Wio = [[Worpw-

Then:

Here for by, by € GLo(ky), let

_ _ ~ /(1 1
Wooalbrobe) = | W (g*an;)- (wPla' ot bnle) (o 1) o'
U(kv)\ SLa(ky)
and

e (& 0)= [ (0 0) vy for g e Sk

Proof. Let V; := {( )} c Vp, Vo = {(S 3)} C Vp, and Q; := QD}V fori=1,2.
Then (Vp,Qp) = (V1,Q1) ® (Va,Q2). For ¢y € S(Va(ky)) and g* € SLa(ky), it is observed

that
Vo 1 ~ 0 b o ~ O b/
(w (g ) 902) (C 0 - 902 C/ O 9

where (c/,b') = (c,b) - g'. Thus for ¢ € S(Vp(ky)), by Poisson summation formula we may
write

0" (g"a(b1by ), [b1, bals ) = 01 (9" c(biby '), [br, bal; ) + 037 (g ax(buby '), [b1, bol ),
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where
_ ~fa 1
o0 (Gabiby ) bl = S Y (@Plgtalbibyd), b)) (O d>,
~v€eU(k)\ SLz (k) a,dek

and

6,7 (g a(bidy "), [br, bals ) = Z (WP (g a(brby "), [b1,b2])) ™ (g 2)

a,d€k

Since for uq,us € ka one has

(wD(l, K(l) Ull) ’ <(1) “f)])(p)N <CCL Z) = Y(b(—auy + duy + cujug)) - @~ <Z Z) 7
we get
/k\kA /k\kA (9 albibyh), [(é U1> by, ((1) Uz) b2:| ,ap) Y(ug — uy)duydus

- <wD<vgla<b1b21>7[bl»bZW)N(é D'

~v€U(k)\ SLa (k)

Therefore

_ _ ~ (1 1
Wolorte) = [ o(g a(bidy")) - (WP (v albrdy ), b1, bal)o) ( >d91
(k)\ SLa (ks) 0 1

_ _ ~ (1 1
/ Wola'altnty ) (P9 albaty). Bubae)™ (5 1) o
U(ka)\ SLz(ka)

= HW¢7<P7U(b1,U7b2,U)-

O

The space consisting of all the Wy, ,, is actually the Whittaker model of II, ® ﬁv. More-
over, the following straightforward lemma connects the local Whittaker function Wy, , with

9@?70('7 B ¢v7 SDU):

Lemma A.6. For by,bs € GLy(k,), one gets

Cv(Q) Ay 0 Ay 0 y Do
eyl — ¢ (1) -7 : _
L Lad Jo Ve \Lo 1) 000 1) b)) @ ar =G0 (0 baide 00)

Recall that for pure tensors fy, fo € IIP = II, we have

. A _ ]
<f17 f2>11\3/[catt2 - ”&@H;d) ’ <f1,'u7 f2,’u>17>/[dt27

where

r Mats .__ Cv(2) . Ay 0 Ay O X
(fros faw)y 2 1= GO (LILAD  Jys We <0 1 Wy, ., 0 1 d*ay,

and (f1,v, fg)v>v = 1 when v is “good.” Therefore by Proposition and Lemma, the
Shimizu correspondence in Theorem [2.2] implies that:

Proposition A.7. Theorem [A3 holds when D = Mats.
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A.2. Proof of Theorem when D is division. Given g € SLy(ky), we set
P(ghs,0) = > el )i (WP (vgh)e) (@), Ve € S(Vp(ka))-

~EB(k)\ SL (k) zek
Here a(g') = a € k) is chosen so that g' can be written as
gt = <8 a*1> k' with k' € SLy(Oy).

This series converges absolutely when Re(s) > 3/2, and has meromorphic continuation to the
whole complex s-plane. Given pure tensors ¢ = ®,¢, € Il and ¢ = Q,¢p, € S(Vp(ka)), one
has

JP(s;6,0) = (g")IP (g, s,¢)dg"

/SLz(k)\ SLz(ka)

- / o(gM)lalg")5 - (WP(g")e) (1)dg"
U(k)\ SLa(ka)

HJ $; bv, ),

where
T(sionin) = [ W, (69 (@2 (g)00) (Ula(g)s g™
( 1))\SL2(k )
It is clear that:

Lemma A.8. The local integral JP(s; ¢, ,) always converges when Re(s) > 1. Moreover,
when v is “good,” one has

L,(s,II, Ad)

D . _
J’U (Sv(bva(pv) - Cv(QS)

In particular, we obtain that
L(s, 11, Ad)
TP (s5:0,0) = == [ [ I (s 00. 00),
o) == TLIP (s6me)

where

LU(S,]:LA_d) 3;¢’U7<)O'U)'

Ty (85 bus ) =

For b1,by € D, one has
GD’O(blvbQ;(bvaDv) Jq?o( ;d)in@;)v
where ¢/, =TI, (a(b1by 1)) ¢, and ¢! := wP(a(b1by ), [b1,b2])pn. Thus we obtain that:

Proposition A.9. Theorem [AZ3] holds when D is division.
Proof. From the equality (B.1) in Remark we get that for by, by € D),

/ 07 (bby, bhos b @)db = 2P (13, )
DX kX\DX

1 H Ad
= HJDO (1,61, )

1,1I, Ad 3
_ <Ck(2)> T 62010 62,05 60, 00)-

v
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Note that the equality (B.1) follows from a “metaplectic type” Siegel-Weil formula, which
is verified in the next section.

APPENDIX B. SIEGEL-WEIL FORMULA FOR THE METAPLECTIC EISENSTEIN SERIES

B.1. Metaplectic groups. For each place v, the Kubota 2-cocycle o, is defined by (cf. [9
Section 3]):

o,(91,92) == (xi?;f§)7 xg;gj))va Vg1, 92 € SLa(ky).

<a b> ¢, ifec#0,
X =
c d d, ife=0;

and (-, ), is the Hilbert quadratic symbol at v. Define a map s, : SLa(k,) — {1} by setting

Here

<a b) {(c, d)y, if ord,(c) is odd and d # 0,
Sy =
c d 1

, otherwise.

Let o, be the 2-cocycle defined by

ou(g1,92) == 0l,(g1, 92)50(91)50(92)50(9192) ", Vg1,92 € SLa(ky).

It is known that (cf. [4, Section 2.3|) o, (k1, k2) = 1 VK1, k2 € SLa(O,). Hence o, induces a
central extension SLa(k,) of SLa(k,) by {£1} which splits on the subgroup SL2(O,,). More

precisely, the extension SLa(k,) is identified with SLo(k,) x {£1} (as sets) with the following
group law:

(91.&1) - (92, &) = (9192, &16200(91, 92))-

Globally, we define a 2-cocycle o on SLy(ky) by setting o := ®,0,, and let SL, (ka) be the
corresponding central extension of SLa(ka) by {£1}. The section

SLo(ks) — SLo(ka)
K — (K, 1)

becomes a group homomorphism when restricting to SL2(Oy), which embeds SLy(O4) into
SLy(ka) as a subgroup. Moreover, for every v € SLa(k), the value s(y) = [], sv(7) is
well-defined, and the embedding

SLo(k) —> SLo(ka)
v o— (7.8(9)

preserves the group law. Thus we may view SLo(k) as a discrete subgroup of é\flg(kA).

B.2. Weil representation. Let D be a division quaternion algebra over k. We first write
D as Vi © V3, where Vi = k and V3 := {b € D : Trp;(b) = 0}. Put Qy, := Nrp/p |v;.
Then the quadratic space (V;, Qv;) is anisotropic with dimension 4, and SO(V3) = D*/k*.
Let w"i = ®,w)" be the Weil representation of the metaplectic group ng(k@ x O(V;) on the
Schwartz space S(V;(ka)), where for each place v, w)? is defined as follows (cf. [4, Section
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2.3)):
(1) @B ola) = o(h~a). he OV
(2 W (1,8¢() =& d(x), £ € {1}
@ (5 1)) o) = vuu@u@)olo). we b
(5 ,0) 1) 00 = lald e, D a0, 0, €k
® (0 §)1) e =t de),

Here:

51‘;/i(av) ::/ Yy(ayQv; (7))da,z, Va, € k1>)<a
L,

where L, is a sufficiently large O,-lattice in V;(k,), and the Haar measure d,, x is
self-dual with respect to the pairing

(z,y) = Yy(ay 'TTD/k(xg))’ Vr,y € Vi(ky);

° (Z(x) is the Fourier transform of ¢:
3w)i= [ o) (Trppulan)dy,
Vi(kv)

For a = (ay), € k', we put €¥i(a) =[], eV (ay).

v v

B.3. Siegel-Eisenstein series. Recall that B! denotes the standard Borel subgroup of SLy,
~1 —
and let B~ be the preimage of B in SLa(ky).
For each ¢ € S(V5(ka)), the Siegel section associated to ¢ is defined by:

Va(q ot 1 o~
Bol3.5) = € Syl @ (:)0)0),  for g € SLalha),

a *

where a € k; and k' € SLy(O,) so that § = ((0 -

) ,f) - k', The Siegel-Eisenstein

series associated to ¢ is then defined by

E(Qasad)) = Z q)¢(7§a8)a

yeB(k)\ SL2 (k)

which converges absolutely for Re(s) > 3/2 and has meromorphic continuation to the whole
complex s-plane. In this section, we shall verify that:

Theorem B.1. Given ¢ € S(V3(ky)), we have

- 1 - - o
E(gvlv¢): 513(97(;5)7 VQESIQ(kA)a
where

I’(g,¢) = /DW/DX( > wVS(g,b)qs(a:))db.

IEV;;(k‘)
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Remark B.2. Write (Vp,Qv,) = (V1,Qv,) @ (V3,Qv,). Given ¢ € S(Vp(ks)), suppose
¢ = ¢1 ® ¢p3 where ¢1 € S(Vi(ka)) and ¢3 € S(V3(ka)). Then

ID(ga 8’90) = ek((g’ 1)7¢1) 'E((97 1)’3’¢3)’ Vg € SL2(kA)7

where 6%((g,1),¢1) := Y., ), (w"*(9)¢1) (). On the other hand,

08 ((9. 1), 1) - (g, 1), 63) = / 6v2 (g, [b,1]; )b

’kag /Dg<

Therefore

1
Pt =g [ 0% be, Yo Stalk) and g € S(Vo(h)
A A

In particular, for ¢ € IT we have

JP(1;¢,0) = ?(9)I" (9,1, 9)dg

/SLz(k)\ SLa(ka)

1
(B.1) = 7,/ 67 (b,b; 6, )db.
2 Jpxrxoy

Proof of Theorem B.1. The proof of the above theorem basically follows the approach in [16]
for the even dimensional case. Here we recall the strategy as follows: For each 8 € k, the
[B-th Fourier coefficient of a given metaplectic form f is:

£5(3) = /kmf (( (é 11‘) ,1)@) W (—Bu)du.

Given ¢ € S(Vs(ky)), we verify that:
(1) The equality holds for the “constant terms,” i.e.

1

Ej(§:1,0) = («"(@)0)(0) = 5 - 15" (3. ¢)-

In particular, this says that E(§,1,¢) — 1/2- I3(§, ¢) is a cusp form on SLa(ks).

(2) It is straightforward that E(-, s, ¢) is orthogonal to all the cuspidal metaplectic forms
on ﬁg(kA) with respect to the Petersson inner product.

(3) The theta integral I3(-,¢) is orthogonal to all the cuspidal metaplectic forms on
S\Eg(k’A). Indeed, adapting the proof of [16, Theorem A.4], there exists a constant C
so that

I3%(3.6) = C- E}(3,1,0), VB#0.
In particular, the function I'(-, ¢) := I3(-,¢) — C - E(-, 1, ¢) satisfies

I’((((l) 11‘),1)9,(;5)1/(9,@, Yu € ky.

Thus I’(-, ¢) is orthogonal to all the cuspidal metaplectic forms, and so is I(-, ¢) by
(2).
Since a cusp form orthogonal to itself must be zero, we get E(g,1,¢) = 1/2-13(g, ¢) for every
G € SLo(ka). O
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APPENDIX C. THE CASE WHEN K =k x k

When K = k x k, we have L(s,sx) = (x(s). Moreover, the existance of an embedding
¢ K = D implies that D = Maty(k), and II” = II. We may write the given Hecke character
X @s x1 X X2, where x; is a unitary Hecke character on k*\k; for i = 1,2. The assumption
77~X|k‘&T = 1 says that [IQys = ﬁ®xf1. Thus we have L(s,IIx x) = L(s,1I®x1)-L(s,[I®x2).

Without lose of generality, suppose t(a,b) = (8 b) for every a,b € k. Then for f € 1l
and f € ﬁ,
~ 1 1 - _
PR @)= 2(5:0x)- 25 Fxa ),
where

2= [ o () oy

~ ~ 0 s
wd 2oy [T (D)l ey
B \k X

are entire functions on the complex s-plane. Note that for a pure tensor f = ®, f, € II, one
has (cf. [I, the equality (5.31) in Chapter 3 and Proposition 3.5.3])

(Cl> Z<5af>Xl> = L(87H®Xl) HZg(S7 f'le,U)a
where for each place v of k, put
1 Yy O 1
Z°(s; = — . v s /2d><
'U(S’ fU’XLU) LU(S,H ® Xl) /kff qu <0 1> Xl,v(yv)|yv|v yv

Here Wy, is the Whittaker function associated to f, with respect to the chosen ,. Similarly,
for a pure tensor f = ®f, € Il we have

(C.2) Z(s;foxi!) = Lis,T@x;") HZ (51 for X10)s

where
zétsidoad) = ——=—— [ Wi (4 D) el e,
’ L,(s,TT®x7") Jix fo\0 1 .
Here we take Wj’gv to be the Whittaker function associated to fv with respect to 1,. Note that
the validity of Ramanujan bounds for IT and IT implies that Z5(8; fvs X1,0) and Z2(s; o, Xfi)

both converge absolutely at s = 1/2.
Recall that we may choose (-, -)Ma%2 : TI,, x II, — C by:

Z \Mats .__ Cv(2) . Yy , (y O X
(Fos fu)" o= Co(1) Ly (L, I0, Ad) /k Ws, (o )W (0 1>d 4

Indeed, by the Rankin-Selberg method these local pairings satisfy:

. \Mata _ 2L(1’H7Ad) . . .\Mato
<v >Pet - Ck(2) H<’ >v :

v

Therefore we get

Xv(fv®fv) 295 o) - 2205 Forxih)
From the equation and (C.2] , we arrive at:
Theorem C.1. Theorem [l holds for the case when K =k x k.
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