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Abstract. In this paper, we derive a function field version of the Waldspurger formula
for the central critical values of the Rankin-Selberg L-functions. This formula states that
the central critical L-values in question can be expressed as the “ratio” of the global toric
period integral to the product of the local toric period integrals. Consequently, this result
provides a necessary and sufficient criterion for the non-vanishing of these central critical
L-values, and supports the Gross-Prasad conjecture for SO(3) over function fields.

Introduction

In 1985, Waldspurger [15] established a fundamental formula for the central critical value
of the Rankin-Selberg L-function associated to an automorphic cuspidal representation of
GL2 over a given number field F convolved with a Hecke character on the idele class group
of a quadratic field extension over F . This formula asserts that “global toric period integrals”
can be written as the central critical L-value in question multiplying the product of “local
toric period integrals.” From this result, these critical L-values now have been studied exten-
sively over number fields and lead to plenty of arithmetic consequences (cf. [2], [3], and [22]).
The main purpose of this paper is to derive a function field analogue of Walspurger’s formula.

Let k be a global function field with odd characteristic, and denote the adele ring of k
by kA. Let D be a quaternion algebra over k, and K be a separable quadratic algebra over
k with an embedding ι : K ↪→ D. We put DA and KA to be the adelization of D and K,
respectively. Let ΠD be an infinite dimensional automorphic representation of D×A (cuspidal if
D is the matrix algebra) with a unitary central character η. Given a unitary Hecke character
χ : K×\K×A → C×, suppose η · χ

∣∣
k×A

= 1. Let PDχ ∈ HomK×A
(ΠD, χ−1) be the global toric

period integral:

PDχ (f) :=

∫
K×k×A \K

×
A

f
(
ι(a)

)
χ(a)d×a, ∀f ∈ ΠD.

The measure d×a chosen here is the Tamagawa measure (cf. Section 1.2). This then gives
us a linear functional PDχ : ΠD ⊗ Π̃D → C (where Π̃D is the contragredient representation of
ΠD) defined by:

PDχ (f ⊗ f̃) := PDχ (f) · PDχ−1(f̃), ∀f ⊗ f̃ ∈ ΠD ⊗ Π̃D.

On the other hand, write ΠD = ⊗vΠDv , and Π̃D = ⊗vΠ̃Dv . We may assume that the
identification between ΠD (resp. Π̃D) and ⊗vΠDv (resp. ⊗Π̃Dv ) satisfies the following equality:

〈·, ·〉DPet =
2L(1,Π,Ad)

ζk(2)
·
∏
v

〈·, ·〉Dv : ΠD × Π̃D → C,
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where:

• the pairing 〈·, ·〉DPet is induced from the Petersson inner product (with respect to the
Tamagawa measure, i.e. the total volume of D×k×A \D

×
A is 2, cf. Section 1.2).

• for each place v of k, 〈·, ·〉Dv is the natural duality pairing between ΠDv and Π̃Dv .
• Π is the automorphic cuspidal representation of GL2(kA) correspoding to ΠD via the

Jacquet-Langlands correspondence.
• L(s,Π,Ad) is the adjoint L-function of Π.
• ζk(s) is the Dedekind-Weil zeta function of k.

Write χ = ⊗vχv. Then for each v, the local toric period integral PD
χ,v : ΠDv ⊗ Π̃Dv → C is

given by:

PD
χ,v(fv ⊗ f̃v) := ∗ ·

∫
K×v /k

×
v

〈ΠDv
(
ι(av)

)
fv, f̃v〉vχv(av)d×av.

Here d×av is the Tamagawa measure on K×v /k×v (chosen in Section 1.2), and ∗ is a product
of “local L-factors” so that PD

χ,v(fv ⊗ f̃v) = 1 when v is “good” (cf. Lemma 5.1). These local
toric period integrals induce another linear functional PD

χ := ⊗PD
χ,v : ΠD ⊗ Π̃D → C. We

now state the main theorem of this paper as follows (cf. Theorem 5.2):

Theorem 0.1. Under the above assumptions, we have

PDχ = L(
1

2
,Π× χ) ·PD

χ ,

where L(s,Π× χ) is the Rankin-Selberg L-function associated to Π and χ.

We remark that L(s,Π × χ) can be identified with L(s,ΠK ⊗ χ), the L-function of ΠK

twisted by χ, where ΠK is Jacquet’s lifting of Π to GL2(KA) (cf. [7, Theorem 20.6]).

Let ςK be the quadratic Hecke character of K/k and put ςK,v := ςK
∣∣
k×v

. From the work
of Tunnell [13] and Waldspurger [15, Lemme 10], the local toric period integral PD

χ,v is not
trivial if and only if

εv(Π× χ) = ηv(−1)ςK,v(−1)εv(D). (?)

Here εv(Π× χ) is the local root number of L(s,Π× χ) at v and εv(D) is the Hasse invariant
of D at v. This leads us to the following consequence.

Corollary 0.2. Suppose
∏
v εv(Π × χ) = 1. Let D be the unique (up to isomorphism)

quaternion algebra over k so that the equality (?) holds for every place v of k. Then the
non-vanishing of L(1/2,Π×χ) is equivalent to the existance of an automorphic form f ∈ ΠD

so that

PDχ (f) =

∫
K×k×A \K

×
A

f
(
ι(a)

)
χ(a)d×a 6= 0.

In particular, via the isomorphism PGL2
∼= SO(3), Corollary 0.2 supports the Gross-Prasad

conjecture for the SO(3) case over function fields (cf. [6]).

The proof of Theorem 0.1 basically follows Waldspurger’s approach in [15] for the number
field case. Suppose first that K is a quadratic field over k. Let (VD, QVD ) be the quadratic
space (D,NrD/k), where NrD/k is the reduced norm from D to k. Given φ ∈ Π and a Schwartz
function ϕ ∈ S(VD(kA)), suppose φ and ϕ are both pure tensors. From the Rankin-Selberg
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method, we have (cf. Corollary 3.3 (2))

L(2s, ςK) · Z(s;φ, ϕ) = L(s,Π× χ) ·
∏
v

Zov (s;φv, ϕv),(0.1)

where the zeta integral Z(s;φ, ϕ) (resp. Zov (s;φv, ϕv)) is defined in the beginning of Section 3.2
(resp. Corollary 3.3 (2)). Applying the Siegel-Weil formula in Theorem 3.1 and the seesaw
identity (cf. the diagram (4.2)), we may connect L(1, ςK) · Z(1/2;φ, ϕ) with a global toric
period integral T (φ, ϕ) (cf. the equation (4.3) and Proposition 4.3). On the other hand, the
local zeta integral Zov (1/2;φv, ϕv) can be rewritten as a local toric period integral Tv(φv, ϕv)
(cf. Proposition 4.1). The global (resp. local) Shimizu correspondence in Theorem 2.2 (resp.
Section 2.3.1) then enables us to connect T (resp. Tv) with PDχ (resp. PD

χ,v), which completes
the proof. Note that in our approach, we always take the original Schwartz functions (i.e.
functions in S(V (kA)), cf. Section 2), instead of using the “extended ones” (i.e. functions in
S(V (kA)× k×A ) as in [15, Section 3]. This simplifies the arguments.

One ingredient of the above proof is to decompose the global Shimizu correspondence as
the tensor product of local ones (cf. Section 2.3.1 and Appendix A). To achieve this, we need
to verify the Siegel-Weil formula for the dual pair (S̃L2, O(Do)), where S̃L2 is the metaplectic
cover of SL2, and Do consists of all the pure quaternions in D (cf. Appendix B).

When K = k × k, the existance of the embedding ι : K ↪→ D forces that D = Mat2. We
may write χ = χ1×χ2 where χi are unitary Hecke characters on k×\k×A . In this case we have

L(s,Π× χ) = L(s,Π⊗ χ1) · L(s,Π⊗ χ2).

Note that the assumption η · χ
∣∣
k×A

= 1 says that Π⊗ χ2 = Π̃⊗ χ−11 . The global (resp. local)
toric period integrals can then be easily identified with the product of the special values of
the global (resp. local) zeta integrals of forms in Π⊗ χ1 and Π̃⊗ χ−11 at s = 1/2. Therefore
Theorem 0.1 follows immediately (cf. Appendix C).

Identifying Π̃D with the space {f̄ : f ∈ ΠD} via the Petersson inner product on ΠD, we
put ‖f‖DPet := 〈f, f̄〉DPet (resp. ‖fv‖Dv := 〈fv, f̄v〉Dv ). For non-zero pure tensors φ = ⊗vφv ∈ Π

and f = ⊗vfv ∈ ΠD, from Theorem 0.1 we obtain that

|PDχ (f)|2

‖f‖DPet
=

L(1/2,Π× χ)

‖φ‖Mat2
Pet

·
∏
v

αv(φv, fv),(0.2)

where

αv(φv, fv)

:=

(
Lv(1,Π,Ad)

ζv(2)
‖φv‖Mat2

v

)
·

(
Lv(1, ςK)

Lv(1/2,Π× χ)

∫
Kv/k

×
v

〈ΠDv
(
ι(av)

)
fv, f̄v〉v

‖fv‖Dv
χv(av)d

×av

)
.

Taking suitable φ and f , it is possible to calculate the local quantities αv(φv, fv) in concrete
terms. Therefore the equality (0.2) leads us to an explicit formula of L(1/2,Π×χ). This will
be studied in a subsequent paper.

The content of this paper is given as follows. In Section 1, we first set up basic notations
used throughout this paper, and fix all the Haar measures in the paper to be the Tamagawa
measures. In Section 2, we recall needed properties of theta series associated to quadratic
fields and quaternion algebras, and state the Shimizu correspondence in the version used
here. In Section 3, we apply the Rankin-Selberg method to show the equation (0.1). In
Section 4, we first rewrite Zov (1/2;φv, ϕv) in terms of the local toric period integral Tv(φv, ϕv)
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associated to φv and ϕv in Section 4.1. Applying the seesaw identity, the special value
L(1, ςK) · Z(1/2;φ, ϕ) equals to the global toric period integral T (φ, ϕ) associated to φ and
ϕ in Section 4.2. We thereby arrive at the main theorem in Section 5 by applying the global
and local Shimizu correspondence. In Appendix A, we recall the decomposition of the global
Shimizu correspondence into the tensor product of local ones. In Appendix B, we verify the
Siegel-Weil formula for the dual pair (S̃L2, O(Do)), where S̃L2 is the metaplectic cover of SL2,
and Do consists of all the pure quaternions in a division quaternion algebra D. The case when
K = k × k for Theorem 0.1 is proven in Appendix C.

1. Prelimilaries

1.1. Basic settings. Give a ring R, the multiplicative group of R is denoted by R×. By
#(S) for each set S, we mean the cardinality of S.

Let k be a global function field with finite constant field Fq. Throughout this paper, we
always assume q to be odd. For each place v of k, let kv be the completion of k at v, and Ov
be the valuation ring in kv. Choose a uniformizer $v once and for all. Set Fv := Ov/$vOv,
the residue field at v, and put qv := #(Fv). The valuation on kv is denoted by ordv, and we
normalize the absolute value | · |v on kv by |av|v := q

− ordv(av)
v for every av ∈ kv.

Let kA be the ring of adeles of k, i.e. kA =
∏′
v kv, the restricted direct product of kv with

respect to Ov. The maximal compact subring of kA is denoted by OA. The group of ideles of k
is k×A , with the maximal compact subgroup O×A . For a = (av)v ∈ k×A , we put |a|A :=

∏
v |av|v.

Finally, fix a non-trivial additive character ψ : kA → C× which is trivial on k. For each
place v of k, put ψv := ψ

∣∣
kv
. Let δv be the “conductor” of ψv, i.e. ψv is trivial on $−δvv Ov

but not trivial on $−δv−1v Ov. Then
∑
v δv · deg v = 2gk − 2, where gk is the genus of k.

1.2. Tamagawa measures. For each place v of k, choose the self-dual Haar measure dxv
on kv with respect to the fixed additive character ψv, i.e. vol(Ov, dxv) = q

−δv/2
v . The Haar

measure dx =
∏
v dxv on kA is then self-dual with respect to ψ, and vol(k\kA, dx) = 1. For

the multiplicative group k×v , we take the Haar measure

d×xv := ζv(1) · dxv
|xv|v

,

where ζv(s) = (1− q−sv )−1 is the local zeta function of k at v. Then vol(O×v , d×xv) = q
−δv/2
v .

This gives us a Haar measure d×x =
∏
v d
×xv on k×A .

Given a separable quadratic algebra K over k, let TK/k and NK/k be the trace and norm
from K to k, respectively. Put Kv := K⊗k kv. The Haar measures on Kv and K×v are chosen
as above for each place v of k (with respect to the character ψv ◦ TK/k). This induces a
Haar measure d×hv on K×v /k×v , and one has vol(O×Kv/O

×
v , d

×hv) = q
−(ordv(dK)+δv)/2
v , where

dK ∈ Div(k) is the discriminant divisor of K over k. Let KA := K ⊗k kA. We then take the
Haar measure on K×A /k

×
A to be d×h :=

∏
v d
×hv. Let ςK be the quadratic character of K/k,

i.e. ςK : k×\k×A → C× is the character with the kernel precisely equal to k× · NK/k(K×A ).
When K is a field, one has

vol(K×\K×A /k
×
A , d

×h) = 2 · L(1, ςK).
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By Hilbert’s theorem 90, we may identify K×/k× with K1 := {a ∈ K× | NK/k(a) = 1}.
Thus the chosen Haar measure d×h on K×A /k

×
A can be identified with a Haar measure d×h1

on K1
A. In particular, for each place v of k, we have

vol(O1
Kv , d

×h1v) = (ordv(dK) + 1) · q−(ordv(dK)+δv)/2
v .

Given a quaternion algebra D over k, let TrD/k and NrD/k be the reduced trace and norm
from D to k, respectively. Put Dv := D ⊗k kv for each place v of k. The Haar measure dbv
on Dv for each v is taken to be self-dual with respect to ψv ◦ TrD/k. For the multiplicative
group D×v , we choose

d×b̃v := ζv(1) · dbv
|NrD/k(bv)|v

.

Globally, put DA := D ⊗k kA. We choose the Haar measure d×b on D×A satisfying that for
each maximal compact open subgroup K =

∏
v Kv ⊂ D

×
A , one has

vol(K, d×b) :=
∏
v

vol(Kv, d×b̃v).

Via the exact sequence
1→ D1 → D× → k× → 1

the chosen Haar measures d×b on D×A and d×x on k×A determine a Haar measure d×b1 on D1
A.

Moreover, it is known that (cf. [21, Theorem 3.3.1])

vol(D×k×A \D
×
A , d

×b) = 2 and vol(D1\D1
A, d
×b1) = 1.

2. Theta series

2.1. Weil representation. Let (V,QV ) be a non-degenerate quadratic space over k with
even dimension (then dimk V ≤ 4). Set

〈x, y〉V := QV (x+ y)−QV (x)−QV (y), ∀x, y ∈ V,

the bilinear form associated to QV . Given an arbitrary k-algebra R, set V (R) := V ⊗kR. For
our purpose, the (local) Weil representation ωVv of

(
SL2×O(V )

)
(kv) on the Schwartz space

S(V (kv)) is chosen with respect to ψv for every place v of k. We denote by ωV := ⊗vωVv the
(global) Weil representation of

(
SL2×O(V )

)
(kA) on the Schwartz space S(V (kA)).

Let GO(V ) be the orthogonal similitude group of V over k. Put

[GL2×GO(V )] := {(g, h) ∈ GL2×GO(V ) | det(g) = ν(h)}.

Here ν(h) is the factor of similitude for h ∈ GO(V ). We extend ωV to a representation
(still denoted by ωV ) of [GL2×GO(V )](kA) on S(V (kA)) by the following: for every pair
(g, h) ∈ [GL2×GO(V )](kA) and ϕ ∈ S(V (kA)), set(

ωV (g, h)ϕ
)
(x) := |det(g)|−

1
2

A ·
(
ωV (

(
1 0

0 det(g)−1

)
g)ϕ
)
(h−1x), ∀x ∈ V (kA).

Given (g, h) ∈ [GL2×GO(V )](kA) and ϕ ∈ S(V (kA)), let

θV (g, h;ϕ) :=
∑

x∈V (k)

(
ωV (g, h)ϕ

)
(x).

For every ϕ ∈ S(V (kA)), the theta series θV (·, ·;ϕ) is invariant by [GL2×GO(V )](k) via left
multiplications.
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2.2. Quadratic theta series. Let K be a quadratic field extension of k. Given γ ∈ k×,
let (V(γ), Q(γ)) := (K, γ · NK/k), where NK/k is the norm form on K/k. Then one has
GO(V(γ)) ∼= K× o 〈τK〉, where τK(x) := x̄ for every x ∈ K = V(γ)(k). We may identify
K1 := {h ∈ K | NK/k(h) = 1} with the special orthogonal group SO(V(γ)).

Let GL
+K

2 be the image of natural projection of [GL2×GO(V(γ))] into GL2. Given a unitary
Hecke character χ on K×\K×A and ϕ ∈ S(V(γ)(kA)), set

θ(γ)χ (g;ϕ) :=

∫
K1\K1

A

θV(γ)(g, rhg;ϕ)χ(rhg)dr, ∀g ∈ GL
+K

2 (kA).

Here hg ∈ K×A is chosen so that NK/k(hg) = det(g). Then θ
(γ)
χ (·;ϕ) is invariant under

GL
+K

2 (k) by left multiplications, and has a central character equal to ςK · χ
∣∣
k×A

, where ςK is

the quadratic Hecke character of K/k. When γ = 1, we will denote by θK(·, ·;ϕ) and θKχ (·;ϕ)

the quadratic theta series θV(1)(·, ·;ϕ) and θ(1)χ (·;ϕ), respectively.

2.2.1. Whittaker functions. Given γ ∈ k×, the Whittaker function (with respect to ψ) at-
tached to θ(γ)χ (·;ϕ) for ϕ ∈ S(Vγ(kA)) is:

W (γ)
χ (g;ϕ) :=

∫
k\kA

θ(γ)χ

((
1 n

0 1

)
g;ϕ

)
ψ(n)dn.

Then

W (γ)
χ

((
1 n

0 1

)
g;ϕ

)
= ψ(n) ·W (γ)

χ (g;ϕ), ∀g ∈ GL
+K

2 (kA) and n ∈ kA.

It is straightforward that:

Lemma 2.1. Suppose ϕ = ⊗vϕv ∈ S(Vγ(kA)) is a pure tensor. Then W
(γ)
χ (·;ϕ) is fac-

torizable. More precisely, for g = (gv)v ∈ GL
+K

2 (Ak), choose hg = (hg,v)v ∈ K×A so that
det(g) = NK/k(hg). One has W (γ)

χ (g;ϕ) =
∏
vW

(γ)
χ,v (gv;ϕv), where

W (γ)
χ,v (gv;ϕv) :=

∫
K1
v

(
ω
V(γ)
v (gv, rvhg,v)ϕv

)
(1) · χv(rvhg,v)drv.

2.3. Quaternionic theta series. Let D be a quaternion algebra over k, and denote by
NrD/k (resp. TrD/k) the reduced norm (resp. trace) on D/k. Let (VD, QVD ) := (D,NrD/k).
Then we have the following exact sequence:

1 −→ k× −→ (D× ×D×) o 〈τD〉 −→ GO(VD) −→ 1.

Here:
• k× embeds into D× ×D× diagonally;
• every pair (b1, b2) ∈ D× ×D× is sent to

[b1, b2] := (x 7→ b1xb
−1
2 , x ∈ D) ∈ GO(VD);

• τD(x) := x̄ = TrD/k(x)− x for every x ∈ D.
Let ΠD be an infinite dimensional automorphic representation of D×A which is cuspidal if

D = Mat2. Suppose the central character of ΠD is unitary. Let Π be the automorphic cuspidal
representation of GL2(kA) corresponding to ΠD via the Jacquet-Langlands correspondence.
Given ϕ ∈ S(VD(kA)) and φ ∈ Π, for b1, b2 ∈ D×A we set

θD(b1, b2;φ, ϕ) :=

∫
SL2(k)\ SL2(kA)

φ
(
g1α(b1b

−1
2 )
)
· θVD

(
g1α(b1b

−1
2 ), [b1, b2];ϕ

)
dg1.
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Here α(b) :=

(
1 0

0 NrD/k(b)

)
for every b ∈ D×A , and dg1 is the Tamagawa measure on SL2(kA)

(cf. Section 1.2). It is clear that θD(·, ·;φ, ϕ) is invariant by D××D× via left multiplications.
Put

ΘD(Π) :=
{
θD(·, ·;φ, ϕ) | φ ∈ Π, ϕ ∈ S(VD(kA))

}
.

The Shimizu correspondence says (cf. [12, Theorem 1]):

Theorem 2.2. Given an infinite dimensional automorphic representation ΠD of D×A (cusp-
idal if D = Mat2), suppose the central character of ΠD is unitary. Then

ΘD(Π) = {f1 ⊗ f̄2 : D×A ×D
×
A → C | f1, f2 ∈ ΠD}C−span.(2.1)

Here f1 ⊗ f̄2 (b, b′) := f1(b) · f̄2(b′) for every b, b′ ∈ D×A . Consequently, let Π̃D be the contra-
gredient representation of ΠD. Identifying Π̃D with the space {f̄ | f ∈ ΠD} via the Petersson
inner product, the equality (2.1) induces an isomorphism

Sh : ΘD(Π) ∼= ΠD ⊗ Π̃D.

2.3.1. Local Shimizu correspondence. We may identify Π with ⊗vΠv naturally via the Whit-
taker model of Π (with respect to ψ). Let v be a place of k. For φv ∈ Πv and ϕv ∈ S(VD(kv)),
put

θD,ov (bv, b
′
v;φv, ϕv)

:=
ζv(2)

Lv(1,Π,Ad)
·
∫
U(kv)\ SL2(kv)

Wφv

(
g1vα(bvb

′−1
v )

)
·
(
ωDv (g1vα(bvb

′−1
v ), [bv, b

′
v])ϕv

)
(1)dg1v .

Here Wφv is the Whittaker function of φv (with respect to ψv), the map α is defined in the
above of Theorem 2.2, and U ⊂ SL2 is the standard unipotent subgroup. Observe that when
v is “good” we have θD,ov (b1, b

′
v;φv, ϕv) = 1 (cf. Theorem A.3 (1)). Moreover, for pure tensors

φ = ⊗vφv ∈ Π and ϕ = ⊗vφv ∈ S(VD(kA)) we have (cf. Theorem A.3)∫
D×k×A \D

×
A

θD(bb1, bb2;φ, ϕ)d×b(2.2)

=
2L(1,Π,Ad)

ζk(2)
·
∏
v

θD,ov (b1,v, b2,v;φv, ϕv), ∀b1, b2 ∈ D×A .

Put
ΘDv (Πv) := {θD,ov (·, ·;φv, ϕv) | φv ∈ Πv, ϕv ∈ S(VD(kv))}.

Then the above equality implies that (cf. Proposition A.4)

ΘDv (Πv) = {fv ⊗ f̃v : D×v ×D×v → C | fv ∈ ΠDv , f̃v ∈ Π̃Dv }C−span.

Here fv ⊗ f̃v is viewed as a matrix coefficient:

fv ⊗ f̃v(bv, b′v) := 〈ΠDv (bv)fv, Π̃
D
v (b′v)f̃v〉Dv , ∀bv, b′v ∈ D×v ,

where 〈·, ·〉Dv : ΠDv × Π̃Dv → C is the natural duality pairing. Consequently, we have an
isomorphism Shv : ΘDv (Πv) ∼= ΠDv ⊗ Π̃Dv .

Remark 2.3. Let 〈·, ·〉DPet : ΠD × Π̃D → C be the Petersson pairing. The equality (2.2),
together with Sh and Shv, provide us a way to indentify ΠD (resp. Π̃D) with ⊗vΠDv (resp.
⊗vΠ̃Dv ) so that for pure tensors f = ⊗vfv ∈ ΠD and f̃ = ⊗v f̃v ∈ Π̃D, we have

〈f, f̃〉DPet =
2L(1,Π,Ad)

ζk(2)
·
∏
v

〈fv, f̃v〉Dv .
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3. Zeta integrals and Rankin-Selberg method

3.1. Siegel Eisenstein series. Let K be a quadratic field over k. Fix γ ∈ k×. Recall that
we put (V(γ), Q(γ)) = (K, γ · NK/k). Given ϕ ∈ S(V(γ)(kA)), the Siegel section associated to
ϕ is defined by

Φϕ(g, s) :=
|a|sA
|b|sA
· ςK(b) ·

(
ωV(γ)(κ)ϕ

)
(0)

for every g =

(
a n

0 b

)
κ ∈ GL2(kA) with a, b ∈ k×A , n ∈ kA, κ ∈ SL2(OA), and s ∈ C. Here

ςK is the quadratic character of K/k. The Siegel Eisenstein series associated to ϕ is

E(g, s, ϕ) :=
∑

γ∈B(k)\GL2(k)

Φϕ(γg, s), ∀g ∈ GL2(kA),

which converges absolutely for Re(s) > 1. It is known that E(g, s, ϕ) has meromorphic con-
tinuation to the whole complex s-plane and satisfies a functional equation with the symmetry
between s and 1− s. Note that E(g, s, ϕ) is always holomorphic at the central critical point
s = 1/2, and the following formula holds (cf. [17, Theorem 0.1]):

Theorem 3.1. (The Siegel-Weil formula) Fix γ ∈ k×. Given ϕ ∈ S(V(γ)(kA)), one has

E(g,
1

2
, ϕ) =

1

L(1, ςK)
· θ(γ)1K

(g, ϕ), ∀g ∈ GL
+K

2 (kA),

where 1K is the principal character on K×A .

3.2. Zeta integrals. Let D be a quaternion algebra over k. Given a quadratic field extension
K over k with an embedding K ↪→ D, we write D = K +Kj where j2 = γ ∈ k× and jb = b̄j

for every b ∈ K. Set (VD, QVD ) := (D,NrD/k). Then

(VD, QVD ) = (V(1), Q(1))⊕ (V(−γ), Q(−γ)).

Let Π be an automorphic cuspidal representation of GL2(kA) with a unitary central char-
acter denoted by η. Given a Hecke character χ : K×\K×A → C×, suppose that χ is unitary
and η · χ

∣∣
k×A

= 1. For φ ∈ Π and ϕ ∈ S(VD(kA)), we are interested in the following (global)
zeta integral: writing ϕ =

∑
i ϕ1,i ⊕ϕ2,i with ϕ1,i ∈ S(V(1)(kA)) and ϕ2,i ∈ S(V(−γ)(kA)), we

set

Z(s;φ, ϕ) :=
∑
i

∫
Z(kA)GL

+K
2 (k)\GL

+K
2 (kA)

φ(g)θKχ (g, ϕ1,i)E(g, s;ϕ2,i)dg.

Here Z is the center of GL2, and dg is the Tamagawa measure on GL2(kA) restricting to
GL

+K

2 (kA) (cf. Section 1.2). This integral is a meromorphic function on the complex s-plane.
Moreover, one asserts:

Proposition 3.2. Given pure tensors φ = ⊗vφv ∈ Π and ϕ = ⊗vϕv ∈ S(VD(kA)), one has

Z(s;φ, ϕ) =
∏
v

Zv(s;φv, ϕv),

where Zv(s;φv, ϕv) is equal to∫
K×v

(∫
SL2(Ov)

Wφv

((
NK/k(h) 0

0 1

)
κ1v

)
·
(
ωDv (κ1v)ϕv

)
(h̄) dκ1v

)
χv(h)|NK/k(h)|s−

1
2

v d×h;

and Wφv is the local Whittaker function associated to fv (with respect to ψv).
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Proof. Without loss of generality, assume ϕ = ϕ1 ⊕ ϕ2. Let B
+K

:= B ∩ GL
+K

2 = Z ·T
+K

1 ·U,
where

T1 :=

(
∗ 0

0 1

)
, T

+K

1 := T1 ∩GL
+K

2 , and U :=

(
1 ∗
0 1

)
.

Put GL
+K

2 (OA) := GL2(OA) ∩GL
+K

2 (kA). From the Iwasawa decomposition

GL
+K

2 (kA) = B
+K

(kA) ·GL
+K

2 (OA),

we write the zeta integral Z(s;φ, ϕ) as

Z(s;φ, ϕ)

=

∫
Z(OA)\GL

+K
2 (OA)

∫
T

+K
1 (kA)

Wφ(tκ1)WK
χ (tκ1;ϕ1)

(
ω(−γ)(κ1)ϕ2

)
(0)|t|s−1A d×tdκ,

where for every κ ∈ GL2(OA), we put κ1 :=

(
det(κ)−1 0

0 1

)
κ ∈ SL2(OA). Note that for each

place v of k, we have the following exact sequence:

1 // {±1} // SL2(Ov) // Z(Ov)\GL2(Ov)
det // O

×
v

(O×v )2
// 1.

Therefore when ϕ and f are pure tensors, one has

Z(s;φ, ϕ) =
∏
v

Z ′v(s;φv, ϕv),

where

Z ′v(s;φv, ϕv) :=

∫
SL2(Ov)

∫
T

+K
1 (kv)

Wφv (tvκ
1
v)W

K
χ,v(tκ

1
v;ϕ1,v)

(
ω(−γ)
v (κ1v)ϕ2,v

)
(0)|t|s−1v d×tvdκ

1
v.

By Lemma 2.1, the local zeta integral Z ′v(s;φv, ϕv) becomes

Z ′v(s;φv, ϕv)

=

∫
SL2(Ov)

∫
T

+K
1 (kv)

Wφv (tvκ
1
v)

·

(∫
K1
v

(
ωKv (κ1v)ϕ1,v

)
(rvht,v)χv(rvht,v)drv

)(
ω(−γ)
v (κ1v)ϕ2,v

)
(0)|t|s−

1
2

v d×tvdκ
1
v

= Zv(s;φv, ϕv).

�

The following results are straightforward.

Corollary 3.3. (1) Suppose v is “good”, i.e. the conductor of ψv is trivial, Πv is an unramified
principal series, φv ∈ Πv is spherical withWφv (1) = 1, v is unramified in K, χv is unramified,
ordv(γ) = 0, and ϕ = ϕ1 ⊕ ϕ2 with ϕ1 = ϕ2 = 1OKv . We have

Zv(s;φv, ϕv) =
Lv(s,Π× χ)

Lv(2s, ςK)
.

(2) Given φv ∈ Πv and ϕv ∈ S(VD(kv)), put

Zov (s;φv, ϕv) :=
Lv(2s, ςK)

Lv(s,Π× χ)
· Zv(s;φv, ϕv).
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Then Zov (s;φv, ϕv) = 1 for all but finitely many v, and

Z(s;φ, ϕ) =
L(s,Π× χ)

L(2s, ςK)
·
∏
v

Zov (s;φv, ϕv)

for every pure tensors φ ∈ Π and ϕ ∈ S(VD(kA)).
(3) The (local) zeta integral Zov (s;φv, ϕv) always converges at s = 1/2.

4. Central critical values of zeta integrals

Let D, K, Π, η, and χ be as in the above section. For pure tensors φ = ⊗vφv ∈ Π and
ϕ = ⊗ϕv ∈ S(VD(kA)), we shall express Z(1/2;φ, ϕ) (resp. Zv(1/2;φv, ϕv)) in terms of global
(resp. local) “toric period integrals” of the pair (φ, ϕ) (resp. (φv, ϕv)).

4.1. Local case. We may rewrite Zv(1/2;φv, ϕv) for φv ∈ Πv and ϕv ∈ S(VD(kv)) as follows:

Proposition 4.1. Given φv ∈ Πv and ϕv ∈ S(VD(kv)), we have

Zv(
1

2
;φv, ϕv) =

Lv(1,Π,Ad)

ζv(2)
·
∫
K×v /k

×
v

θD,ov (hv, 1;φv, ϕv)χv(hv)d
×hv.

Here θD,ov (·, ·;φv, ϕv) is defined in Section 2.3.1.

Proof. Given hv ∈ K×v and g1v ∈ SL2(kv), one has

ωDv
(
g1vα(hv), [hv, 1]

)
ϕv(1) = |NK/k(hv)|−1v · ωDv

(
α(hv)

−1g1vα(hv)
)
(h−1v ).

From the Iwasawa decomposition:

SL2(kv) = B1(kv) ·
(
α(hv) SL2(Ov)α(hv)

−1
)
,

we may write
dg1v = |NK/k(hv)|v · dLb1v · dRκ1v.

Thus
Lv(1,Π,Ad)

ζv(2)
· θD,ov (hv, 1;φv, ϕv)

=

∫
SL2(Ov)

∫
k×v

Wφv

((
av 0

0 a−1v

)
α(hv)κ

1
v

)(
ωDv (

(
av 0

0 a−1v

)
κ1v)ϕv

)
(h−1v )

d×av
|a|2v

dκ1v

=

∫
k×v

(∫
SL2(Ov)

Wφv

((
NK/k(avhv) 0

0 1

)
κ1v

)(
ωDv (κ1v)ϕv

)
(avhv)dκ

1
v

)
χv(av)d

×av

Therefore the result follows immediately. �

Let ΠD = ⊗vΠDv be, if exists, the automorphic representation of D×A corresponding to Π

via the Jacquet-Langlands correspondence. For φv ∈ Πv and ϕv ∈ S(VD(kv)), we may view
θD,ov (·, ·;φv, ϕv) as a matrix coefficient of ΠDv ⊗ Π̃Dv (cf. Proposition A.4). Define the local
toric period integral of the pair (φv, ϕv) by

Tv(φv, ϕv) :=
Lv(1, ςK)Lv(1,Π,Ad)

Lv(
1
2 ,Π× χ)ζv(2)

·
∫
K×v /k

×
v

θD,ov (hv, 1;φv, ϕv)χv(hv)d
×hv.(4.1)

Then the above proposition says

Zov (
1

2
;φv, ϕv) = Tv(φv, ϕv).
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4.2. Global case. Put

[GO(V(1))×GO(V(−γ))] := {(h1, h2) ∈ GO(V(1))×GO(V(−γ)) | ν(h1) = ν(h2)},

which is viewed as a subgroup of GO(VD). Note that GO(V(a)) ∼= K×o〈τK〉 for every a ∈ k×,
and we have the following exact sequence

1 −→ k× −→ (D× ×D×) o 〈τD〉 −→ GO(VD) −→ 1.

Here k× embeds into D× × D× diagonally, and every pair (b1, b2) ∈ D× × D× is sent to
(x 7→ b1xb

−1
2 , x ∈ V = D) ∈ GO(VD). Let

[K× ×K×] := {(h1, h2) ∈ K× ×K× | NK/k(h1) = NK/k(h2)}
= K× ×K× ∩ [GO(V(1))×GO(V(−γ))].

Define ι : [K× ×K×] ↪→ D× ×D× by sending (h1, h2) to (h1h
′, h′) ∈ (D× ×D×)/k×, where

h′ ∈ K× such that h′/h′ = h2/h1. Then the following diagram commutes:

[K× ×K×] �
� ι //

� _

��

D× ×D×

��
[GO(V(1))×GO(V(−γ))]

� � // GO(VD).

Suppose ϕ = ϕ1 ⊕ ϕ2 ∈ S(VD(kA)), where ϕ1 ∈ S(V(1)(kA)) and ϕ2 ∈ S(V(−γ)(kA)). In
Section 2.1 we put

θKχ (g;ϕ1) =

∫
K1\K1

A

θV(1)(g, rhg;ϕ1)χ(rhg)dr, ∀g ∈ GL
+K

2 (kA).

The Siegel-Weil formula in Theorem 3.1 says

E(g,
1

2
;ϕ2) =

1

L(1, ςK)
·
∫
K1\K1

A

θV(−γ)(g, rhg;ϕ2)dr.

Note that the following lemma is straightforward.

Lemma 4.2. Given g ∈ GL
+K

2 (kA) and h1, h2 ∈ K×A with det(g) = NK/k(h1) = NK/k(h2),
one has

θV(1)(g, h1;ϕ1) · θV(γ)(g, h2;ϕ2) = θVD
(
g, [h1h

′, h′];ϕ1 ⊕ ϕ2

)
.

Here h′ ∈ K×A is chosen so that h′/h′ = h2/h1, and [h1h
′, h′] ∈ (D×A ×D

×
A )/k×A is considered

as an element in GO(VD)(kA).

Applying the “seesaw identity” (cf. [10]) with respect to the following diagram

GL
+K

2� _

diagonal
��

[GO(V(1))×GO(V(−γ))]� _

��
[GL

+K

2 ×GL
+K

2 ] GO(VD)
+K ,

(4.2)

where [GL
+K

2 ×GL
+K

2 ] (resp. [GO(V(1))×GO(V(−γ))]) is the subgroup of GL
+K

2 ×GL
+K

2 (resp.
GO(V(1)) ×GO(V(−γ))) consisting of all pairs (g1, g2) where g1 and g2 have the same deter-
minants (resp. the factor of similitudes), we then obtain that:

Proposition 4.3. Given φ ∈ Π, and ϕ ∈ S(VD(kA)), we have

Z(
1

2
;φ, ϕ) =

1

L(1, ςK)
·
∫
K×k×A \K

×
A

∫
K×k×A \K

×
A

θD(h1, h2;φ, ϕ) · χ(h1h
−1
2 )dh1dh2.
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Proof. The above discussion says that

Z(
1

2
;φ, ϕ) =

1

L(1, ςK)
·
∫
Z(kA)GL

+K
2 (k)\GL

+K
2 (kA)

φ(g)

·

(∫
K1\K1

A

∫
K1\K1

A

θV(1)(g, r1hg;ϕ1)θV(−γ)(g, r2hg;ϕ2)χ(r1hg)dr1dr2

)
dg

=
1

L(1, ςK)
·
∫
SL2(k)\ SL2(kA)

φ
(
g1α(NK/k(h))

)
·

(∫
K×k×A \K

×
A

∫
K×k×A \K

×
A

θD(g1α(NK/k(h)), [hh′, h′];ϕ)χ(h)dhdh′

)
dg1

=
1

L(1, ςK)
·
∫
K×k×A \K

×
A

∫
K×k×A \K

×
A

θD(h1, h2;φ, ϕ) · χ(h1h
−1
2 )dh1dh2.

�

For each pair (φ, ϕ) with φ ∈ Π and ϕ ∈ S(VD(kA)), define the global toric period integral
by:

T (φ, ϕ) :=

∫
K×k×A \K

×
A

∫
K×k×A \K

×
A

θD(h1, h2;φ, ϕ) · χ(h1h
−1
2 )dh1dh2.(4.3)

Then by Corollary 3.3, Proposition 4.1 and 4.3, we arrive at:

Corollary 4.4. Given pure tensors φ = ⊗vφv ∈ Π and ϕ = ⊗vϕv ∈ S(VD(kA)), we have

T (φ, ϕ) = L(
1

2
,Π× χ) ·

∏
v

Tv(φv, ϕv).

5. Waldspurger formula

Let Π be an automorphic cuspidal representation of GL2(kA) with a unitary central charac-
ter η. For a quaternion algebra D over k, let ΠD be, if exists, the automorphic representation
of D×A corresponding to Π via the Jacquet-Langlands correspondence. Let K be a separable
quadratic algebra over k together with an embedding ι : K ↪→ D. Given a unitary Hecke
character χ : K×\K×A → C×, suppose η · χ

∣∣
k×A

= 1. For each f ∈ ΠD, put

PDχ (f) :=

∫
K×k×A \K

×
A

f
(
ι(h)

)
χ(h)d×h.

This induces a linear functional PDχ : ΠD ⊗ Π̃D → C defined by

PDχ (f ⊗ f̃) := PDχ (f) · PDχ−1(f̃), ∀f ⊗ f̃ ∈ ΠD ⊗ Π̃D.

On the other hand, write ΠD = ⊗vΠDv and Π̃D = ⊗vΠ̃Dv . For each place v of k, let
〈·, ·〉v : ΠDv × Π̃Dv → C be the natural duality pairing. We assume that the identification
between ΠD (resp. Π̃D) and ⊗vΠDv (resp. ⊗vΠ̃Dv ) satisfies:

〈·, ·〉Pet =
2L(1,Π,Ad)

ζk(2)
·
∏
v

〈·, ·〉v,(5.1)

where 〈·, ·〉Pet : ΠD × Π̃D → C is the pairing induced from the Petersson inner product on
ΠD. The local toric period integral PD

χ,v : ΠDv ⊗ Π̃Dv → C is defined by:

PD
χ,v(fv ⊗ f̃v) :=

Lv(1, ςK)Lv(1,Π,Ad)

Lv(1/2,Π× χ)ζv(2)
·
∫
K×v /k

×
v

〈ΠDv
(
ι(hv)

)
fv, f̃v〉v · χv(hv)d×hv.
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Lemma 5.1. Suppose v is “good,” i.e. the additive character ψv has trivial conductor, the
quaternion algebra D splits at v, the local representation ΠDv = Πv is an unramified principal
series, the place v is unramified in K, the character χv is unramified. Take fv ∈ ΠDv and
f̃v ∈ Π̃Dv to be spherical and invariant by ι(OKv ) with 〈fv, f̃v〉v = 1. Then

PD
χ,v(fv ⊗ f̃v) = 1.

Proof. Suppose v is inert in K. Then the choices of fv and f̃v satisfy

PD
χ,v(fv ⊗ f̃v) =

Lv(1, ςK)Lv(1,Π,Ad)

Lv(1/2,Π× χ)ζv(2)
.

It is straightforward that the right hand side of the above equality equals to 1 under the
above assumptions on v.

Suppose v splits in K, i.e. Kv = kv × kv. Write χv = χv,1 × χv,2 on k×v × k×v . Then

Lv(
1

2
,Π× χ) = Lv(

1

2
,Πv ⊗ χv,1) · Lv(

1

2
,Πv ⊗ χv,2) = Lv(

1

2
,Πv ⊗ χv,1) · Lv(

1

2
, Π̃v ⊗ χ−1v,1).

The last equality follows from the assumption ηv ·χv
∣∣
k×v

= 1, where ηv is the central character
of Πv. The pairing 〈·, ·〉v can be realized by

〈fv, f̃v〉v :=
ζv(2)

ζv(1)Lv(1,Π,Ad)
·
∫
kv

Wfv

(
av 0

0 1

)
W ′
f̃v

(
av 0

0 1

)
d×av,∀fv ∈ ΠDv , f̃v ∈ ΠDv ,

where Wfv (resp. W ′
f̃v
) is the Whittaker function of fv (resp. f̃v) with respect to ψv (resp.

ψv). We may assume the embedding ι : Kv → Dv satisfies

ι(av, a
′
v) =

(
av 0

0 a′v

)
∈ Mat2(kv) = Dv, ∀(av, a′v) ∈ kv × kv.

Then

PD
χ,v(fv ⊗ f̃v) =

(
1

Lv(1/2,Πv ⊗ χv,1)

∫
k×v

Wfv

(
av 0

0 1

)
χv,1(av)d

×av

)
·

(
1

Lv(1/2, Π̃v ⊗ χ−1v,1)

∫
k×v

W ′
f̃v

(
av 0

0 1

)
χ−1v,1(av)d

×av

)
.

Therefore when fv and f̃v are spherical and invariant by ι(OKv ) with 〈fv, f̃v〉v = 1, we get
PD
χ,v(fv ⊗ f̃v) = 1. �

Set PD
χ := ⊗vPD

χ,v : ΠD ⊗ Π̃D → C. We finally arrive at:

Theorem 5.2. The linear functionals PDχ and PD
χ on ΠD ⊗ Π̃D satisfy

PDχ = L(
1

2
,Π× χ) ·PD

χ .

Proof. The case when K = k × k is proven in Appendix C. Suppose K is a quadratic field
over k. Take pure tensors φ = ⊗vφv ∈ Π and ϕ = ⊗vϕv ∈ S(VD(kA)). Applying the global
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and local Shimizu correspondence (cf. Theorem 2.2 and Section 2.3.1), Corollary 4.4 implies

PDχ
(
Sh(θD(·, ·;φ, ϕ))

)
= T (φ, ϕ)

= L(
1

2
,Π× χ) ·

∏
v

Tv(φv, ϕv)

= L(
1

2
,Π× χ) ·

∏
v

PD
χ,v

(
Shv(θD,o(·, ·;φv, ϕv))

)
= L(

1

2
,Π× χ) ·PD

χ

(
θD(·, ·;φ, ϕ)

)
.

Therefore the result holds. �

5.1. Non-vanishing criterion. For each place v of k, we have:

Lemma 5.3. (cf. [13]) The space HomK×v
(ΠDv , χ

−1
v ) is at most one dimensional. Moreover,

HomK×v
(ΠDv , χ

−1
v ) 6= 0 if and only if

εv(Πv × χv) = χv(−1)ςK,v(−1) · εv(D).(5.2)

Here εv(Πv × χv) is the local root number of Lv(s,Π× χ), and εv(D) is the Hasse invariant
of D at v.

It is clear that PD
χ,v lies in HomK×v

(ΠDv , χ
−1
v ) ⊗ HomK×v

(Π̃Dv , χv). Moreover, following
Waldspurger [15, Lemme 10] one gets

Lemma 5.4. PD
χ,v is a generator of the C-vector space HomK×v

(ΠDv , χ
−1
v )⊗HomK×v

(Π̃Dv , χv).

Consequently, PD
χ generates the space HomK×A

(ΠD, χ−1)⊗HomK×A
(Π̃D, χ), in which PDχ

lies. Therefore Theorem 5.2 implies:

Corollary 5.5. Let Π be an automorphic cuspidal representation of GL2(kA) with a unitary
central character η. Given a separable quadratic algebra K over k and a unitary Hecke
character χ : K×\K×A → C× with η · χ

∣∣
k×A

= 1, assume
∏
v εv(Πv × χv) = 1. Let D be the

quaternion algebra over k satisfying (5.2) for every place v of k, and ΠD be the automorphic
representation of D×A corresponding to Π via the Jacquet-Langlands correspondence. Choose
an embedding ι : K ↪→ D. Then the non-vanishing of the central critical value L(1/2,Π× χ)

is equivalent to the existence of f ∈ ΠD so that

PDχ (f) =

∫
K×k×A \K

×
A

f
(
ι(h)

)
χ(h)d×h 6= 0.

Appendix A. Local Shimizu correspondences

Recall the Shimizu correspondence stated in Theorem 2.2:

Theorem A.1. Given an infinite dimensional automorphic representation ΠD of D×A which
is cuspidal if D = Mat2, suppose the central character of ΠD is unitary. Then

ΘD(Π) = {f1 ⊗ f̄2 : D×A ×D
×
A → C | f1, f2 ∈ ΠD}C−span.

Here f1 ⊗ f̄2 is viewed as the function
(
(b, b′) 7→ f1(b) · f̄2(b′)

)
. Consequently, let Π̃D be the

contragredient representation of ΠD. Identifying Π̃D with the space {f̄ | f ∈ ΠD} via the
Petersson inner product, the equality (2.1) induces an isomorphism

Sh : ΘD(Π) ∼= ΠD ⊗ Π̃D.
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Recall that for φv ∈ Πv and ϕv ∈ S(VD(kv)), we define θD,ov (bv, b
′
v;φv, ϕv) for bv, b′v ∈ D×v

in Section 2.3.1 by

θD,ov (bv, b
′
v;φv, ϕv)

=
ζv(2)

Lv(1,Π,Ad)
·
∫
U(kv)\ SL2(kv)

Wφv

(
g1vα(bvb

′−1
v )

)
·
(
ωDv (g1vα(bvb

′−1
v ), [bv, b

′
v])ϕv

)
(1)dg1v .

Lemma A.2. Suppose v is “good,” i.e. ψv has trivial conductor, the representation Πv is

an unramified principle series, the vector φv ∈ Πv is spherical with Wφv

(
1 0

0 1

)
= 1, the

quaternion algebra Dv = Mat2(kv), and the Schwartz function ϕv = 1Mat2(Ov). One has

θD,ov (bv, b
′
v;φv, ϕv) = 1, ∀bv, b′v ∈ GL2(Ov).

Proof. From the Iwasawa decomposition SL2(kv) = B1(kv) ·SL2(Ov), the above assumptions
imply that for bv, b′v ∈ GL2(Ov), we have

θD,ov (bv, b
′
v;φv, ϕv) =

ζv(2)

Lv(1,Π,Ad)
·
∫
k×v

Wφv

(
av 0

0 a−1v

)
1Ov (av)d

×av

= 1

�

The aim of this section is to show:

Theorem A.3. Given pure tensors φ = ⊗vφv ∈ Π and ϕ = ⊗vϕv ∈ S(VD(kA)), we have∫
D×k×A \D

×
A

θD(bb1, bb2;φ, ϕ)d×b =
2L(1,Π,Ad)

ζk(2)
·
∏
v

θD,ov (b1,v, b2,v;φv, ϕv), ∀b1, b2 ∈ D×A .

The proof of the above theorem is given in Section A.1 when D = Mat2, and in Section A.2
when D is division.

Via the Petersson pairing 〈·, ·〉DPet : ΠD× Π̃D, the representation ΠD⊗ Π̃D is isomorphic to
the space of the matrix coefficients of ΠD ⊗ Π̃D:

f ⊗ f̃ ←→ mf⊗f̃ ∀f ⊗ f̃ ∈ ΠD × Π̃D,

where
mf⊗f̃ (b, b′) := 〈ΠD(b)f, Π̃D(b′)f̃〉Pet, ∀b, b′ ∈ A×D.

On the other hand, for each place v of k, we may also identify ΠDv ⊗ Π̃Dv with the space of
matrix coefficients, i.e. for fv ∈ ΠDv and f̃v ∈ Π̃Dv , the matrix coefficient mfv⊗f̃v associated to
mfv⊗f̃v is defined by

mfv⊗f̃v (bv, b
′
v) := 〈ΠDv (bv)fv, Π̃

D
v (b′v)f̃v〉Dv , ∀bv, b′v ∈ D×v .

Here 〈·, ·〉Dv : ΠDv × Π̃Dv → C is the natural duality pairing. Put

ΘDv (Πv) := {θD,ov (·, ·;φv, ϕv) | φv ∈ Πv, ϕv ∈ S(VD(kv))}.

Proposition A.4. We have the following equality:

ΘDv (Πv) = {mfv⊗f̃v | fv ∈ ΠDv , f̃v ∈ Π̃Dv }C−span.

This induces an isomorphism Shv : ΘDv (Πv) ∼= ΠDv ⊗ Π̃Dv .
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Proof. Pick φo = ⊗vφov ∈ Π and ϕo = ⊗vϕov ∈ S(VD(kA)) so that

C(φo, ϕo) :=

∫
D×k×A \D

×
A

θD(b, b;φo, ϕo)db 6= 0.

Then for each place v0 of k, the space of matrix coefficients of ΠDv0 can be generated by
mv0(φv0 , ϕv0) for φv0 ∈ Πv0 and ϕv0 ∈ S(VD(kv)), where mv(φv0 , ϕv0) is defined by:

mv(φv0 , ϕv0)(bv0 , b
′
v0) :=

∫
D×k×A \D

×
A

θD(bbv0 , bb
′
v0 ;φ, ϕ)db, ∀bv0 , b′v0 ∈ D

×
v0 ,

where φ = φv0 ⊗v 6=v0 φov ∈ Π and ϕ = ϕv0 ⊗v 6=v0 ϕov ∈ S(VD(kA)). By Theorem A.3 we may
assume that the chosen φo and ϕo satisfy

C(φo, ϕo) = θD,ov0 (1, 1;φov0 , ϕ
o
v0).

Then

mv0(φv0 , ϕv0)(bv0 , b
′
v0) =

∫
D×k×A \D

×
A
θD(bbv0 , bb

′
v0 ;φ, ϕ)db

C(φo, ϕo)
· C(φo, ϕo)

=
θD,ov0 (bv0 , b

′
v0 ;φv0 , ϕv0)

θD,ov0 (1, 1;φov0 , ϕ
o
v0)

· C(φo, ϕo) (by Theorem A.3)

= θD,ov0 (bv0 , b
′
v0 ;φv0 , ϕv0).

�

A.1. Proof of Theorem A.3 when D = Mat2. Given φ ∈ Π and ϕ ∈ S(VD(kA)), consider
the Whittaker function associated to φ and ϕ:

Wφ,ϕ(b1, b2)

:=

∫
k\kA

∫
k\kA

θD
((

1 u1
0 1

)
b1,

(
1 u2
0 1

)
b2;φ, ϕ

)
ψ(u2 − u1)du1du2, ∀b1, b2 ∈ GL2(kA).

Then:

Proposition A.5. When φ and ϕ are both pure tensors, we have

Wφ,ϕ =
∏
v

Wφ,ϕ,v.

Here for b1, b2 ∈ GL2(kv), let

Wφ,ϕ,v(b1, b2) :=

∫
U(kv)\ SL2(kv)

Wφv (g1α(b1b
−1
2 )) ·

(
ωDv (g1α(b1b

−1
2 ), [b1, b2])ϕv

)∼(1 1

0 1

)
dg1,

and

(ϕv)
∼
(
a b

c d

)
:=

∫
kv

ϕv

(
a b′

c d

)
ψv(bb

′)db′ for ϕv ∈ S(VD(kv)).

Proof. Let V1 :=

{(
∗ 0

0 ∗

)}
⊂ VD, V2 :=

{(
0 ∗
∗ 0

)}
⊂ VD, and Qi := QD

∣∣
Vi

for i = 1, 2.

Then (VD, QD) = (V1, Q1) ⊕ (V2, Q2). For ϕ2 ∈ S(V2(kA)) and g1 ∈ SL2(kA), it is observed
that (

ωV2(g1)ϕ2

)∼(0 b

c 0

)
= ϕ∼2

(
0 b′

c′ 0

)
,

where (c′, b′) = (c, b) · g1. Thus for ϕ ∈ S(VD(kA)), by Poisson summation formula we may
write

θVD (g1α(b1b
−1
2 ), [b1, b2];ϕ) = θVD1 (g1α(b1b

−1
2 ), [b1, b2];ϕ) + θVD2 (g1α(b1b

−1
2 ), [b1, b2];ϕ),
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where

θVD1 (g1α(b1b
−1
2 ), [b1, b2];ϕ) :=

∑
γ∈U(k)\ SL2(k)

∑
a,d∈k

(
ωD(γg1α(b1b

−1
2 ), [b1, b2])ϕ

)∼(a 1

0 d

)
,

and

θVD2 (g1α(b1b
−1
2 ), [b1, b2];ϕ) :=

∑
a,d∈k

(
ωD(g1α(b1b

−1
2 ), [b1, b2])ϕ

)∼(a 0

0 d

)
.

Since for u1, u2 ∈ kA one has(
ωD(1,

[(
1 u1
0 1

)
,

(
1 u2
0 1

)]
)ϕ
)∼(a b

c d

)
= ψ

(
b(−au2 + du1 + cu1u2)

)
· ϕ∼

(
a b

c d

)
,

we get ∫
k\kA

∫
k\kA

θVD
(
g1α(b1b

−1
2 ),

[(
1 u1
0 1

)
b1,

(
1 u2
0 1

)
b2

]
;ϕ

)
ψ(u2 − u1)du1du2

=
∑

γ∈U(k)\ SL2(k)

(
ωD(γg1α(b1b

−1
2 ), [b1, b2])ϕ

)∼(1 1

0 1

)
.

Therefore

Wφ,ϕ(b1, b2) =

∫
U(k)\ SL2(kA)

φ(g1α(b1b
−1
2 )) ·

(
ωD(γg1α(b1b

−1
2 ), [b1, b2])ϕ

)∼(1 1

0 1

)
dg1

=

∫
U(kA)\ SL2(kA)

Wφ(g1α(b1b
−1
2 )) ·

(
ωD(γg1α(b1b

−1
2 ), [b1, b2])ϕ

)∼(1 1

0 1

)
dg1

=
∏
v

Wφ,ϕ,v(b1,v, b2,v).

�

The space consisting of all the Wf,ϕ,v is actually the Whittaker model of Πv ⊗ Π̃v. More-
over, the following straightforward lemma connects the local Whittaker function Wφ,ϕ,v with
θD,ov (·, ·;φv, ϕv):

Lemma A.6. For b1, b2 ∈ GL2(kv), one gets

ζv(2)

Lv(1,Π,Ad)
·
∫
k×v

Wf,ϕ,v

((
av 0

0 1

)
b1,

(
av 0

0 1

)
b2

)
d×av = ζv(1) · θD,ov (b1, b2;φv, ϕv).

Recall that for pure tensors f1, f2 ∈ ΠD = Π, we have

〈f1, f2〉Mat2
Pet =

2 · L(1,Π,Ad)

ζk(2)
· 〈f1,v, f̄2,v〉Mat2

v ,

where

〈f1,v, f̄2,v〉Mat2
v :=

ζv(2)

ζv(1)Lv(1,Π,Ad)
·
∫
k×v

Wf1,v

(
av 0

0 1

)
Wf2,v

(
av 0

0 1

)
d×av,

and 〈f1,v, f̄2,v〉v = 1 when v is “good.” Therefore by Proposition A.5 and Lemma A.6, the
Shimizu correspondence in Theorem 2.2 implies that:

Proposition A.7. Theorem A.3 holds when D = Mat2.



18 CHIH-YUN CHUANG AND FU-TSUN WEI

A.2. Proof of Theorem A.3 when D is division. Given g1 ∈ SL2(kA), we set

ID(g1, s, ϕ) :=
∑

γ∈B1(k)\ SL2(k)

|a(γg1)|s−1A ·
∑
x∈k

(
ωD(γg1)ϕ

)
(x), ∀ϕ ∈ S(VD(kA)).

Here a(g1) = a ∈ k×A is chosen so that g1 can be written as

g1 =

(
a ∗
0 a−1

)
κ1 with κ1 ∈ SL2(OA).

This series converges absolutely when Re(s) > 3/2, and has meromorphic continuation to the
whole complex s-plane. Given pure tensors φ = ⊗vφv ∈ Π and ϕ = ⊗vϕv ∈ S(VD(kA)), one
has

JD(s;φ, ϕ) :=

∫
SL2(k)\ SL2(kA)

φ(g1)ID(g1, s, ϕ)dg1

=

∫
U(k)\ SL2(kA)

φ(g1)|a(g1)|s−1A ·
(
ωD(g1)ϕ

)
(1)dg1

=
∏
v

JDv (s;φv, ϕv),

where
JDv (s;φv, ϕv) :=

∫
U(kv)\ SL2(kv)

Wφv (g1)
(
ωDv (g1)ϕv

)
(1)|a(g1)|s−1v dg1.

It is clear that:

Lemma A.8. The local integral JDv (s;φv, ϕv) always converges when Re(s) ≥ 1. Moreover,
when v is “good,” one has

JDv (s;φv, ϕv) =
Lv(s,Π,Ad)

ζv(2s)
.

In particular, we obtain that

JD(s;φ, ϕ) =
L(s,Π,Ad)

ζk(2s)
·
∏
v

JD,ov (s;φv, ϕv),

where

JD,ov (s;φv, ϕv) :=
ζv(2s)

Lv(s,Π,Ad)
· JDv (s;φv, ϕv).

For b1, b2 ∈ D×v , one has

θD,ov (b1, b2;φv, ϕv) = JD,ov (1;φ′v, ϕ
′
v),

where φ′v := Πv(α(b1b
−1
2 ))φv and ϕ′v := ωDv (α(b1b

−1
2 ), [b1, b2])ϕv. Thus we obtain that:

Proposition A.9. Theorem A.3 holds when D is division.

Proof. From the equality (B.1) in Remark B.2, we get that for b1, b2 ∈ D×A ,∫
D×k×A \D

×
A

θD(bb1, bb2;φ, ϕ)db = 2JD(1;φ′, ϕ′)

=
2L(1,Π,Ad)

ζk(2)
·
∏
v

JD,o(1;φ′v, ϕ
′
v)

=
2L(1,Π,Ad)

ζk(2)
·
∏
v

θD,ov (b1,v, b2,v;φv, ϕv).

�
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Note that the equality (B.1) follows from a “metaplectic type” Siegel-Weil formula, which
is verified in the next section.

Appendix B. Siegel-Weil formula for the metaplectic Eisenstein series

B.1. Metaplectic groups. For each place v, the Kubota 2-cocycle σ′v is defined by (cf. [9,
Section 3]):

σ′v(g1, g2) :=

(
x(g1g2)

x(g1)
,
x(g1g2)

x(g2)

)
v

, ∀g1, g2 ∈ SL2(kv).

Here

x

(
a b

c d

)
:=

{
c, if c 6= 0,

d, if c = 0;

and (·, ·)v is the Hilbert quadratic symbol at v. Define a map sv : SL2(kv)→ {±1} by setting

sv

(
a b

c d

)
:=

{
(c, d)v, if ordv(c) is odd and d 6= 0,

1, otherwise.

Let σv be the 2-cocycle defined by

σv(g1, g2) := σ′v(g1, g2)sv(g1)sv(g2)sv(g1g2)−1, ∀g1, g2 ∈ SL2(kv).

It is known that (cf. [4, Section 2.3]) σv(κ1, κ2) = 1 ∀κ1, κ2 ∈ SL2(Ov). Hence σv induces a
central extension S̃L2(kv) of SL2(kv) by {±1} which splits on the subgroup SL2(Ov). More
precisely, the extension S̃L2(kv) is identified with SL2(kv)×{±1} (as sets) with the following
group law:

(g1, ξ1) · (g2, ξ2) =
(
g1g2, ξ1ξ2σv(g1, g2)

)
.

Globally, we define a 2-cocycle σ on SL2(kA) by setting σ := ⊗vσv, and let S̃L2(kA) be the
corresponding central extension of SL2(kA) by {±1}. The section

SL2(kA) −→ S̃L2(kA)

κ 7−→ (κ, 1)

becomes a group homomorphism when restricting to SL2(OA), which embeds SL2(OA) into
S̃L2(kA) as a subgroup. Moreover, for every γ ∈ SL2(k), the value s(γ) :=

∏
v sv(γ) is

well-defined, and the embedding

SL2(k) −→ S̃L2(kA)

γ 7−→
(
γ, s(γ)

)
preserves the group law. Thus we may view SL2(k) as a discrete subgroup of S̃L2(kA).

B.2. Weil representation. Let D be a division quaternion algebra over k. We first write
D as V1 ⊕ V3, where V1 = k and V3 := {b ∈ D : TrD/k(b) = 0}. Put QVi := NrD/k |Vi .
Then the quadratic space (Vi, QVi) is anisotropic with dimension i, and SO(V3) ∼= D×/k×.
Let ωVi = ⊗vωViv be the Weil representation of the metaplectic group S̃L2(kA)×O(Vi) on the
Schwartz space S(Vi(kA)), where for each place v, ωViv is defined as follows (cf. [4, Section
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2.3]):

(1) ωViv (h)φ(x) := φ(h−1x), h ∈ O(Vi);

(2) ωViv (1, ξ)φ(x) := ξ · φ(x), ξ ∈ {±1};

(3) ωViv

((
1 u

0 1

)
, 1

)
φ(x) = ψv(uQVi(x))φ(x), u ∈ kv;

(4) ωViv

((
av 0

0 a−1v

)
, 1

)
φ(x) = |av|

i
2
v (av, av)v

εViv (av)

εViv (1)
· φ(avx), av ∈ k×v ;

(5) ωViv

((
0 1

−1 0

)
, 1

)
φ(x) = εViv (1) · φ̂(x).

Here:

•

εViv (av) :=

∫
Lv

ψv(avQVi(x))davx, ∀av ∈ k×v ,

where Lv is a sufficiently large Ov-lattice in Vi(kv), and the Haar measure davx is
self-dual with respect to the pairing

(x, y) 7→ ψv(av · TrD/k(xȳ)), ∀x, y ∈ Vi(kv);

• φ̂(x) is the Fourier transform of φ:

φ̂(x) :=

∫
Vi(kv)

φ(y)ψv(TrD/k(xȳ))dy.

For a = (av)v ∈ k×A , we put εVi(a) :=
∏
v ε

Vi
v (av).

B.3. Siegel-Eisenstein series. Recall that B1 denotes the standard Borel subgroup of SL2,
and let B̃

1
be the preimage of B1 in S̃L2(kA).

For each φ ∈ S(V3(kA)), the Siegel section associated to φ is defined by:

Φφ(g̃, s) = ξ · ε
V3(a)

εV3(1)
· |a|s+

1
2

kA
·
(
ωV3(κ1)φ

)
(0), for g̃ ∈ S̃L2(kA),

where a ∈ k×A and κ1 ∈ SL2(OA) so that g̃ =

((
a ∗
0 a−1

)
, ξ

)
· κ1. The Siegel-Eisenstein

series associated to ϕ is then defined by

E(g̃, s, φ) :=
∑

γ∈B1(k)\ SL2(k)

Φφ(γg̃, s),

which converges absolutely for Re(s) > 3/2 and has meromorphic continuation to the whole
complex s-plane. In this section, we shall verify that:

Theorem B.1. Given φ ∈ S(V3(kA)), we have

E(g̃, 1, φ) =
1

2
· I3(g̃, φ), ∀g̃ ∈ S̃L2(kA),

where

I3(g̃, φ) :=

∫
D×k×A /D

×
A

( ∑
x∈V3(k)

ωV3(g̃, b)φ(x)
)
db.
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Remark B.2. Write (VD, QVD ) = (V1, QV1
) ⊕ (V3, QV3

). Given ϕ ∈ S(VD(kA)), suppose
ϕ = φ1 ⊕ φ3 where φ1 ∈ S(V1(kA)) and φ3 ∈ S(V3(kA)). Then

ID(g, s, ϕ) = θk((g, 1), φ1) · E((g, 1), s, φ3), ∀g ∈ SL2(kA),

where θk((g, 1), φ1) :=
∑
x∈k

(
ωV1(g)φ1

)
(x). On the other hand,

θk((g, 1), φ1) · I3((g, 1), φ3) =

∫
D×k×A /D

×
A

θVD (g, [b, b];ϕ)db.

Therefore

ID(g, 1, ϕ) =
1

2

∫
D×k×A /D

×
A

θVD (g, [b, b];ϕ)db, ∀g ∈ SL2(kA) and ϕ ∈ S(VD(kA)).

In particular, for φ ∈ Π we have

JD(1;φ, ϕ) =

∫
SL2(k)\ SL2(kA)

φ(g)ID(g, 1, ϕ)dg

=
1

2
·
∫
D×k×A \D

×
A

θD(b, b;φ, ϕ)db.(B.1)

Proof of Theorem B.1. The proof of the above theorem basically follows the approach in [16]
for the even dimensional case. Here we recall the strategy as follows: For each β ∈ k, the
β-th Fourier coefficient of a given metaplectic form f is:

f∗β(g̃) :=

∫
k\kA

f

(((1 u

0 1

)
, 1
)
g̃

)
ψ(−βu)du.

Given φ ∈ S(V3(kA)), we verify that:

(1) The equality holds for the “constant terms,” i.e.

E∗0 (g̃, 1, φ) =
(
ωV3(g̃)φ

)
(0) =

1

2
· I3,∗0 (g̃, φ).

In particular, this says that E(g̃, 1, φ)− 1/2 · I3(g̃, φ) is a cusp form on S̃L2(kA).
(2) It is straightforward that E(·, s, φ) is orthogonal to all the cuspidal metaplectic forms

on S̃L2(kA) with respect to the Petersson inner product.
(3) The theta integral I3(·, φ) is orthogonal to all the cuspidal metaplectic forms on

S̃L2(kA). Indeed, adapting the proof of [16, Theorem A.4], there exists a constant C
so that

I3,∗β (g̃, φ) = C · E∗β(g̃, 1, φ), ∀β 6= 0.

In particular, the function I ′(·, φ) := I3(·, φ)− C · E(·, 1, φ) satisfies

I ′
(((1 u

0 1

)
, 1
)
g̃, φ

)
= I ′(g̃, φ), ∀u ∈ kA.

Thus I ′(·, φ) is orthogonal to all the cuspidal metaplectic forms, and so is I3(·, φ) by
(2).

Since a cusp form orthogonal to itself must be zero, we get E(g̃, 1, φ) = 1/2 ·I3(g̃, φ) for every
g̃ ∈ S̃L2(kA). �
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Appendix C. The case when K = k × k

When K = k × k, we have L(s, ςK) = ζk(s). Moreover, the existance of an embedding
ι : K ↪→ D implies that D = Mat2(k), and ΠD = Π. We may write the given Hecke character
χ as χ1 × χ2, where χi is a unitary Hecke character on k×\k×A for i = 1, 2. The assumption
η ·χ
∣∣
k×A

= 1 says that Π⊗χ2 = Π̃⊗χ−11 . Thus we have L(s,Π×χ) = L(s,Π⊗χ1)·L(s,Π⊗χ2).

Without lose of generality, suppose ι(a, b) =

(
a 0

0 b

)
for every a, b ∈ k. Then for f ∈ Π

and f̃ ∈ Π̃,

PDχ (f ⊗ f̃) = Z(
1

2
; f, χ1) · Z(

1

2
; f̃ , χ−11 ),

where

Z(s; f, χ1) :=

∫
k×\k×A

f

(
y 0

0 1

)
χ1(y)|y|s−1/2A d×y

and Z(s; f̃ , χ−11 ) :=

∫
k×\k×A

f̃

(
y 0

0 1

)
χ−11 (y)|y|s−1/2A d×y

are entire functions on the complex s-plane. Note that for a pure tensor f = ⊗vfv ∈ Π, one
has (cf. [1, the equality (5.31) in Chapter 3 and Proposition 3.5.3])

Z(s; f, χ1) = L(s,Π⊗ χ1) ·
∏
v

Zov(s; fv, χ1,v),(C.1)

where for each place v of k, put

Zov(s; fv, χ1,v) :=
1

Lv(s,Π⊗ χ1)
·
∫
k×v

Wfv

(
yv 0

0 1

)
χ1,v(yv)|yv|s−1/2v d×yv.

Here Wfv is the Whittaker function associated to fv with respect to the chosen ψv. Similarly,
for a pure tensor f̃ = ⊗f̃v ∈ Π̃ we have

Z(s; f̃ , χ−11 ) = L(s, Π̃⊗ χ−11 ) ·
∏
v

Zov(s; f̃v, χ
−1
1,v),(C.2)

where

Zov(s; f̃v, χ
−1
1,v) =

1

Lv(s, Π̃⊗ χ−11 )
·
∫
k×v

W ′
f̃v

(
yv 0

0 1

)
χ−11,v(yv)|yv|s−1/2v d×yv.

Here we takeW ′
f̃v

to be the Whittaker function associated to f̃v with respect to ψv. Note that

the validity of Ramanujan bounds for Π and Π̃ implies that Zov(s; fv, χ1,v) and Zov(s; f̃v, χ
−1
1,v)

both converge absolutely at s = 1/2.
Recall that we may choose 〈·, ·〉Mat2

v : Πv × Π̃v → C by:

〈fv, f̃v〉Mat2
v :=

ζv(2)

ζv(1)Lv(1,Π,Ad)
·
∫
k×v

Wfv

(
y 0

0 1

)
W ′
f̃v

(
y 0

0 1

)
d×y.

Indeed, by the Rankin-Selberg method these local pairings satisfy:

〈·, ·〉Mat2
Pet =

2L(1,Π,Ad)

ζk(2)
·
∏
v

〈·, ·〉Mat2
v .

Therefore we get

PD
χ,v(fv ⊗ f̃v) = Zov(

1

2
; fv, χ1,v) · Zov(

1

2
; f̃v, χ

−1
1,v).

From the equation (C.1) and (C.2), we arrive at:

Theorem C.1. Theorem 0.1 holds for the case when K = k × k.



WALDSPURGER FORMULA OVER FUNCTION FIELDS 23

Acknowledgments. The authors are grateful to Jing Yu for his steady encouragements. This
work was completed while the second author was visiting Institute for Mathematical Sciences
at National University of Singapore. He would like to thank Professor Wee Teck Gan for the
invitation, and the institute for kind hospitality and wonderful working conditions.

References

[1] Bump, D., Automorphic forms and representations, Cambridge studies in advanced mathematics 55,
(1996).

[2] Chida, M. & Hsieh, M.-L., Special values of anticyclotomic L-functions for modular forms, J. reine
angew. Math. (2016) (DOI:10.1515/crelle-2015-0072)

[3] Chida, M. & Hsieh, M.-L., On the anticyclotomic Iwasawa main conjecture for modular forms, Compo-
sitio Mathematica 151 no. 5 (2015) 863-897.

[4] Gelbart, S. S., Weil’s representation and the spectrum of the metaplectic group, Lecture Notes in Math-
ematics 530, Springer 1976.

[5] Gross, B. H., Heights and the special values of L-series, CMS Conference Proceedings, H. Kisilevsky, J.
Labute, Eds., 7 (1987) 116-187.

[6] Ichino, A. & Ikeda, T, On the periods of automorphic forms on special orthogonal groups and the Gross-
Prasad conjecture, Geom. Funct. Anal., to appear.

[7] Jacquet, H., Automorphic forms on GL(2) part II, Lecture Notes in Mathematics 278, Springer 1972.
[8] Jacquet, H. & Piatetski-Shapiro, I.I. & Shalika, J., Rankin-Selberg convolutions, American Journal of

Mathematics 105 (1983) 367-464.
[9] Kubota, T., On automorphic functions and the reciprocity law in a number field, Lectures in Math. 21,

Kyoto University 1969.
[10] Kudla S., Seesaw dual reductive pairs, in Automorphic forms of several variables, Taniguchi Symposium

(Katata 1983) (Birkhäuser, Basel 1984), 244-267.
[11] Papikian, M., On the variation of Tate-Shafarevich groups of elliptic curves over hyperelliptic curves,

Journal of Number Theory 115 (2005) 249-283.
[12] Shimizu, H., Theta series and automorphic forms on GL2, J. Math. Soc. Japan Vol. 24 No. 4 (1972)

638-683.
[13] Tunnell, J., Local ε-factors and characters of GL(2), Amer. J. Math. 105 no. 6 (1983) 1277-1307.
[14] Waldspurger, J-L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math.

pures et appl. 60 (1981) 375-484.
[15] Waldspurger, J-L., Sur les valeurs de certaines fonctions L automorphices en leur centre de symétrie,

Compositio Math., 54 (2)(1985) 173-242.
[16] Wei, F.-T., On metaplectic forms over function fields, Mathemetische Annalen Volume 355 Issue 1 (2013)

235-258 (DOI 10.1007/s00208-012-0785-1).
[17] Wei, F.-T., On the Siegel-Weil formula over function fields, The Asian Journal of Mathematics Volume

19 Number 3 (2015) 487-526.
[18] Wei, F.-T. & Yu, J., Theta series and function field analogue of Gross formula, Documenta Math. 16

(2011) 723-765.
[19] Weil, A., Sur certains groupes d’opérateurs unitaires, Acta math., 111 (1964) 143-211.
[20] Weil, A., Dirichlet Series and Automorphic Forms, Lecture notes in mathematics 189, Springer 1971.
[21] Weil, A., Adeles and algebraic groups, Progress in Mathematics vol. 23, 1982.
[22] Yuan X. & Zhang, S.-W. & Zhang, W., The Gross-Zagier Formula on Shimura Curves, Annals of

Mathematics Studies, Princeton University Press, 2012

Department of Mathematics, National Taiwan University, Taiwan
E-mail address: cychuang@ntu.edu.tw

Department of Mathematics, National Central University, Taiwan
E-mail address: ftwei@math.ncu.edu.tw


	Introduction
	1. Prelimilaries
	1.1. Basic settings
	1.2. Tamagawa measures

	2. Theta series
	2.1. Weil representation
	2.2. Quadratic theta series
	2.3. Quaternionic theta series

	3. Zeta integrals and Rankin-Selberg method
	3.1. Siegel Eisenstein series
	3.2. Zeta integrals

	4. Central critical values of zeta integrals
	4.1. Local case
	4.2. Global case

	5. Waldspurger formula
	5.1. Non-vanishing criterion

	Appendix A. Local Shimizu correspondences
	A.1. Proof of Theorem A.3 when D= Mat2
	A.2. Proof of Theorem A.3 when D is division

	Appendix B. Siegel-Weil formula for the metaplectic Eisenstein series
	B.1. Metaplectic groups
	B.2. Weil representation
	B.3. Siegel-Eisenstein series

	Appendix C. The case when K = kk
	References

