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THE HEAT KERNEL

ALEXANDER GRIGOR’YAN, ERYAN HU, AND JIAXIN HU

ABSTRACT. We study the heat kernel of a regular symmetric Dirichlet form on a metric space
with doubling measure, in particular, a connection between the properties of the jump measure
and the long time behaviour of the heat kernel. Under appropriate optimal hypotheses, we
obtain the Holder regularity and lower estimates of the heat kernel.
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1. INTRODUCTION

In this paper, we are concerned with the heat kernel lower estimates for regular symmetric
Dirichlet forms on metric spaces with doubling measures.

Let (M, d) be a locally compact separable metric space and let u be a Radon measure on M
with full support. A triple (M,d, ) is called a metric measure space. Let (€, F) be a regular
Dirichlet form on L? := L?(M, u). Let {P;};~0 be the heat semigroup in L? associated with
(€, F), that is, P, = e**, ¢ > 0, where £ is the generator of (£, F).

Note that P, is a bounded self-adjoint operator in L%. If, for any ¢t > 0, the operator P,
has an integral kernel then the latter will be denoted by p;(z,y) and will be referred to as the
heat kernel of (£,F). The heat kernel coincides with the transition density of the Hunt process
associated with (€, F).

For the sake of Introduction, assume that (€, F) is of jump type and that it is determined by
a jump kernel J(z,y), that is,

E(u,v) = //MxM(U(x) —u(y))(v(z) —v(y))J (2, y)du(z)du(y). (1.1)

Our main goal is investigation of the influence of the jump kernel on the heat kernel long time
behaviour.

For example, consider in R™ the following jump kernel

1
J(z,y) = PRk (1.2)

where 0 < 3 < 2. In this case £(u, v) is a regular Dirichlet form with the generator const (—A)%/2,
and its heat kernel admits the following two-sided estimate:

_ —(n+pB) 1
| y|> N t (13)

1
for all t > 0 and x,y € R™. Here A means minimum and ~ means comparable, that is, the ratio
of the both sides is bounded from above and below by positive constants (in this case, for all
t>0and z,y € R").

For simplicity of presentation, we assume throughout Introduction that the metric measure
space (M, d, ) is a-regular for some a > 0, that is, for any metric ball B (z,r) in M,

w(B(z,r)) =%, (1.4)
although the main results of this paper are stated and proved under a weaker hypothesis of the

volume doubling.

Assume further that the jump kernel satisfies for some § > 0 the estimate

J(z,y) ~ W, (J)
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for all z,y € M. A natural question arises whether the heat kernel of (€, F) exists and satisfies
an estimate similar to (1.3), that is, whether the following estimate holds:

C d(z,y)\ @ 1 t
P (@,y) = ta/B <1 T a8 ) =~ a8 d(z,y)o B’ (1.5)

for all t > 0 and z,y € M. If § < 2 then the answer is affirmative; moreover, by a result of [4],
the following equivalence holds:

(J) & (1.5).
However, if 8 > 2 then one more hypothesis is needed: a so called generalized capacity condi-
tion that will be denoted by (Gcap). This condition ensures the existence of cutoff functions

with controlled energy and will be rigorously formulated in the next section. It was proved
independently in [6] and [10] that, for any 3 > 0,

(J) + (Geap) < (1.5). (1.6)
It is natural to ask then what kind of heat kernel bounds can be ensured if the jump kernel

satisfies instead of (J) some weaker hypotheses. This problem has been addressed in a series of
papers of the authors [12], [13], [14] which is concluded with the present work.

We replace (J) by some integral estimates of the jump kernel as follows. The pointwise upper
bound of J is replaced by the hypothesis about the tail of the jump kernel:

C
/ I, )duy) < 5, (TJ)
B(z,r)c T

for all x € M and r > 0, while the pointwise lower bound of J is replaced by an appropriate
Poincaré inequality that is denoted by (PI). A detailed definition of the latter will be given in
the next section. It is easy to verify that (J) implies (TJ) and (PI) but not vice versa.

The first main result of the present paper — Theorem 2.9, says that the hypotheses (TJ), (PI)
and (Gcap) imply the following near-diagonal lower estimate of the heat kernel

pi(z,y) > et/ if d(x,y) < 5t'/7, (NLE)
for some ¢, d > 0. Moreover, under the standing hypothesis (TJ), we have the equivalence
(PI) + (Geap) < (LLE), (1.7)

where (LLE) denotes a similar near-diagonal lower bound of the Dirichlet heat kernels in balls,
which is a somewhat stronger condition than (NLE) (see the next section for a detailed defini-
tion).
Note that, under the hypotheses of Theorem 2.9, one cannot ensure an off-diagonal lower
estimate of the form
d(z,y) > -

C
pi(z,y) > prYE <1+ 15

for all t > 0 and z,y € M, whatever N > 0 is, as it was shown by a counterexample in [1].

However, if we replace in (1.7) the Poincaré inequality (PI) by a stronger hypothesis — the
pointwise lower estimate of the jump kernel
c

J(z,y) > (@) (J>)
then we do obtain a full off-diagonal lower estimate
c d(.y)\ "
pe(w,y) > o8 <1 + 175 > : (LE)

This follows from our second main result in this paper — Theorem 2.12, that says the following:
under the standing hypothesis (TJ), the following equivalence holds:

(J>) + (Geap) < (LLE) + (LE)
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(see also Corollary 2.13).

As far as upper bounds of the heat kernel are concerned, this problem under weaker assump-
tions on J has been addressed in our companion paper [14]. For any ¢ > 1, let us introduce the
following hypothesis about the Li-tail of the jump kernel:

1/q c
J aq < — TJ
( / ) u(y)> < o (13,)

for all z € M and r > 0, where ¢ is the Holder conjugate to ¢. For example, if ¢ = 1 then (TJ,)
coincides with (TJ). It is easy to see that (TJ,) gets stronger when ¢ increases.

By a result of [14], if ¢ > 2 then (TJ,), (Gcap), and a certain Faber-Krahn inequality imply
the following upper bound of the heat kernel:

C d(z,y) ~(a/q"+8) 1 t 1
pt(xay) < ta/ﬁ <1 t tl/ﬁ > ~C ta/(ﬁq/) A d(x’y)a/q/'f‘ﬁ ta/(ﬁQ) ’ (UEq)

for all t > 0 and z,y € M. Combining the results of the present paper with those of [14] yields
the following implication for any 2 < ¢ < oc:

(J>) + (Geap) + (TJg) = (UE,) + (LE)

(cf. Theorem 2.19 and Corollary 2.20).

Note that there is a mismatch in the exponents of the off-diagonal terms in (LE) and (UE,)
that are a + 8 and «/q' + 3, respectively. The gap between these exponents is in general
unavoidable as an example in [1] shows. However, if ¢ = co then ¢’ = 1, and the two exponents
coincide. In this case we recover the equivalence (1.6).

In the main body of the paper our results are stated and proved in a more general form as
follows.

(1) Instead of volume regularity, we assume the volume doubling condition, so that the
volume function V' (z,r) = u(B(x,r)) explicitly enters the heat kernel estimates.

(2) Instead of the scaling function 72 that appears in (TJ) as well as in (Gcap) and (PT), we
use a more general scaling function W (z,r) depending also on the space variable x € M,
which causes additional difficulties in the proof.

(3) The Dirichlet form (£, F) may contain a local part, that is, (£,F) may be an arbitrary
regular Dirichlet form without killing part.

(4) The hypotheses (Gcap) and (PI) are assumed in a localized form, that is, for a bounded
range of radii of balls involved, which, in particular, allows to include bounded metric
spaces. In this case, the heat kernel estimates are valid for a bounded range of time.

(5) Together with heat kernel lower estimates, we obtain also the Hélder regularity of the
heat kernel.

In Section 2 we give all necessary definitions and formulate our main results in full generality.
In a short Section 3, we recall some general properties of the energy measure of (£, F). In
Section 4 we change the metric d so that in the new metric the scaling function does not depend
on the space variable. In Section 5 we prove an oscillation inequality that is a central technical
result. It is used, in particular, in Section 6 to prove the Holder continuity of the heat kernel.
In Section 7 we prove Theorem 2.9. In Section 8 we prove Theorems 2.12 and 2.19. Appendix
contains some auxiliary results.

NOTATION. Letters ¢, C,C’,C1, s, etc. are used to denote positive numbers, depending on
the constants in the hypotheses, whose values may change at each occurrence. For a function u
on M, we denote by supp(u) the support of u that is, the minimal closed subset of M so that
u = 0 a.e. outside it. For an open set U, the notation A € U means that A is a precompact
subset of U with A C U.
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2. STATEMENT OF THE MAIN RESULTS

Now we give precise statements of our results. For any x € M and r > 0, consider an open
metric ball
B(z,r):={ye M :d(y,x) <r}
and its volume
V(z,r) == p(B(x,r)).
For any ball B = B(z,r) and any A > 0, set
AB := B(x, \r).

Definition 2.1 (Volume doubling condition). We say that a measure p on (M, d) satisfies the
condition (VD) if there exists a constant C' > 1 such that, for all z € M and all » > 0,

Vix,2r) < CV(x,r). (2.1)

Condition (VD) implies that 0 < V(x,r) < oo for all r > 0.

It is known that condition (VD) is equivalent to the following: there exists a positive number
« such that, for all z,y € M and all 0 <7 < R < 00,

V(z, R) <c d(z,y) + R , (2.2)
Viy,r) r
where constant C' can be taken the same as in (VD). In particular, for all x € M and all
O0<r<R<o,
V(z,R) R\“
< — . 2.
v << (7) %)

Let us fix throughout the paper a parameter R € (0, diam M], where diam M is the diameter
of M.

Definition 2.2 (Reverse volume doubling condition). We say that u satisfies the condition
(RVD) if there exist positive numbers C, o’ such that, for all z in M and for all 0 < r < R < R,

/

‘x//((fo)) >t <§)a : (2.4)

Let (£,F) be a regular Dirichlet form on L?. Recall that any regular symmetric Dirichlet
form (£, F) in L? admits the following unique Beurling-Deny decomposition (cf. [8, Theorem
3.2.1 and Theorem 4.5.2]):

E(u,v) = ED (u,v) + €V (u, v) + EF) (u,v), (2.5)

where W) is the local part (or diffusion part) associated with a unique Radon measure dr&)
(the notions £ (u,v),dl' ") (u,v) are instead denoted by £(°)(u,v), %d“?u,@ respectively in [8,
see formula (3.2.22) on p.126]):

EB) (u,v) = / dr ) (u, v),
M
£W) is the jump part associated with a unique Radon measure j defined on M x M \ diag:
o) = [ (ula) - uw)e() - o) i), (26)
M x M\diag
and finally, £5) is the killing part. We assume throughout the paper that £ = 0 and, thus,
Eu,v) = ED (u,v) + D (u,v). (2.7)

For simplicity, we set j = 0 on the diagonal of M x M so that the integral in (2.6) can be
extended to the entire space M x M.
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Let us fix a scaling function W : M x [0, 00] — [0, 0o] such that, for each z € M, the function
W (z,-) is strictly increasing, and W (z,0) = 0, W(z,00) = co. Assume also that there exist
three positive numbers C, 3, 85 (6; < f35) such that, forall 0 < r < R < oo and for all z,y € M

with d(z,y) < R,
o (8) B ()

Clearly, we have by (2.8) that, for all z € M and all 0 <7 < R < o0

R 1/B W71($ R) R 1/B4
-1 = < — — 2.
(7)) v ee(F) 29)

where W~1(z, ) is the inverse function of W (x,-) for every x € M.

The function W will determine the space/time scaling of the Hunt process of the Dirichlet
form (€, F). A typical example of a scaling function is W (x,r) = r® as was considered in
Introduction. For example, if M = R™ and (€, F) is the classical Dirichlet integral

E (u,u) :/ \Vul? du
R

then 3 = 2. For the jump type Dirichlet form in R™ with the jump kernel (1.2), # can be any
number from (0,2). If M is a fractal space and (&, F) is a self-similar strongly local Dirichlet

) N . log 5 .
form then typically 3 > 2, for example, for the Sierpinski gasket in R? we have 3 = %. This
value of (3 is called the walk dimension of the fractal.

For any metric ball B := B(z,r), set
W(B) := W(x,r).
Despite of notation, W (B) is not a function of a ball as a subset of M, but is a function of a
pair (z,r) as it may happen that B(x1,71) = B(x2,72) whereas W(x1,71) # W(x2,72).

Let U C M be an open set, A be a Borel subset of U and § > 1 be a number. A E-cutoff
function of the pair (A,U) is any function ¢ in F such that

e 0 < ¢ <K pae. in M;
e ¢ >1 pae. in A;
e ¢ =0 pae. in US.

7l

FIGURE 1. A function ¢ € R-cutoff (A, U)

We denote by E-cutoff(A, U) the collection of all ®-cutoff functions of the pair (A4,U). Any
1-cutoff function for & = 1 will be simply referred to as a cutoff function. Clearly, ¢ € F is a
cutoff function of (A,U) if and only if 0 < ¢ <1, ¢|4 = 1 and ¢|ye = 0. Denote by

cutoff (4, U) := 1-cutoff (A4, U).

Note that for every & > 1,
cutoff (A, U) C ®-cutoff (A, U),
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and that, if ¢ € R-cutoff(A4,U), then 1 A ¢ € cutoff(A,U). It is known that if (£,F) is a
regular Dirichlet form in L?, then cutoff(A,U) is not empty for any nonempty precompact A
with A C U.
Define a function space F’ by
Fi={v+ta:veF, acR},
that is, F’ is a vector space that contains F and constants.

Definition 2.3 (Generalized capacity condition). We say that condition (Gcap) is satisfied if
there exist two numbers & > 1,C > 0 such that, for any v € F' N L% and for any pair of
concentric balls By := B(z¢, R), B := B(z¢, R+r) with 2o € M and 0 < R < R+ 1 < R, there
exists ¢ € R-cutoff (By, B) such that

2 C 2
E(up,¢) < EEEW/BU dp. (2.10)

We remark that the function ¢ in (Gcap) may depend on w, but the constants &,C are
independent of u, By, B.

7l

FIGURE 2. Function ¢ in (2.10)

For any open set U C M and a Borel set A C U, define the capacity of the pair (A, U) by
cap(A4,U) :=inf{&(p, ) : for any ¢ € cutoff(A,U)}.
Definition 2.4 (Capacity upper bound). We say that the condition (Cap.) is satisfied if there
exists a constant C' > 0 such that for all balls B of radius R less than R
(B)

1
cap(QB,B) < CW(B)

(2.11)

Note that the following implication is obvious:
(Geap) = (Cap<). (2.12)
Indeed, using (Gcap) with u = 1, we see that there exists a function
1
¢ € k- cutoff(EB, B)

such that o (B)
7
E(p,9) < W/BUQCZN = CW(B)'

Replacing ¢ by ?qg := 1A ¢ € cutoff (%B , B) and then using the Markov property
£(6,9) < £(,0),

we obtain that £ (5, &) satisfies the same estimate, which implies the condition (Capg).

It would be ideal if in all our results (Gcap) could be replaced by the simpler condition (Cap-),
but so far there is no technique for that. Usually it is very difficult to verify (Gcap). However,
there are some cases when (Gcap) is trivially satisfied (see [12, Section 4]).
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Let B(M) be the sigma-algebra of Borel sets of M. Recall that a transition kernel is a map
J: M x B(M) — R4 satisfying the following two properties:

e for every fixed x in M, the map F +— J(x, E) is a measure on B(M);
e for every fixed E in B(M), the map x — J(z, E) is a non-negative measurable function
on M.

Definition 2.5 (Tail estimate of jump measure). We say that condition (TJ) is satisfied if there
exists a transition kernel J(z, E) on M x B(M) such that

dj(z,y) = J(z,dy)du(r) in M x M,
and, for any point x in M and any R > 0,

J(CC,B(%’,R)C) — /B( R J(m,dy) < m,

where C' € [0,00) is a constant independent of z, R.

(2.13)

For example, if W (z, R) = R® for any € M and R > 0 then the inequality (2.13) reads

J(z,B(x, R)) < % for all x in M and R > 0.

The latter condition was introduced in [1] in the setting of the ultra-metric spaces.

For a measurable function v and a measurable set A, let u4 denote the mean of the function

u over A, that is,
5l
ug = —— | udu ::][ udp,
1(A) Ja A

whenever the integral makes sense.

Definition 2.6 (Poincaré inequality). We say that the Poincaré inequality (PI) holds if there
exist constants C' > 0 and « € (0, 1] such that, for any ball B := B(zg, R) with 0 < R < R and
for any function u € F' N L,

/ lu — uep|2dp < CW (o, R)/ dl'p(u), (2.14)
kB B

st = [ ar®w@ + [[ e - P

For example, if M is a complete manifold of non-negative Ricci curvature, d is the geodesic
metric, p is the Riemannian measure, and £ is the Dirichlet integral, then (PI) holds with
W(x,R) = R%.

Definition 2.7 (Near-diagonal lower estimate). We say that condition (NLE) holds if the heat
kernel p;(z,y) exists and satisfies a near-diagonal lower estimate: for any Cp > 1, there exist
two constants §, C' > 0 such that

where

-1
Ve W1, 0)
for any t < CoW (z, R) and p x p-almost all (x,y) € M x M such that
d(z,y) < W (z,1).

We say that condition (sNLE) is satisfied if the function pi(x,y) has a version satisfying the
semigroup identity

(2.15)

pe(x,y) >

Prs(z,y) = /M pe(x, 2)ps(2,y)dz

for any t,s > 0, z,y € M, and satisfying (2.15) for any ¢t < CoW(z, R) and all 2,5y € M such
that d(z,y) < W~ 1(z,1).
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For a non-empty open subset U of M, let Cy(U) denote the space of all continuous functions
with compact supports contained in U. Let F(U) be a vector space defined by

F(U) = the closure of F N Cy(U) in the norm of y/E(-) + || - |13, (2.16)

where £(u) := E(u, u). By the theory of Dirichlet forms, (€, F(U)) is a regular Dirichlet form on
L2(U) if (€, F) is a regular Dirichlet form on L?(M, i) (see, for example, [8, Theorem 4.4.3]). In
this case, denote the heat semigroup of (£, F(U)) by {PY};~0. The integral kernel of {PY};~¢
(should it exist) is denoted by p¥ (z,y) and is referred to as the heat kernel of (£, F(U)) or the
Dirichlet heat kernel of (£,F) in U.

Definition 2.8 (Localized lower estimate). We say that condition (LLE) holds if the following
two properties are satisfied:

(1) for any bounded open set © C M, the Dirichlet heat kernel p{*(z,y) exists; -
(2) there exist C' > 0 and ¢ € (0,1) such that, for any ball B := B(zg, R) with R € (0, R),
for any t < W (g, 6R) and for p-almost all x,y € B(xg, SW ~1(x0,1)),
~1
V(.’EO, Wﬁl(x07 t)) .

We say that condition (sLLE) (strong localized lower estimate) holds if (LLE) holds and, in
addition, the Dirichlet heat kernel p{*(z,y) is locally Hélder continuous in

(z,y,t) € 2 x Q x (0,00)
for any non-empty bounded open set {2 C M.

P (z,y) > (2.17)

In other words, the inequality (2.17) says that the Dirichlet heat kernel pP (z,y) satisfies the
near-diagonal lower bound for x,y close to the center of B.

Under condition (sLLE), we can rephrase the inequality (2.17) in a simpler way: there exist
some constants C' > 0,9 € (0, 1) such that, for all x € M, 0 < R < R and all t < W(z,0R),
~1
V(z, W-(z,1))

The following theorem is our first main result that gives a lower estimate of the heat kernel.

for all y € B(z,6W 1 (x,t)).

PP (z,y) >

Theorem 2.9. Let (£,F) be a reqular Dirichlet form in L* without killing part. If conditions
(VD), (RVD) and (TJ) hold, then

(PI) + (Gecap) < (sLLE) < (LLE) = (sNLE).

We will prove Theorem 2.9 in Section 7.5. The most difficult part is to show the implication
(VD) 4+ (RVD) + (TJ) + (PI) + (Gcap) = (sLLE), (2.18)
which will be done in Section 7.

Let us turn to off-diagonal lower estimates of the heat kernel. For that we need two more
conditions (J>) and (LE). For all z,y € M, denote

Viz,y) :=V(z,d(z,y)) and W(z,y):=W(z,d(z,y)).
Note that V(z,y) and W (x,y) are not symmetric in z,y in general.

Definition 2.10 (Lower bound of jump kernel). We say that condition (J>) is satisfied if there
exists a non-negative function J (called the jump kernel) such that

dj(z,y) = J(z,y)du(y)dp(z)
in M x M, and, for p x p-almost all (z,y) € M x M,

C
Vi(z,y) W(z,y)’

J(z,y) = (2.19)
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where C > 0 is a constant independent of z,y.

Definition 2.11 (Lower bound of heat kernel). We say that condition (LE) is satisfied if the
heat kernel py(z,y) exists and, for any Cyp > 1, there _exists a constant C > 0 such that for
p X p-almost all (z,y) € M x M and any t < Co(W (z, R) A W (y, R)),

1 t
>C A . 2.20
o) 2 € (et A ) 220
We say that condition (sLE) is satisfied if condition (LE) is satisfied and the function p:(z,y)
has a version satisfying
pes(en) = [ e 2peis
for any t,s > 0, 2,y € M and satisfying (2.20) for all z,y € M and t < Co(W (z, R) AW (y, R)).

Denote by (C) the condition that the Dirichlet form (&, F) is conservative, that is
P1=1 in M for each t > 0.

The second main result of this paper is following theorem.

Theorem 2.12. Let (€, F) be a regular Dirichlet form in L? without killing part. If conditions
(VD), (RVD) and (TJ) hold and the jump kernel J(x,y) exists, then

(J>) + (Geap) + (C) = (sLLE) + (sLE) = (LLE)+ (LE) = (J>) + (Gcap).
We will prove Theorem 2.12 in Section 8.

Corollary 2.13. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that
conditions (VD), (RVD) and (TJ) hold, and the jump kernel J(z,y) exists. If

inf R 2.21
zlélMW(z’R) > 0, (2.21)

then
(J>) + (Geap) < (SLLE) + (sLE) < (LLE) + (LE).
Moreover, under these hypotheses, (€, F) is conservative.

Remark 2.14. The assumption that (2.21) can be easily verified in the following two cases:
(1) R = diam M;
(2) the function W (z, R) is, in fact, independent of the space variable z.
Indeed, in the case (2) the condition (2.21) is obvious. In the case (1), if R = oo then

W (z, R) = oo so that (2.21) is again trivially satisfied. Consider the case when R = diam M <
oo. Then we have by (2.8), for any x,y € M,

- - B

Wi, ) Wi dy +7) _ (M) <280, (2.22)
Wy, R) W(y, R) R

Hence, for an arbitrary fixed point x € M,

inf R) > cW(z, R
ylélMW(y,R)_C (,R) >0

for some ¢ > 0, which proves (2.21).

In the paper [14], the authors study the upper bound of heat kernel under mild assumptions on
a doubling space. Combining the results in [14] and the results in this paper, we can obtain the
two-sided heat kernel estimates (see Theorem 2.19 and Corollary 2.20). To state these results,
let us introduce more conditions.

For a given number 1 < ¢ < oo, let ¢’ be the Holder conjugate of q, that is,
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so that ¢ =1if g =00, and ¢ = 00 if ¢ = 1.

Definition 2.15 (L%tail estimate of jump kernel). For ¢ € [1, 00], we say that condition (TJ,)

is satisfied if (€, F) has the jump kernel J(x,y) such that, for all x € M and R > 0,
C

V(x, R)Y4 W(z,R)’

where C' € [0, 00) is a constant independent of z, R.

(2, M La(Be,r)e) < (2.23)

Of course, if ¢ < oo then we have

1/q
I (%, )| La(B@,R)e) = (/ J(l’,y)qdﬂ(y)> ,
B(z,R)°

while for ¢ = oo

| (z, ) La(B(z,R)e) = esup J(z,-).
B(z,R)°

Definition 2.16 (Upper bound of jump kernel). We say that condition (J<) is satisfied if (£, F)
has the jump kernel J(z,y) such that, for (u x p)-almost all (x,y) in M x M,

J(z,y) <

V(z,y) W(z,y)’ (2.24)

where C' € [0, 00) is a constant independent of z,y.
Note that if ¢ = co then ¢’ = 1 and, hence, condition (TJ) coincides with (J<), that is,
(J<) = (TJeo).
If further V(z, R) < R® and W (z, R) =< R®, then (2.24) becomes

J < ——
(.T,y) = d(l‘,y)a'i_ﬁ,

which was a starting point in a lot of literature, see for example [6], [10] and the references
therein.

Let us recall the notion of a regular E-nest (cf. [8, Section 2.1, p.66-69]). For an open set
UC M, let

Cap,(U) := inf{€(u) + |[ul|? : uw € F and u > 1 p-almost everywhere on U} (2.25)

(noting that Cap,(U) = oo if the set {u € F : u > 1 on U} is empty). An increasing sequence
of closed subsets {F}}3, of M is called an E-nest of M if

klim Cap, (M \ Fy) = 0.

An E-nest {F}} is said to be regular with respect to u if for each k,
p(U(z) N Fy) >0 for any « € Fj, and any open neighborhood U(x) of z.
For an E-nest {F},}72 ,, denote by
C({Fy}) :== {u is a function on M : u|p, is continuous for each k} . (2.26)

A function u : M — RU{oo} is said to be quasi-continuous if and only if u € C({F}}) for some
E-nest {F}7° .

We introduce condition (TP,) for ¢ € [1,00] that means a certain L?-estimate of the tail
P,1pc of the heat semigroup {P;} outside ball.

Definition 2.17 (L9%tail bound of heat semigroup). We say that condition (TP,) holds for a
given number 1 < ¢ < oo if the heat kernel p;(z,y) exists on (0,00) x M x M, and there exists
a regular E-nest {F}} such that the following two statements are true:
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(1) for every x in M and every t > 0,
pt(ZU, ) S C({Fk})7
(2) for any ball B := B(x, R) with R € (0,R) and any 0 < t < W(z, R),

1 t
e N , 2.2
1pe(2; )l La(pey < C <V(:v, W1(z, t)V/e "V (x, R)l/q'W(waR)> 220

where C' is a positive constant independent of B, t.

For any ¢ € [1, 00], define condition (UE,) that is an off-diagonal upper estimate of the heat
kernel.

Definition 2.18 (L4%-upper bound of heat kernel). For a given 1 < ¢ < oo, we say that condition
(UE,) is satisfied if there exists a pointwise defined heat kernel p(z,y) for a regular E-nest {Fj}
such that, for all 2,5 € M and all 0 < t < W (x, R) AW (y, R),

1 t
p(®y) <O (V(x,W_l(x,t))l/ql " V(%y)l/qlw(x’y))

1 1
X + , 2.28
(Ve eo t e vom) 22
for some positive constant C' independent of ¢, z,y.

For ¢ = 0o, we write (UE) for (UEL,), by omitting the subscript oco.

The following theorem provides a two-sided estimate of the heat kernel.

Theorem 2.19. Let (£, F) be a regular Dirichlet form in L* without killing part. Assume that
R = diam M. If conditions (VD), (RVD) hold, then for any q € [2, 0],
(PI) + (Gceap) + (TJ,) < (TP,) + (sLLE)
& (TP,) + (LLE)
= (UEy) + (NLE) + (C).
We will prove Theorem 2.19 in Section 8.
Combining Theorem 2.19 and Theorem 2.12, we immediately obtain the following.

Corollary 2.20. Let (€, F) be a reqular Dirichlet form in L? without killing part. Assume that
R = diam M. If conditions (VD), (RVD) hold, then for any q € [2,00],

(J>) + (Gceap) + (TJ,) & (TPy) + (sLE) + (C)

& (TPy) + (LE) + (O) (2.29)
& (TP,) + (LE) (2.30)
= (UE,) + (LE) + (C). (2.31)
In particular, if ¢ = 0o (so that (TP ) < (UEw) = (UE)), then we have
(Geap) + (J) & (UE) + (LE). (2.32)

The equivalence in (2.32) generalizes the results in [6], [10] (see also [5]). Let us emphasize that
the scaling function W (x,r) in the present paper may depend on the variable x (which causes
serious difficulties in the proof), while in [6] and [10] the scaling function does not depend on z.

Example 2.21. Assume that the measure pu is a-regular for some « > 0, that is,

V(x,r) ~r®
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for all z € M and r > 0. Then the both conditions (VD), (RVD) are trivially satisfied with
R = 0. Set W(x,r) = r? for some 3 > 0 and all z € M and 7 > 0. The condition (TJ) means

in this case that o
J(z,dy) < —. 2.33
/ CIE (2.33)

The Poincaré inequality (PI) means that, there exist C' > 0 and x € (0,1] such that, for any
ball B := B(xg, R) with 0 < R < R and any function u € F' N L,

/ |u—u,€B|2d,u§CRﬂ/ dTl'g(u). (2.34)
kB B

The generalized capacity condition (Gcap) means that, for any v € F' N L* and for any pair of
concentric balls By := B(xg, R), B := B(zo, R+ 1) with g € M and 0 < R < R+ r < R, there
exists some ¢ € R-cutoff(By, B) such that

E(u?p, ) < r% / u?dp. (2.35)

B
Theorem 2.9 says in this case that, under the standing assumption (2.33), the conditions (2.34),
(2.35) are equivalent to the following localized lower estimate: for any ball B = B(x,r) and for

any t < (57")5 , the Dirichlet heat kernel in B exists and satisfies the inequality
B € 1/6
P (2,y) > s L ye B(z,dt™/7).
Consequently, the global heat kernel exists and satisfies the near-diagonal lower estimate
€ 1/p
pe(wy) 2 o5 fd(w,y) <ot/7
The condition (J>) means in this case that
J > .
092 Ty
Hence, under the hypotheses (2.33), (2.34), (2.35) and (2.36), Theorem 2.12 yields the full lower

estimate: (o+3)
1 t C d(z,y)\ "
pi(z,y) > C (ta/ﬂ A d(x,y)a"'ﬁ) ~ ta/B (1 * t1/8 ) '

3. ENERGY MEASURE

(2.36)

In this section we collect some elementary properties on energy measures, which will be used
later on.

Let (£,F) be any regular Dirichlet form in L? with the Beurling-Deny decomposition (2.5).
Let
Floc :=={u:Y U € M, there exists v € F so that v =u p-a.e. on U}.

Since (&, F) is regular, the constant function 1 € Fioc, so that F' C Fpe. It is known that for
any u € Fioe N L™, there exists a unique Radon measure dI'Y)(u) := dI'¥) (u, u) such that

ED) (u,u) = / Al (u, ),
M
see for example [8, Lemma 3.2.3, and the first two paragraphs on p.130] wherein the symbol
dpdyy = 2dT D) (u, u)

is used instead. Moreover, these measures satisfy the following properties: for any w,v,w €
EOC m LOO7

e the product rule ([8, Lemma 3.2.5, and the second paragraph on p.130]):
dl' ) (uw, w) = udl'P) (v, w) + vdlF) (u, w); (3.1)
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e the chain rule ([8, Theorem 3.2.2, and the second paragraph on p.130]):
dI'E/(®(u),v) = &' (u)dl ") (v, w) (3.2)

for any ® € C'(R) (one does not need to assume ®(0) = 0);
e the Cauchy-Schwarz inequality: for any f € L*(M,T") (), g € L*(M,TE) (v))

/|fg|dF (u,v) < (/ F2drt) >1/2 (/g2dr<L>(v)>1/2 (3.3)

(cf. [21, on p. 390]).
Moreover, for any u € Fioc N L, we have
dI' B (Jul) = dI'™ (u) (3.4)
(see [12, Eq. (5.6)]).
For a Borel measurable subset © of M and u € F’, define the measure dl'q(u) by
dla(u)(z) = dT' (u)(z) + /M La(y)(u(z) — u(y))*dj(z,y). (3-5)

Here we let the measure 7 = 0 on {x = y} for convenience. Such a measure dl'g(u) is well-
defined for any u € F' and Q C M. Clearly, for any three sets A, B, with A C B, any u € F’
and any measurable function f > 0,

/ £ / fdUs(u (3.6)
and

/deB(u/\l)S/fdrB(u). (37)
Q Q

4. CHANGE OF METRIC

4.1. A new metric. In [14], the authors introduce a new metric d, on M, which is comparable
with the original metric d. In particular, under this new metric d,. the measure p still keeps the
doubling property (or the reverse doubling property). More importantly, the scaling function
W (z, R) becomes independent of point z. Let us recall some properties of this new metric which
will be used in this paper.

For any x,y € M, set W(x,y) := W(z,d(x,y)). Let
D(z,y) == W(z,y) + W(y,2), (4.1)

Clearly, the quantity D(z,y) = 0 if and only if x = y, and is symmetric: D(z,y) = D(y,z). The
following proposition shows that D(z,y) is a quasi-metric on M.

Proposition 4.1 ([14, Proposition 5.1]). There exists a constant C1 > 1 such that for all x,y, z

mn M,
Consequently, there exist two constants 3, Co > 0 and a metric d, on M such that
Cy tdu(2,y)’ < D(z,y) = W(z,y) < Cad(z,y)" (4.3)

for all x,y in M.

In the rest of the paper, 8 will be always refer to as the constant from Proposition 4.1.
Define the function F' by

F(z,R) :=W(xz,R)}"/?, zeM, R>0, (4.4)
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where 3 comes from (4.3). Clearly, such a function F(z,-) is strictly increasing on [0, oo] for any
x € M, since so is W (x,-). Moreover, by (4.3)

L7'du(z,y) < F(x,d(x,y)) = W(z,9)"/? < Ld.(z,y) for all 2,y in M (4.5)

for some constant L > 1. For z € M, let F~!(z,-) be the inverse of the function t — F(x,t),
and then

F~ Yz, t) = W (z,t9), t>0.
For any r > 0, let

B (z,r) ={y e M :di(y,x) <1}

be an open ball under the new metric d,.

Proposition 4.2 ([14, Proposition 5.2]). There exists a number Ly with Lo > L? > 1, where
L > 1 is the same constant as in (4.5), such that the following properties are true.

(1) For all x in M and all r > 0,
B.(z,Ly'r) € Bz, F~*(x, L™'r)) C Bu(w,7), (4.6)

where F~Y(z,-) is the inverse of F(x,-) with F(x,-) defined by (4.4).
(2) For all x in M and all R > 0,

B(x,Ly'R) C Bu(x, L 'F(z, R)) C B(z, R). (4.7)

Consequently, a subset of M is open under the metric dy if and only if it is also open under

d.

Proposition 4.3. For any n > 0 and for any x,z € M with d,(z,2z) < nW (z, R)Y/?, there
exists a constant C' > 0 such that

C'W(z,R) < W(z,R) < CW(z,R). (4.8)
Proof. Fix x, 2 € M with d,(z,2) < nW (z, R)"/?. Tt suffices to consider the case when R < oo.
By the second inequality in (4.5) and the left inequality in (2.8), we have
W (z,d(x,2)) = F(z,d(z,v))° < (Ld.(z, 2))? < (Ln)’W (2, R) < W (z,cR),
for some ¢ > 0. This implies that
d(x,z) < cR.
This together with the right inequality in (2.8) implies that
- - = P2
W@R) Wde2)+R) . (M) < C(e+1).
W(z,R) W(z,R)

Similarly, we also have

W(z, R) . 3,
WeR) < C(c+1)".

By renaming the constant C, we finish the proof. (]

For any x in M and any r > 0, let Vi(x,r) be the volume of a ball B,(z,r) under the metric
dy, that is,
V;(JZ‘, T) = ,U(B*(l‘, 7"))

Note that R is the diameter of M in [14], while in this paper, it can be smaller than diam M.
Following the proof of [14, Proposition 5.4] and using Proposition 4.3 instead of [14, Proposition
5.3], we can prove that the reverse doubling condition (RVD,) under the new metric d, holds
true for all z € M and r < W (z, R) (see Proposition 4.4(2)).

Proposition 4.4 ([14, Proposition 5.4]). Assume that (VD) is satisfied. Then the following
statements are true.
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(1) Condition (VD) holds true: there exists a constant C' > 0 such that, for all x in M and
all r > 0,
Vi(z,2r) < CVi(z, 7). (4.9)
Consequently, there exists a constant o, > 0 such that for all x,y € M and all0 < s <7
with dy(z,y) <,
‘/;(:L‘,'I") S C (C)a* '
Vily, s) 5
(2) Assume in addition that (RVD) is satisfied. Then condition (RVD.) holds true: there
exists a constant o/, > 0 such that for all z € M and all 0 < s < r < W (z, R)"/?,

FerELON a0

4.2. Some conditions under the new metric. In this subsection, we will rephrase the con-
ditions (TJ), (PI), (Cap~) under the new metric d.. Besides, we will use conditions (Nash,) and
(FK,) under d,, that are called the Nash inequality and Faber-Krahn inequality, respectively.
These conditions will be used to derive the weak Harnack inequality.

Definition 4.5. We say that condition (TJ,) is satisfied if there exists a non-negative kernel J
on M x B(M) such that
dj(z,y) = J(x,dy)dp(x) in M x M,

and for any point x in M and any r > 0,

. C
J(x, By(z, 7)) < 5 (4.11)
where C' € [0,00) is a constant independent of z,r with C'= 0 when J = 0.
It is proved in [14, Proposition 6.4(3)] that
(TJ) = (TJ (4.12)

x)-
Definition 4.6. We say that the Poincaré inequality (P1.) is satisfied if there exist two positive
constants Cy, Kk« with k. < 1 such that, for all B, := B, (zo,r) with r € (0, W(xo, R)l/ﬂ) and all
functions u € F' N L,
/ |u - u’f*B*
K B

It known that for any ball B,
][ lu — up|?dp = inf][ lu — al?dpu. (4.14)
B a€R B

Indeed, for any a € R, we have

][|ua| dp = ][|uuB+uBa| du

_]{9 (lu = upl* +2(up — a)(u — up) + (up — a)?) du

2dp < C*rﬁ/ dl'p, (u). (4.13)
B

:][ lu —ug|*du + 2(up — a)(up — up) + (up — a)*
B

:][ lu —ug|*du + (up — a)? 2][ lu — up|du,
B B

which implies that

inf][ lu — al?dp 2][ lu — ug|*dpu.
a€R B B

The other direction is trivial, thus showing that (4.14) is true.
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Proposition 4.7. Let (£, F) be a regular Dirichlet form in L?, and let d. be the new metric
defined in Proposition 4.1. Assume that condition (VD) holds. Then

(PI) & (PL). (4.15)

Proof. Assume that condition (PI) holds with the constant x < 1.
Fix a ball B, := B,(z,r) with r < W(z, R)Y/#. Set
R:=F Y, L™ 'r) < FY(x,r) < R.
Note that by (4.4)
W(z,R) = F(z, R)? = (L ter)”. (4.16)
By (4.6), we have
B.(z,Ly'r) € B(z,R) C Bi(z,7) = B,. (4.17)
It follows that

][LIB lu — unLng*‘Qd/‘ = inf][B ) lu — al®*dp  (by (4.14))
KLy~ Dx kB (z,Lg 1)

a€R
‘/*(.CL',’I") ][ 2
_ —al“d by (4.17

C inf][ lu —al*du (by (VD.))
acR kB(z,R)

IN

IN

—Cf u e Pdi (o (4.14) again)
B(z,R)

< C'W(z,R) /B s Oy (D)

< C’(L—lcr)ﬁ/ dlp.(u) (by (4.16), (4.17), (3.6)),

thus showing condition (PL,) by setting r, = kKL; L
Similarly, one can show (PI,) = (PI). Indeed, let B := B(z, R) with R < R and set
r:= L7'F(x,R) < W(x,R)Y/5.
Note that
W(z,R) = F(z, R)’ = (Lr). (4.18)

By (4.7), we have

B(x,Ly'R) C Bi(z,r) C B(x,R) = B. (4.19)
It follows that

lu—u_ —1p|%dp = inf][ lu — al?dp (by (4.14))
]£*Lng Felo B a€R )y, B(w, Ly ' R)

V(z,R
<t P oy (419))
a€R V(x, F&*Lo R) Fx By (2,1)

IN

C inf][ lu —al*du (by (VD))
a€R )k, B.(z,r)

< Clrﬁ/B ( )dFB*(x7r)(u) (by (4.14) and (PL,.))

< C’L—ﬁW(x,R)/ dlg(u) (by (4.18), (4.19), (3.6)),
B
thus showing that condition (PI) holds by setting x = kL L<r. O

We look at condition (Nash,).
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Definition 4.8. We say the Nash inequality (Nash,) holds for (£, F) if there exist two positive
constants C, v such that, for all B, := B.(z¢,r) with » > 0 and all u € F(B,)

B

214w Cr — y

3 € G () + W (a0, By ) (4.20)
We remark that both constants C, v above are independent of R.

Lemma 4.9. Let (§,F) be a reqular Dirichlet form in L?, and let d, be the new metric defined
in Proposition 4.1. Then

(VD,) + (RVD,) + (PL,) = (Nash,). (4.21)

Proof. Fix a ball B, := B,(xg,r) of radius r > 0. We divide the proof into three steps.
Step 1. We show that for any s > 0 and u € .7:(B )

lus||3 < sup lull?, (4.22)

zeB *‘/*( )

where C is a positive constant independent of s, u, By, and

us(x) :_]{3*(90,5) u(z)du(z)

is the average of u over the ball B,(z,s).
Indeed, we have by condition (VD) that for all s > 0,

sl = [ sy . 1 anCGE)

1B* xs)( )
/|U ) dp(2) Mmdﬂ(ﬂﬁ)

= [ ) [ eI, )

]-B (2,9) (‘T)
<C )| dp( *—d = C .
[ lants) [ D ) = Clal,
On the other hand, since v = 0 outside B, = By (xg,7), the function us = 0 outside the set
Uyen, B(y, s). It follows that

el )
Us|loo = sup ulz d/J, z
[Jus|| v, o Velns) oo u(2)|dp(z)

Vily,s) 1 /
< sup  sup u(z)|du(z
yEB. 2By (y,s) Ve(T, 8) Valy, s) B*(m)‘ (2)]dp(z)

sup ———||ul|1. (by (VD,
sup V*(%S)H 1 (by (VDs))

IN

Therefore,

[,

9 C?
< < _
lus||z < [Jusloollusllt < ISEUEE’* Vi(z, s)

thus showing (4.22).
Step 2. We show that for any s € (0, W (zo, R)YP) and any u € F,
lu = us]|3 < C57E (u,w), (4.23)

where C is some positive constant independent of s, u, and the constant x, comes from condition
(PL,).
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Indeed, fix a function v € F and s € (0,%W(xg,§)1/ﬁ). Since M is separable, there is
a countable sequence of balls {B; := Bi(zj,s),i > 1} such that B; N B; = 0 if i # j and
M C U2,5B;, see for example [19, Theorem 1.2, p. 2]. Thus,

o
fu-wld< Y [ jue
i—1 /9B

o0 o
< 22/ \u—u(;Bi\Qd,u—i—2Z/ |ueB, — u,|2dp. (4.24)
i=175Bi i=175Bi
Note that by condition (PL,),
/ |u — uGBi|2d:UJ < / \u — u63i|2d’u < 0(6/%*_15)6/ dr (6K713_)(u), (4.25)
5B; 6B; (6r5 ' B;) o

from which, it follows from (VD,) and Cauchy-Schwarz inequality that

/5& Jue, — usl'dp < /5& V*(rlv,s) /B*(w lues, — u(2)|*du(z)du(w)
= /53i m /6& lup, — u(2)[*dp(z)dp(z)
< /5&%.0(6&;15)13 /(GK* B)dr(%_lBi)(u)
— /5& Vv(f(nxij) j(ﬁ;(;)) .C(6ﬂ;15)ﬂ/(6m13)d1“(6m 5, (1)

< ' /(6 B)dr(ﬁm_lBi)(u)‘ (4.26)

Therefore, plugging (4.26), (4.25) into (4.24), we obtain

u — us||3 < C’s’gZ/ dI‘6 “ip) ) < CSBZ/

6I€* GH*

On the other hand, by the doubling property (VD,), there is an integer Ny > 1, depending
only on the constant in (VD,), such that every point = € M is contained at most Ny number of
sets 61@_130. Then, we obtain

lu = sl < c*sﬂz /

) = 05 / Z Lgp-1p,)d0(w) < NoCs"E(u),
thus showing (4.23).
Step 3. We show the inequality (4.20) in condition (Nash,).

Indeed, we have by (4.22), (4.23) that for any s € (0, %’*W(mo,ﬁ)l/ﬂ) and any u € F(B,),

Jul?
ol < 2wl + 2l < o (E() + L),

On the other hand, when R < oo, we have for any s € [%W(wo,ﬁ)l/ﬁ, 00)

2 s”
(6= K W (zg, R)Y/P)
Adding up the above two inequalities and setting Co := Cy V (6K,

lull3 = (6551) "W (w0, B) ™ |ull3-

8 we have for all s >0

)
ol

3 s < 7 (£) + W oo, B)™ ull) + sup 7
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[l Veeo,m)
p .
V;(ZL‘(),’I“) € B, ‘/*(33, S)

= 57 (E(u) + W(xo, B) " |Jull3) +

From this and (VD,), we have for all s < r,

N 2
11,112 < B \=11,,112 T\ [[wlly _ .
Cyllull < 7 (£() + W o, B ul) +€ (3) " 0 LS (4:27)
Whilst for all s > r,
o/ 2
11,112 < B =112 T\ [[wlly .
Cy lull < o7 (£ + W o ) ulB) + € () 7055 (4:28)
since, by using (VD.) and (RVD,),
Vi(zo, 1) Vi(zg, r) Vi(z, 1) e
ol Sk RV <C|- .
P Vs = Vo) Vers) = ()
Define two functions fi, fo : Ry — R, by
’ - —o (e ull?
s s % [|u
= — (E(u) + W (zo, B) " |lull3 . 0
Als)i= % €+ Weao B i) + S (F ), s>0,
57 — s~ [ lu?
f2<3) = ﬁ (S(U) + W(.I'o,R) 1HuH%) =+ a; V*(xo,rl) , §> 0.
It follows from (4.27), (4.28) that
if
Ciluqu < fl(s)a 1 s <, (4.29)
fa(s), ifs>r,

where C' > 0 is independent of u, B, W(xo,ﬁ)l/ﬁ, s, but may depend on ay, o, 3 and on
constants in conditions (VD,), (RVD,).

We will minimize the right hand side of (4.29) over s € (0,00). Indeed, a direct computation
shows that fi(s) attains its minimum over s € (0,00) at
1
s1:=r(F(u,r))e=F8,

where

2
Vi(zo, m)r? (€ (u, w) + W(zo, R)~!|ul|3)
Similarly, the function f2(s) attains its minimum over s € (0,00) at

F(u,r) :=

1
Sg = 1(F(u,r))ox+s.

We distinguish two cases whether F'(u,r) < 1 or not.
Case 1 when F(u,r) < 1. In this case,

51 = r(F(u,r))a»lirﬁ <.

Thus, applying (4.29) with s = s, we obtain

B
i )=
Vk(anr)

C M ull3 < fi(s1) = Claw, B) (E(u) + W (2o, B)[lul3) =72 (

for a positive constant C'(ax, ) depending only on «,, 3. Raising to the power 1 + O% on the
both sides and then rearranging the terms, we obtain that

J¢]

w||3Vi(zo,7)\ o~ —

ull (%) < Or (Ew) + W (0, B) ull2) (4.30)
1

where C is a positive constant independent of u, By, W(.’L‘(),E)l/ B,
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Case 2 when F'(u,r) > 1. In this case,
89 = r(F(u,r))a*lw > .
Thus, applying (4.29) with s = s9, we obtain
s
| ul3Vi(2o, 7)) o =
[|||2 < 2||u||2 <Crf (E(w) + W (zo, R) 1||u||%) (4.31)
1
for a positive constant C' independent of u, By, W(xo,}_%)l/ﬁ.
On the other hand, since u € F(B,), we have by the Holder inequality,
[ull < u(B)llull3 = Vi(wo, r)[[ull3-
That is,
[u]|3Vi(zo, 1)
lul?
Hence, it follows from (4.30), (4.31) that

u||3Vi(zo,7)\” —_
a2 (%) < Cr? (£ () + W (20, B)~[ull2) .
1

> 1.

where v = 5% A bfL, = b% since o, < a, thus showing that

B
2(14v) Cr
||UH2 — V;(ZL'(),T)V (

for some C' > 0 independent of W (zg, R)'/8. This proves that condition (Nash,) holds. O

E(u) + W (zo, R) ™ |[ull3) [l

Let £U be the generator of the Dirichlet form (&, F(U)). Denote by A{(U) the bottom of the
spectrum of £V in L?(U). Tt is known that

M(U) = inf 5(“2.
ueF(U\{0} [|ull3

Definition 4.10. We say the Faber-Krahn inequality (FK.) holds for (£, F) if there exist three
positive constants C, v, o, with o, < 1 such that, for all B, := B, (z,r) with r € (0,0, W (2o, R))
and for all non-empty open subsets U, of B,

C7! (B
nw) = S (M(U*)) | (432)

The following derives the Faber-Krahn inequality from the Nash inequality, under the metric
dy.
Lemma 4.11. Let (£,F) be a regular Dirichlet form in L?, and d, be the new metric defined
in Proposition 4.1. Assume that every ball has finite measure under the metric d,. Then

(Nash,) = (FK,).

Consequently, we have

(VD,) + (RVD,) + (PL,) = (FK,) (4.33)

Proof. Let o, € (0,1/2) be a number to be determined later on. Fix a ball B, := B(zg,r) of
radius 7 € (0,0.W (20, R)'/?). Let U, C B, be open. For any u € F(U,) \ {0}, since

lullf < p(Uull3,
we have by condition (Nash,) that
ol

2(1+1/)<
Hu”Z — V*(.%'(),T’>V

(& (uyu) + W (o, B) " |ull3) flu]?”
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u 2\"
< 0% e + Wiao, T~ ful) (“UMIE)

< (r7etu+ a2lulg) (40 ) ulg

Since u(U,) < u(By), it follows that

Julf < € u) (49 ) -+ Collull (431

Taking 0. € (0,1/2) to be so small that

we obtain from (4.34) that

gl < oreu (25

1(Bx)
from which,
, Eu,u) 1 (u(B*)>V
AM(Uy) = inf > ,
(U:) weF (U0} ||ull3 2CrP \ u(U,)
thus showing that condition (FK,) holds. O

Let us rephrase (FK,) under the original metric d, and denote it by (FK).

Definition 4.12 (Faber-Krahn inequality). We say that condition (FK) holds if there exist
three numbers o € (0,1] and C,v > 0 such that, for all balls B with radius less than ¢ R and all

non-empty open subsets U of B,
c! M(B))”
MU) > (— . 4.35
= Wiy ) (4:39)
Proposition 4.13. Let (£,F) be a regular Dirichlet form in L?, and d. be the new metric
defined in Proposition 4.1. Assume that condition (VD) holds. Then

(FK) < (FK.). (4.36)

Proof. Assume that condition (FK) holds. Fix a ball B, := B,(x,r) with 0 < r < ¢, W (x, R)"/8,
where o, is a positive constant to be determined later. Let U, be an open subset of B,. Note
that U, is also open under the metric d by using Proposition 4.2. Set

R:=F Yz, L™ Lor)

so that .

W(z,R) = F(z,R)? = (L7 Lor)® < (L7 Lo)?c?W (2, R).
By the right inequality in (2.8), one can choose o, to be so small that R < o R, where o is the
constant from condition (FK).

Using (4.6) with r replaced by Lgr, we have
B, = Bi(z,r) C B(z,R) =: B,
from which, using condition (FK), it follows that
c! B)\"” c! B.)\" c! B.)\"
AR (u( )) > <u( )> - ﬁ<u( )> 7

W(z, R) \u(Us) Wz, R) \ u(Us) (L= Lor)? \ u(Us)

thus showing that condition (FK,) holds.

Finally, we show the converse implication (FK.) = (FK). Indeed, assume that condition
(FK,) holds. Fix a ball B := B(x, R) with R < oR, where ¢ > 0 will be picked up later. Let U
be an open subset of B, which is also open under the metric d,. Set

r:= L 'F(z, LoR)
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so that

W (z, LoR) = F(z, LoR)? = (Lr)”.
Using (4.7) with R replaced by LoR, we have

B = B(z,R) C By(z,r) =: B,. (4.37)
By the left inequality in (2.8), one can choose o to be so small that
r=L7'W(z, LyR)'? < LW (x, LooR)"/P < o, W (x, R)'/5.

Since U C B C B, it follows from condition (FK,) that, using (4.37) and the right inequality

in (2.8),
C' (B L O (B
vz 5 (5@ =% (o)
ot B L (B
~ LPW(z, LoR) <M(U)> = W(e.R) (M(U)> ’
thus showing that condition (FK) holds. O

We introduce condition (CapZ).

Definition 4.14 (Condition (CapZ)). We say that condition (CapZ) is satisfied if there exists
a positive constant C' such that for all balls B, (xg,r) with r < W (zq, R)Y/?
1(Bx)

ré

Lemma 4.15. Let (£, F) be a reqular Dirichlet form in L?, and d, be the new metric defined
in Proposition 4.1. Then

1
(3ap(§B*7 B, <C (4.38)

(VD) + (Cap<) = (Cap<™).
Consequently, we have

(VD) + (Gcap) = (VD) + (Cap™) = (CapX).

Proof. Fix B, := Bi(zq,7) with r < W (o, R)"/?. Let C be the constant in (2.8), Ly > 1 be
the constant as in (4.6) and C' be the constant in Proposition 4.3 with n = 1.

Step 1. We show that for any z € %B*,

cp(Bx(z,br))
rP ’

where c is some positive constant independent of z, B,, and a, b are given by

a = (262/ﬁ+1L00‘24§ﬁ€1/ﬁ)—1 and b= (2C%ﬂ51/5)—1

cap(Bi(z,ar), Bi(z,br)) < (4.39)

so that a<L61b<b< %
Indeed, let
Ry := F Y (2,L7 'Lyar) and Ry:= F'(z, L 'br)
so that Ry < Ry and
W(z,Ry) = F(z,R,)’ = (L™ 'Loar)? and W(z, Ry) = F(z, Ry)® = (L™ 'br)P.
Moreover, by (4.8) and the fact that d.(zo,2) < %W(:z:g,ﬁ)l/ﬁ, we have

8 R C R —
r W(xo,R)_ < CW(z,R) <W(R),

W(z, Ry) = _ )
() = GLeewe = RL)ICWT = (L)PCOwC

which shows that
Ry < R
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v (2.8), we have

R\ _ W(z,Ry) (L~br)s 5
) > = — 9P2
o ()2 Wy = e aan = 2O

which implies that
2R; < Rs.

Also note that by (4.6),
By(z,ar) C B(z,R1) C B(z,R2) C By(z,br).
It follows from condition (Cap<) that
cap(By(z,ar), B«(z,br)) < cap(B(z, R1), B(z, Rg)) ap(B(z, R1), B(z,2Ry))
CuBo2Rs) . CH(Buestr) _ Cu(B.(z,br)
W(z,2Ry) W(z, Ry) (L—1Loar)s

<

| /\

thus showing (4.39).

Step 2. We show condition (CapZ).

Indeed, using condition (VD,), there exist a finite number N of balls { B.(z;,ar)}Y, covering
3 B., where each center z; lies in 1B, and {B.(z;,ar/5)}Y, are disjoint, for some integer N
independent of B,. Since each ball B.(z;,br) is contained in B, using the subadditivity and
monotonicity of capacity, it follows from (4.39) that

cap((1/2)By, By) anp (zi,ar), By) < anp (zi,ar), Bi(z,br))
C,LL ZZ) br M(B*)
< Z g Nc CE
thus proving (4.38), and so condltlon (Capg) follows. O

Remark 4.16.

(1) Under (VD), conditions (TJ.), (PL), (CapZ) follow from conditions (TJ), (PI), (Cap-)
respectively. We emphasize that the number 3 appearing in (TJ,), (PL), (Nash,),
(FK.), (CapZ) keeps the same, which comes from (4.3) under the new metric d,.

(2) By Propositions 4.4 and 4.7, Lemmas 4.9 and 4.11, and Proposition 4.13, we see that
under the conditions (VD) and (RVD), condition (PI) implies (FK). Hence, most of
results involving (FK) in [12], [13], [14] also hold true if (FK) is replaced by (PI).

5. WEAK HARNACK INEQUALITY AND OSCILLATION INEQUALITY

In this section, we will derive the weak Harnack inequality and the oscillation inequality. The
oscillation inequality gives rise to the local Holder continuity of harmonic function, which is used
to derive the lower bound of the heat kernel.

Definition 5.1. Let © be an open subset of M. We say that a function u € F' is subharmonic
(resp. superharmonic) in Q if

E(u, ) <0 (resp. E(u,p) = 0) (5.1)
for any 0 < ¢ € F(Q). A function u € F' is called harmonic in € if it is both subharmonic and
superharmonic in €.

For any function v € F and any two subsets U C V of M, define the tail of v outside V' by

Ty (0)i=esup [ o)l (o.dy), (5.2)

zeU
Note that, since v € F is quasi-continuous, the integral in (5.2) is well defined.
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5.1. Lemma of growth under new metric. We introduce condition (LG,) that is called a
lemma of growth.

Definition 5.2 (Lemma of growth under new metric). We say that condition (LG,) holds
if there exist three constants o > 0,0, € (0,1),v > 0 such that the following is true: if a
function u € F' N L™ is superharmonic, non-negative in 2B,, where B, := B, (x¢, r) with radius
r € (0,27 o, W (xg, R)Y/?), and if

—-1/v
p(B. 0 {u < a}) ( vﬂ&J&WJ>

<eg |1+ ——— ; 5.3
w(B.) a >3

for some a > 0, where tail function Tg, 2p, (u—) is defined by (5.2), then

a

infu > — A4
6%1153* Uy (5.4)

(see Figure 3).

We remark that the three constants eg, v, o appearing in (5.3) are all independent of B, u, R..

FiGure 3. Illustration to condition (LGy)

Before proving (LG.), we need more conditions, say, (ABB.), (EP.). We first introduce
condition (ABB{) for a number ¢ > 0.

Definition 5.3. Given a number ¢ > 0, we say that condition (ABB{) is satisfied if for any
u € F'N L*>® and any three concentric balls By := B(xo, R), By := Bi(zo, R+ ) and Q :=
B. (w0, R') with 0 < R < R+7 < R’ < W(xo, R)"/?, there exists some ¢ € cutoff (B, B,) such
that
C /R Cy
[ara <¢ [ garnw+S(E) [ (55)
Q B, r r Q

where C' > 0,7 > 0 are two constants independent of function u and three balls B{, By, (2, and
dlq, dl'p, are defined by (3.5). We say that condition (ABB,) holds if condition (ABB{) holds
for some ¢ > 0 and C; > 0.

We mention that the value of the exponent C; in (5.5) is unimportant.

The following result is an analogue of [12, Lemma 6.2], which derives condition (ABB,).

Lemma 5.4. Let (£,F) be a regular Dirichlet form in L?, and d. be the new metric defined in
Proposition in 4.1. Then

(VD) + (Geap) + (TJ.) = (ABB,).

J+)
Proof. Let Cyw, Lo > 1 be the constants in (2.8) and (4.6) respectively. Fix three concentric
balls B} := B.(zo, R), By := Bi(zo,R+ 1) and Q := B,(x¢,R) with 0 < R< R+r < R <
W (zo, R)Y/5.
We divide the proof into two steps.



26 A. GRIGOR’YAN, E. HU, AND J. HU

Step 1. We will show that for any v € F' N L*™ and any two concentric balls B,(z,ar) C
By (z,7/2) with z € Bj = B,(zo, R) and with

a:= (2%/P Lol )t € (0,1/2), (5.6)
there exists some ¢ € cutoff (B (z, ar), B«(z,7/2)) such that
_ C
[dra@ <am [ Gdrs e+ [ (5.7)
Q By (z,r) Q

where % is the constant in condition (Gcap) and C' > 0 is independent of u, B, By, Q2 and the
point z.

Indeed, let
Ry :=F7!
so that, using definition (4.4),
W (z, R1) = F(z,R1)? = (L™ Loar)® and W (z, Ry) = F(z, Ry)® = (L™'r/2)". (5.8)
With the choice of a in (5.6), we have

(2, L 'Loar) and Ry := F~(z,L7'r/2)

2R < Ro, (5'9)
since, by (2.8),

Ri) ~ W(zR1) (L 'Loar)?
We may assume that r < Cy "W (2o, R)"/? for some sufficiently large constant Cy > 1 so that
Ry < R, (5.10)

B -1 B
Cuw <R2> 2 > W(z, Ra) _ (L7'r/2) _ Qﬂzcw_

otherwise, one can replace r by Cj Ly, which is less than Cy 1W($0,R)1/ B and then runs the
same argument in the sequel. In fact, the value of Cy can be chosen in the following way: by
(4.8)
— B
Wz, Bo) = (L7'7/2)° < (L71/2)° (C5 ' W (o, B)?)
= (L7'/2)%(CyHPOW (2, R) < W(2, R)

provided Cj is chosen such that (2LCy) #C < 1. With this choice of Cp, we see that Ry < R
by using the monotonicity of the function W (z, ).

Note that by (4.6),
Bi(z,ar) C B(z,R1) C B(z,R2) C By(z,7/2). (5.11)
By condition (Gcap), there exists a function g such that
g € R-cutoff(B(z, R1), B(z, R2)) C k- cutoff (By(z, ar), B«(z,7/2)) (5.12)
and that

C
E(ug,g) < sup —/ u’dp
veB(z,R:) W(@, R2 — R1) JB(2,Ry)

C
< sup —/ u?dp (using (5.9
z€B(z,R2) W(val) B(z,R2) ( ( ))

= sup Wz Fi) ¢ / u?dp
z€B(z,R2) W(:‘Ua Rl) W(Z, Rl) B(z,R2)

< <9

~ (L~1Lgar)?

/ u?dp (using (2.8), (5.8) and (5.11)).
By (z,r/2)
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From this and applying [12, Eq. (5.9)] with Q being replaced by B.(z,7), we obtain

/ u2drB*(z,r) (g) < 4/ g2dFB*(Z,T) (u) + 25(u297 g)
B (z,r) Bi(z,r)
C

<t Pdtpp@ias [ wde Gy
Bi(z,r) T B.(z,r/2)

On the other hand, since the function g is supported in Bi(z,7/2) C Bi(z,7) C Q =
B.(z0, R'), we have

I @ - gw)rai- ( I/ [ o
QxQ «(2,7) X By (2,r) Bi(z,r)x (Q\Bx«(2,1)) (Q\Bx«(z,r)) X B« (z,r)
o )
(\Bux(2,7)) x (N Bx(2,7))

— / / () (g(x) — g)2dj
By (z,r) X B« (2,r)
4 / / & (2)g(@)dj
B.(2.5)x(Q\B. (=)

+ / / u?(2)g*(y)dj. (5.14)
(Q\B*(ZJ‘))XB*(Z,%)
We estimate the last two integrals in (5.14). Indeed, for any
r
(z,y) € Bu(z, 5) x (@ Bi(z,7)),
we have d.(x,y) > 5. It follows from (TJ,) that

// @< [ wedu) e [y
By (z,r/2) X (Q\Bx«(z,r)) B (z,r/2) 2€By(z,r/2) J B« (x,r/2)°¢

¢ 2
< — u”(x)du(x).
P By (z,r/2) ( ) ( )

Similarly, for any (z,y) € (2 \ B«(z,7)) X B.(z, §), we see that di(z,y) > 5. Thus by (TJ,),

/] (@) (4)dj < C@iar) ew [ Py
(Q\Bi(2,7)) X B« (2,5) O\ B« (z,r) 2€Q\ By (2,r) J B« (z,r/2)¢

§/ w?(z)dp(z)  esup / J(x,dy)
Q\Bx«(z,r) 2€Q\Bx(z,1) J B« (z,r/2)¢

c 9
< — u-(x d/L x).
rﬂ \ *(Z7T) ( ) ( )

Plugging the above two inequalities into (5.14), we have

2 2 2 9, . C 9
| @) g < [ /B e @@ g+ [ (315

Therefore, using the fact that supp(g) C B« (2, 5), we have by (5.15) that

/szdl“g(g):/ u?dl'P)(g //QXQ (x)(g(x) — g(y))*dj
= Jo @ [ @) - o)
< o PEE@ ] ) a0 [
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2 c 2
= udf‘*zrg—i——/udu
/B*(z,r) Bt )( ) P Q
< 4/ Gl g (1 )+£/ qupH—i/ Wdy (by (5.13))
= JBuen) T S ) 7 Jo

<4 / g*dlp, (o0 (u) + c—; / uldp. (5.16)
By (z,1) " Ja
y (5.11) and (5.12), we have
¢:=gAN1e cutoff(B(z, R1), B(z, R2)) C cutoff (By(z,ar), Bs«(z,7/2)).
Since g < K¢ in M, we obtain by (3.7) and (5.16) that

/
[ dra@) < [ wdval) < 4 [ gdbs S [ v
Q Q B (z,r) ™ Ja

C/
<an [ P+ 5 [
By (z,r) Be( )( ) P Q

thus showing (5.7), as desired.

Step 2. We show condition (ABB.).

Indeed, by condition (VD,.), there exist a finite number of balls {B.(z;, ar)}X, with z; € B}
such that {B.(2;,ar)}Y, cover B} = B.(zo, R) and {B.(z;,ar/5)}Y, are disjoint, where

N§C<R+T) . (5.17)
r
By (5.7), for each 1 < i < N, there exists some ¢, € cutoff (B, (z;, ar), B«(z;,7/2)) such that
[dra@y<am [ vy @+ [ (518)
Q B (z,r) r Q

Define
¢ = max{¢17 ¢27 e 7¢N}

Since {B.(z;,ar)}Y, cover Bf and

G B, (z,7/2) C By(x0, R+ 1/2),

i=1
the function ¢ belongs to cutoff (Bg, B,). On the other hand, for any f,g € F/,

dla(fV g) +dla(f A g) < dTo(f) + dTa(g).
It follows from (5.18) that, using (5.17) and (3.6),

N
/Quzdrg(é) < Z/U2drﬂ(¢i)

N
C
< 4@ / B en)+ 30 5 [ wPd
»(zi,m) i=1
d (R+r\™
<4/€Z/ Zr¢2dFB* u) + r_5< . > /Quzdu
< 4

Cl R/ Qx
/ <Z 1p.(z, R+7‘)> dFB* (u) + B (T) /QUQd,u.
B i=1
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By condition (VD,), there exists an integer Ny > 1, independent of balls B, By, €2, such that
each point y in B, belongs to at most Ny balls like B, (z;, R + r). Therefore, we conclude from

above that )R
W2dTo($) < 45Ny | ¢2dTp (u) + & (2 w*dp,
Q B B\ r Q

thus proving (ABB.). O

The following condition (EP,) is the counterpart of condition (EP) in [12] under the new
metric dx.

Definition 5.5 (Condition (EP,)). We say that the condition (EP.) is satisfied if there exist
two universal constants C' > 0,y > 0 such that, for any three concentric balls Bj := B, (xo, R),
B, := B.(xo, R+ 7) and Q := B,(xo, R') with 0 < R < R+r < R’ < W(xg, R)'/?, and for any
u € F' N L™, there exists some ¢ € cutoff (B, By) such that

£ (s, ug) < SE(wuo?) + (E)Cl [ns [ s

r

The following is a parallel version of [12, Eq. (8.3)] under the new metric d,.

Proposition 5.6. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume
that every metric ball has finite measure. Then

(TJ,) + (ABB,) = (EP,). (5.19)

Consequently,
(VD) + (Geap) + (TJ) = (EP.). (5.20)

Proof. Note that conditions (TJ,) and (ABB,) are analogous to conditions (TJ) and (ABB) in

A\ C
[12] respectively under the new metric d, (although there is a ratio term (%) "in (ABB,) and

there is no such term in (ABB) in [12]). Hence, one can follow the same arguments in the proof
of [12, Eq. (8.3)] to obtain the first implication (5.19).

The second implication (5.20) follows from Proposition 4.4(1), (4.12), Lemma 5.4 and (5.19).
O

The following lemma plays an important in the proof of Lemma 5.8. For simplicity of notation,
fix some xg € M and set for any r > 0

B, := B.(xo,1).

Let us also recall the notion of “quasi-everywhere” (see the last paragraph in [7, p. 68]). Let FE
be a subset of M. A statement depending on x € FE is said to hold q.e. on F if there exists a
set N C E with Cap,(/N) =0 (see (2.25) for the definition of Cap;) such that the statement is
true for every x € E'\ N. “q.e.” is an abbreviation of “quasi-everywhere”. We also write £-q.e.
to emphasize the notion q.e. for the Dirichlet form (&, F). In particular, one can introduce the
notion of g.e. for other regular Dirichlet forms.

Lemma 5.7. Let (€, F) be a regular Dirichlet form in L? without killing part. Assume that
conditions (VDy), (EP,), (FK,), and (TJ.) are all satisfied. Let a function uw € F' N L>® be
superharmonic, non-negative in a ball By, with r € (0,2 Y0, W (xo, R)'/?), where constant o,
comes from condition (FK,). Let 0 < a <b, r <1y <1 be some numbers and set

o _iBan{u<a) | B0 {u <)
1(Bry) 1(Br,)
Then, with the same constants a., v and Cy as in conditions (VD.,), (FK,) and (EP.),

2 Qux ﬁ+cl
my < CA < b ) (T—2> ( 2 ) mit, (5.21)
b—a 1 r9 — 11
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where the positive constant C' depends only on the hypotheses and

A =1 + (7'2 - TI)IBTB(T1+T2)/27BT2 (U_)

FiGURE 4. Tllustration to Lemma 5.7

Proof. Note that any function u € F admits a quasi-continuous version u (cf. [8, Theorem 2.1.3
on p.71]), and that for any u € F and any open subset 2 of M, we have u € F(Q) if and only
if u=0 q.e. in Q°, (cf. [8, Corollary 2.3.1 on p.98]).

Let us fix a quasi-continuous modification of a given function v in F and denote it by the
same letter u. Set v := (b — )4 and

my = pu(Br, N{u < a}), mg:= pu(Br, N{u < b}).

Taking ¢ € cutoﬁ’(Brl,B%(rﬁm)), we have
~ b—u 2 1
my = / P*dp < / ¢* <(b—)+) dp = ; - / (¢v)2dp. (5.22)
By, {u<a} By —a ( - a) By
N————
>1 on {u<a}
Consider the set
E = B%(Tl-‘ﬂ"z) ﬂ {u < b}
By the outer regularity of p, for any € > 0 , there is an open set {2 such that £ C 2 C B,, and
p() < p(E)+e <mg+e. (5.23)

On the other hand, since ¢ = 0 g.e. outside B%(Tﬁm) and v = 0 outside {u < b}, we see that
¢ov =0 q.e. in E°. Since ¢v € F and ¢v = 0 g.e. in Q¢ C E¢, we have

pv € F(Q), (5.24)
from which, by the definition of A\ (),

2 S(gzbv,qbv)
/Q((’”) =N

Therefore, using ¢v = 0 outside 2 again, it follows from (5.22) that

1 2 €(¢U,¢U)
G e G ey

By condition (FK.) and (5.23), we have
B, v B, v

7'2 /’L(Q) 7’2 m2 +e€

iy < (5.25)

where v is the constant from (FK.,).

Let us estimate £(¢v, ¢pv) from above. Since u is superharmonic in Bs,, the function b — u
is subharmonic in By, and so, the function v = (b — u)4+ is also subharmonic in Bs, by using
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[12, Lemma 9.3]. By Proposition 9.2(iii) in Appendix and using (5.24), we see v¢> = v - ¢ €
F(Q) C F(Ba), which gives that
E(v,v9?) < 0.

Applying (EP.) to the triple By, By, +r,)/2, Br, and to= v, there exists ¢ € cutoff (B, B(y, 41,)/2)
such that

3 C

evon) < Seoit)+ 5 (2)7 [ s [[ vwee@

2 AT B, By, x B,
where 7 := ro — 1. Combining the above two inequalities and using the fact that ¢ = 0 outside
B, 4r5)/2, We obtain

C
cwowe) < 5 (2)7 [ s [ v@du@) ew [ o)y
" " Bry B(ry4r9)/2 LE€B(r) 4rq)/2 Bz,
c (ra\O1 9
<=3 (T) vidpu 43 vdp - esup b+u_(y))J(z,dy)
r r Br2 Br2 xEB(T1+T2)/2 B,?Q
b? c
< 55 () lBr 0 {u< b)) + 3bu(Br, N {u < b)) (using v < b))
) (b esup / J(x,dy) +TB,, .. B (u,)>
TEB(ry 4ry)/2 /B, (r2=r1)/2)¢ e
b2 79\ C1 70 FﬁTB( B, (u_)
< Mo — r1+72)/2>°T2 .. ~ .
< ema—g (( = ) 7/2)7 + 2 (by definition of mgy and (TJ,))
b2 C 70T oy oy By (U
< cﬁ%zg (TT2> ' <1 + Brtra)r2b A )) (by the fact TTQ >1)
TPAT b T
~ b2 ] C1
= CM2—g <?) A, (5.27)

where in the fourth line we have used the fact that, for any point = € B, 4,,)/2,
By, C By(z,7/2)".
Combining (5.25), (5.26), (5.27) and letting € — 0, we obtain

- b 2 ()Y rgy BHC
m SC(ba) wimy (3)7
Dividing this inequality by p(B,,) and observing that
my m2
ml:,u(Bm) and mgo = (B

we obtain by using (VD,),

2
B+C
my1 < c< b > m;””u(Bw} (T_2> "A

IN
Q
A

o~
| | o
<
~_
no
A~
33
- no
~__
Q
*
VN
il
N——
S
+
Q
h
3
[N
+
\'T

thus showing (5.21). O

Now we prove (LG,).
Lemma 5.8. Let (£,F) be a reqular Dirichlet form in L* without killing part. Then
(VD.) + (EP.) + (TJ,) + (FK,) = (LG,). (5.28)

Consequently,

(VD) + (Geap) + (TJ) + (FK,) = (LG,). (5.29)
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Moreover, the constants v, o, in (5.3) of condition (LGy) can be taken as the same as in
condition (FK,).

Proof. Let u € F' N L™ be superharmonic, non-negative in Bo, with r € (0,27 o, W (z0, R)'/?)
and let a > 0. Consider the following two sequences of numbers
1

1
Tk 1= 5(1 +27%)r and ay, == 5(1 +27F)a  fork=0,1,2,---.

Clearly, ro =7, ag = a and 7y, | %r, ay | %a as k — oo (see Figure 5). Set

my = /"L(B'f'k n {u < ak}) )

1(Bry,)

FIGURE 5. Sets B,, N{u < ay}

Note that the hypothesis of Lemma 5.7 is satisfied. Applying inequality (5.21) with a = ay,
b=ag_1, r1 =1 and 1o = r_1, we obtain for any k > 1,

ag—1 2\ Th—1 A+t
my, < C Ay — — E— m,
ax—1 — a Tk Th—1— Tk

(rk—1 =1 T, 0 0By, (U=)

where

Ap =1+

ak—1
Since u is non-negative in By, and B,, , C B, C By,, we see by definition (5.2)

TB(rk,1+rk)/2vBTk71 (u-) = TB(rk71+rk)/2:BQT‘ (u-) < Tp,,B,, (u-),

from which, using the fact that ap_1 > %a, it follows that

Ak: < 2A,
where
A — 1 + TﬁTBmBQT (u*)

—
Noting that

—(k—1

Tk—1 <9, Tk—1 _ 142 ( ) < 2k+17 akp—1 < 2k+1,
Tk rg—1—rp 2~k 2k ag—1 — Qg

we obtain that for all £ > 1

me < C-24- 92(k+1)  gon  o(k+1)(B+C1) | 14V _ k14

k-1 k—1°
where D = 23T +8+C1 0 A\ = 22+5+C1 | Thus, applying Proposition 9.3 in Appendix, we have

v (14+v)*
B ) =0 (5.30)

mp < D~¥ (D%A 2 mo
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as k — oo, provided that
14+v

1

1
D%)\ jzy mo = (23+a*+5+01CA) v (22+B+Cl> 2 mo <
Note that (5.31) is equivalent to

p(Br N {u < a})
1(Br)

(5.31)

1
= mg < (23+0‘*+5+Cl C)_; <22+ﬂ+01>_ -t

)

_1
7.‘/giz—yB'r‘7B2T (U_) i
a

=: EOA_% =¢€0 <1 +
which is secured by the hypothesis (5.3) with

1 _1 _14v
f0i= 5 (23+a*+ﬁ+010) v (22+ﬂ+01) vz

With the choice of ¢y, we conclude by (5.30) that
/’L(BT/Q N {u < %}>
:U’(BT/Q)
thus showing (5.4). That is, we obtain (5.28).

It remains to prove the implication (5.29). Indeed, Proposition 4.4, we have that (VD) is
true. By (5.20), we have that (EP,) is true. By (4.12), we have that (TJ,) is true. Therefore,
implication (5.29) follows from implication (5.28). O

=0,

5.2. Weak Harnack inequality. In this subsection, we show the weak Harnack inequality,
which will be used in deriving the oscillation inequality below.

We introduce condition (WHI,), that is called the weak Harnack inequality .
Definition 5.9 (Weak Harnack inequality). We say that condition (WHI,) holds if there exist

three numbers e, k4, o in (0, 1) such that the following is true: if a function v € F' N L™ is su-
perharmonic, non-negative in 2B,, where B, := B,(x,r) has radius € (0,2 o, W (2o, R)/?),

and if B
* D x > 1
(ks By) 2
and
rﬂT%B*JB* (u_) <ea (5.33)
for some a > 0, then
einf u > ea. (5.34)

FIGURE 6. Illustration to condition (WHIL,)
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To obtain the weak Harnack inequality, we need the following result on the average of log-
arithm function cut off by two constants, see (5.39) below. The following result is a stronger
version of [12, Proposition 12.3] (see also [10, Lemma 3.7, p. 469] for the version of pure jump
type Dirichlet form).

Proposition 5.10. Let (£,F) be a reqular Dirichlet form in L? without killing part. Let a
function v € F'NL>* be non-negative in an open set B C M and ¢ € FNL> be such that ¢ =0

in B¢. Fixz any A > 0 and set uy :=u+ A. Then 3—2 e FNL*® and
¢* (L) 2( 2
E(u,-—) < 3E(d,9) — —dr (¢°(2) A ¢*()) |In
Uy BxB

¢2(1’) :
_2//]3ch u)‘(y)u)\(m)dj' (5.35)

Proof. 1t is already proved in [12, Proposition 12 3] that € F N L*®. We sketch its proof.

Indeed, define the Lipschitz function F(t) := GESY +/\
¢2

have o= F(u)¢? on M. Moreover, by Proposition 9.2(7), (ii) in Appendix, we can prove

with Llpschltz constant A™2 on R. Then, we

F(u) e F' and F(u)¢* € FNL™.
That is, & GfﬂLoo

7wy

It remains to show (5.35). Indeed, it was proved in [10, Lemma 3.7, p. 469] that

g(J)( ¢2) < 36D (¢, ¢) -// A (y)) 'ani‘EZ;rdj(m,y)

B ¢2(:v) ,
2//BX36 uA(y)UA(m)dJ(%y), (5.36)

(noting that the existence of the jump kernel J is not assumed therein).

On the other hand, by using the product and chain rules ((3.1) and (3.2)), and then using
the Cauchy-Schwarz inequality (3.3), we have

E(L)(u,¢—2): / dr) (u, ¢2) /Q—deﬂ /—dr (u, uy)

U\ U\ UX

/—dF /dF (g /—dF D) (u, uy)

:——/—dF u) + 260 (6, ).

| /\

From this and using (5.36), we conclude that
N _ g0 (0 O e (0
5( U)\) £ ( U)\>+SJ <U7u_/\)
<__ ¢’ dr<L>( ) + 26 (¢, 0) + 36 (¢, )
——// (¢2(x) A 6*(w) [in
BxB

) P) |

2/\LXBP u)\(y) (aj)dj(wvy)

< 3€(6,0) - /d’Q =5[] (#@nrdw)n

2
dj(z,y)

ux(y

ux()

dj(z,y)
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2(x
2 [ wmE B
thus proving (5.35). O

Lemma 5.11. Let B C M be a ball and u € F' N L>® be non-negative, superharmonic in 2B in
M. Setuy:=u+ A for A\>0. Then

/ —dF(L // A y dj < 6cap (B, §B) +4// w®)- (5.37)
B Ul BxB U () 2 Bx(2B)e  Ux(T)
Proof. Let ¢ be the potential for the pair (B, %B) so that
£(6,6) = cap <B, SB). (5.38)
By Proposition 9.2 in Appendix, one can show that
2
¢— € ]—“( ) N L*®
uy
because 0 < ¢ € ,7:(% )N L. Since u € F' N L™ is superharmonic in 2B, we have
2
£, L) > 0.
uy

Applying Proposition 5.10 in 2B instead of B, we obtain

/M dF(L //BXQB ¢ ( ))' Zigi; 2

dj <6E(¢,9)

) &)
4//2B><(2B)C A(y)UA(x)d]'

Applying (5.38) and observing that ¢ = 1 on B and ¢ = 0 outside %B, we obtain (5.37). O

Lemma 5.12. Let (§,F) be a regular Dirichlet form in L?. Assume that conditions (VD,),
(Cap<*) and (PL.) are all satisfied. Let By := Bi(xo,7) with r < %W(xo,ﬁ)l/ﬁ and a function
u € F' N L>® be non-negative, superharmonic in the ball 2B,. Fix three positive numbers a,b, A

and consider the function:

a

vi= (ln —) A b,

U\ +

where uy :=u + A. Then
rOTy ((ur)-)
F o @ - @) du@nt) < © (1 T L ) ENGED)
Ks By J K« B

where k. € (0,1] is the same constant as in (PL.) and C > 0 is a universal constant depending
only on constants in conditions (VDy), (Cap<*) and (PL).

Proof. By the similar arguments in Proposition 5.10, we can prove that v € F N L>. Moreover,
by (3.4), (3.7) and (3.2), we obtain that

/ dr® (v, v) S/ dF(L)(lni,lﬂi) :/ dI'®) (Inuy, Inuy)

Ux Ux

= / —dF( ) (uy, uy) = / —dF(L)(u u).
B, u)\ B u)\
On the other hand, by the definition of v, we have for all z,y € B,
CONE
uy(x)

[v(z) —o(y)| <
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Combining the above two inequalities, we see that, using (5.37) with B being replaced by B,

/ B ) + // @) )
S/B*u—f” (w,2) //*XB*

< 6cap< §B*) +4/ W) .
"2 (2B.)x(2B.)°

ln

u) a:)

(ux(y))- .
g +4/3’B* dp(x /23*) —J(z.dy) (by (Capl))

<c <( 1B / (m(y))J(a:,dy)) (by (VD))
(2By)°

TES B*

< k(B 1+TBT%B*,ZB*((UA)—)
- rB A '

Using the above inequality and the following equality that holds for any open € in M,

/ / (v)?dp()duy) = 2:(2) / (f — fo)?dp, fe L2,
Qx0 Q

we obtain that

ﬁ*B*ﬁ*B* ()2 duta)dnty) = ——=== [ o)

< % (/ i+ [ - o))

207" _C,M(B*) 14 rﬁTgB*,zB*((“A)—)
= w(By) rP A

TﬂT?’B o, ((ux)-)
=2CC" |1 R
ccC ( + 3 )

(where in the second line we have used (PI,)), which proves (5.39). O
Lemma 5.13. Let (£, F) be a regular Dirichlet form in L? without killing part. Then
(LG:) + (CapZ) + (PL) = (WHL,). (5.40)

Moreover, the constants ks,os in (WHIL,) can be taken as the same as in (PL.) and (LG,)
respectively. Consequently,

(VD) 4+ (RVD) + (TJ) + (Gcap) + (PI) = (WHL,). (5.41)
Proof. Consider a ball B, := By(xg,r) with
re (0,27 o, W (xo, R)Y/P),

where o, is the constant from (LG,). Assume that u € F "N L is superharmonic, non-negative
in 2B,. Let A, b be two positive numbers to be determined later on. Let u) := v+ A and

= <lna+)\> A b.
U +
Note that 0 < v < bin M, and in 2B,

A
at <1 & u > a,

U\

v=20
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v=>b a+)\zeb & u,\S(a—F)\)e’b::q.
U
For simplicity, set
(BN {u > a}) _ p((keBa) 0 {0 = 0})
YT uRB) Bl (542)
and
o BB 0 {uy < aY) _ pl(raB) 0 {0 = b)) 513

f1(#xBy) a 11 By)
Here k, is the same constant as in (5.39).

Therefore, applying (LG,) to the function uy € F'NL>, which is superharmonic, non-negative
in a ball 2k, B, we have that, if

B —-1/v
mp < € <1 + (1) H*B*’%*B*((UA)_)> , (5.44)
q
then
grllgf uy > g (5.45)
We need to verify condition (5.44).
Since (uy)— <u— in M and u is non-negative in 2B,, we have
A=rTap op () =r"Tsp 5 p (1) 2 (5er) Tp. 2xep. ((ur)-),
from which, in order to guarantee (5.44), it suffices to ensure that
A l/l/
mo < €p (1 + —) . (546)
q

By Lemma 5.12 and using definitions (5.42) and (5.43), we see that

1
Pmow = B / / 0> dp(a)du(y)
H K+ D (k+Bx)N{v=0} J (k«Bx)N{v=b}

- ; e
)? /(N*B*)m{v 0} /(n*B*)ﬂ{v:b}( (@) = v(y))"du(z)dp(y)

];{*B* ]/{*B* () dp(x)dp(y)

BT wy)_
<1+ TQB*,QJ;*(( ) )) (by (5.39))
A

< (1 A2 1+A
Mo =3, NS )

where we have used the fact that w > 1/2, which is true by assumption (5.32). Hence, the
condition (5.46) will be satisfied provided that

2c 1+A <e 1~I—A o
[z )= q ’

1/v
v > ? (1 - é) <1 + é) : (5.47)
0 q

IN

It follows that

which is equivalent to
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Fix a number € > 0 whose value will be determined later. We pick up the parameters A\, b by

A= ea, b::ln1+€.
de

Then we have
q=(a+ Ne b = 4eq,
and the inequality (5.47) is equivalent to

1+e\%_ 2 A AN
1 >— | 1+— |1+ — . 5.48
<n 45) _50<+6a><+4sa> ( )
Since A < ea by assumption (5.33), the inequality (5.48) will follow if
2 1/v
In Lte > de (3 ,
4e €0 4

which can be achieved by choosing ¢ to be sufficiently small. With this choice of ¢, we conclude
that (5.45) holds, which implies that

einfuzg—)\:%a—sa:sa,

thus showing (5.34).

Finally, the implication (5.41) follows directly from Propositions 4.4 and 4.7, (4.33), Lemmas
5.8 and 4.15, and the implication (5.40). O

5.3. Oscillation inequalities. In this subsection, we will show the oscillation inequality for
harmonic function in a ball. The oscillation inequality will be used to derive lower bound of the
heat kernel. We will frequently use the notion B, := B, (x,r), without mentioning its center
xg, nor the new metric d.

We introduce condition (OSC,) that is called the oscillation inequality.

Definition 5.14 (Oscillation inequality). We say that condition (OSC,) holds if there exist
three constants oy, €, k« in (0,1) such that the following is true: for any ball B, = By (xg,r)
with € (0, 0. W (9, R)*/?) and any function v € F' N L that is harmonic in B,, we have that
either

osc u < (1—c¢)oscu, (5.49)
Kxr/4 BT
or
oscu < e rPTp, g ((u—m)_ + (M —u)_), (5.50)
r T
where

m =einfu and M = esupu.
B, B,

We mention that the constants oy, €, ks are all independent of B,,u, R.
Lemma 5.15. Let (£,F) be a regular Dirichlet form in L? without killing part. Then
(WHI,) = (OSC,).

Consequently, we have by (5.41)

(VD) + (RVD) + (TJ) + (Geap) + (PI) = (WHL,) = (OSC,). (5.51)
Proof. Let B, = B, (xq,r) with r € (0,0,W (x0, R)'/?), where o, is the positive constant in
(WHL,). For simplicity, denote by

A= rﬂTB%T,BT((u —m)_ + (M —u)_).
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Consider the function u —m € F' N L%, which is non-negative, harmonic in B,.. Applying the
weak Harnack inequality (WHL,) in the ball B, for the function u — m, we obtain that if

B N{iu—m>a 1
M(BK*T/Z) 2
where a = Mgm and if
(1/2)°Tp, 5, (u—m)-) < Ay = 17Tp, p.((u—m)-) <<a (5.53)
1" "
then
einf (u—m) > ¢a,
BK:*’I‘/4
for some constant ¢ € (0, 1).
F1GURE 7. Level sets of the function u —m
It follows that
e e
B(K)*sTcMu = B(szc/4(u —m)< (M —m)—¢ca= (1 — 5) (M —m) = <1 — 5) 98 1,
which implies that (5.49) holds with e = £'/2.
Similarly, if both conditions
B, N{iM —-u>a 1
M(BH*T/z) 2
and
(12T, 5,(M = u)-) < Ay i= 17Tp, (M —w)_) < 'a (5.55)
T "

are satisfied, then
einf (M —u) > ¢a,

Bn*'r/ﬁl

so that

/ /
osc u<M-—m-—¢éa= 1-2 (M —m)= 1-< 0SC U,
Bn*r/4 2 2 r
which again implies that (5.49) holds with € = &’/2.

Observing that

M+m
u—mz=a S U=
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M
M—-u>a & u< —2|—m’

we see that either (5.52) or (5.54) is satisfied. Hence, if both (5.53) and (5.55) are satisfied, we
conclude that (5.49) is true. However, if one of (5.53) and (5.55) is not satisfied, then

1 "M — !
Az (A1 + Ao) Za/a:% > T %%srcu,
which is equivalent to (5.50) with e = ¢’ /4. Hence, we finish the proof by setting ¢ = %/. O

We introduce condition (I0S,) that is called the iterated oscillation inequality for the harmonic
function.

Definition 5.16 (Iterated oscillation inequality). We say that condition (I0S,) holds if there
exist constants o,y € (0,1) and ¢,Cy > 1 such that the following is true: for any ball B, :=
B, (xg,r) with 7 € (0,0, W (x0, R)/#) and any function « € ' N L*°, which is harmonic in B,
we have, for all £ > 0,

osc u < Coqg %A, (5.56)

g~ kr
where
A= T’BTB%T,BT(U) + ”’U/HLOC(BT).

k

In what follows we set ry := ¢~ "r and Q) := oscp,,_u so that (5.56) means that

Qr < Cog " A. (5.57)
Lemma 5.17. Let (£, F) be a regular Dirichlet form in L? without killing part. Then
(OSC,) + (TJ,) = (I0S,).
Consequently, we have by (5.51)
(VD) + (RVD) + (TJ) + (Gcap) + (PI) = (I0S,). (5.58)

Proof. We will prove (5.57) by induction in k. For k = 0, 1, it is trivial, since
Q1 < Qo =oscu< 2l|lullpoe(B,y < 24 =2q¢7(¢77A),

so that (5.57) holds, provided that

Co>2q".
In the sequel, we will choose three constants q,~y, Cy in the following order: first choosing a large
number ¢, then specifying a small number v, and finally picking up a large constant Cj.

Assume that (5.57) holds up to some integer k& with & > 1. We show that it also holds for

k+ 1. To see this, let ¢ > 4/k, where k, comes from (OSC,). Applying condition (OSC,) over
B, , we obtain that

either Qpy1 < (1—€)Qp or Qp <e 1Ay, (5.59)
where € € (0,1) is the constant from (OSC,), and Ay, is given by
Ap=r{Tsp g ((w=m)+(My—u) ) =rTsp 5 (v) (5.60)

with v := (v — my)— + (M}, —u)—, and

my :=einfu, My := esupu.
Tk Brk

In the first case in (5.59), that is, when

Qr+1 < (1 —€)Qk,
we obtain by induction hypothesis that

Qi1 < (1—2)Coq A= (1—2)q"Coqg "*TDA < Coq 7+ 4,
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provided that

(1-e)q" < 1. (5.61)
In the second the case in (5.59) when
Qr < e Ay, (5.62)
we will prove that
Qr < Cog "™V A, (5.63)

by choosing the suitable values of the constants ¢,v,Cy. Since Qi1 < Qk, this will conclude
the proof of the induction step.

In order to prove (5.64), we will estimate Ay (defined in (5.60)) by using the induction
hypothesis
Q; < Cog WA for j=0,1,.... k. (5.64)
Indeed, let us decompose T% By B, (v) as follows:

T3Brk,Brk(U): esup/B v(y)J(x,dy)

1 3 c
xGEBrk Tl

k—1
xES%L;Pk (Z /B By v(y)J (z, dy) + /B v(y)J(w,dy)> : (5.65)

X c
1=0 T

Observe that, for any 0 <i <k,
v=(u—my)- + My —u)- <Q; — Qi in B,.. (5.66)

Indeed, if my < u < My in By, then v = 0 in B,,, and (5.66) is trivial by using the fact that
Qi — Qr > 0 for any ¢ < k. If u < my, in B,,, we have in B,,

v=my —u < mk—m; <my —m;+ My — M = Qi — Q,
thus showing that (5.66) holds. Similarly, if u > M}, in B,,, then
v=u— My < M;— My, < M; — Mg+ (my, —m;) = Qi — Qp in By,
showing that (5.66) holds again.

FIGURE 8. Balls B, and B,,

Therefore, by Proposition 9.6 in Appendix and using condition (TJ,), we obtain from (5.66)
that for any 0 <14 < k,

esup / o(y) (@, dy) < (Qi — Q) esup / J(a, dy)
B’"i\B’"iJrl Bri\B"'H»l

wE%Brk Z‘E%Brk
< Q=@ esw [ J(, dy)
z€3 By, JB(@,(ri—riy1)/4)°
< c(Qi — Qr)
= ((ri = rig1) /4P




42 A. GRIGOR’YAN, E. HU, AND J. HU

where ¢ > 1 is the constant from condition (TJ,).
On the other hand, by Proposition 9.5 in Appendix, we have
v(y) < |u(y)] + max(|myl, [My]) < [u(y)| + lullLoop,) for every y € M.
Using (TJ.), we obtain that, for any k > 1,
eswp [ v I(wdy) < esup [ (Ju)]+ [ull e ) o dy)

mE%BTk x€B3r/4
< Typ 5,0+ ulmny eswp [ )
4 r€B3, /4 J B(x,r/4)¢
CHU\|L<><>(BT)<4ﬁcA
(r/4)p = P

< Tsp,p,(u) +

Therefore, it follows from (5.65) that

i 4PcA
<c4ﬁz Qi-Qn, 2¢

Ts
1Bry 7B’“k ri —Tir1)P rB 7

i= 0
which together with (5.60) and the fact that ¢ > 4/k, implies that

B 7\ P
Ap = (Tk)ﬂT%Brk B, (V) < ed” Z < - m+1> (Qi = Qu) + 47 (%) A

k—
Z HR(Qi — Qi) + Cq A,
=0

Assuming that v < ﬁ and using the induction hypothesis (5.64), we obtain

k-1 k-1
Zq B(i+1— k Zqﬁ(z—H k) . Coq—'yzA_ C()Aq (k—1)~ Zqﬁ'\/z-‘,—l k)
=0 =0
k-1 (k—1)v
Ly (B=)3 e
= CpAg~ 1y g < C’OAl_q =y
7=0
Noting also that
k—1
qﬁ(erlfk) >1
i=0
for k > 1, it follows from (5.67) that
qf(kfl)'y
AkSCCOAl = CQr+ Cq A

This together with (5.62) implies that

<—=< a7 k8 A
Qk_ c c 1_q_(ﬁ_,y) EQk+ Eq 5
which gives that
C qf(kfl)'y kﬂ
< A
Qs o ( T T4

(5.67)
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that is,
2y 1
L kB <14 &
= + Coq <1+ ok (5.68)
Now first choose ¢ > 4/k, to be so large that

e

<14 —,
C

l—q_g

and then choose v € (0,3/2) so small that both (5.61) and

2y
q £
—1_(]7[3/2 < 1+5
are satisfied. Since  — v > (3/2, it follows that
2y 27y
q q 3
=g “1_gar <1t
Finally, we choose Cj so big that (5.68) is satisfied. O

We introduce condition (OSL,) that is called the oscillation lemma for harmonic function on
a ball. This condition says that any harmonic function is locally uniformly Hélder continuous.

Definition 5.18 (Oscillation lemma). We say that condition (OSL,) holds if there exist three
positive constants o, € (0,1) and v, C such that for any ball B, := B.(xo,r) with r €
(0,0, W (29, R)*/?) and any function u € F' N L, which is harmonic in B,, we have for any
p (0],

P\
oscu < C(2) (+Typ, p, (ul) + ulle(s,)) - (5.69)

P

We mention that constants o,y and C are independent of By, u, p.
Lemma 5.19. Let (£,F) be a regular Dirichlet form in L. Then
(I0S,) = (OSL,).

Moreover, then the constant v in (5.69) of condition (OSL,) can be taken as the same as in
(5.57) of condition (I0S,). Consequently, we have by (5.58) that

(VD) + (RVD) + (TJ) + (Geap) 4 (PI) = (OSL,).

Proof. Let Cp,7,q be the same constants as in (5.57) of condition (10S,). As p € (0,7], there
exists an integer k > 0 such that

,
It follows from (I0S,) that

oscu < ose u< Cog A= Cog" (¢ V) A< o (£) 4,

B, B, k, r

thus showing (5.69) with C' = Cyq”. O

6. HOLDER CONTINUITY

In this section, we show the Hoélder continuity of the heat solution, including the harmonic
function.
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6.1. Green operator and mean exit time. Let {2 C M be a non-empty open set. Note that
if
' o)
G ::/ PMqdt € L°(Q)
0
then G can be extended to a bounded operator on L2(f2) that satisfies the identity G =

(LY, see for example [18, Lemma 3.2, p.1232]'. The function G1 is called the mean exit
time from the set €.

Lemma 6.1 ([10, Lemma 5.1]). If G%1 € L®(RQ), then the function v = G*f, for any f €
L?(Q), belongs to F () and satisfies the identity

E(u, ) = (f,p) for any ¢ € F(Q).
If in addition f > 0, then u is superharmonic in 2.

Definition 6.2. We say that condition (E%) holds, if there exist two constants d., C' > 0 such
that for all balls B, := B(z,r) of radius r < §,W (xo, R)"/7,

HGB*l < CrP.

oo

We say that condition (E%) holds, if there exists a constant C' > 0 such that for all balls
B, := B(xq,r) of radius r < W (zo, R)"/?,

inf GB1 > 1P,
lB*
4

We say that condition (E.) holds if both conditions (EX) and (EY) are satisfied.

Definition 6.3 (condition (S.)). We say that condition (S.) holds, if there exist two small
constant ¢, 8, in (0,1) such that for all metric balls B, = B, (z,7) of radius r < W (z, R)'/?,

1
PP1p, >¢ in 1B+ (6.1)

provided that /8 < 7.

Lemma 6.4. Let (€, F) be a regular Dirichlet form in L. Then

(FK.) = (E2). (6.2)
and
(VD) + (LGy) + (CapZ) = (EI). (6.3)
Consequently,
(VD) + (RVD) + (Gceap) + (PI) + (TJ) = (E.) = (S«). (6.4)

Proof. One can follow the proof of [12, Lemma 12.2] to obtain the first implication (6.2), and
follow the proof of [12, Lemma 12.4] to obtain the second implication (6.3).

Proposition 4.4 shows that (VD) 4+ (RVD) implies (VD,) 4+ (RVD,). Proposition 4.7 shows
that (PI) implies (PL.). Hence, it is shown in (4.33) that (FK,) holds true. Then, Lemma 5.8
shows that (LG,) holds true. On the other hand, condition (CapZ) follows from (2.12) and
Lemma 4.15. Finally, the first implication in (6.4) follows from the implications (6.2) and (6.3).

The second implication in (6.4) follows from the same arguments in the proof of [12, Proposition
13.4]. O

1Although this lemma was stated for the local Dirichlet form, its proof also holds for the regular Dirichlet
form.
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Remark 6.5. One can also use [12, Theorem 14.1] to obtain condition (S.). Indeed, as men-
tioned in the proof of Lemma 6.4, we have

(VD) + (RVD) + (PI) = (FK,).

Then, by Proposition 4.13, condition (FK) holds true, and hence, it follows from [12, Theorem
14.1] that condition (S) (see Definition 7.13) holds rue. Finally, by Proposition 4.3 and by the
method in the proof of [14, Proposition 6.4(2)], we can obtain condition (S.) from (S) (note
that condition (S,) in [14, Proposition 6.4(2)] looks different from that in this paper, because
R = diam M in [14, Proposition 6.4(2)] and R < diam M in this paper. However, the method
in [14, Proposition 6.4(2)] still works in the case when R < diam M).

6.2. Oscillation inequality for solutions of Poisson equation. We study the oscillation of
the weak solution of the Poisson-type equation on domain €2 by using Lemma 5.19 in Subsection
5.3. This property will be used to show the Holder continuity of the heat kernel later on.

For a non-empty open set Q C M and f € L?(f2), we say that a function u € F solves weakly
the equation (called the Poisson-type equation)

Lu=f in ), (6.5)
if for any ¢ € F(Q2),
E(u, @) = (f,¢)-

Proposition 6.6. Let (£,F) be a regular Dirichlet form in L?. Assume that u € F solves
weakly the equation (6.5) for some f € L?(). Let B be a non-empty open subset of .

(1) If v e F solves weakly the equation Lv = f in B, then u — v is harmonic in B.
(2) If ||GP1|| = < oo, then u — GP f is harmonic in B.

Proof. (a) By the definition of weak solution, we see for any ¢ € F(B) C F(2)
E(u,¢) = (f,9) and E(v,9) = (f,9),

from which, it follows that
E(u—wv,¢) =0,
thus showing that u — v is harmonic in B.
(b) If |GP1|| = < o0, then by Lemma 6.1, the function v = GZ f belongs to F(B) and satisfies

E(v,9) = (f,¢)

for any ¢ € F(B), that is, the function v solves weakly the equation Lv = f in B. We conclude
by (a) that u — GB f is harmonic in B. O

The following gives the oscillation of the weak solution of the Poisson-type equation.

Lemma 6.7. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that
conditions (FK,), (TJ.), (OSLy) are all satisfied. Let Co > 1 and Q be any open subset of M
containing a ball B, := B,(xo,7) of radius r € (0, CoW (20, R)'/?). If the function u € F(Q)NL>
solves weakly the equation (6.5) for f € L?> N L>(Q), then for any 0 < p <7

.
osc u< C (L) Jull o) + Croll oo (6.6)

B (x0,p)

where ~y is the constant from condition (OSL.) and C is independent of By, u,$Q,p, f,R. Con-
sequently,

(VD) 4+ (RVD) + (TJ) 4+ (Geap) + (PI) = inequality (6.6). (6.7)
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Proof. We consider two cases. Let d, be the constant from (E*S) and o, be the constant from
(OSLy).

Case 1. 7 < (6, A o)W (zg, R)/?. Note that condition (FK,) implies condition (EX) by
(6.2), that is, we have

1GP 1| < CrP.
From this, we see that
IGP Fll ey < IGP U ool fllpoo () < CrP| fll oo (B.)- (6.8)
In particular, we have ||GB*1|| e < co. Consider the function
vi=u—GBf.

Clearly, we see that v € F(Q) N L. By Proposition 6.6, the function v is harmonic in B,. It
follows from condition (OSL,) that for any 0 < p <r

P\7( 3
<c(F N . ‘
pose v<C(2) (¥ Ty g (o) + ol (6.9)

Since v = GP*f = 0 in Q°, using Proposition 9.5 in Appendix, we obtain by condition (TJ,)
that

Typp.(0) < esup [ (ul)] +IG™ F ()T (edy
TET B* <

IN

(o) + 16™ Flioe(s)) esup [ Ia.dy)
mEZB* .

< (lull gy + IG5 fllzm(s.)) esup / T(a,dy)
mG%B* By (z,r/4)

A

C
< (lulleqe) + 1GP* fllLos(5.)) /AP

Substituting this into (6.9) and using the fact that
vl Lo B,y < Nlullzoe(m,) + HGB*fHLOO(B*)a

we obtain

P\ 5
=, o GP [l (B.)) - 6.10
Brop) <r> (lellzoe(@) + 1G7 flloe(s.)) (6.10)

Therefore, we conclude by (6.10), (6.8) that

osc u< osc v+ osc GPf
B*(x()yp) B*(x07p) B*(l’o,p)

j
< C(2) (Iullieoy + 1G% flliee(s.) + 201G f

P\
=C (;) lull L@y + CrPllf lpe(m.),

| oo (B.)

thus showing (6.6).

Case 2. (8, A o)W (z0, R)/? < r < CoW (20, R)'/? with Cy > 1 when R < oo.

If p < 2(8.No)W (g, R)Y/P, then, applying the result in Case 1 for r = (6 Na )W (20, R)V5,
we obtam that

v
P
<C oo
B*c()ggp)u ( ((5 /\a*)W(x R)1/3> ||u”L Q)

o

. B
5 AU* anR)l/ﬁ> ”fHLOO(B*(20,%(5*A0*)W(x0,§)1/ﬁ))

oo|»—l
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< 6. n ) e (s ) ilieio + Ol
o C()W(l'o,R)l/ﬁ *
Y
< (2(6: A 0) ' Co)'C (2)  ullioe() + Cr 1l 5.,
which is (6.6).

If p > (6. A o)W (20, R)'/P, then, £ < 63/6\:3 Hence,

™\ /p\7 3¢\ /p\7
=\ - <2 — Lt -
B*?ig,p)u <p> (r) B*?ig,p)u_ <(5*/\0*)> <T) [ull oo ()

which implies (6.6).

Finally, the implication (6.7) follows directly from Lemma 5.19 by using the facts that (PI) =
(PL,) = (FK.) (see (4.15) and (4.33)) and (TJ) = (TJ,) (see (4.12)). O

6.3. Estimates for the heat semigroup solutions. We derive the L*>-estimate of the heat
semigroup solutions on any open subset. The following gives the L' — L ultra-contractivity
of the heat semigroup {P”*} from condition (Nash,) (cf. [2, Theorem 2.1]).

Lemma 6.8. Let (£,F) be a regular Dirichlet form in L?. If condition (Nash,) holds, then for
any ball By := By(xo,7) of radius r > 0, the operator PtB* satisfies that for any t > 0

C(V)Tﬂ/”

B Sv_1) .1
HP HL1—>L°° < H /2HL1—>L2 < m exp (tW(.%'(),R) ) t v, (611)
where v > 0 comes from condition (Nash,). Consequently, we have for any t > 0
C(v)rb/v 1
PP Pl < VPP e ls0m) < G o0 (W oo T ¢ llagey. (612

Moreover, we have by (4.21)
(VD) + (RVD) + (PI) = (Nash,) = inequalities (6.11) and (6.12).
Proof. Since PtB * is symmetric, we see by duality
HPtB*HL1—>L2 = HPtB* HL2—>L°°7
from which, using the semigroup property, we see that
HP HL1—>L°° < ” /2”L1—>L2
By condition (Nash,), for all B, := By(zg,r) with » > 0 and all u € F(By)

2(1+u) < CrP (
o V*(l‘oﬂ")y

where A, J are given by

E(u,u) + W (o, B) " ul3) [ulf” =: A (E(u, w) + d]|ull3) [lul?”

Crf -
A=——— and 6 =W(z,R)" "
‘/*(xoj T')V an ($07 )
Applying [2, Theorem 2.1 and its proof on Line 8 on p.252] wherein v being replaced by %, it
follows that

B. r112 2ut —1/v 9
exp(~200) |PP I3 = u(t) < (20) 018

for any ¢ > 0 and any non-negative f in L?(B,) N L', that is,

ANV Cc Vv 8w — 1
pP- < exp(2 (&) 2TV L1yl
H HL1—>L2 eXp( 5t) (2 t) <2V> ‘/*(xO’ 7’) exXp ( t (x(), R) ) t )

thus showing (6.11). O
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Lemma 6.9. Let (£,F) be a regular Dirichlet form in L?. Let B, := By(z9,7) C M be a ball
of radius v > 0, and Q an open subset of B.. Set u = Pl f for f € LY(Q) N L2. If condition
(Nash,) holds, then for any t > 0,

orBlv
‘/*(330,7‘)

where Oyu(-,t) is the Fréchet derivative of the L?(Q)-valued function t — u(-,t). Moreover, for
allt > s> 0,

-\ _ _ 1
[0cu(-, )|l Lo () < exp (tW (zo, B) 1) t 7| fll 11, (6.13)

B/
‘/* (-TOa T)

Here v > 0 is the same as in condition (Nash,) and constant C' depends only on condition
(Nash.,).

[u-t) = ul(,8)llLe < C(t = 5) exp (sW (w0, B) 1) s~ 9| £ 11 - (6.14)

Proof. Let f € L'(£2) N L? be non-negative in M. Since Pf? is contractive in L? and
Pth:PsQPtgzsf
for any ¢ > 0 and any s € (0,t), we have
8t(Pth) = Py(atptgsf>'
From this and using the following general inequality (see [18, Lemma 5.4])
2
10s(PS )| L2y < EHP§}2JEHL2(Q) for any s >0, f € L?, (6.15)
we obtain, since 2 C B, that
10:(P )l = IPL(PE f)lloo < 1Pl Lo oo OB f) | 2

2
<P 2o :HP(?—S)/QJCHLQ
2 B
< EHPSB*”L2—>L°°”P(tis)/QHLl—LQHf”Ll(Q)-
Setting s = ¢/2 in the above inequality and using the fact that
1P N pamre = 1BP (|2 oo (6.16)
it follows from (6.11) that
4
Q B. B..
10:CP Pllzee < 2P 2 l1By il 221 Fll 2 )
Crb/v — 1
< — tW(zo, R)" )t 1o ,
= V*(mo,r) exp ( ($0 ) ) ”f”Ll(Q)

thus showing (6.13).
Finally, we show (6.14). For simplicity, let t > s > 27 > 0. Then

1P = P fll () = IPE(PE,f = Pl
<Pl e | P2 f = P, fllr2ge)-

By (6.15) and using the fact that ¢ — ||PtB*f||L2(B*) is non-increasing in (0, 00), we see that

t—T1
||Pt%’rf - PSQ—Tlejz(Q) = H B 8§(P§Qf)d£HL2(Q)

A

t7T2 Q
< / £1PEalade

2 2
(t= )= NP8 fll e < (¢ = ) 2N PDollpaall Flus.

IN
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Therefore, using (6.16) and (6.11), we conclude that
2
IP2f — P fllpoo) < (t— 3);HP7§2HL2—>L°°HP7§2/2HL1—>L2”J£HL1(Q)

2 .
< (t-— 5);||P7B* ||L1—>L2||P5*2||L1—>L2HfHLl(Q) (since 2 C Bs)
rB/v
Vi(zo, 1)
thus showing (6.14) by letting 7 = 3. O

- 1
< C(t—s) exp (TW (2o, B) ™) 7~ )| £l 1

6.4. Holder continuity of the heat semigroup solutions. We derive that the heat semi-
group solutions are locally Holder continuous.

Lemma 6.10. Let (£,F) be a regular Dirichlet form in L? without killing part. Let Cq > 1
and Q be a non-empty open subset of a ball By(xg, R) with R € (0,CoW (x0, R)/?), and let
u(z,t) = PR f(x) for f € LYNL2(Q). Assume that conditions (VD), (RVD), (Geap), (TJ), (PI)
are all satisfied. Then, for any x and r > 0 so that By(x,r) C Q, and for any t >0 and p > 0
so that p® <t AP, we have

c R’ v -1 P 0
L) < = W (20, B) ) ( ) , 1
55,100 <y () e Ve () Wi, 019
where C' is a positive number depending only on constants in the hypothesis, and 0 is given by
8l
=—. 6.18
v+ (6:18)

Here v is the same as in Lemma 6.7, and v comes from condition (Nash,).

Proof. By (6.12), we see for any t > 0

CRB/v
< _
B V:g(-TO, R)

For any t > 0, the function u(-,t) belongs to dom (L), is Fréchet differentiable with respect to
t in L2(Q), and satisfies weakly

@ —_— _ 1
(- t) | poe < P20 £ poe exp (EW (2o, B) ™) £+ | £ 1 (6.19)

opu(-,t) = —L%(-, 1),
that is, for any ¢ € F(Q) and ¢t > 0,
Eu(-,t),¢) = (Ll 1), ¢) = = (Dpul-, 1), §).
By Lemma 6.9, we have dyu(-,t) € L>®(Q2) for any ¢ > 0.

Let p < /BN <7, and 1 € (p,7) be a number to be specified later on. Applying Lemma
6.7 for the ball B, (z,r") C © and then using (6.13), (6.19), we have for any ¢ > 0

P\ ng
20 £ ((2) ol 7 )

< r ()" emmi o
2 (%) e mi oy

ﬁ\lb

)+ 5

t

)+ e, @20)

T

IN

ﬂ\lb

where
T=tAr? Zpﬁ.

Now choose 7’ such that
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that is,
, R U
= prtATAHA,
With this choice of 1/, we have that r' € (p,r), as desired, since
’ oy 1 . B
= prtETAt8 > prtB prth = p,
Y 1

R S _x 1 _1/p
= prthTats < TOHBB TS =T <r.

Noting that

= prBT B =
T T

we see that (6.17) follows directly from (6.20). O

Y

(T/),B » 5 <£>7/(7+ﬁ)

For any set U C M and r > 0, denote by U, by the open r-neighborhood of U, that is
Ur-= U Bi(z,7).
zeU
The following gives the locally Holder continuity of the heat semigroup solutions in an open
subset.

Lemma 6.11. Let (£,F) be a regular Dirichlet form in L? without killing part. Let Cq > 1
and Q be a non-empty open subset of a ball By(xg, R) with R € (0,CoW (x0, R)/?), and let
u(z,t) = PR f(x) for f € LYNL2(Q). Assume that conditions (VD), (RVD), (Geap), (TJ), (PI)
are all satisfied. Then the following properties are true.

(a) For any t > 0, the function u(-,t) has a locally Hélder continuous version u(-,t) in
Q with the Hélder exponent 0. Moreover, the function u(x,t) is jointly continuous in
(x,t) € Q x (0,00).

(b) For any open subset U C Q and r > 0 with U, C §, we have for all x,2’ € U and all
t>0

C RO\ _ do(z,2')\°
~ ~/ —1 * U
o)~ e 0] < o () e V@) (5500 ) Il (621

Here 0 is given by (6.18), and constant C' depends only on constants in the hypothesis.

Proof. (a) By a standard argument, it follows from (6.17) that wu(-,¢) has a locally Holder
continuous version u(-,t).
By (6.14), we have for all t > s > 7 > 0,
RB/v

u(z,t) — u(x, )| <Ot — §)———
sup (e, 1) — (e, 5)| < Ot = )7

from which, we see that the function t +— u(z,t) is continuous in t € (0,00) uniformly in
x € Q. Since the function x — u(x,t) is continuous in x € €2, we conclude that u(x,t) is jointly
continuous in (z,t) €  x (0, 00).

(b) Note that B,(x,r) C U, for any € U. Set 7 = t A7, By Lemma 6.10, we obtain

(4l
exp (tW(wo,R) 1)7' (1+“)Hf||L1(Q)7

_ C RO\ — p\?
< — (= -y (2
2 "0 S VR ( : > exp (W o)) (5 ) oy (0:22)
provided that p® < 7. If p% > 7, we have by (6.12)
C Rﬁ 1/v .
U(-t) < 2jul-,t)||pe < ——— | — tW (g, R) ™
o5 Tet) < 2Ol < prr () o (W a0 B s

C Rﬂ 1/V =\ 1 P —0 P 0
- <7> exp (W (a0, B) ) (F5) " (=5) Iflue)
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c RO\ -1 (P’
< () e @) (25) 1l

Hence, we see that (6.22) holds for all p > 0. Taking p = d.(x,2’) in (6.22), we obtain (6.21). O

7. NEAR-DIAGONAL LOWER ESTIMATES

In this section we study the regularity of the heat kernel, and then give its near-diagonal lower
bound.

7.1. Holder continuity of the heat kernel. For any non-empty open subset Q of M, let { P}
and pi*(x,y) be the heat semigroup and the heat kernel of the form (&, F(f2)), respectively. In
this subsection, we shall show that for any bounded open set Q C M, the heat kernel p*(x,%)
exists pointwise in M x M x (0,00) and is locally, uniformly Hélder continuous. This property
is used to derive near-diagonal lower bound of the heat kernel.

If conditions (VD), (RVD), (Geap), (TJ), and (PI) are all satisfied, we see by Lemma 6.11,
the function P{2f(-) has a continuous version when f € L' N L2(M), for any bounded open
subset 2 of M. The following gives on-diagonal upper estimate and the Holder continuity of the
Dirichlet heat kernel p{*(z,v).

Lemma 7.1. Let (£,F) be a regular Dirichlet form in L? without killing part. Assume that
conditions (VD), (RVD), (TJ), (Gcap), (PI) are all satisfied. Let Cy > 1 and Q be any non-
empty open subset of a ball B,(xo, R) with R € (0,CoW (z0,R)'/?). Then the Dirichlet heat
kernel p*(x,y) exists and is locally Holder continuous. Moreover, for each t > 0
C Rﬁ 1/v B

(—) exp (tW (zo, R)™1), (7.1)

sup pi’(z,y) .

S -
x,yGQ ‘/*(x07 R)

and, for any non-empty open subset U C Q and r > 0 with U, C Q, and for all xz,2',y,y € U,
t>s>0,

% (R?ﬂy/y exp (tW (zo, R) ™)
() (2) ). oo

where 6 € (0,1) is defined in (6.18) and C > 0 depends only on the constants in the hypothesis.

p(x,y) = PP (2, y)] <

Proof. Fix an open subset U of €} and fix a number r > 0 with U, C 2. By Lemma 6.11, for
any f € L' N L2(M) and t > 0, the function P{’f is locally, uniformly Holder continuous, that
is, for all z,2’ € U and all t > 0,
C RO\ — di(z,2')\’
) 9] / —1 *\ Ay
}Pt flz) - P, f(:c)’ < m (T) exp (tW(azo,R) ) (m) £z (7.3)
where C' > 0 depend_s only on the constants in the hypothesis, but is independent of B, (xq, R),
Q’ U’ r’ t? x? l‘/’ f’ R‘
By (6.12), we have for all t > 0 and all z € M,
C RB 1/v .

Q -1
P < e () e (W a0 B s (74
By (6.14), we have for all t > s > 0 and all z € M,
c RO\ ot

<?) exp (sW(zo, R)™) . i

| P f(x) — P2 f(z)| < 7

Vi(wo, R) £ 12 (7.5)
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Since Pff is continuous, using [11, Theorem 2.1 and Corollary 4.2], it follows from (7.4) that
the following are true (see also [10, Lemma 5.13, p.506]):

(1) the Dirichlet heat kernel p§* exists pointwise for (z,y,t) € Q x Q x (0, 00);
(2) both pf*(x,-) and p{’(-,x) are continuous in Q for every ¢t > 0 and every z € ;
(3) the inequality (7.1) holds true.

We show (7.2). Indeed, fix a point y in U. Setting f = p{*(-,y) in (7.3), we obtain for all
z,2’ € U and t > 0,

C RO\ — do(z,2)\*
Q O -1 *\ Ly
‘th(fL’ay) _p2t(x/7y)‘ S Vi(zg, R) (T) P (tW(:EO’R) ) (tl/ﬁ A 7”> .

Since the three points z,2’,y € U are arbitrary in the above inequality, replacing z,z’,y by
y,y', ' respectively and using the symmetry pi(z,y) = pS(y, ), we have

C RO\ — de(y, ')\’
Q7 Q/ W -1 FAT
P2 (2’ y) — (e, )| < Vi(zo, R) ( t ) exp (#W (a0, F) ™) (tl/ﬁ/\r) '

Summing up the above two inequalities and renaming 2t by ¢, we obtain

! ¢ RO\ - — du(z, 2)\?  (du(y, v\’
bt =it < s (7)o ((555) + (822) )

Moreover, for 2/,y' € Q and t > s > 0, applying (7.5) with ¢ replaced by t — 5, s by 5, « by
2’ and f = p?ﬂ(-, y'), we obtain

C RP v — t—s
QY o Qd | < 91 -1 ‘
|pt (1"7y) Ds (xvy)’ = V:k(l'o,R) (S/2> exp( 8W($07R) ) 8/2
Adding up the above two inequalities, we obtain (7.2). O

By Remark 4.16 and [13, Corollary 2.9], the following five conditions
VD) + (RVD) + (TJ,) + (Geap) + (PI) for 2 < g < oo

imply the existence of the pointwise defined heat kernel in [13, Definition 6.1]. While, the
following gives a refinement of this result by reducing condition (TJ,) for 2 < ¢ < oo to
condition (TJ), since condition (TJ,) is stronger than condition (TJ) by [13, Proposition 3.1].

Proposition 7.2. Let (£,F) be a regular Dirichlet form in L?. Assume that for any bounded
open set 0 C M, the Dirichlet heat kernel p?(fv,y) exists and is locally Holder continuous in
(x,y) € Q@ x Q for any t > 0. Then (£,F) admits a pointwise defined heat kernel pi(x,y)
satisfying the following properties.

(1) For anyt,s >0,

Pe+s(@,y) = /Mpt(x,z)ps(z,y)dﬂ(Z), Va,yeM.

(2) For anyt >0,
/ pi(x,2)du(z) <1, Vaxe M.
(3) For anyt,s >0, "
Piisf(x) = PPsf(z), V feL*(M), z€ M,
where

Pf@) = [ mlep)w)dut). £ € 0D, >0,

(4) For any bounded open set Q2 C M,
pi(,y) > pi(,y), V>0, 2,y € M.
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Proof. Fix a point xg € M. By assumption, for any ball B,, := B(zg,n) with n > 1, the locally
Holder continuous heat kernel pf ™ exists. Since ptB " is increasing and non-negative, we can well

define
pi(,y) := lim p/*(z,y), t> 0,2,y € M.
n—oo

Obviously, the function pi(z,y) is pointwise defined and is measurable on M x M x (0,00). The
rest proof is motivated by [11, Lemma 5.1].

Property (1) follows from the definition of p;(x,y), monotone convergence theorem and the
identities:

Bn _ Bn Bn
thrs(xvy) - /Mpt (:’Uaz)ps (Zvy)dﬂ(z)a \V/ t,S > 0’ xr,y € Bn

Property (2) follows from the definition of p:(z,y), monotone convergence theorem and the
inequality:

/ py"(z,2)dpu(z) <1, Vt>0, z € By.
M

Since each p,’" is locally Holder continuous, for any n > 1, ¢t > 0 and f € L' N L?(M), the

function x — PtB " f(x) is also locally Holder continuous in B,,. Then, by monotone convergence
theorem, we have for any t >0, 0 < f € L' N L?(M) and x € M,

Puf(z) = /Mpm,y)f(y)du(y) - /

Tim pf (,y) f (y)d(y)
M

n—oo

= lim [ pf"(z,9)f(y)dp(y) = lim PP f().
M n—oo
This together with the identities
Pﬁ*;f(x) = PP PP f(x)
yields the property (3) for any 0 < f € L' N L?(M). Then, by the standard approximating
arguments, we can extend it to all f € L?(M).
Property (4) follows from the definition of pi(z,y), the monotonicity of pf " in n and the

continuities of pf " and pi’. O

Corollary 7.3. Under the hypothesis of Lemma 7.1, the form (£, F) admits a pointwise defined
heat kernel py(x,y) satisfying all properties in Proposition 7.2.

In the rest of the paper, under the conditions (VD), (RVD), (TJ), (Gcap), (PI), the heat
kernel p;(z,y) is always referred to as that obtained in Corollary 7.3.

7.2. Derivation of the near-diagonal lower bounds. In this subsection, we will derive the
near diagonal lower estimate of the heat kernel. We introduce condition (LLE,) that is called
the localized lower estimate under the new metric d,.

Definition 7.4. We say that condition (LLE,) holds if the following two conditions are true.

(1) For any bounded open set Q C M, the Dirichlet heat kernel p{’(z,vy) exists.
(2) There exist ¢, > 0 and 0, € (0,1) such that, for any ball B, := B.(xg,r) with r €
(0, W (20, R)'/P) and for any t'/# < §,r, we have
B
* > -
Py (x,y) = V:k(l'o,tl/ﬁ)’
We say that condition (sLLE,) holds true if (LLE,) holds true and for any non-empty bounded

open set @ C M, the Dirichlet heat kernel p{*(z,v) is locally Holder continuous in (z,y,t) €
0 x Q x (0,00).

Cx

pra.a. T,y € By(xg,0,69). (7.6)

We introduce condition (NLE,) that is called the near-diagonal lower estimate under the new
metric ds.
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Definition 7.5. We say that condition (NLE,) holds if the heat kernel p:(x,y) exists, and for
any Cy > 1, there exist two positive constants d,, C such that

c-!
>__ -
pt(I,y) - ‘/*(l’,tl/ﬁ)

for ju x p-almost all (z,y) € M x M and all t < CoW (z, R) satisfying
dy(z,y) < 6,1/°,

We say that condition (sNLE,) is satisfied if condition (NLE,) is satisfied and the function
pe(x,y) has a version satisfying pyis(z,y) =[5, pe(x, 2)ps(z,y)dz for any t,s > 0, x,y € M and
satisfying (2.15) for any 2,y € M and t < CoW (z, R) with d.(x,y) < 6.t%/7.

Lemma 7.6. Let (£,F) be a reqular Dirichlet form in L* without killing part. Then

(VD) + (RVD) + (TJ) + (Gcap) + (PI) = (VD,) + (SLLE,) = (sNLE,).

(7.7)

Proof. Assume that conditions (VD), (RVD), (TJ), (Gcap), (PI) are all satisfied. Note that the
constant Cyp > 1 in Lemma 7.1 can be arbitrary. By Lemma 7.1, we see that for any bounded
open subset ) of M, the Dirichlet heat kernel p?(a:,y) exists and is locally Holder continuous
in (z,y,t) € Q x Q x (0,00). In particular, for any ball B,, the Dirichlet heat kernel p’*(z,v)
exists and is jointly continuous.

Condition (VD,) holds true by Proposition 4.4. To prove condition (sLLE,) holds. It suffices
to show (7.6).

Indeed, by (6.4), we see that condition (S.) is true, that is, there exist two small constant
e,01 in (0,1) such that for all metric balls B,(z,r) of radius r < W (z, R)"/?,

/ 1
pBEN1p )y >e in 1B (21, (7.8)
provided that s < (617/)%. We split the proof of inequality (7.6) into two steps.
Step 1. Fix t € (O,(S?W(a;o,ﬁ)) and set
pi= 5f1t1/ﬂ <W(zo,R)Y? and B, := B.(x0,p),
so that t = (61p)”. We claim that there exist constants ¢, do in (0,1) such that

pr(,y) > (7.9)

‘/* (.’L'O, ,0)
for all points z,y in B, (zg,dt'/?).
Indeed, for any x € By, we have by the Holder inequality,

B, mQ
v @)= [l i) 2 s </;*Pgaﬁmlﬁdﬂ(y)>2==-£fé%%;%£—zz—

Since the function Pﬁ; 1p, is continuous by Lemma 6.11 and t/2 = (§1p)8/2 < (§1p)?, it follows
from (7.8) that,

2
Pi1p.(x)) L2
M(B*> B ‘/*(I'(),p)

On the other hand, since p € (0, W (zo, R)"/?) and t € (0,5?W(3§0,R)), applying (7.2) with
Q=B,, U= iB* and r = %p, we have for any x,y € %B* = Bi(zo, }lél_ltl/ﬁ),

B\ B c (N (8w, R) di(ey) )’
o) - ob | < g () m(wm@ (o)

( 1
PP (z,x) > for any z in ZB*' (7.10)
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o (5" (dwy))’
= Vi(zo,p) \ t1/8
o5 (du(zy)’

B ‘/*(I[)ap) tl/ﬂ '

Let 02 be a constant in (0, }léfl) to be determined. If x,y € B,(x,d2t'/?), then

¢ (d*u,y))e _ C'(26y)
Vk(x()vp) t1/8 - VY*('xOMO)

pi* (%, ) —ptB*(:v,y)‘ < (7.11)

Combining this and (7.10), we have
82 — C/(Q(Sg)a

B B. B B
vy (%, y) 2 py (v, x) — |py (e, ) — py (T, y)| 2>
e (2,y) 2> pp (o, ) — |py (@, @) — p (2, 9)] V. (z0.p)

Choosing 2 = % A (4_1151—1) so that
C'(269)? < €%/2,
we obtain (7.9) with ¢ := £2/2, thus proving our claim.
Step 2. Let 6, := 0, A do. Fix a ball B, (xg,r) with r € (0, W (20, R)'/?) and some
t < (6.r)° < 8PW (20, R).

Then,
p =07 P <578 <,
so that By (xg,p) C Bi(z0,7). By (7.9), we have, for all
T,y € B*(l‘o, 5*t1/ﬁ) C B(Io, (Sgtl/’ﬁ),

that 5 5
ol « (0,7) (z,y) > p! «(0,p) (z,y) >

Since p = 07 11/8 > t1/5 we see by (VD.) that

VY*(.’B(),,O) <C (51_1t1/ﬁ> ’ — C(Sl_a*.

‘/*(x()ap) .

Vi(xg, t1/5) — +1/8

Therefore, it follows that for any z,y € B.(zo, d.t'/?) and any t < (5,7)7,

By (xo,r d
Dy (o )(JTay) > W7

thus showing (7.6). Therefore, condition (sLLE,) holds.
It remains to show the implication (VD,) + (sLLE,) = (sNLE,).

Indeed, assume that condition (sLLE,) holds true. Note that the hypothesis of Proposition
7.2 is satisfied. Then, the existence of the global heat kernel p;(z,y) follows from Proposition
7.2. In the sequel, we divide the proof of (7.7) into two steps.

Step 1. Let 8, be the constant from (7.6). For any = € M and s € (0,6°W (z, R)), set
ri= 610 < Wi(x, R)\/P
so that s < (6,7)”. Then we have by (7.6) and Proposition 7.2(4) that

_° 1/p
> Vo (z,s1/3)’ V z,w € Bi(z,0,57). (7.12)

Step 2. Fix Cy > 1 and take an integer n > 1 so that

ps(z,w) > pB @) (2 w)

n—1§@<n.
50

*
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Set
0x

onl/B’
Fix z,y € M and t < CoW (z, R) with d,(z,y) < 63t*/?. By the pointwise semigroup property
in Proposition 7.2(1), we have

03 1=

pe(z,y) = /M 71Pt/n($, Zl)pt/n('zlazZ)"'pt/n(znflay)dzleQ"'dznfl

> / Pe/n(T5 21)Peyn (21, 22) - Pyyn(2n—1,y)dz1dze - - - dzn—1.
(:B 53t1/ﬁ) -1

Since
B(x, 85ty € B(x,6.(t/n)"?), y e B(x,8,(t/n)"?) and t/n < 6°W(x,R),
we obtain by the above inequality and (7.12) with s = t/n that

C n
) > ) dndey-don
pulay) 2 /Bu,ggtw)n—l(wx,(t/n)l/ﬂ)) ardz e
C n n—1
(vetmm) (v ot)

n—1
c " n—1 c cVi(z 53751/6)
> (—— ) (Vi(w, 05t = ’ :

Moreover, by (VD,),

Va(e, d5t'/7) > C (53t1/ﬂ>a* =c

Ty 2O\
Combining the above two inequalities, we obtain (7.7), thus proving (sNLE,). O
Lemma 7.7. Let (£,F) be a regular Dirichlet form in L%. If condition (VD) holds, then
(SLLE,) < (sLLE), (7.13)
(LLE,) & (LLE),
(sNLE,) < (sNLE),
(NLE.)  (NLE).

Proof. Let Cy be the constant from (2.8) and (2.9). If either (sLLE,) or (sLLE) holds true,
then for any bounded open set Q C M, the Dirichlet heat kernel p{’(z,y) exists and is locally
Holder continuous in (x,y,t) € 2 x  x (0, 00).

(1). We show implication (sLLE,) = (sLLE).
Assume that conditions (VD), (sLLE,) are satisfied. Fix a ball B := B(zq, R) with R € (0, R).
It suffices to prove (2.17). Indeed, let ¢y, d, be the constants from (7.6). Let
ri= L7 F(z0,R) < W(zo, R)'/? so that W (zo, R) = F(x0, R)® = (Lr)°.
By (4.7), we have
B*(.T(],T) = B*(.’Bo,L_lF(.To, R)) C B(.%'(], R) = B.
Thus, by (7.6) and (VD.,), we have that for any

t < (0.r)° = 0P LW (20, R)
and for any z,y in B, (zg,6.t'/5),

B*(mm )(

PP (z,y) > p; (7.14)

) > >_ ¢
BV =Y (20, 11/8)
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On the other hand, let
Ry = F Y (zo, L Lot"P) = W (o, (L7 Lo)Pt)  so that W (zo, R1) = (L™ 'Lo)°t.
By (4.6),
B, (z0,t"%) € B(xo, R1) = B(xo, W™ (x0, (L Lo)"1)),
from which, we see that
Vi (2o, t18) < V (o, W™ (zo, (L Lo)P1)). (7.15)
Let
Ry := F~ Yo, L716,tY%) = W (20, (L716,)%t)  so that W (xo, Ry) = (L716,)P¢.
By (4.6), we obtain
B(zo, W™ w0, (L716,)5t)) = B(zo, Ry) C By(wo, 6,t/7). (7.16)
Combining (7.14)-(7.16), we obtain for any
t < 6PL7PW (20, R)
and for any z,y in B(xg, W1 (xg, (L716,)Pt)),

B(z,y) > ¢ > ¢
bl ¥y = Vi(zo, t1/8) = V(xo, W=1(xo, (L~ Lo)At))"

Moreover, by (2.8), we can choose § € (0,1) to be so small that
W(wo,6R)  _ Cy o
P L-BW (x9,R) — 6°L—8 —

and by (2.9) that

W o) o (b Ny (LN
W a0, (L 10,070 = W \(T15,)7t wo\TTep) ST

With this choice of §, we obtain for any ¢ < W (zq,dR) and for any z,y in B(zg, W ~1(x,1)),

pP(z,y) >

c
V (w0, W=t(zo, (L~ Lo)"t))”
By (VD) and (2.9) and using the fact that L™'Ly > L > 1, we have
V (w0, W~ (20, (L' Lo)"t)) _ c <W_1(9007 (L_lLo)ﬁt)>CY <C ((L_lLo)ﬁt>a/ﬁ1
V(:L‘(),Wfl(li(),t)) B W71($0,7f) B t
Therefore, it follows from above that for any t < W (zg,dR) and for any =, y in B(zg, 6W ~!(z0,1))

c c

>
Vi(@o, W= (zo, (L™ Lo)"t)) — V(xo, W (20,1))’
thus showing (2.17). This proves the implication (sLLE,) = (sLLE).
To show the opposite implication (sLLE) = (sLLE,), assume that condition (sLLE) is true.
Fix a ball B, := B, (xg,r) with some
re (0, W(zo, R)/P).

It suffices to show that the inequality (7.6) is true. Indeed, let C,d be the constants from (2.17).
Let

= (1.

PP (z,y) >

R:= F Yo, L717) = W (2o, (L71)%) < W (o, 7?) < W (o, W (20, R)) = R.
By (4.6), we have
B($0aR) = B(.’Eo,F_l(ZEO,L_lr)) - B*(':UO’r) = B..
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Thus, by (2.17), we obtain that for any ¢ < W(xo,dR) and for any z,y in B(zg, W ~(z0,1)),
C—l

« B(zo,R
pP(a,y) = pP 0 (2,y) > Vo W1 (20.0)) (7.17)
On the other hand, set
ry = L7YF (0, LoW ™Y (z0, 1)) = L™ W (9, LoW ™Y (20, 1)) /5.
By (2.8),
r < L_IC’%BLg?/ﬁW(xO,W‘l(xo,t))l/ﬁ _ L_IC’%BLgQ/Btl/ﬂ,
from which, we see by (4.7) that
B(wo, W (w0,1)) C Bu(0,71) C Balwo, L' Cll L P11/8)
and hence,
V (w0, W (w0, 1)) < Vi(wo, L CLPLEP1118), (7.18)
Let

ro = L™ F (20, 6W ! (wo,t)) = L™ W (wg, 6W * (wo, t)) /7.
Then by (2.8),
ry > L71C P02/ BW (o, W (o, 1)) VP = L71Cy /P 6021118,
from which, we have by (4.7) that
Bl(wo, W (x0,8)) D Ba(wo,72) D Bu(wo, L~ CpptP6%2/541/8), (7.19)
Combining (7.17)-(7.19), we obtain for any
t < W(xo,0R) = W (zo, W " (z0, Cip (L™ '1)?))
and for any x,y in B.(xo, LilCI;/l/ﬁ(SﬁQ/ﬁtl/ﬁ),

C
P (z,y) >

Vateo IO LT

Note that by (2.8),
C’V_[/l (Lilr)ﬁ . W(an Wﬁl(x(b OI;/I (Lilr)ﬁ))
W (o, 6W = (o, Ciy (L=17)%)) W (o, s W (o, Oy (L17)7))

< Cwd P,

Therefore, taking d, € (0,1) to be so small that 6, < L‘lC;VWBcsB?/ﬂ and
(6.7)° < CGtoP2 00 (L) < W (g, SW ™ (w0, Cit (L7 11)P)),
we obtain from above that for any t < (6,7)? and for any z,y in B,(zo, 6.t"/7),

e (2,y) > -

CT Vilwo, L1 Ly sy

thus showing (7.6) by using condition (VD,). Equivalence (7.13) follows. Similarly, under (VD),
we have (LLE,) < (LLE).

(2). We show (NLE.) = (NLE). Assume that (7.7) is satisfied. We need only to prove the
inequality (2.15) is true.

Indeed, Let C, . be the constants as in condition (NLE,). For any 6 > 0, ¢ > 0 and z,y € M
with d(x,y) < W 1(z,t), by (4.5) and (2.8), we have

d(w,y) < LF(x,d(w,y)) < LW (a,6W " (z,1))"/"
< LCYP O PW (2, W (2, 1)) /P = LOY P55 /P18,
Then, we can take § small enough such that

B(x,6W ™ (x,t)) C B.(x,8,t/7).
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Moreover, by the second inclusion in (4.7) with R = W~1(z,t), we obtain
B, (z, L ''%) ¢ Bz, W™\ (z,1)).
Therefore, using the above two inclusions and (VD,), we obtain from condition (NLE,) that
C—l Cr—l C—l
> >
Vi, t1/8) = Vi(z, L=4/B) = V(z, W= (x,1))
for all z,y € M and all t < CoW (x, R) with Cy > 1 satisfying
d(z,y) < SW(z,1).
This shows the implication (NLE,) = (NLE).

To prove the opposite implication (NLE) = (NLE,), we need only to prove (7.7) holds true.

Indeed, let C,§ be the constants as in condition (NLE). For any §, > 0 and z,y € M with
do(z,y) < 8,81/ BW—1(z,1), by (4.5), we have

W (. d(w,y)) < (Ldu(2,9))° < (L6.)%

Then, by (2.9), we can take J, small enough such that

d(z,y) < W (z, (L6,)°t)) < oWz, 1).
Moreover, by the second inclusion in (4.6) with » = Lt'/? we obtain

Bz, W™z, t'/%)) C B,(z, Lt'/P).
Therefore, using the above two formulas and (VD,.), we obtain from condition (NLE) that
Cc1 Cc1 c1
V(x, W=1(z,t1/8)) = Vi(x, Lt/ P) & Vi(x, t1/8)’
for all 2,y € M and all t < CoW (z, R) with Cy > 1 satisfying
d(z,y) < SW(z,1).
This shows the implication (NLE) = (NLE,.).
Similarly, under (VD), we can prove (sNLE,) < (sNLE). O

pi(w,y) >

pt(may) Z

7.3. The reflected Dirichlet form. In this subsection, we recall the general theory of the
reflected Dirichlet form in L?(€, p1) for a non-empty open subset  of M. The reflected Dirichlet
form will be used to derive the Poincaré inequality in the next subsection.

Let (€, F) be a general regular Dirichlet form defined in (2.5). Let U be a non-empty open
subset of M.

e The part (£, F(U)) of the Dirichlet form on L?(U).

Let F(U) be a space defined by (2.16), that is F(U) = FNCy(U) . It is known (cf. [8,
Corollary 2.3.1 on p.98]) that if (€, F) is regular, then (£, F(U)) is a regular Dirichlet form on
L?(U), which is called the part of the Dirichlet form (€, F) on U. Moreover, the two Dirichlet
forms (£,F) in L2(M,p) and (€, F(U)) in L?*(U) share the same set of quasi notions (cf. [8,
Theorem 4.4.3(7i) on p.174]). Note that the energy € keeps the same expression (see for example
[3, formula (3.3.1) on p.108]) but its domain F(U) becomes smaller than the original F, so that
FU)cCF.

For any u € F(U), we have by (2.5)

E(u,u) = /dF (u, ) //UXU () d]+/U u(z)?ky (dz) (7.20)

where ky(B) = k(B) + 2j(B x M \ diag) for any Borel set B € B(U) is the killing measure of
the Dirichlet form (€, F(U)), see also [3, formula (5.2.29) on p.189].

e The resurrected Dirichlet form (£V7e, FUres) on L2(U).

&1
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For any u € F(U), we define
evrun) = [ O+ [[ o) - ut)Pa (7.21)
U UxU

that is, the energy £Y7® is defined through (7.20) by removing the killing part. By [3, the first
paragraph on p.190], the form (Y%, F N Cy(U)) is closable under 51U’res, where

7 (u, ) == VS (u,w) + (u, u) 207

Let FUTe be the closure of FNCo(U) in /7. By [3, Theorem 5.2.17], the form (EUres, FUres)
is a regular Dirichlet form on L?(U). Moreover, the space F N Cy(U) is a core of (EUres, FUres),
and the two Dirichlet forms (&, F(U)) and (€U, FUres) in L2(U) share the same set of quasi
notions (cf. [3, Theorem 5.2.17]).

Since Y7 (u, u) < E(u,u) for any u in F N Cy(U), we have
FU) c FUres, (7.22)

The resurrected Dirichlet form (V7S FUres) can be viewed as a modification of form (&, F(U))
on L?(U) by dropping its killing part and by enlarging its domain.

e The reflected Dirichlet form (£Uref, FUret) on L2(U).

The reflected Dirichlet form (EUref, FUret) on L[2(U) is a modification of the resurrected
Dirichlet form (£Y7res, FUres) on L2(U) by adjusting its domain FU™ while keeping the same
expression of the energy €Y7 on the space F N L.

Recall that a set £ C M is called £-quasi open for the Dirichlet form (&, F) if for any € > 0
there exists an open set U containing F with Cap;(U \ E) < € (see (2.25) for the definition
of Capy). So called EY*-quasi open sets for the Dirichlet form (EVres, FUres) can be similarly
defined. We follow the definition of the notion Fio. in [3, Eq. (4.3.31), p. 163] to define the

. o 1] ref
function class .ﬁg&re on U:

](flg’cres = {u : there is an increasing sequence of EY*-quasi open sets {D,} with U2, D, =U

U,res

EYres_q.e. and a sequence {u,} C F such that u = u,, p-a.e. on Dn} )

That is, we replace F, E appearing in [3, Eq. (4.3.31), p. 163] by FUr, U respectively. Since
(EUres, FUres) is a regular Dirichlet form on L?(U) by the above result, one can follow the
arguments in the last two paragraphs in [3, p. 263] to prove that (7.21) is also well defined for
all u € £ (not only for u € F(U)). In this case, we write the formula in (7.21) by EUres (y, )

o

when u € £V, That is,

loc
gU,res(u’u) — / ar®) (u, 1) + // (u(z) — u(y))2d]’ u e ji—lg’cres' (7.23)
U UxU

Again, since (£Ures, FUres) is a regular Dirichlet form on L?(U), by [3, Defintion 6.4.4, p.
256], the reflected Dirichlet space (EUref, FUref) of (gUres) FUres) ig defined by

FUret . {u € ,ﬁg’cms L EUes (4, u) < oo} ; (7.24)
and
SU’ref(’LL,U) _ gU’reS(u,U), u,v € ].'U»Tef_ (7.25)

Moreover, applying [3, Theorems 6.4.5, p. 266], with (£, F), (£f, F™f) being replaced by
(EUres FUres) hy (gUref FUret) yegpectively, we see that the form (5U7ref,f£]’ref) with

j:g,ref . pUref L2(U) (7.26)

is a Dirichlet form on L?(U) for any non-empty open subset U of M. This Dirichlet form is
called the reflected Dirichlet form on U. It is not known in general whether the Dirichlet form
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(& Uref 7l ’ref) is regular or not. In the following, we will construct a regular Dirichlet form on
L?(U) such that the associated domain contains F|y:

Flu := {u: there exists a function f in F such that v = f on U}.

We need the following lemma.
Lemma 7.8. Let U be an open subset of M. Then
Flo € #re. (7.27)

loc

Proof. Let {U,} be a sequence of precompact open sets such that U, 1T U as n — oo and
U, C Up41 for n > 1. Fix a function w of its £-quasi continuous version in F. For any n > 1,
let

D,={zeU:—n<u(z) <n}NU,.
Then each D, is &-quasi open, precompact with D, C D,y for n > 1 and U, Dy, = U.
Moreover, by definitions (7.20), (7.21), each D, is also £Y"*-quasi open.
Let forn >1
Up = ((—n) Vu) An.
Then each u,, € F N L* and u,, = v on D,,. We show
Uy € FUTes,

Indeed, let ¢ € cutoff(D,,, Dy41) so that supp(¢) C Dyy1 € U. We have by [8, Theorem
1.4.2(ii), p. 28] that v, := u, - ¢ € F N L>®, and so by [16, Proposition 2.8],

Un € .7:(Dn+1)
From this, we have by (7.22)
vp € F(Dpy1) C F(U) C FUTes,

Since u = v, p-a.e. on D, and v, € FU' we see that u|y € ]i'lg’cres by definition. O

For any open set U C M, it is easy to see that F|y C L?(U), and by the definitions (2.5),

(7.23),
gU’reS(u\U,u|U) < E(u,u) < o0, ueF.

Hence, by (7.27) and the definitions (7.24), (7.26), we have
Fluy € FUrtn L2(U) = FIret.

Assume in addition that ;(0U) = 0. In this case, we have L?(U) = L?(U). We will construct
a regular Dirichlet form on L2(U). Indeed, all functions in Fly or ™ can be identified as
functions on U. Moreover, note that (£Urf, FV™") is a Dirichlet form on L2(U), and Fly C
U,ref
Fo . We define

gU,ref
fU = f‘U 1 , (728)
where

7" (uu) = EVM (uyu) + (u,u) g2y, w € FU

Denote by Cj (U) the space of continuous functions with compact supports in U. Note that
the space Cy(U) is the same to the space of functions in Cy(M) restricted to U.

Theorem 7.9. Let U C M be a non-empty open set with p(0U) = 0. Then (EYV™f, FU) defined
in (7.25), (7.28) is a regular Dirichlet form on L*(U). Moreover, F|gz N Co(U) is also the core
Of (gU,ref’ }“U)
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Proof. Tt is easy to see that FU is dense in LE(U), since F|y C FU and F|y is dense in L2(U).
Hence, (Y7, FU) is a Dirichlet form on L?(U). It remains to prove that (€Y, FU) is regular.

Indeed, Let us prove that FY N C()(g) is dense in Co(U). Since F N Co(M) is dense in

Co(M), we have that for any u € Co(U) with u = ul; for some u € Cy(M), there exists
{u,} € FNCy(M) such that

~ ~ 1
sup |up(x) —u(zr)| < —, n>1.
zeM n

Set uy, 1= Un|g € Flg N Co(U) for n > 1. Then

1
sup [t () — u(z)| < sup [Tn(2) — W(x)| < =, > 1.
zeU zEM n
That is, Flg N Co(U) is dense in Co(U). Since Flz C FY, we have that FU N Cy(U) is also
dense in Co(U).
Let us prove that FU NCy(U) is dense in FU. By the definition of FU, for any u € FU, there
exists {u,} C Flg such that

1

ElU’ref(un —UUp —u) < —, n>1 (7.29)
n

Then there exists {u,} C F such that u, = u,|gz for n > 1. Since F N Cy(M) is dense in F,
there exists {v,} C F N Cy(M) such that

- - - 1

E1(Vp — U, Uy — Uy, < 3 > 1.

Set vy, := Uyl € Flir N Co(U) for n > 1. By (7.25) and (2.5), we have
- - - 1
ElU’ref(vn — Uy, U, — Up) < E1(Vpy — Up, Uy — Up) < 3 n > 1. (7.30)
Combining (7.29) and (7.30), we have
U,ref
EV (v —u, v —u) < ot n>1.

Since vy, € FlzNCo(U) for n > 1, FlzN Co(U) is dense in FV. Moreover, since F|i N Co(U) C
FU N Cy(U), we have that FU N Cy(U) is dense in FY. Therefore, (V! FU) is regular. O

By Theorem 7.9, (€Y%, FU) is a regular Dirichlet form on L?(U). Then, its part Dirichlet
form (EVref FU(U)) is a regular Dirichlet form on L?(U), where

U,ref
gl

FYU) = FUNCy(U) ,

and EV (u, u) = EVF (u, u) + (u, w) 2y, u € FU.

Let (£,F(U)) be the part Dirichlet form on L?(U) of (£, F). If we identify the functions in
F N Cy(U) as functions on U, then we have by (7.28),

FNCy(U) c FY(U)NCy(U).

Moreover, since EV (u|y, uly) < E(u,u), u € F, we have

FU)=FnCo@) c FUNGO) " =FU ). (7.31)
We also have the following proposition.

Proposition 7.10. Let U C M be an open set with w(0U) = 0. Then, F N Co(U) is weakly
dense in FU(U) with respect to EV™" and L?-norm.
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Proof. Step 1. Fix u € FYNCy(U). Let K := supp(u) C U and choose ¢ € cutoff(K,U) C FV.
Since u € FV, by Theorem 7.9, there exist {u,} C F|; N Co(U) such that
1
ElU’ref(un — Uy Uy —u) < —, n>1

n

Note that u € Co(U) is bounded. Let v, := (—||ulo0) V un A |[u||ec € FlizNCo(U) for n > 1. By
[8, Theorem 1.4.2(v), p. 28] with ¢(t) := (—||ul/co) VE A ||tt]|co, t € R, we have

lim 51U’ref(vn —u, vy, —u) = 0.
n—oo

Consequently, we have uv,, converges to u = u as n — oo in L?-norm, and by [8, Theorem
1.4.2(ii), p. 28]

sup SU’ref(govn, Pu,) < sup2H<p||OOEU’ref(vn, Up) + sup 2anHoo€U’r6f(g0, ©)
n>1 n>1 n>1

< 31;1; 2€U’ref(vn,vn) + 2HuHoo€U’ref(g0, ©) < o0o.
nz

Hence, by Lemma 9.4 in Appendix, there exist {¢v,, } C {¢v,} such that pv,, converges weakly
to u in EY " norm. Moreover, since each ¢uv,, € F N Co(U), we see that F N Co(U) is weakly
dense in FU N Cy(U) with respect to £V and L?-norm.
Step 2. Fix u € FU(U). There exist {u,} C FU N Cy(U) such that
1
5f’ref(un — Uy Uy —u) < —, n>1.
n

By step 1, for any v € FY, there exist {v,} C F N Co(U) such that
1
1EV e (0, — v, 0)| < =, n > 1,
n

and

1
[vn = Ul L2y < on > 1.
Consequently, we have for any v € FUY,

lim 5U7ref(un —u,v) =0, lim |v, — v||L2(U) =0.

n—oo

The proof is complete. O]

Let us recall the definition of subcaloric functions. Then, we will use the parabolic maximum
principle [15, Proposition 4.11] to prove the following Proposition 7.11.

Let I be an interval in R. A function u : I — L? is said to be weakly differentiable at t € I,
if for any ¢ € L?, the function (u(-), ) is differentiable at t, that is, the limit

. (u(t &) —ult). S0)

e—0 S

exists. In this case, by the principle of uniform boundedness, there is some w € L? such that

iy (940 )

e—0 g

for any ¢ € L?. The vector w is called the weak derivative of u at t, and we write w = %

For an open subset U C M, a function w : I — F is subcaloric (caloric) in I x U if u is weakly
differentiable in L? at any ¢ € I and if for any ¢ € I and any non-negative ¢ € F(U),

One can prove that for any f € L?(U), PV f is caloric in (0,00) x U. Subcaloric (caloric)
functions for other Dirichlet forms can be similarly defined.
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Proposition 7.11. Let U C M be an open set with p(dU) = 0. Let {P:}>0, {P }r50, {PY }1>0
be the heat semigroups of the Dirichlet forms (EUret, FU), (&Y<t FU(U)), (&€, F(U)) respec-
tively. Then for any 0 < f € L*>(U) and any t > 0,

Pf>PUf>PUf in M. (7.32)

Proof. Clearly, for any non-negative f in L%(U),
Pf>PVf in M.

Since ]3tU f=0=PVfin U we only need to show
Pf>P/f inU.

To do this, note that both Dirichlet forms (£t FU(U)) and (£, F(U)) in L*(U) are regular.
Let for any f € L?(U) and t > 0,

u(t,") =PV f - PUf.

We show that v < 0 in (0,00) x U by using the parabolic maximum principle.
Indeed, it is easy to see that u(t,-) — 0 in L?(U) as t — 0. Since

u(t,) < P f(-) € F(U),
we see by [15, Lemma 4.4] and by using (7.31) that
uy(t,-) € F(U) c FY(U).

Thus, the function u satisfies the initial and boundary conditions in (0, 00) x U with respect to
(EU,ref7 fU(U))

We show that u is subcaloric in (0, 00) x U with respect to the form (£Vref, FU(U)), that is,
for any non-negative function ¢ € FV(U)

ou
(579 + €7 (u,0) <0. (7.33)

Indeed, using the definitions (7.20) and (7.25), we see for any u,v € F(U)

e = [+ [[ ) —um)e@ - o)+ | u@pk)
= gUrel(y, v) +/ u(z)v(z)ky (dx).
U
From this, we have for any non—negative function ¢ € F(U) c FY(U),
0 ~
(%8.0) = (2 PV T~ SPE1¢) = ~E(PE f0) + E94 (Y £, )
- er’fe%Pth, o) [ P I@ewhu(dn) + €7 1)
= — &0y, 90)—/UPth($) (@)ky (dx) < —EV(u, @), (7.34)

that is, the inequality (7.33) holds for any 0 < ¢ € F(U). Moreover, by Proposition 7.10, (7.33)
holds for any 0 < ¢ € FY(U).

Therefore, by the parabolic maximum principle [15, Proposition 4.11], we have
u(t,)=PVf—PVf <0 in (0,00) x U.

The proof is complete. U
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7.4. Derivation of conditions (PI) and (S). Recall that (£,F) is a regular Dirichlet form
without killing part defined by (2.7), and d, is the metric defined by Proposition 4.1.

In this section we derive conditions (PI) and (S) by using condition (LLE). Here the condition
(S) is called survival estimate which is defined below. This condition is used to derive the
implication (LLE) = (Gcap).

We start with the implication (LLE,) = (PL,).

Lemma 7.12. Assume that condition (VD) is satisfied. Then (LLE,) = (PL).

Proof. Fix a ball B, := B,(xg,r) of radius r € (0, W (xg, R)'/?).

Case 1. u(0B,) =

Let the Dirichlet forms (51t FBx) (£B-ref FB«(B,)), (€, ]-"( «)) be as in Proposition 7.11
with U = B,, whose heat semigroups are denoted by {Pt}t>0, {P *Hs0, {P * }i>0 respectively.

By [17, formula (8.7)] and (7.32), we have for any ¢ > 0 and for any u € F5*,

E5 (1) 2 o (Pu(@)l - (@), 1(2))

> 2%(1%3* ()1 wP(2), 1(2))

> o (PB*( (2)1 = w)*(2), 1(2))

-5/ * | o * u(@) — u(y))dp()dn(y).

Let ¢t = (d,7)? where d, is the constant from (LLE,). By (LLE,),

c /

C
= >
= Vilwo, /%) Vilao,0.r) ~ u(B.)’

Combining the above two formulas and using condition (VD,), it follows that for any u € FB*,

p-a.a. T,y € B*(xo,é*tl/ﬁ) = 533*.

7 (x,y) >

B ,ref >
) 2 s o L (000 = )Pty
C,U<52 «) / 2 C 2
= uU—usgg |“du> — u— us2pg |“dp. 7.35
6B Sy, 1 N2 5 [, 1 s (7:)

Setting k. := 62, we see by (7.35) and definition (7.25) that for any u € F|p, C FPB,
/ lu — e, B, |2dp < CrPEB-T (u, u)(u, u) = Crﬁ/ dl'g, (u,u),
K By *

thus showing that condition (PI,) holds.
Case 2. u(0B,) >0

It follows from (VD) that there exist at most countably many numbers s € (0,r) such that
p(0By(x0,s)) > 0. Then, we can take a sequence {ry,}n>1 C (0,7) such that B,, := B,(zo,7y) T
B, as n — oo and p(0By,) = 0 for all n > 1. Moreover, applying the result in Case 1 for each
B,, and using (3.6), we obtain

/ lu — u,ﬁ*BnPdu(x) < Crg/ dl'p, (u) < Crﬂ/ dl'p, (u).
K« Bn

n *

Passing to the limit in the above inequality as n — oo, we obtain (4.13) for the ball B,. That
is, condition (PI,) holds. O

Definition 7.13. We say that condition (S) holds if there exist two small constants ¢,0 € (0,1)
such that for all balls B of radius less than R,

1
PB1lp>¢ in 1B (7.36)
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provided that ¢t < éW(B).
We show that condition (LLE) implies condition (S).
Lemma 7.14. Assume that condition (VD) is satisfied. Then (LLE) = (S).

Proof. Rename the constant ¢ in (LLE) by do.

Step 1. Let By := B(z,R) with z € M and R € (0,R). By (LLE) and (VD), we obtain for
any t < W(z,5oR) and p-almost all z € B(z,doW ~!(z,t)),

PPo1p, (=) = / PP (2, ) du(y) > / P (2, y)dp(y)
By B(z,00W—1(z,t))

/ % C: du(y) = ¢ L 501/1:1(3:,15))
B(asoW-1 () V (@, W1 (1)) V(z, W(z,1))
> ¢ (using (9.1)) (7.37)
for some positive constant ¢ independent of By,t, z.
Step 2. Fix B := B(xo,R) with 20 € M and R € (0,R). Let z be any point in 1B so

that B(x, %) C B. Applying (7.37) with By being replaced by B(z, %), it follows that for any
t <W(z,00R/2),

Y

PP1p > PP g oy > in Bz, 80W (,1)). (7.38)
Moreover, by the right inequality in (2.8), we have for any z € }lB
W(:BO)R) < CI 3 & _. 571
W(CC,(SQR/2) - do ' ’

that is, 0W (zo, R) < W(x,dpR/2). And, by the left inequality in (2.8), we have for any x € %B
and t < W (zo, R),

Wl @o.t) _ Wl @0, ) + R _ , (W(xo,Wl(xo,t) +R)>1/ﬁ1
W-(z,t) = Wz, t) ~ W(x, W=(z,t))

. 161
B C// <W(1‘O,W (mo,t) + R)> =: C(Qjo,t,R)_la

B t
that is, c(wo,t, R)YW (zo,t) < W~1(z,t). Here c(wo,t, R) is a positive constant depending on
o, t, R.
Hence, by (7.38), we have that for any « € 1B and ¢t < §W (2o, R),
PP1p >¢ in B(z,doc(xo,t, R)).

Since iB can be covered by at most countable balls like {B(:z:, doc(zo, t, R)), x € iB}, it follows
that for any ¢t < 6W(xo, R),

1
PtBlg >e in ZLB’
thus showing that (S) is true. O
7.5. Proof of Theorem 2.9.

Proof of Theorem 2.9. To prove (2.18), we follow a flowchart of the following results:
(VD) + (RVD) + (Geap) + (TJ) + (PI) = (LLE,) (Lemma 7.6)
(VD) + (LLE,) = (SLLE)  (Lemma 7.7).
It is obvious that (sLLE) = (LLE). To verify the opposition implication (LLE) = (PI)+
(Gcap), we use the following implications:
(VD) + (LLE) = (LLE,) (Lemma 7.7)
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(VD) + (LLE,) = (PL,) (Lemma 7.12)
(VD) + (PIL.) = (PI) (Proposition 4.7)
(VD) 4+ (LLE) = (S) (Lemma 7.14)
(VD) + (S) = (Geap) ([12, Lemma 13.5]).
Hence, we have prove the first two equivalences.

To prove the implication (LLE) = (sNLE), by the above equivalence, it suffices to prove
(sLLE) = (sNLE), which in turn follows from the following implications:

(VD) + (sLLE) = (sLLE,)  (Lemma 7.7)
(VD) + (sLLE,) = (sNLE,) (Lemma 7.6)
(VD) + (sNLE,) = (sSNLE)  (Lemma 7.7).

The rest is clear. The proof of Theorem 2.9 is complete. O
8. FULL LOWER ESTIMATES OF HEAT KERNEL

8.1. Proof of Theorem 2.12. In this subsection we prove Theorem 2.12. We start with
derivation of (PI) from the lower bound of the jump kernel.

Lemma 8.1. Let (£,F) be a reqular Dirichlet form in L* without killing part. Then
(VD) + (J>) = (PI).

Proof. Fix a ball B := B(xo, R) with zg € M and R € (0,R). It follows from conditions
(VD), (J>) that, for any u € F,

/ dT 5 (u //BxB u(y))?J (z, y)du(y)du(z)
) )i
JI| () = uto) P sy dta)

v

-/ XB(“(“’”) ) QR)CW 7 ) (x)

T L () — ) (o).
From this and using the identity

[ )~ atyPauty)aute) = 2u8) [ (0= us)an
B><B B
we obtain
d 2c
/BdFB( ) > V(.’Eo, R)W(xo, R) . 2,u,(B) L(u — uB)2du = —W(xo, R) /B(u — UB)2d,u,

thus showing that (2.14) holds with x = 1. O

We introduce condition (J%).

Definition 8.2. We say that condition (J%) holds if there exists a non-negative function J such
that dj(z,y) = J(z,y)du(y)du(x) in M x M, and for (p x p)-almost all (x,y) in M x M,

C
J(x,y) = ;

where Vy(z,y) := Vi(z,di(x,y)), x,y € M, and C is a positive constant independent of z,y
(C=0if J=0).

(8.1)

Then we have following.
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Lemma 8.3. The following implication is true:
(VD) + (J>) = (J3).

Proof. 1t suffices to show (8.1). Indeed, fix two points x,y in M. For any z € B(z,d(x,y)), we
have by (4.5) that

di(x,2) < LF(z,d(z,2)) < LF(z,d(z,y)) < L*d,(z,y),
showing that

B(z,d(z,y)) C Bi(z, L*d.(z,y)).
Since (VD) holds by Proposition 4.4, we have
V(z,y) = V(z,d(z,y)) < Vi(z, L2d(z,y)) < OVi(z, du(z,y)) = CVi(z,y).

One the other hand, using (4.5) again, we see

W(z,y) = W(z,d(z,y)) = F(z,d(z,y))" < (Ld.(z,9))°.
Therefore, it follows from (2.19) that

C < C’

Ve, y)W(z,y) = Vi(z,y)du(z,y)"’
thus showing (8.1). O

J(z,y) >

Proposition 8.4 (]9, Corollary 3.5]). Assume that (£,F) is a regular conservative Dirichlet
form in L?. Let K be compact and U,V be open such that K C U C V. Then

Py > (1- Pf 1) Oi<r;f<tei[51f PY1y in M.

Proposition 8.5 ([9, Lemma 4.1]). Assume that (£,F) is a reqular Dirichlet form in L*. Let
Q be an open subset of M and f € L' N L? be non-negative. Let ¢ € F be such that 0 < ¢ < 1
i M and ¢ =0 in Q. Then for any t > 0,

t
(1- P, f) > — / £, Pf)ds.

We introduce condition (LE,), the full lower bound of the heat kernel under the metric d.,.

Definition 8.6. We say that condition (LE,) holds if the heat kernel p:(z, g) exists and, for
any Cp > 1, there exists C' > 0 such that for any x,y in M and t < Co(W(z, R) A W(y, R)),

1 t
pi(z,y) > C <V*(:r,t1/f3) A V*(x,y)d*(x,y)ﬁ> , (8.2)

where C' is a positive constant independent of ¢, x,y.

The following gives a lower estimate of the heat kernel.

Lemma 8.7. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that
(E,F) is conservative, and for any non-empty bounded open set Q@ C M, the Dirichlet heat
kernel pi*(x,y) is locally Holder continuous in (z,y,t) € Q x Q x (0,00). Then

(VD) + (J2) + (S.) + (NLE,) = (VD) + (LE.) = (sLE).

Proof. By assumption, the hypothesis of Proposition 7.2 is satisfied, and for any non-empty
bounded open set 2 C M and ¢t > 0, the function Ptﬂlg is continuous.

We first show condition (LE,) holds. The proof is motivated by that in [9, Theorem 4.8]. Let
61 be the constants from (6.1) in condition (S.) and 2 from (7.7) in condition (sNLE,). Let us
fix x,y € M and t < Co(W (x, R) A W(y, R)). We consider two cases.

Case 1: d.(z,y) < d2t'/P. In this case, (8.2) follows directly from (7.7).
Case 2: d.(x,y) > dot'/8. We divide the proof of this case into four steps.
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Step 1. Let

.|
3T 9l+1/B

Fix s < Co(W (z, R) AW (y, R)) with

1
and 04 := B A (5351)6.

di(x,y) > 625"/7. (8:3)
Set r := d35/7 so that
r< %(W(:c,ﬁ) AW (y, R)),
and set
By = B.(z,7) and B, := B.(y,r)

so that B, and B, are disjoint. By the pointwise semigroup property in Proposition 7.2(1), we
have for any z € M,

pa(z,2) = /M P(15275 & )P, 2)dps(u0)

> / P(1—5ys (1, 10)p8as (10, 2)dps(w0)

T

> gieréf P(1—54)s(%w)/ Poss(w, z)dp(w)

T

- u?gg; p(l—64)s($7w)P54sle (z> (84)
Since for any w € B,

dy(z,w) <1 = 0358 < 85(5/2)/P < 65((1 — 64)s)'/7,
we have by (sNLE,) and (VD,) that

einf (z,w) > einf ¢ > ¢
web, P00 = S Vi, (1= 60)9)7P) ~ Vilw, s1/9)

From this, we have by (8.4) that for any z € M,

ps(z,z) > Ps,s1p,(2). (8.5)

C
V(@ 5179)
We need to estimate Ps,;1p, from below.

Step 2. Let K C in be compact. Since (€, F) is conservative, applying Proposition 8.4 with
V=B,U-= }le and t = d45, we obtain

Ps,slp, > (1 - PE 1) 0<%/n<f54s?i§f PP*1p, in By (8.6)
<bus 1p,

Since
S48 = 04(65 ') < (617",
we see by condition (S,) that
cinf PP*1p, > ¢
ip
4 x

where ¢ € (0,1) comes from (S,). From this, we have by (8.6)
Ps,s1p, > e (1 — P{i,1gc) in By. (8.7)
We need to estimate 1 — P({gl ke from below.

Step 3. Indeed, let ¢ € F be such that 0 < ¢ < 1x, and 0 < f € L' N L™ be such that

1
supp(f) C 15y
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Since two functions ¢ and PX° f have disjoint supports, we have for all 7 € (0, d45)
~E(6, PEf) = —€W(6, PEf) — €D(6, PE° )
= —&Y(¢, PE f)

=~ [ [ (0) - w)(PE () - PXf(w)i
M JM
= z K< w 2, W w z
=2 [ o) [ PR f) I wpdn(w)dn)
> 2 _gint Jew) [0 [P fidntodut)

2€Bz,wEBy Y

=2 einf J(va)”qSHLl(Pf(cfv 1By)
Yy

z€Bg,weB

>2¢e _einf J(zw)olfllies,)
Y

z€By we

where we have used the fact that, by condition (S.) and the fact that supp(f) C 1B,

4
(P f,1p,) = (f, P 1B,) = (£, Pr"1,) 2 ellfll i 1p,).

Therefore, applying Proposition 8.5 with (2 = K¢ we obtain from above that

048
(1= Pidke, /)= — [ &6, PF f)ds
0

> 22605 __gint | J(zvw) [0l s, (59
Let us estimate einf.cp, wep, J(2,w). By (8.3), we have that, for any z € B, and w € By,
di(z,0) < di(z,2) + di(2,y) + di(y, w) < 2r +di(z,y) < 2di(2,y),

which yields by the inequality (8.1) in condition (J%) and (VD.) that

einf J(z,w) > einf
zele,weBy (zw) 2 zele,weBy Vi(z,w)d (2, w)P

) C
2 S, V(2 2d, (2, ) @d(, )P
Cl
> .
Vi(z,y)d(z, y)?

Plugging the above inequality into (8.8) and using the arbitrariness of f, we obtain that

1-— P(gfjscch > 2edys  einf  J(z,w)||¢| 1

zeEbg,weby

S Cs
~ Vi(z,y)d(z,y)
Plugging the above inequality into (8.7), we have

o1
Sléll in 3By,

Ces
Vi(z,y)d(z,y)
Step 4. Substituting (8.9) into (8.5), we obtain that for p-almost all z € 1By,

. C sl
Pj,,1 > ’
6451 By ('Z) = ‘/*(ZL‘, 31/5) V;(:L‘,y)d(%y)ﬂ

where C’ is a positive constant depending only on constants in hypothesis.

Ps,s1p, > ¢ (1 - P({j;:]_KC) >

1
/g”ngLl m ZBy (89)

ps(l‘a Z) > W
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Since ¢ is arbitrary with support in K C %BJ}, it follows from above and (VD,) that

C's 1(3Bz) Cs 1
> > -a.a. —
= Vil sV0) Ve p)d(e,9)? = Valwgd(e)?” M2

We emphasize that one can NOT set z = y in the above inequality since it holds only for

ps(x, 2) By.

B
p-almost all z € %By. To overcome this difficulty, we set d5 := (%) . Multiplying the
above inequality by ps.s(2,y), integrating it with respect to du(z), and using the inequality
ip
Poss(2:y) > ps., (2,y), 2 € M (by Proposition 7.2(4)), we have

P(Lrse)e(Ey) = /M po(, 2)psas (2, ) du(2)

ip
> / po(w, )i (2, y)du( )
1By

Cs / ip
> 22 (2, ) du(z
Vi(z,y)d(z,y)? Jip, % (z,y)dp(z)
Cs 15,

- V. (z,y)d(z, )P P 1%By (y)- (8.10)

Moreover, note that

1 . r r R
(558)1/ﬁ = 55//6 - 03 Ly =6, (Z) and 1 < W(y, R).

1
Since PC{;Byli B, is continuous by assumption, by condition (S.), we have
iB
Py g, (y) 2 &
Hence, it follows from (8.10) that for any s < Co(W (z, R) A W (y, R)) with d(z,y) > da5'/7,
Cs ip Ces
> X | > .
R AR e AR LA A FIeR
Note that t < Co(W (z, R) A W (y, R)) and d,(x,y) > 62t*/P. Therefore, we can set s =
the above inequality and obtain

Ce(1405)" 't 1 t
o) > 5o it > (v v
Finally, combining the above two cases, we have proved condition (LE,).

It remains to show the implication (VD) + (LE,) = (sLE). Assume that conditions (VD) and
(LE,) hold true. By Proposition 7.2(1), the heat kernel p;(z,y) satisfies the pointwise semigroup
property. Hence, we need only to prove the inequality (2.20) in (sLE) is true for any =,y € M
and t < W(z,R) AW (y, R)).

Indeed, fix 7,y € M and t < W (z, R) A W(y, R)). Let

R:=F Y&, L ' Lot"/?) = W (&, L™ L{t).
By (4.6), we see B, (x,t'/%) c B(z, R), and hence, by (VD) and (2.8),
1 S 1 _ 1 N C
Vi(a, tV8) = V(@,R)  V (e, W-V(x, L-OL5t)) ~— V(z,W(z,t))
On the other hand, by (4.5) and (2.9), we have for any z € B (z,d«(x,y)),
F(z,d(x,2)) < Ld,(z,2) < Ld.(z,y) < L*F(z,d(z,y)) < F(z,Cd(z,y)),
which gives that d(z,z) < Cd(x,y) by the monotonicity of F(x,-) = W(x,-)'/%. Thus
Bi(z,di(z,y)) C B(z,Cd(z,y)),

p(1+55)s(x7y)

_t_
1405 n

(8.11)
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from which, we see by (VD)

Vi(z, du(2,y)) < V(z,Cd(z,y)) < CV(z,d(z,y)) = CV(z,y).
Note that by (4.5),

di(z, y)ﬁ < (LF(JL‘, d(x7y)))'6 = LBW('%" d($7y)) = LBW('%" y)'

Therefore, it follows from (8.11), the above two inequalities and condition (LE,) that

(x,y) > C ! A t > ! A !

P = T\ ) D Ve d ey ) = T Ve W@ n) Ve )W)

thus showing (2.20). We have proved (sLE). O
We show that condition (LE) implies condition (J>).

Lemma 8.8. Let (€, F) be a regular Dirichlet form in L%. If the jump kernel J(x,y) emists,
then

(LE) = (J>).

Proof. Let U,V C M be bounded open sets such that dist(U,V) > 0, and let 0 < f,g € FNL!
be such that supp(f) C U, supp(g) C V. Since supp(f) Nsupp(g) = 0, we have

~&(f,9) =—EYV(f,9) = 2/ / f(x J(z,y)du(y)du(z).

On the other hand, let us fix a point x9 € U. In the case when R < oo, by the right inequality
n (2.8), we have for any z € U

W (z0, R) < W (z0, R + diam U) <. <}_3—|— diam U>52 »
W(z,R) ~ W(z,R) - R '

That is,
01W($0,R) < W(QZ,R), zeU.
Similarly, fix a point 39 € V and there exists ca = c2(V, R) > 0 such that coW (yo, R) < W(y, R)
forall y e V.
Hence by (LE), we have for (1 x p1)-almost all (z,y) in U x V' and for any ¢ < (e1W (z0, R)) A
(c2W (yo, R)) < W(x, R) AW (y, R),

1 t
pi(z,y) = C <V(:U,W_1(9€,t)) " V(CC,y)W(xvy)> '

Consequently,

—S(f,g): hm (Ptf f’ )_hm (Ptfa )
= lim / / P, ) (@) g () dpa(y)dpu(z)

t—0 ¢

> Timinf 7 /U /V mf(x)g(y)du(y)du(ﬂf)

t—0

C
- /U /V Ve Wiy W9wdny)du).
Therefore, we obtain

/ / f(@)g(y)J (@, y)du(y) / / )d,u(y)du(x).

Since (€, F) is regular, the functions

> fil@)gi(y)
i=1
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with  f;,9; € F N Co(M) and supp(f;) Nsupp(g;) = @ for all 1 < i < n, constitute a dense
subalgebra of Cy(M x M \ diag), see for example [8, Lemma 1.4.2 on p. 29]. It follows from
above that

C/2
Vi, y)W(z,y)
for (u x p)-almost all (z,y) in M x M \ diag, thus showing condition (J>). O

J(z,y) >

We are now in a position to prove Theorem 2.12.
Proof of Theorem 2.12. Under the conditions (VD), (RVD) and (TJ), the implication
(J>) + (Geap) + (C) = (sLLE) + (sLE)

follows from the following sequence of implications:

(VD) + (J>) = (PI) (Lemma 8.1)
(VD) 4+ (RVD) + (PI) 4+ (Geap) + (TJ) = (sLLE) 4+ (NLE) (Theorem 2.9)
(VD) + (RVD) + (PI) + (Geap) + (TJ) = (S,) (by (6.4))
(VD) + (NLE) = (NLE,) (Lemma 7.7)
(VD) + (J>) = (JX) (Lemma 8.3)
(VD) + (S«) + (NLE,) + (J2) + (C) + Hélder continuity of p? = (sLE) (Lemma 8.7).

It is obvious that
(SLLE) + (SLE) = (LLE) + (LE).
Under the condition (VD) and the assumption that the jump kernel J(z,y) exists, the implication
(LLE) + (LE) = (J>)+ ( Geap)
follows from the following implications:
(VD) + (LLE) = (S) (Lemma 7.14)
(VD) + (S) = (Geap) ([12, Lemma 13.5])
(LE) + “the existence of jump kernel” = (J>) (Lemma 8.8).
The proof of Theorem 2.12 is complete. U

The following conservativeness result is extracted from [9, Lemmas 4.5 and 4.6] and their
proofs; see also [9, Remark 4.7].

Proposition 8.9. Let (£, F) be a regular Dirichlet form in L? without killing part. Let ro > 0,
T >0 and e € (0,1). Assume the following conditions are true.

(1) Ewvery ball has finite measure;
(2) cutoff(B,2B) # 0 for every ball B of radius > ro;
(3) For any ball B of radius R > 1o and any t < T,

1
Plp >¢, p-ae in ZB.
Then (€, F) is conservative.

Corollary 8.10. Let (£, F) be a regular Dirichlet form in L? without killing part. Assume that

inf W(z,R) >0
zeM

for some co > 0. If one of the following conditions is satisfied, then (£,F) is conservative:

(1) (S«) and every ball under the new metric d. has finite measure;
(2) (S) and every ball has finite measure;
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Proof. (1). Suppose that (S,) is satisfied, and that every ball under the new metric d, has finite
measure.
Since inf,cpr W(z, R) > ¢y for some ¢y > 0, condition (S,) implies that for all metric balls

B, = B.(z,r) 0frad1usr<co/ﬁ,

1
PtB*lB* >e in ZB*’

provided that t'/8 < §,r. This is exactly the condition (S) in [9]. Hence, it follows from [9,
Lemma 4.6, p. 3327] that (£, F) is conservative.
(2). Suppose that (S) is satisfied, and that every ball has finite measure.

One can follow the method in the proof of [14, Proposition 6.4(2)] and use Proposition 4.3 to
prove that (S) = (S&). On the other hand, it follows from (4.6) that every ball under the new
metric d, has finite measure. Hence, the conservativeness of (€, F) follows from (1). O
Proof of Corollary 2.13. By Theorem 2.12, it suffices to prove the implication

(VD) 4 (RVD) + (J>) + (Geap) + (TJ) = (C).

under the assumption that R = diam M or the function W in (2.8) is independent of the space
variable. Indeed by the following two implications

(VD) + (J>) = (PI) (Lemma 8.1)
(VD) 4+ (RVD) + (PI) + (Geap) + (TJ) = (S.) ((6.4))

we obtain (S,). Therefore, (€, F) is conservative by Corollary 8.10(1). O
8.2. Two-sided estimates. In this subsection we combine the upper bounds of heat kernels
from [14] and the lower bounds obtained in this paper, in order to state two-sided estimates of
the heat kernel.
Proof of Theorem 2.19. The first two equivalences

(PI) + (Geap) + (TJ,) < (TP,) + (sLLE)

& (TP,) + (LLE)

follow from the following implications:

(VD) + (PI) = (PL,) (Proposition 4.7)
(VD) + (RVD) = (VD,) + (RVD.) (Proposition 4.4)
(VD,) + (RVD,) + (PL.) = (Nash,) (Lemma 4.9)
(Nashy) = (FK,) (Lemma 4.11)
(VD) + (FK,) = (FK) (Proposition 4.13)
(VD) + (RVD) + (FK) + (Gcap) + (TJ,) = (TP,)  ([14, Theorem 2.15])
(VD) + (TJ,) = (TJ) ([14, Proposition 3.1])
(VD) + (RVD) + (PI) + (Gcap) + (TJ) = (sLLE) = (LLE) (Theorem 2.9)
and
(VD) + (TP,) = (TJ,) ([14, Theorem 9.1(2)])
(VD) + (LLE) = (LLE,) (Lemma 7.7)
(VD) + (LLE,) = (PL.) (Lemma 7.12)
(VD) + (PL,) = (PI) (Proposition 4.7)
(VD) + (LLE) = (S) (Lemma 7.14)
(VD) 4+ (S) = (Gcap) ([12, Lemma 13.5])
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The implication

(TP4) + (sLLE) = (UE,) + (NLE) + (C)
follows directly from the following implications:
(VD) + (TPy) = (UE,)

(VD) 4 (sLLE) = (sLLE,) (Lemma 7.7)
(VD) + (sLLE,) = (sNLE,) = (NLE,) (Lemma 7.6)
(VD) + (NLE,) = (NLE
= (
= (

([14, Lemma 8.8])

) (Lemma 7.7)
(VD) + (LLE) S) (Lemma 7.14)
(VD) + (S) + “R = diam M” C) (Corollary 8.10(2) and Remark 2.14).
The proof of Theorem 2.19 is complete. U

Denote the diameter of M under the metric d, by
R, := sup{d.(z,y)| 2,y € M}.

Definition 8.11 (Condition (TP.)). We say that condition (TP.) is satisfied if for any Cyp > 1,
there exists C' > 0 such that for any ball B, := B, (z,r) of radius r € (0, R,) and any t < Cy(R,)”
Ct
B
Lemma 8.12. Let (£,F) be a regular Dirichlet form in L? without killing part. Assume that
R =diam M. Then

1
Pilpe < in _B.. (8.12)

(VD,) + (TP,) + (NLE,) = (S.).

Proof. The proof is motivated by [9, Lemma 4.10, p. 3334].

Fix a ball B, := B.(xg,r) with r < R,. Since every ball has finite measure by (VD,), we can
apply [16, Eq. (4.1), p. 2626] with

¢ 1
Q=M, U:B*,K—<%B*> , and J":§B>k
and obtain that, for any t > 0,
B. .
P I%B* > Ptl%B* — sup PSI%B* Lw((ﬁ)c) ,  p-a.e. in B,. (8.13)

s€(0,t)
Let 0, be the constant from (NLE,). Note that for any = € }LB* and t < ,
) 1

Bi(z,—~t"P) c B,.
<x7 4 ) 2
By (NLE.) and (VD.), we obtain, for any ¢ < 7 and p-almost all z € 1B,
Py @) = [ pio () = pi(, 2)du(2)
2 1B, B(z, 2 t1/8)

c Vilz 5_*t1/5)
= Vi(x, t1/0) /B*(m,‘iftl/ﬁ) 1(z) Vi(z, t1/8)  — €o ( )

C
On the other hand, note that for any w € %B* and z € (%B*) ,

3 1 r
d(z,w) Z d(Z7 xo) - d(x())w) > Zr - 57' = 1_1:7

we have

1 T
§B* (- B*(Z, Z) .
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Then, by (TP.), we have, for any s < t,
ct

(T/ 4)
Covering <%B*> by at most countable balls like Bi(z, 16) with 2z € (%B*>C, we obtain from

the above inequality that

r T

1
P]_IB < Plp, oz —nF H-a-e 1n4B( 4):B*(z,1—6).

< ct
e (75)) S
Plugging (8.14) and (8.15) into (8.13), we obtain that for p-almost all 2 € 1B, and t < 77,
ct

B
Pt I%B*ZCO_T_/@'

sup
s€(0,t)

Lip, (8.15)

Setting ¢ := (%)1/57 we have for p-almost all z € 1B, and t < (6r)",

ct co co

PtB*]'%B*ZCO_T_,@:CO_E_?'

To prove (S.), it suffices to extend the_ radius of the ball B, from r < R, to r < W(xo,ﬁ)l/ s
in the case when R < co. Indeed, since R = diam M, by (2.22), we see that

sup W(x, R) < CW(zo, R) < .

zeM

for some fixed x9p € M. Moreover, by the standard covering arguments, we can extend the
radius of the ball B, from r < R, to r < aR, for any given a > 1. Taking a large enough
so that aR. > CW |z, R), we manage to extend the radius of the ball B, from r < R, to
r < W(zo, R)"/? in the case when R < co. That is, we obtain (S.). O

Proof of Corollary 2.20. We have the implication
(VD) + (J>) = (PI) (Lemma 8.1)
(VD) + (RVD) + (PI) + (Geap) + (TJ;) = (TP4) + (C)  (Theorem 2.19)
(VD) + (TJ,) = (TJ) ({14, Proposition 3.1])
(VD) + (RVD) + (J>) + (Geap) + (TJ) + (C) = (sLE)  (Theorem 2.12).

Combining the above four implications, we obtain the implication “=" in (2.29).

It is obvious that (sLE) = (LE).

To complete the circle in (2.29), we have the following implications:

(Geap) < (VD) + (TP,) + (C)  ([14, Prop. 9.1(3) and Eq. (6.4)])
“the existence of J(z,y) « (VD) + (TP,) ([14, Theorem 9.1(2)])
(J>) < (LE) + “the existence of J(z,y) (Lemma 8.8),

where the existence of J(z,y) is ensured by (TJ,). Combining the above two formulas, we obtain
the implication “<” in (2.29) and, hence, complete the circle.

To prove (2.30), it suffices to prove the implication
(VD) + (TP,) + (LE) = (O).
This follows from the following implications:
(VD) = (VD,) (Proposition 4.4)

(VD) + (TPy) = (TP.) ([14, Prop. 3.1 and Eq. (8.17)])
(LE) = (NLE)
(VD) 4+ (NLE) = (NLE,) (Lemma 7.7)
(VD.) + (TP,) + (NLE,) = (Ss) (Lemma 8.12)
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(VD) + (S) + “R = diam M” = (C) (Corollary 8.10(1) and Remark 2.14).
The implication (2.31) follows directly from (2.30) and the implication
(VD) + (TPg) = (UE,)
(cf. [14, Lemma 8.8]). Finally, the equivalence (2.32) follows from the equivalences (2.29), (2.30)
and the following relations:
(J<) =(TPy) & (UEs) = (UE).

9. APPENDIX

In this appendix, we collect some facts that have been used in this paper.

Proposition 9.1 ([14, Proposition 10.1 in Appendix]). Assume that condition (VD) holds and
W satisfies (2.8). Then there exists a constant C' > 0 such that, for all t > 0 and all points x,y
in M with d(z,y) < Wz, t) v W=i(y,t),

C*l < V(‘T7W_1(x7 )) < C. (91)
V(y, W=(y, 1))
Proposition 9.2 ([12, Proposition 15.1 in Appendix]). Let (£, F) be a regular Dirichlet form
in L?. Suppose that u =w +a € F' withw € F and a € R, v € FNL*® and that F : R +— R is
a Lipschitz function. Then the following statements are true.

(i) The function F(u) — F(a) belongs to F, so that F(u) € F'.
(1) If in addition F(u) € L, then F(u)v € F N L.
(7i1) Let 2 be an open subset of M. If in addition v € F(Q2), then F(u)v € F().

The following iteration is elementary.

Proposition 9.3 ([12, Proposition 15.4 in Appendix]). Let {ay}}2, be a sequence of non-
negative numbers such that

ap < D)\ka};_r'f fork=1,2,---
for some constants D,v > 0 and A > 1. Then for any k > 0,

11 e ()
an < D+ (Du/\ 2 ao)

The following was proved in [20, Lemma 2.12].
Lemma 9.4. Let (£, F) be a Dirichlet form in L?. If

Fa B f supE(f) < oo,

then f € F, and there exists a subsequence, still denoted by {f,}, such that f, LN f weakly, that
18,

E(fnrp) = E(f, )

as n — oo for any ¢ € F. And there exists a subsequence {fn,} such that its Cesaro mean
LS~ fn, converges to f in £ -norm. Moreover, we have
n k=1 J Nk g 1 . 2

The notion of the u-regular E-nest {Fy} is given in Section 2.

Proposition 9.5 ([12, Proposition 15.3 in Appendix]). Let {F}} be a p-regular E-nest and
u € C({Fy}). Then for any open set U C M

sup u = esupu where F := |J Fy.
UNF U k>1
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Proposition 9.6 ([14, Proposition 10.6 in Appendix]). Let By C B; be two metric balls such
that By \ By # (0. Then for any quasi-continuous v € F,

/ v(y)J(z,dy) < <esupv)/ J(x,dy)  for q.e. € Bo.
B1\Bs By BS
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