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Abstract Surface parameterizations have been widely applied to computer graph-
ics and digital geometry processing. In this paper, we propose a novel stretch
energy minimization (SEM) algorithm for the computation of equiareal parame-
terizations of simply connected open surfaces with very small area distortions and
highly improved computational efficiencies. In addition, the existence of nontrivial
limit points of the SEM algorithm is guaranteed under some mild assumptions of
the mesh quality. Numerical experiments indicate that the accuracy, effectiveness,
and robustness of the proposed SEM algorithm outperform the other state-of-the-
art algorithms. Applications of the SEM on surface remeshing, registration and
morphing for simply connected open surfaces are demonstrated thereafter. Thanks
to the SEM algorithm, the computation for these applications can be carried out
efficiently and reliably.
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1 Introduction

A parameterization of a surface M ⊂ R3 is a bijective mapping f that maps M
to a planar region D ⊂ C(≡ R2). It has been widely applied to various tasks
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of digital geometry processing, such as surface registration, resampling, remesh-
ing, morphing, and texture mapping. Some classical methods and applications of
surface parameterizations can be found in the survey papers [13,24,16].

The desired parameterization usually minimizes the distortion of angles [10,
29], areas or a mixture of them [22]. In particular, an area-preserving mapping
is also called an equiareal parameterization. Some popular approaches for the
computation of equiareal parameterizations are:

1. stretch-minimizing method [23,27],
2. Lie advection method [31],
3. optimal mass transportation method [11,15,30,25].

In applications of surface resampling and remeshing, a suitable parameteri-
zation can be applied so that the sampling on the surface in 3D space can be
determined by the sampling on a planar domain of simple shapes via the one-
to-one correspondence of the parameterization. The distortion of the sampling
density between samplings on the surface and on the planar domain, respectively,
is caused by the stretch of the parameterization. In order to control the density of
the sampling on the surface via a planar domain, a parameterization with a very
small stretch is required. One of the best options is the equiareal parameteriza-
tion, which refers to as a bijective area-preserving mapping f that maps a surface
M⊂ R3 onto a planar domain D ⊂ C(= R2).

In computations, the surface we considered is a triangular mesh, i.e., a piecewise
linear surface composed of triangles. A triangular mesh M in R3 is composed of
triangular faces

F(M) = {[vi, vj , vk]} ,

where, vi ≡
(
v1
i , v

2
i , v

3
i

)> ∈ R3 is a vertex of M, the bracket [v1, . . . , vm] denotes

the convex hull of the affinely independent points {v1, . . . , vm} ⊂ R3 defined by

[v1, . . . , vm] =

{
m∑
`=1

α`v`

∣∣∣∣∣
m∑
`=1

α` = 1, α` ≥ 0, ` = 1, . . . ,m

}
⊂ R3.

For convenience, we denote the set of vertices ofM by V(M) and the set of edges
of M by

E(M) = {[vi, vj ] | [vi, vj , vk] ∈ F(M) for some vk ∈ V(M)} .

1.1 Contributions

In this paper, we propose a novel stretch energy minimization (SEM) algorithm for
the computation of disk-shaped equiareal parameterizations of simply connected
open surfaces with small area distortions and highly improved computational effi-
ciencies. The contributions can be divided into three folds. First, we improve the
area distortion of the parameterization on a given surfaceM by introducing a novel
iterative scheme of the SEM algorithm. The desired equiareal parameterization of
M is achieved as the iteration converges. Second, the accuracy, effectiveness and
robustness of the proposed SEM algorithm are highly improved compared with
the other state-of-the-art algorithms. Third, we prove the existence of nontrivial
(nonconstant) limit points of the SEM algorithm under some mild assumptions of
the mesh quality.
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1.2 Notations and Overview

The following notations are frequently used in this paper. Other notations will be
clearly defined whenever they appear.

• Bold letters, e.g. f , g, h, denote (complex) vectors.
• Capital letters, e.g. K, L, M , denote matrices.
• Typewriter letters, e.g. I, J, K, denote ordered sets of indices.
• I(`) denotes the `-th element of the ordered index set I.
• fi denotes the i-th entry of the vector f .
• fI denotes the subvector of f composed of fi, for i ∈ I.
• |f | denotes the vector with the i-th entry being |fi|.
• diag(f) denotes the diagonal matrix with the (i, i)-th entry being fi.
• Ki,j denotes the (i, j)-th entry of the matrix K.
• KI,J denotes the submatrix of K composed of Ki,j , for i ∈ I and j ∈ J.
• [u, v, w] denotes the triangular face with the vertices {u, v, w} ⊂ R3 or C.
• |[u, v, w]| denotes the area of the triangular face [u, v, w].
• i denotes the imaginary unit

√
−1.

• nK denotes the number of rows of a squared matrix K.
• nI denotes the number of elements of an ordered index set I.
• In denotes the identity matrix of size n× n.
• 1n denotes the vector of length n with all entries being one.
• 0 denotes the zero vectors and matrices of appropriate sizes.

This paper is organized as follows. First, the discrete equiareal parameteriza-
tion and a brief review of the most related work on the fast stretch minimization
are introduced in Sect. 2 and 3, respectively. Then the SEM algorithm for the
computation of equiareal parameterizations of simply connected open surfaces is
proposed in Sect. 5. The proof of the existence of nontrivial limit points for the
SEM algorithm is given in Sect. 6. Numerical results of the SEM algorithm com-
pared with two state-of-the-art methods [27,25] are presented in Sect. 7. Finally,
some applications of the SEM algorithm on surface remeshing and surface regis-
tration are demonstrated in Sect. 8. A concluding remark is given in Sect. 9.

2 Discrete Equiareal Mappings

Given a triangular mesh M of n vertices {v`}n`=1 with v` ∈ R3. A bijective piece-
wise affine mapping f fromM to a unit disk D: f :M→ D ⊂ C can be expressed
by a complex-valued vector

f = (f1, . . . fn)> ∈ Cn,

where f` = f(v`), for ` = 1, . . . , n. For convenience, we write f` = f1
` +if2

` , where f1
` ,

f2
` ∈ R, for ` = 1, . . . , n. For z ∈ [fi, fj , fk] ⊂ D, the inverse mapping f−1 : D→M

is defined by

f−1
∣∣
[fi,fj ,fk] (z) =

|[z, fj , fk]|vi + |[fi, z, fk]|vj + |[fi, fj , z]|vk
|[fi, fj , fk]| , (1)

where |[fi, fj , fk]| denotes the area of the triangle [fi, fj , fk] given by

|[fi, fj , fk]| = 1

2

∣∣∣(f1
i − f1

k )(f2
j − f2

k )− (f2
i − f2

k )(f1
j − f1

k )
∣∣∣ . (2)
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Let z = z1 + iz2, z1, z2 ∈ R. From (1) and (2), the partial derivatives of f−1 with
respect to z1 and z2 can be expressed by

∂f−1
∣∣
[fi,fj ,fk]

∂z1
(z) =

1

2|[fi, fj , fk]|

[
(f2
j − f2

k )vi + (f2
k − f2

i )vj + (f2
i − f2

j )vk

]
and

∂f−1
∣∣
[fi,fj ,fk]

∂z2
(z) =

1

2|[fi, fj , fk]|

[
(f1
k − f1

j )vi + (f1
i − f1

k )vj + (f1
j − f1

i )vk

]
,

respectively. The discrete first fundamental form of f−1 is defined as

If−1(z) =
[
Jf−1(z)

]> [
Jf−1(z)

]
, (3)

where Jf−1(z) =
[
∂f−1

∂z1 (z) ∂f−1

∂z2 (z)
]

is the Jacobian matrix of f−1. A bijective

mapping f :M→ D is said to be equiareal if

det
(
If−1(z)

)
= c,

for some constant c, for every z ∈ D.

3 Previous Works

In this section, we briefly review the fast stretch minimization (FSM) algorithm
[27] with the discrete harmonic map [12] as the initial mapping for the computation
of an equiareal parameterization of a simply connected open meshM proposed by
Yoshizawa et al., which is the most related work. The computational procedure of
FSM [27] is described as follows.

3.1 Discrete Harmonic Mappings

Given a simply connected open mesh M, the discrete harmonic mapping is the
minimizer of the discrete Dirichlet energy

ED(f) =
1

2

∑
[vi,vj ]∈E(M)

wi,j |f(vi)− f(vj)|2 , (4)

where wi,j is the cotangent weight on the edge [vi, vj ] defined by

wi,j =
cotαi,j + cotαj,i

2
(5)

in which αi,j and αj,i are two angles opposite to the edge [vi, vj ], as illustrated in
Fig. 1. The energy functional (4) can be written as

ED(f) =
1

2
f∗Lf ,
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αi,j αj,i

vi

vj

vkv`

Fig. 1 An illustration for the cotangent weights.

where f = (f(v1), . . . , f(vn))>, f∗ denotes the conjugate transpose of f , and L is
the Laplacian matrix defined by

Li,j =


−wi,j if [vi, vj ] ∈ E(M),∑
k 6=i wi,k if j = i,

0 otherwise.

(6)

Suppose I and B are the sets of indices of interior vertices and boundary ver-
tices, respectively. The discrete harmonic mapping can be computed by solving
the discrete Laplace-Beltrami equation

LI,IfI = −LI,BfB,

where fB is the boundary mapping given by fB(j) = cos θj + i sin θj , in which

θj = 2π
∑j
`=1 |vB(`+1)−vB(`)|∑nB
`=1 |vB(`+1)−vB(`)|

, and vB(nB+1) := vB(1), for j = 1, . . . , nB.

3.2 Iterative Scheme of the FSM Algorithm

Given a bijective piecewise affine mapping f : M → D ⊂ C. Let γ±f−1(z) be two

singular values of the Jacobian matrix Jf−1(z) =
[
∂f−1

∂z1 (z) ∂f−1

∂z2 (z)
]
. Note that

γ±f−1 |τ (z) is constant on each triangular face τ ∈ F(M). The stretch metric over
τ is defined as

Sf−1(τ) =

√
(γ+
f−1 |τ )2 + (γ−f−1 |τ )2

2
=

√
af−1 |τ + cf−1 |τ

2
, (7)

where af−1 |τ = (∂f
−1

∂z1 )>(∂f
−1

∂z1 )|τ and cf−1 |τ = (∂f
−1

∂z2 )>(∂f
−1

∂z2 )|τ , i.e., the root-
mean-square of the singular values of Jf−1 [23]. Then the stretch metric on the
vertex vj is defined as

Tf−1(vj) =

√√√√∑τ∈N (vj)
|τ |Sf−1(τ)2∑

τ∈N (vj)
|τ | , (8)

in which N (vj) = {τ ∈ F(M) | vj ∈ τ}, and |τ | denotes the area of the triangular
face τ ∈ F(M).
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Recall that the initial mapping f (0) in the FSM algorithm [27] is a disk-shaped
harmonic mapping stated in Sect. 3.1. Then interior vertices of the mapping f (k)

are updated via redistributing local stretches by w
(0)
i,j := wi,j and

w
(k)
i,j =

w
(k−1)
i,j

T(f(k−1))−1(vj)
,

where T(f(k−1))−1 is defined in (8). In other words, if we let the weight matrix W (k)

be

W
(k)
i,j =

{
w

(k)
i,j if [vi, vj ] ∈ E(M),

0 otherwise,

then the interior vertices fI is updated by the iteration

L
(k)
I,I f

(k)
I = −L(k)

I,B fB, (9)

where f
(0)
I ≡ fI, L

(0) ≡ L as in (6), and

L(k) = diag

 n∑
j=1

W
(k)
i,j

n
i=1

−W (k).

Note that the FSM algorithm [27] has the following drawbacks, namely, (i) the
stretch metric (7) cannot distinguish some different types of the first fundamental
forms, e.g., [

1 0
0 1

]
,

[
1.2 0
0 0.8

]
, and

[
1 0.3

0.2 1

]
;

(ii) The matrix L
(k)
I,I in the linear system (9), in general, is not symmetric; (iii) The

mapping of boundary vertices in the FSM algorithm is completely determined by
the initial mapping.

4 The Stretch Factor

To remedy the drawback of the stretch metric in the FSM algorithm, we introduce
the stretch factor in (10) which will be used in our proposed algorithm. Given
a mesh M with a parameterization f : M → D ⊂ C, the stretch factor σf−1 :
F(M)→ R with respect to f−1 is defined by

σf−1(τ) =
|τ |
|f(τ)| , (10)

where |τ | and |f(τ)| denote the areas of the triangular face τ and its image f(τ),
respectively. In fact, the stretch factor (10) is exactly the square root of the deter-
minant of the discrete first fundamental form in (3).

Theorem 1 Given a mesh M and a parameterization mapping f :M→ D ⊂ C.
The stretch factor σf−1 , defined in (10), satisfies

σf−1(τ) =
√

det
(
If−1

∣∣
f(τ)

)
, (11)

for every τ ∈ F(M).
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Proof We write f = (f1, . . . , fn)> := (f(v1), . . . , f(vn))> ∈ Cn, where f` = f(v`),
for ` = 1 . . . , n. Note that the partial derivatives are translation invariant. Without
loss of generality, let vi + vj + vk = 0, and fi + fj + fk = 0. That is, vk = −vi− vj ,
and fk = −fi − fj . A direct computation yields that

|[fi, fj , fk]| = 3

2

∣∣∣f1
i f2
j − f2

i f1
j

∣∣∣ .
Similarly,

|[vi, vj , vk]|2 =
1

4
‖(vi − vk)× (vj − vk)‖2 =

1

4
‖(2vi + vj)× (vi + 2vj)‖2

=
1

4

(
‖2vi + vj‖2‖vi + 2vj‖2 − ((2vi + vj)

>(vi + 2vj))
2
)

=
9

4

(
(v>i vi)(v

>
j vj)− (v>i vj)

2
)
.

On the other hand,

∂f−1
∣∣
[fi,fj ,fk]

∂z1
=

f2
j vi − f2

i vj∣∣f1
i f2
j − f2

i f1
j

∣∣ and
∂f−1

∣∣
[fi,fj ,fk]

∂z2
=

f1
i vj − f1

j vi∣∣f1
i f2
j − f2

i f1
j

∣∣ .
Hence,

af−1

∣∣
[fi,fj ,fk] =

(
∂f−1

∣∣
[fi,fj ,fk]

∂z1

)>(
∂f−1

∣∣
[fi,fj ,fk]

∂z1

)

=
(f2
j )2(v>i vi)− 2f2

1 f2
j (v>i vj) + (f2

i )2(v>j vj)∣∣f1
i f2
j − f2

i f1
j

∣∣ ,

bf−1

∣∣
[fi,fj ,fk] =

(
∂f−1

∣∣
[fi,fj ,fk]

∂z1

)>(
∂f−1

∣∣
[fi,fj ,fk]

∂z2

)

=
−f1

j f2
j (v>i vi) + (f1

i f2
j + f2

i f1
j )(v>i vj)− f1

i f2
i (v>j vj)∣∣f1

i f2
j − f2

i f1
j

∣∣ ,

and

cf−1

∣∣
[fi,fj ,fk] =

(
∂f−1

∣∣
[fi,fj ,fk]

∂z2

)>(
∂f−1

∣∣
[fi,fj ,fk]

∂z2

)

=
(f1
j )2(v>i vi)− 2f1

1 f1
j (v>i vj) + (f1

i )2(v>j vj)∣∣f1
i f2
j − f2

i f1
j

∣∣ .
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It follows that

det
(
If−1

∣∣
[fi,fj ,fk]

)
= af−1

∣∣
[fi,fj ,fk] cf−1

∣∣
[fi,fj ,fk] −

(
bf−1

∣∣
[fi,fj ,fk]

)2
=

(f1
i f2
j − f2

i f1
j )2

(
(v>i vi)(v

>
j vj)− (v>i vj)

2
)∣∣f1

i f2
j − f2

i f1
j

∣∣4
=

(v>i vi)(v
>
j vj)− (v>i vj)

2∣∣f1
i f2
j − f2

i f1
j

∣∣2
=

9
4

(
(v>i vi)(v

>
j vj)− (v>i vj)

2
)(

3
2

∣∣f1
i f2
j − f2

i f1
j

∣∣)2
=
|[vi, vj , vk]|2

|[fi, fj , fk]|2
= σf−1([vi, vj , vk])2.

Therefore, (11) follows directly by the positivity of the stretch factor. ut

From (3) follows Corollary 1 immediately.

Corollary 1 The value of σf−1(τ) is the product of the singular values of the
Jacobian matrix Jf−1

∣∣
f(τ) , for every τ ∈ F(M).

Our goal for the computation of equiareal parameterization is to find a bijective
mapping f :M→ D having the property that σf−1 is constant.

5 The Stretch Energy Minimization Algorithm

In this section, we describe the SEM algorithm for the computation of an equiareal
parameterization f of a simply connected open surfaceM. First, the stretch energy
is introduced in Sect. 5.1. Then the iterative scheme of the SEM algorithm is
proposed in Sect. 5.2 for achieving the equiareal parameterization.

5.1 The Stretch Energy

Given a meshM with a parameterization f :M→ D ⊂ C. Note that the cotangent
formula (5) can be written as

wi,j =
1

2

∑
[vi,vj ,vk]∈F(M)

(vi − vk)> (vj − vk)

2|[vi, vj , vk]| ,

where the numerator and the denominator contain the angle and area information
of the triangular mesh M, respectively. In order to relax the angular constraints
while retaining the area information, we modify the weight wi,j to wi,j(f) by

wi,j(f) =
1

2

∑
[vi,vj ,vk]∈F(M)

(f(vi)− f(vk))∗ (f(vj)− f(vk))

2 |[vi, vj , vk]| . (12)
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Equivalently, the modified weight (12) can be written as

wi,j(f) =
1

2

∑
[vi,vj ,vk]∈F(M)

(f(vi)− f(vk))∗ (f(vj)− f(vk))

2 |f([vi, vj , vk])|
√

det
(
If−1

∣∣
f([vi,vj ,vk])

)
=

1

2

∑
[vi,vj ,vk]∈F(M)

(f(vi)− f(vk))∗ (f(vj)− f(vk))

2 |f([vi, vj , vk])|σf−1([vi, vj , vk])

=
1

2

∑
[vi,vj ,vk]∈F(M)

cot(αi,j(f))

σf−1([vi, vj , vk])
, (13)

where σf−1 is the stretch factor defined in (10), αi,j(f) is the angle at f(vk) oppo-
site to the edge f([vi, vj ]) connecting points f(vi) and f(vj) on C. The modified
Laplacian matrix L(f) is defined as

[L(f)]i,j =


−wi,j(f) if [vi, vj ] ∈ E(M),∑
6̀=i wi,`(f) if j = i,

0 otherwise.

(14)

where wi,j(f) is given in (13) and the stretch energy is now defined by

ES(f) =
1

2
f∗L(f)f . (15)

5.2 Iterative Scheme of the SEM Algorithm

Our aim is to find a minimizer for the stretch energy functional (15). Note that
f` = f1

` + if2
` in which f1

` , f
2
` ∈ R, for ` = 1, . . . , n. The stretch energy (15) can be

written as

ES(f1, f2) =
1

2

(
(f1)>L(f)f1 + (f2)>L(f)f2

)
.

Then the gradient

∇ES(f1, f2) =

(
∂ES(f1, f2)

∂f1
,
∂ES(f1, f2)

∂f2

)
of the energy functional can be calculated by

∂ES(f1, f2)

∂fs
= L(f)fs +

1

2

2∑
t=1

(f t)>
∂L(f)

∂fs
f t, (16)

where ∂L(f)
∂fs is the tensor with entries as

∂[L(f)]i,j
∂fsk

=



−1

2

∑
[vi,vj ,v`]∈F(M)

fsj − fs`
2|[vi, vj , v`]|

if [vi, vj ] ∈ E(M), k = i,

−1

2

∑
[vi,vj ,v`]∈F(M)

fsi − fs`
2|[vi, vj , v`]|

if [vi, vj ] ∈ E(M), k = j,

−1

2

2fsk − fsi − fsj
2|[vi, vj , vk]| if [vi, vj , vk] ∈ F(M),

0 otherwise,
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for s = 1, 2. A direct computation yields that

[
(fs)>

∂L(f)

∂fs

]
j,k

=



−1

2

∑
[vα,vj ,vk]∈F(M)

(fsk − fsα)(fsα − fsj )

2|[vα, vj , vk]| if [vj , vk] ∈ E(M),

−1

2

∑
[vα,vj ,vβ ]∈F(M)

(fsα − fsβ)2

2|[vα, vj , vβ ]| if k = j,

0 otherwise,

(17)

for s = 1, 2. Similarly,[
(fs)>

∂L(f)

∂f t

]
j,k

=



−
1

2

∑
[vα,vj ,vk]∈F(M)

2(fsk − fsα)(f tα − f tj )− (fsj − fsα)(f tα − f tk)

2|[vα, vj , vk]|
if [vj , vk] ∈ E(M),

−
1

2

∑
[vα,vj ,vβ ]∈F(M)

(fsα − fsβ)(f tα − f tβ)

2|[vα, vj , vβ ]|
if k = j,

0 otherwise,

(18)

for (s, t) = (1, 2), (2, 1). The derivations of (17) and (18) can be found in Appendix
A for details.

To simplify the calculation, in practice, we omit the quadratic terms in (16)
and propose the iterative scheme for equiareal parameterizations as follows. First,
the initial map f (0) is given by the harmonic map [12] in Sect. 3.1. Then the
mapping of boundary vertices is updated by solving the linear system[

L(f (k))
]
B,B

f
(k+1)
B = −

[
L(f (k))

]
B,I

f
(k)
I . (19)

To ensure that boundary vertices are mapped on the unit circle, we centralize the
mapping by

f
(k+1)
B ←

(
InB −

1nB1
>
nB

nB

)
f
(k+1)
B , (20)

and normalize the mapping by

f
(k+1)
B ← diag

(∣∣∣f (k+1)
B

∣∣∣−1
)

f
(k+1)
B . (21)

Finally, the mapping of interior vertices is updated by solving the linear system[
L(f (k))

]
I,I

f
(k+1)
I = −

[
L(f (k))

]
I,B

f
(k+1)
B . (22)

Equivalently, the iterations (19)-(22) can be written as

f
(k+1)
B = N (k)CK(k)f

(k)
B (23)

with

K(0) =
[
L(f (0))

]−1

B,B

[
L(f (0))

]
B,I
L−1
I,ILI,B
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and

K(k) =
[
L(f (k))

]−1

B,B

[
L(f (k))

]
B,I

[
L(f (k−1))

]−1

I,I

[
L(f (k−1))

]
I,B
,

for k ∈ N, C and N (k) are the centralization and normalization matrices, respec-
tively, given by

C = InB −
1nB1

>
nB

nB

and

N (k) = diag

(∣∣∣∣C [L(f (k))
]−1

B,B

[
L(f (k))

]
B,I

f
(k)
I

∣∣∣∣−1
)
.

Remark 1 The matrices [L(f (k))]B,B and [L(f (k))]I,I in (19) and (22), respectively,
are symmetric positive definite so that the Cholesky decompositions can be applied
to solving linear systems conveniently in steps 3, 7 and 10 in Algorithm 1.

Remark 2 Several experiments indicate that the resulting equiareal parameteriza-
tion would be slightly improved by performing an inversion transformation

f
(k)
I(`) ←

1(
f
(k)
I(`)

)∗ ,
for ` = 1, . . . , nI, before solving the linear system (19). In other words, Eq. (19) is
replaced by the equation[

L(f (k))
]
B,B

f
(k+1)
B = −

[
L(f (k))

]
B,I

diag
(∣∣∣f (k)

I

∣∣∣)−2
f
(k)
I .

Remark 3 Note that it is expected that the updated mapping would always have
a smaller value of the stretch energy. Once the stretch energy ES(f (k+1)) is larger
than ES(f (k)), we should stop the iteration and accept f (k) as the output.

The SEM algorithm for equiareal parameterizations is summarized in Algo-
rithm 1.

6 Existence of Nontrivial Limit Points

In this section, we aim to prove the existence of a nontrivial (nonconstant) limit
point of iterations of the SEM algorithm. For convenience, we give a mild assump-
tion for the triangular mesh.

Definition 1 (Well-conditioned mesh) A simply connected open mesh M is
said to be well-conditioned if it satisfies the following conditions:

(i) The subgraph of all the interior vertices is connected.
(ii) Every boundary vertex is connected to at least one interior vertex.

Also, we give the definition of M-matrix [7] and some related lemmas.

Definition 2 (i) A matrix A ∈ Rm×n is said to be nonnegative (positive) if all
the entries of A are nonnegative (positive).
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Algorithm 1 Stretch Energy Minimization (SEM)

Input: A mesh M of a simply connected open surface.
Output: An equiareal parameterization f .
1: Compute the mesh area A(M) :=

∑
τ∈F(M) |τ |.

2: Compute the initial boundary mapping fB by fB(j) = cos θj + i sin θj ,

in which θj = 2π(
∑j
`=1 |vB(`+1) − vB(`)|)/(

∑nB
`=1 |vB(`+1) − vB(`)|),

for j = 1, . . . , nB, vB(nB+1) := vB(1).
3: Compute the initial interior mapping by solving LI,IfI = −LI,BfB.
4: Update the Laplacian matrix: L← L(f).
5: while not convergent do
6: Store the current mapping: g = f .
7: Update the boundary by solving LB,BfB = −LB,IfI.

8: Centralize the boundary: fB ←
(
InB −

1nB1
>
nB

nB

)
fB.

9: Normalize the boundary: fB ← diag
(
|fB|−1

)
fB.

10: Update the interior by solving LI,IfI = −LI,BfB.
11: if ES(f) > ES(g) then
12: Adopt the previous mapping: f = g.
13: break
14: end if
15: Update the Laplacian matrix: L← L(f).
16: end while

(ii) A squared matrix A ∈ Rn×n is irreducible, if the corresponding graph G(A) of
A is connected.

Definition 3 A matrix A ∈ Rn×n is said to be an M-matrix if A = sI−B, where
B is nonnegative and s ≥ ρ(B), where ρ(B) is the spectral radius of B.

Lemma 1 (Theorem 1.4.10 in [21]) Suppose A ∈ Rn×n is a singular, irre-
ducible M-matrix. Then each principal submatrix of A other than A itself is a
nonsingular M-matrix.

Lemma 2 (Theorem 1.4.7 in [21]) If A ∈ Rn×n is a nonsingular M-matrix,
then A−1 is a nonnegative matrix. Moreover, if A is irreducible, then A−1 is a
positive matrix.

Lemma 3 (Perron Theorem [17]) Let A ∈ Rn×n be a positive matrix. Then

(i) ρ(A) is an eigenvalue of A, and all the other eigenvalues are strictly smaller
than ρ(A) in modulus.

(ii) ρ(A) is the only eigenvalue that has a positive eigenvector.
(iii) ρ(A) has algebraic multiplicity one.

The following theorem plays an important role in the geometric point of view
of the matrix product of K(k) in Eq. (23).

Theorem 2 Given a well-conditioned simply connected open meshM with n ver-
tices. Let L(1) and L(2) be two Laplacian matrices of M, defined similar as in

(6), with positive weights {w(1)
i,j | [vi, vj ] ∈ E(M)} and {w(2)

i,j | [vi, vj ] ∈ E(M)},
respectively. Let I and B be index sets of interior vertices and boundary vertices,
respectively. Let

K =
[
L

(2)
B,B

]−1 [
L

(2)
I,B

]> [
L

(1)
I,I

]−1
L

(1)
I,B .
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Then K is positive with ρ(K) = 1 being the unique largest eigenvalue of K in
modulus.

Proof From the definition of the Laplacian matrix (6), it is clear that L(t)1nL = 0,
for t = 1, 2, i.e., L

(t)
I,I1nI + L

(t)
I,B1nB = 0,[

L
(t)
I,B

]>
1nI + L

(t)
B,B1nB = 0.

(24)

Note that L(t) is a singular irreducible M-matrix, for t = 1, 2. By Lemma 1, the

matrices L
(t)
I,I and L

(t)
B,B are invertible. Then Eq. (24) implies that

[
L

(t)
I,I

]−1
L

(t)
I,B1nB = −1nI ,[

L
(t)
B,B

]−1 [
L

(t)
I,B

]>
1nI = −1nB .

(25)

It follows from Eq. (25) that

K1nB =
[
L

(2)
B,B

]−1 [
L

(2)
I,B

]> [
L

(1)
I,I

]−1
L

(1)
I,B1nB

= −
[
L

(2)
B,B

]−1 [
L

(2)
I,B

]>
1nI = 1nB .

(26)

That is, 1 is an eigenvalue of K associated with the eigenvector 1nB . On the

other hand, the irreducibilities of L
(1)
I,I and L

(2)
B,B are respectively guaranteed by

Definition 1 (i) and the assumption thatM has only one boundary. By Lemma 2,

[L
(1)
I,I ]−1 and [L

(2)
B,B ]−1 are positive. Furthermore, Definition 1 (ii) and the positivity

of [L
(1)
I,I ]−1 guarantee that [L

(2)
I,B ]>[L

(1)
I,I ]−1L

(1)
I,B is positive. Then the positivity of

K is guaranteed by the positivity of [L
(2)
B,B ]−1. Hence, By Lemma 3, ρ(K) = 1

is the largest eigenvalue of K with algebraic multiplicity one, and all the other
eigenvalues are strictly smaller than 1 in modulus. ut

Remark 4 In general, if some weights of the stretched Laplacian matrix (14) are
negative, the flip algorithm [8] is recommended to achieve positive weights.

In the following, we prove the existence of limit points of the iterative scheme
(23).

Theorem 3 Suppose the sequence {f (k)
B }k∈N defined in (23) with K(k) satisfying

the assumption of Theorem 2. Then it has a limit point f
(∗)
B 6= 1nB .

Proof Since every entry of f
(k)
B is on the unit circle, by Bolzano-Weierstrass theo-

rem there exists a vector f
(∗)
B and a convergent subsequence {f (kj)

B }j∈N such that

lim
j→∞

f
(kj)
B = f

(∗)
B .

From (26) of Theorem 2, geometrically, for i = 1, . . . , nK(k) , (K(k)f)i =
∑n

K(k)

j=1 K
(k)
i,j fj

is a strictly convex combination of the points fj ∈ C, j = 1, . . . , nK(k) . As a result,
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the centralization in the iteration (23) guarantees that after a rotation by setting

f
(k)
B(1) = 1 for each k ∈ N, the maximal argument satisfies

max
1≤`≤nB

Arg
(

(CK(k)f
(k)
B )`

)
> π. (27)

Otherwise, each entry of the vector CK(k)f
(k)
B is located on the upper half-plane

of C. Then the center

1

nB

nB∑
i=1

(CK(k)f
(k)
B )i 6= 0,

which contradicts that the center should be zero. In particular, Eq. (27) holds for

the subsequence {kj}j∈N. Hence, the accumulation point f
(∗)
B satisfies

max
1≤`≤nB

Arg
(

(CK(k)f
(∗)
B )`

)
≥ π.

Therefore, f
(∗)
B 6= 1nB . ut

7 Numerical Experiments

In this section, we demonstrate numerical results of equiareal parameterizations
obtained by the SEM algorithm. Comparisons of the SEM algorithm and the other
state-of-the-art algorithms in terms of effectiveness and accuracy are demonstrated
thereafter. The maximal numbers of iterations for the SEM algorithm are set to
be 10. The linear systems in the SEM algorithm are solved using the backslash
operator (\) in MATLAB. Some of mesh models are obtained from TurboSquid [5],
AIM@SHAPE shape repository [3], the Stanford 3D scanning repository [4], and
a project page of ALICE [1]. Each model in our experiments is a simply connected
open mesh without leaf-like structures defined as follows.

Definition 4 (Leaf-like structure of triangular mesh) The set of vertices
{vi, vj , vk} on a triangular mesh M is called a leaf-like structure if vi, vj , vk are
boundary vertices and {[vi, vj ], [vj , vk], [vk, vi]} ⊂ E(M).

7.1 Equiareal Parameterizations by the SEM Algorithm

Fig. 2 shows mesh models of human faces of different facial expressions and some
of benchmark mesh models, and their equiareal parameterizations computed by
the SEM algorithm.

To measure the equiareal distortion, the total area distortion as well as the
mean and the standard deviation (SD) of local area ratios for the parameterization
are commonly used. The total area distortion (per vertex) of a mapping f on a
mesh M is defined as

DM(f) =
1

3

∑
v∈V(M)

∣∣∣∣∣
∑
τ∈N (v) |τ |
|M| −

∑
τ∈N (v) |f(τ)|
|f(M)|

∣∣∣∣∣ , (28)
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(a) Liu Neutral (b) Liu Smiling

(c) Liu Wry (d) Liu Pouting

(e) Stanford Bunny (f) Human Brain

(g) Chinese Lion (h) Left Hand

Fig. 2 The mesh models of human faces of different facial expressions and some of benchmark
mesh models, and their equiareal parameterizations computed by the SEM algorithm.

where N (v) = {τ ∈ F(M) | v ⊂ τ} is the set of neighboring faces of the vertex
v, |M| and |f(M)| denote areas of M and its image, respectively. A mapping f ,
defined on M, is area-preserving if DM(f) = 0. The local area ratio Rf on a
vertex v is defined as

Rf (v) =

∑
τ∈N(v) |τ |/|M|∑

τ∈N(v) |f(τ)|/|f(M)|
. (29)

The mean and the SD of Rf (v), for all v ∈ V(M), are used to measure the local
area distortion. A mapping f is area-preserving if the mean is 1 and the SD is 0.

Note that the idealized local area ratio is 1. Fig. 3 shows distributions of
differences between 1 and local area ratios of equiareal parameterizations obtained
by the SEM algorithm for mesh models of human faces and some of benchmarks.
Fig. 4 further shows histograms of local area ratios, which indicate that local area
ratios of most triangular faces are close to 1, as we desired.
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(a) Liu Neutral (b) Liu Smiling

(c) Liu Wry (d) Liu Pouting

(e) Chinese Vase (f) Foot

(g) Chinese Lion (h) Stanford Bunny

(i) Human Brain (j) Left Hand

(k) Statue of Liberty (l) Bimba Statue

Fig. 3 Distributions of differences between 1 and local area ratios of equiareal parameteriza-
tions obtained by the SEM algorithm.
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Fig. 4 Histograms of local area ratios Rf (v) in (29) of equiareal parameterizations obtained
by the SEM algorithm.

Fig. 5 shows distributions of angular distortions of equiareal parameterizations
by the SEM algorithm for mesh models of human faces and some of benchmarks.
The angular distortion refers to the absolute value of the difference (counted in
degree) between the angle on the mesh model and the disk. Fig. 6 further shows
histograms of angular distortions. As shown in Fig. 6 (a)–(d), most of angular
distortions are less than 30 degrees, which is acceptable. Note that the geometry
of human faces is simple, so the mapping by the SEM algorithm would not produce
large angular distortions significantly. However, when the geometry of the surface
is much more complicated, e.g., the model of Left Hand shown in Fig. 2 (h),
large angular distortions might appear. As shown in Fig. 6 (j), lots of angles have
distortions larger than 50 degrees.

On the other hand, Fig. 7 shows the relationship between the number of it-
erations and the total area distortion as well as the stretch energy. These results
indicate that the total area distortion decreases while the stretch energy is decreas-
ing. In other words, it is reasonable to compute an equiareal parameterization via
minimizing the stretch energy. In addition, as shown in Fig. 7, both the total
area distortion and the stretch energy are significantly decreased in the first three
iteration steps, which shows the effectiveness of the proposed SEM algorithm.

Fig. 8 further shows the first 5 iteration steps of the SEM algorithm for comput-
ing the equiareal parameterization of the mesh model Nefertiti. The color indicates
the absolute value of the difference between the local area ratio and 1. In Fig. 8,
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(a) Liu Neutral (b) Liu Smiling

(c) Liu Wry (d) Liu Pouting

(e) Chinese Vase (f) Foot

(g) Chinese Lion (h) Stanford Bunny

(i) Human Brain (j) Left Hand

(k) Statue of Liberty (l) Bimba Statue

Fig. 5 The distributions of the angular distortion of the equiareal parameterizations obtained
by the SEM algorithm. The angular distortion refers to the absolute value of the difference
(counted in degree) between the angle on the mesh model and the disk.
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Fig. 6 The histograms of angular distortions of the equiareal parameterizations obtained
by the SEM algorithm. The angular distortion refers to the absolute value of the difference
(counted in degree) between the angle on the mesh model and the disk.

we observe that the local area distortion of the initial harmonic mapping is dom-
inant at the nose region. However, the distortion is significantly decreased after
1 iteration step. This indicates that the proposed SEM algorithm works well on
decreasing the local area distortion.

7.2 Comparisons with State-of-the-Art Algorithms

We now compare equiareal parameterizations computed by the proposed SEM al-
gorithm with that of the other state-of-the-art algorithms in terms of effectiveness
and accuracy, respectively.

Although the Lie advection method [31] based on Lie derivative and Cartans
formula can handle surfaces with complicated topologies, however, the iterative
procedure for optimizing triangulations in [31] is indirect and less efficient [25].
Therefore, we compare the effectiveness and the accuracy of our SEM algorithm
to two of the state-of-the-art algorithms of equiareal parameterizations for simply
connected open surfaces, namely, the fast stretch minimization (FSM) algorithm
[27] and the optimal mass transportation (OMT) algorithm [25]. The MATLAB
code of the FSM algorithm is reproduced by authors. The executable program files
of the OMT algorithm are obtained from Gu’s website [2].



20 Mei-Heng Yueh et al.

5 10

Number of Iterations

0

0.5

1

1.5

T
o
ta

l 
A

re
a
 D

is
to

rt
io

n

5 10

Number of Iterations

0

0.5

1

1.5

T
o
ta

l 
A

re
a
 D

is
to

rt
io

n

5 10

Number of Iterations

0

0.5

1

1.5

T
o
ta

l 
A

re
a
 D

is
to

rt
io

n

5 10

Number of Iterations

0

0.5

1

1.5

T
o
ta

l 
A

re
a
 D

is
to

rt
io

n

5 10

Number of Iterations

5

10

15

20

25

30

S
tr

et
ch

 E
n
er

g
y

5 10

Number of Iterations

0

10

20

30

40

50
S

tr
et

ch
 E

n
er

g
y

5 10

Number of Iterations

5

10

15

20

25

S
tr

et
ch

 E
n
er

g
y

5 10

Number of Iterations

0

50

100

S
tr

et
ch

 E
n
er

g
y

(a) Stanford Bunny (b) Foot (c) Statue of Liberty (d) Human Brain

Fig. 7 The relationship between the number of iterations and the total area distortion as well
as the stretch energy of the parameterization obtained by the SEM algorithm for (a) Stanford
Bunny, (b) Foot, (c) Statue of Liberty and (d) Human Brain.

Initial Harmonic Mapping After 1 Iteration Step After 2 Iteration Steps

After 3 Iteration Steps After 4 Iteration Steps After 5 Iteration Steps

Fig. 8 The first 5 iteration steps of the SEM algorithm for Nefertiti. The color indicates the
absolute value of the difference between the local area ratio and 1.

A comparison of the computational cost between FSM, OMT and the SEM
algorithms is demonstrated in Table 1. The notation ”−” means the iteration of
algorithms does not converge. Also, Fig. 9 illustrates the relationship between the
number of triangular faces and the computational cost. As shown in Fig. 9 (a), the
effectiveness of the SEM outperforms the OMT, especially when the number of
faces is large. In addition, in Fig. 9 (b), the computational cost of FSM is roughly
double of the cost of the SEM algorithm. These results are consistent with the
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Table 1 The computational cost (sec.) of equiareal parameterizations by FSM [27], OMT
[25], and the SEM algorithms. The notation ”−” means the iteration of algorithms does not
converge.

Model Name # Faces
FSM [27] OMT [25] SEM
Time #Iter. Time #Iter. Time #Iter.

Nefertiti 562 0.10 10 0.12 26 0.10 10
Cowboy Hat 4,604 0.14 10 1.37 68 0.08 10
Chinese Vase 5,592 0.14 10 − − 0.07 10
Bourbon Bottle 13,088 − − − − 0.23 10
Foot 19,966 − − 7.11 104 0.36 10
Chinese Lion 34,421 1.24 10 4.29 26 0.69 10
Stanford Bunny 65,221 − − − − 1.76 10
Human Brain 96,811 − − 30.89 58 2.58 10
Left Hand 105,860 − − − − 2.65 10
Statue of Liberty 190,156 − − − − 4.49 10
Liu Neutral 193,298 9.63 10 28.15 20 5.38 10
Liu Smiling 205,207 10.22 10 30.56 20 5.65 10
Liu Pouting 207,721 10.37 10 30.89 20 5.81 10
Liu Wry 208,283 10.39 10 30.68 20 5.87 10
Isis Statue 374,306 − − − − 12.18 10
Bimba Statue 836,734 − − 854.06 124 28.16 10
Knit Cap Man 1,287,579 − − 1753.11 66 70.23 10
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Fig. 9 Computational cost (sec.) versus number of faces by FSM, OMT, and the SEM.

fact that the LU decomposition requires roughly 2
3n

3 floating-point operations

(FLOPs) while the Cholesky decomposition only requires 1
3n

3 FLOPs.

Comparisons of the total area distortion (28) as well as the mean and the
SD of local area ratios (29) for equiareal parameterizations are demonstrated in
Table 2 and Fig. 10 as well as Table 3 and Fig. 11, respectively. As shown in
Fig. 10, among three algorithms, the total area distortion produced by the SEM
algorithm is always the smallest and less than 2%, which is satisfactory in practical
applications. Similarly, Fig. 11 indicates that the SEM algorithm has a better
accuracy of the mean and the SD of local area ratios than that of FSM and
OMT. In addition, for every demonstrated mesh model, the iteration of the SEM
algorithm converges, while, for some mesh models, the iteration of FSM or OMT
does not converge. It is fairly said that the proposed SEM algorithm is much more
robust.
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Table 2 The total area distortion DM(f) in (28) of equiareal parameterizations computed
by FSM, OMT, and the SEM algorithms. The notation ”−” means the iteration of algorithms
does not converge.

Model Name # Faces FSM [27] OMT [25] SEM
Nefertiti 562 0.1199 0.0804 0.0092
Cowboy Hat 4,604 0.0704 0.1000 0.0015
Chinese Vase 5,592 0.5188 − 0.0036
Bourbon Bottle 13,088 − − 0.0115
Foot 19,966 − 0.1330 0.0136
Chinese Lion 34,421 0.2102 0.0793 0.0036
Stanford Bunny 65,221 − − 0.0124
Human Brain 96,811 − 0.0765 0.0041
Left Hand 105,860 − − 0.0116
Statue of Liberty 190,156 − − 0.0117
Liu Neutral 193,298 0.0338 0.0364 0.0012
Liu Smiling 205,207 0.0345 0.0370 0.0010
Liu Pouting 207,721 0.0406 0.0368 0.0010
Liu Wry 208,283 0.0618 0.0381 0.0013
Isis Statue 374,306 − − 0.0062
Bimba Statue 836,734 − 0.0873 0.0020
Knit Cap Man 1,287,579 − 0.1089 0.0046
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Fig. 10 The total area distortion of the equiareal parameterizations computed by FSM, OMT,
and the SEM algorithms.

8 Applications

In this section, we demonstrate some sample applications of the proposed SEM
algorithm, namely, surface remeshing in Sect. 8.1, surface registration in Sect. 8.2
and surface morphing in Sect. 8.3.
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Table 3 The mean and SD of local area ratios Rf (v) in (29) of equiareal parameterizations
by FSM [27], OMT [25] and the SEM algorithms. The notation ”−” means the iteration of
algorithms does not converge.

Model Name # Faces
FSM [27] OMT [25] SEM

Mean SD Mean SD Mean SD
Nefertiti 562 1.0359 0.1222 0.9962 0.1208 1.0038 0.0465
Cowboy Hat 4,604 1.0447 0.0820 1.0122 0.1887 0.9999 0.0020
Chinese Vase 5,592 1.0766 0.9141 − − 0.9992 0.0399
Bourbon Bottle 13,088 − − − − 0.9989 0.0528
Foot 19,966 − − 0.9939 0.1686 1.0022 0.0227
Chinese Lion 34,421 1.0566 0.2290 0.9976 0.1054 1.0003 0.0103
Stanford Bunny 65,221 − − − − 1.0004 0.0251
Human Brain 96,811 − − 1.0016 0.1112 1.0003 0.0125
Left Hand 105,860 − − − − 1.0005 0.0214
Statue of Liberty 190,156 − − − − 1.0013 0.0541
Liu Neutral 193,298 1.0021 0.0505 1.0021 0.0516 1.0003 0.0078
Liu Smiling 205,207 1.0028 0.0509 1.0024 0.0505 1.0003 0.0080
Liu Pouting 207,721 1.0033 0.0575 1.0026 0.0514 1.0004 0.0083
Liu Wry 208,283 1.0090 0.0759 1.0022 0.0520 1.0004 0.0087
Isis Statue 374,306 − − − − 1.0001 0.0145
Bimba Statue 836,734 − − 0.9945 0.1392 1.0002 0.0086
Knit Cap Man 1,287,579 − − 1.0076 0.1413 1.0013 0.0225
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Fig. 11 The (a) mean and (b) standard deviation of local area ratios of parameterizations by
FSM, OMT and the SEM algorithms.

8.1 Surface Remeshing for Human Face Models

Surface remeshing refers as to the improvement process of the mesh quality in
terms of vertex sampling, regularity and triangle quality [6,9]. In numerical ex-
periments, the raw mesh data of human faces are captured by the structured-light
3D scanner GeoVideo (GI company) in the ST Yau Center of Chiao Tung Univ.,
Taiwan. For example, in the raw mesh data of a human face M, shown in Fig. 12
(a), the areas of triangles are very different. The equiareal parameterization can
be applied to the surface remeshing so that the vertex sampling on M becomes
uniform and the mesh becomes regular after the remeshing process.

The remeshing procedure is described as follows. First, a bijective equiareal
mapping f :M→ D ⊂ C is computed by using the SEM algorithm. Then the im-
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age f(M) is covered by a regular mesh U of a unit disk with a uniform sampling.
Finally, the remeshed surface f−1(U) is obtained by the one-to-one correspon-
dences between the barycentric coordinates of M and f(M).

Fig. 12 shows the zoom-in images at the nose part and the histograms of the
areas of triangles of the raw mesh data and the remeshed data of the human face,
respectively, which indicate that the sampling of vertices becomes more uniform
after the remeshing process. In addition, some obtuse triangles at the nose part
disappear after the process. From Fig. 6 (a)–(d), we observe that the angular dis-
tortions of the equiareal parameterizations of human faces by the SEM algorithm
are not large so that the remeshed data of human faces look so satisfactory.

In general, the described remeshing procedure using the equiareal parame-
terization could only guarantee that the sampling of the vertices in the remeshed
model would become uniform. Lots of obtuse triangles might appear when angular
distortions of parameterizations are large. For example, the equiareal parameteri-
zation could be applied to obtain a uniform sampling of vertices for the Left Hand
model, shown in Fig. 2 (d). However, the triangle quality of the remeshed data by
the described remeshing procedure would not be satisfactory.

8.2 Surface Registration

The surface registration is a fundamental problem that has been widely applied
to geometry processing tasks [18,20,26]. Given two simply connected open meshes
M and N with m and n vertices, respectively, and a set of landmark pairs

{(p`, q`) | p` ∈M, q` ∈ N}d`=1 .

The goal of the surface registration is to construct a smooth bijective mapping
φ :M→N such that φ(p`) = q`. With the help of the parameterization mappings

f :M→ D and g : N → D, (30)

the surface registration problem in the three-dimensional space is reduced into a
planar registration problem on a unit disk. Recall that f :M→ D and g : N → D
in (30) are the disk-shaped parameterizations of the surfaces M and N , respec-
tively, which can be computed efficiently by the conformal energy minimization
(CEM) algorithm [29]. Then the reduced problem is to find a smooth bijective
mapping h : D→ D such that

h ◦ f(p`) = g(q`),

for ` = 1, . . . , d. Then the mapping ϕ :M→N is obtained by ϕ := g−1 ◦h ◦ f . In
this section, we propose an efficient algorithm for computing registration mappings
on a unit disk. First, a boundary mapping is introduced in Sect. 8.2.1. Then
a smooth registration mapping for the given boundary condition is proposed in
Sect. 8.2.2. In order to deal with the registration mapping of large deformations,
a generalized algorithm is developed in Sect. 8.2.3.
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(a) The raw mesh data
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Fig. 12 The zoom-in images at the nose part and the histograms of the angles and areas of
triangles of (a) the raw mesh data and (b) the remeshed data of a human face.
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8.2.1 Boundary Registration Mapping

Without loss of generality, we assume that{
p1, . . . , pc ∈M\∂M

pc+1, . . . , pd ∈ ∂M
and

{
q1, . . . , qc ∈ N\∂N

qc+1, . . . , qd ∈ ∂N
,

respectively. Suppose the landmarks on the boundary are sorted counterclockwise
and separate ∂M and ∂N into segments of curves

γ[pd,pc+1], γ[pc+1,pc+2], . . . , γ[pd−1,pd] and γ[qd,qc+1], γ[qc+1,qc+2], . . . , γ[qd−1,qd],

respectively. The conformal mappings can be modified by Möbius transformations
Möbf and Möbg such that

Möbf ◦ f(p`) = 0 and Möbg ◦ g(q`) = 0,

for some `, i.e.,

Möbf ◦ f(vj) =
f(vj)− f(p`)

1− f(vj)f(p`)∗
and Möbg ◦ g(vj) =

g(vj)− g(q`)

1− g(vj)g(q`)∗
,

respectively. For convenience, hereafter, we suppose the mappings f and g are the
disk-shaped conformal parameterizations that satisfies f(p`) = 0 and g(q`) = 0,
respectively, for some `. The boundary mapping h|∂D is chosen to be the unique
piecewise affine mapping that satisfies

h ◦ f
(
γ[pd,pc+1]

)
= g

(
γ[qd,qc+1]

)
,

h ◦ f
(
γ[pc+1,pc+2]

)
= g

(
γ[qc+1,qc+2]

)
,

...

h ◦ f
(
γ[pd−1,pd]

)
= g

(
γ[qd−1,qd]

)
.

(31)

8.2.2 Interior Registration Mapping

For convenience, we denote the discrete mappings by the vectors

h = (h(v1), . . . , h(vm))> ∈ Cm and g = (g(v1), . . . , g(vn))> ∈ Cn,

respectively, where h is unknown except boundary points. Let P and Q be the
ordered sets of indices of the landmarks on M and N , respectively. A smooth
registration mapping (SRM) h : D→ D is obtained by minimizing the registration
energy defined as

ER(h) = ‖L(h) h‖22 +

c∑
`=1

λ2
` |hP(`) − gQ(`)|2 (32)

in which λ` is an appropriate weight for the landmark pair
(
hP(`),gQ(`)

)
, for ` =

1, . . . , c, L(h) is the Laplacian matrix similar as in (14) defined by

[L(h)]i,j =


−wi,j(h) if [vi, vj ] ∈ E(M),∑
6̀=i wi,`(h) if j = i,

0 otherwise,

(33)
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where wi,j(h) is the cotangent weight defined as

wi,j(h) =
cot (αi,j(h)) + cot (αj,i(h))

2

with αi,j(h) and αj,i(h) being two angles opposite to the edge h ([vi, vj ]) connect-
ing points h(vi) and h(vj) on C.

The surface registration process is performed as follows. First, an initial map-
ping h(0) is computed by a harmonic mapping

[L(f)]I,Ih
(0)
I = −[L(f)]I,Bh

(0)
B ,

where f is given in (30), I and B denote the index sets of interior vertices and

boundary vertices of M, respectively. The given boundary condition h
(0)
B is in-

troduced in Sect. 8.2.1. Then the registration energy (32) is minimized by the
iterative procedure

h(k+1) = argmin
hB=h

(0)
B

(∥∥∥L(h(k)) h
∥∥∥2

2
+ ‖Λ(hP − gQ)‖22

)
, (34)

where Λ is the diagonal matrix with the diagonal entry Λ`,` = λ`, for ` = 1, . . . , c.
The algorithm for computing the SRM is summarized in Algorithm 2.

Algorithm 2 Smooth Registration Mapping (SRM)

Input: Two simply connected open meshes M and N , two index sets of landmark pairs P
and Q, and the weights for the landmark pairs λ`, for ` = 1, . . . , d.

Output: A registration mapping ϕ :M→N .
1: Compute the conformal parameterizations f and g of the meshes M and N , respectively,

using the CEM algorithm [29].
2: Perform the Möbius transformations

fj ←
fj − fP(`)

1− fjf∗P(`)
and gj ←

gj − gQ(`)

1− gjg∗Q(`)
,

for some `.
3: Compute the unique piecewise affine mapping hB that satisfies (31).
4: Compute the initial mapping by

[L(f)]I,IhI = −[L(f)]I,BhB.

5: while not convergent do
6: Update hI by solving

h← argmin
hB:fixed

(
‖L(h)h‖22 + ‖Λ(hP − gQ)‖22

)
.

7: end while
8: The desired registration mapping is ϕ := g−1 ◦ h ◦ f .

In practice, the surfaces we considered are the meshes of human faces captured
by the 3D scanner GeoVideo. The coefficients λ`, ` = 1, . . . ,m, in (32) are chosen
to be 1. Fig. 14 (a), (c) and (e) show the models of Lin Neutral, Lin Sad and
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Lin Pouting, respectively. Fig. 14 (b) shows the conformal parameterization of
the model of Lin Neutral computed using the CEM algorithm [29]. Fig. 14 (d)
and (f) show the registration mappings of Lin Sad and Lin Pouting computed
by the SRM algorithm, respectively, where the target surface is Lin Neutral. The
checkerboard patterns in Fig. 14 show the correspondence between each surface
via the computed registration mapping.

The bijectivity of the registration mapping obtained by the SRM algorithm
is, in general, not guaranteed. However, several experiments indicate that the reg-
istration mappings between meshes of human faces of different facial expressions
are usually bijective, and the distortions of the mappings between the selected
landmark pairs are very small. The reason is that the locations of each landmark
pair on the parameterizations of human faces are usually similar so that the bijec-
tivity is preserved under small deformations. However, the SRM algorithm would
fail to produce a bijective registration mapping when the deformation is large.
To overcome this issue, in the next subsection, we generalized the proposed SRM
algorithm to dealing with the registration problem of large deformations.

8.2.3 Smooth Registration Mapping for Large Deformation

Given a set of landmark pairs on the disk {(p`, q`) | p` ∈ D, q` ∈ D}d`=1 , where
|p` − q`| might be large. The problem is to find a smooth bijective mapping h :
D→ D such that {

h(p`) = q`, for ` = 1, . . . , d,

h |∂D = id |∂D ,
(35)

where id |∂D denotes the identity mapping on the boundary of the disk. Recall
that the mapping can be computed by Algorithm 2 when the landmark pairs are
close enough, i.e.,

max
`
|p` − q`| < ε

for some small value ε. To deal with the case that |p1 − q1|, . . . , |pd − qd| are
relatively large, we apply the homotopy method. For each landmark pair (p`, q`),
` = 1, . . . , d, we suppose a continuous path γ` : [0, 1] → D is given such that
γ`(0) = p` and γ`(1) = q`. Assume each pair of paths does not intersect, i.e.,
γi ((0, 1)) ∩ γj ((0, 1)) = ∅, for i 6= j. Given a sufficiently fine partition 0 = t0 <
t1 < · · · < tN = 1 of the interval [0, 1] such that

|γ`(ts−1)− γ`(ts)| < ε,

for s = 1, . . . , N . A registration problem of large deformations (35) is reduced into
N registration problems of small deformations{

hts−1 ◦ γ`(ts−1) = γ`(ts), for ` = 1, . . . , d,

hts−1 |∂D = id |∂D ,
(36)

for s = 1, . . . , N . Similar as (34), each registration problem can be solved iteratively
by

h
(k+1)
ts−1

= argmin
hB=h

(0)
B

(∥∥∥L(h
(k)
ts−1

) h
∥∥∥2

2
+

d∑
`=1

|h ◦ γ`(ts−1)− γ`(ts)|2
)
, (37)



A Novel Stretch Energy Minimization Algorithm for Equiareal Parameterizations 29

where B denotes the index set of the boundary vertices. Then the desired registra-
tion mapping that satisfies (35) is given by

h := htN ◦ htN−1 ◦ · · · ◦ ht0 .

The algorithm for computing the SRM for large deformations (SRMLD) is sum-
marized in Algorithm 3.

Algorithm 3 Smooth Registration Mapping for Large Deformation (SRMLD)

Input: A mesh M of the unit disk with vertices v1, . . . , vn, an index set of landmarks P and

a set of landmark on the disk {q` ∈ D}d`=1 together with a set of continuous paths{
γ` : [0, 1]→ D

∣∣ γ`(0) = vP(`), γ`(1) = q`
}d
`=1

,

and a partition
0 = t0 < t1 < · · · < tN = 1

of the interval [0, 1].
Output: A smooth bijective mapping h : D→ D such that{

h(vP(`)) = q`, for ` = 1, . . . , d,

h |∂D = id |∂D .

1: Set h = (v1, . . . , vn)> ∈ Cn.
2: for s = 1, . . . , N do
3: Set g` = γ`(ts), for ` = 1, . . . , d.
4: while not convergent do
5: Update hI by solving

h← argmin
hB:fixed

(
‖L(h)h‖22 + ‖hP − g‖22

)
.

6: end while
7: end for

Fig. 13 shows some examples of deformation fields by Algorithm 3. The loca-
tions of red dots are mapped to the locations of blue circles by the registration
mapping. The black arrows indicate the inputted paths. It is worth noting that
the registration mappings demonstrated in Fig. 13 are bijective.

Remark 5 In general, the bijectivity of the proposed SRMLD algorithm is guaran-
teed under the assumption that there exists an ε > 0 such that for every possible
set of landmark pairs {(p`, q`) | p` ∈ D, q` ∈ D}d`=1 with max` |p` − q`| < ε, the
iteration (34) is bijectivity-preserving.

8.3 Surface Morphing via Registration Mappings

A morphing between two surfaces refers to the continuous deformation history
from one surface to another one [19,28]. In this subsection, we demonstrate the
computational procedure for the construction of the morphing between surfaces.
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Landmark Settings Deformation Field

Landmark Settings Deformation Field

Landmark Settings Deformation Field

Fig. 13 The landmark settings (left) and the deformation field (right) by the SRMLD algo-
rithm. The locations of red dots are mapped to the locations of blue circles by the registration
mappings. The black arrows indicate the inputted paths.
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Given two surfaces M0, M1 and a registration mapping ϕ1 : M0 → M1

obtained by Algorithm 2. A morphing between surfaces can be carried out by
applying the linear homotopy H : [0, 1]×M0 → R3 defined by

H(t, v) = (1− t)v + t ϕ1(v).

In general, suppose T + 1 surfaces M0, . . . ,MT and registration mappings ϕ` :
M0 → M`, ` = 1, . . . , T , are given. A desired morphing between these surfaces
can be computed by choosing a suitable homotopy H : [0, T ] ×M0 → R3 that
satisfies

H(t, v) = ϕt(v),

for t = 1, . . . , T , which can be carried out by the interpolation between the data
points

{(0, v) , (1, ϕ1(v)) , . . . , (T, ϕT (v)) | v ∈M0 }.

Here we adopt the piecewise cubic Hermite interpolating polynomial [14] to obtain a
smooth path of homotopy so that the morphing looks more natural. A demo video
of surface morphing between facial expressions via the registration mappings can
be found at https://mhyueh.github.io/projects/DiskmapSEM.html.

9 Concluding Remarks

In this paper, we mainly propose a novel efficient SEM algorithm for the com-
putation of equiareal parameterizations of simply connected open surfaces. The
demonstrated numerical results of the SEM algorithm has the following advan-
tages:

• Highly Improved Robustness: For every demonstrated mesh models, the
iteration of the SEM algorithm converges and produces a reasonably good
equiareal parameterization.

• Highly Improved Effectiveness: The effectiveness of the proposed SEM
algorithm outperforms other state-of-the-art algorithms [27,25]. Numerical re-
sults indicate that an equiareal parameterization by the SEM algorithm can
be computed in less than 3 seconds for a mesh model of more than 100, 000
triangular faces.

• Small Area Distortion: For every demonstrated numerical result, the to-
tal area distortion is less than 5%, which outperforms other state-of-the-art
algorithms [27,25].

Thanks to the robustness of the proposed algorithm, the computation of the surface
remeshing, surface registration and surface morphing can be performed efficiently
and reliably.

Acknowledgements

The authors want to thank Prof. Xianfeng David Gu for the useful discussion
and the executable program files of the OMT algorithm. This work is partially
supported by the Ministry of Science and Technology, the National Center for
Theoretical Sciences, the Taida Institute for Mathematical Sciences, the ST Yau

https://mhyueh.github.io/projects/DiskmapSEM.html


32 Mei-Heng Yueh et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 14 (a) The model of Lin Neutral. (b) The conformal parameterization obtained by CEM
algorithm. (c) The model of Lin Sad. (d) The registration mapping obtained by SRM algorithm.
(e) The model of Lin Pouting. (f) The registration mapping obtained by SRM algorithm.



A Novel Stretch Energy Minimization Algorithm for Equiareal Parameterizations 33

Center at NCTU, and the Center of Mathematical Sciences and Applications at
Harvard University. This work is supported in part by the Ministry of Science and
Technology, Taiwan, Republic of China, under Grant MOST 106-2811-M-009-046.

References

1. ALICE. http://alice.loria.fr/.
2. David Xianfeng Gu’s Home Page. http://www3.cs.stonybrook.edu/~gu/.
3. Digital Shape Workbench - Shape Repository. http://visionair.ge.imati.cnr.it/

ontologies/shapes/.
4. The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/

3Dscanrep/.
5. TurboSquid. http://www.turbosquid.com/.
6. P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent Advances in Remeshing of

Surfaces, pages 53–82. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
7. A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Society

for Industrial and Applied Mathematics, 1994.
8. S.-W. Cheng, T. K. Dey, and J. Shewchuk. Delaunay Mesh Generation. Chapman &

Hall/CRC, 1st edition, 2012.
9. C. P. Choi, X. Gu, and L. M. Lui. Subdivision connectivity remeshing via Teichmüller

extremal map. Inverse Probl. Imag., 11(1930-8337 2017 5 825):825, 2017.
10. P. T. Choi, K. C. Lam, and L. M. Lui. FLASH: Fast landmark aligned spherical harmonic

parameterization for genus-0 closed brain surfaces. SIAM J. Imaging Sci., 8(1):67–94,
2015.

11. A. Dominitz and A. Tannenbaum. Texture mapping via optimal mass transport. IEEE
T. Vis. Comput. Graph., 16(3):419–433, May 2010.

12. M. S. Floater. Parametrization and smooth approximation of surface triangulations. Com-
puter Aided Geometric Design, 14(3):231 – 250, 1997.

13. M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Math.
Visual., pages 157–186, 2005.

14. F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic interpolation. SIAM J. Numer.
Anal., 17(2):238–246, 1980.

15. X. Gu, F. Luo, J. Sun, and S.-T. Yau. Variational principles for Minkowski type prob-
lems, discrete optimal transport, and discrete Monge-Ampere equations. arXiv:1302.5472
[math.GT].
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A Derivations of Gradients of the Stretch Energy

In this section, we derive the explicit formulas (17) and (18) for the gradients of the stretch
energy.

Proposition 1 Given a mesh M of n vertices and a bijective piecewise affine mapping f :
M → D ⊂ C. Let f = (f(v1), . . . , f(vn))> and L(f) be defined as (14). Suppose [vj , vk] ∈
E(M). Then Eq. (17) holds, for s = 1, 2.

Proof For each edge [vj , vk] ∈ E(M),[
(fs)>

∂L(f)

∂fs

]
j,k

=

n∑
α=1

fsα
∂Lα,j

∂fsk
=
∑
α6=j,k

fsα
∂Lα,j

∂fsk
+ fsj

∂Lj,j

∂fsk
+ fsk

∂Lk,j

∂fsk

=
∑
α6=j,k

(fsα − fsj )
∂Lα,j

∂fsk
+ (fsk − fsj )

∂Lk,j

∂fsk

= −
1

2

∑
[vα,vj ,vk]∈F(M)

(fsα − fsj )
2fsk − fsα − fsj

2|[vi, vj , vk]|

−
1

2
(fsk − fsj )

∑
[vα,vj ,vk]∈F(M)

fsj − fsα

2|[vα, vj , vk]|

= −
1

2

∑
[vα,vj ,vk]∈F(M)

(fsk − fsα)(fsα − fsj )

2|[vα, vj , vk]|
.

On the other hand, the diagonal entries[
(fs)>

∂L(f)

∂us

]
j,j

=

n∑
α=1

fsα
∂Lα,j

∂fsj
=
∑
α6=j

fsα
∂Lα,j

∂fsj
+ fsj

∂Lj,j

∂fsj
=
∑
α6=j

(fsα − fsj )
∂Lα,j

∂fsj

= −
1

2

∑
α6=j

(fsα − fsj )
∑

[vα,vj ,vβ ]∈F(M)

fsα − fsβ

2|[vα, vj , vβ ]|

= −
1

2

∑
[vα,vj ,vβ ]∈F(M)

(fsα − fsβ)2

2|[vα, vj , vβ ]|
.
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Proposition 2 Given a mesh M of n vertices and a bijective piecewise affine mapping f :
M → D ⊂ C. Let f = (f(v1), . . . , f(vn))> and L(f) be defined as (14). Suppose [vj , vk] ∈
E(M). Then Eq. (18) holds, for (s, t) = (1, 2), (2, 1).

Proof For each edge [vj , vk] ∈ E(M),[
(fs)>

∂L(f)

∂f t

]
j,k

=

n∑
α=1

fsα
∂Lα,j

∂f tk
=
∑
α6=j,k

fsα
∂Lα,j

∂f tk
+ fsj

∂Lj,j

∂f tk
+ fsk

∂Lk,j

∂f tk

=
∑
α6=j,k

(fsα − fsj )
∂Lα,j

∂fsk
+ (fsk − fsj )

∂Lk,j

∂fsk

= −
1

2

∑
[vα,vj ,vk]∈F(M)

(fsα − fsj )
2f tk − f tα − f tj

2|[vi, vj , vk]|

−
1

2
(fsk − fsj )

∑
[vα,vj ,vk]∈F(M)

f tj − f tα

2|[vα, vj , vk]|

= −
1

2

∑
[vα,vj ,vk]∈F(M)

2(fsk − fsα)(f tα − f tj )− (fsj − fsα)(f tα − f tk)

2|[vα, vj , vk]|
.

On the other hand, the diagonal entries[
(fs)>

∂L(f)

∂f t

]
j,j

=
n∑
α=1

fsα
∂Lα,j

∂f tj
=
∑
α6=j

fsα
∂Lα,j

∂f tj
+ fsj

∂Lj,j

∂f tj
=
∑
α6=j

(fsα − fsj )
∂Lα,j

∂f tj

= −
1

2

∑
α6=j

(fsα − fsj )
∑

[vα,vj ,vβ ]∈F(M)

f tα − f tβ

2|[vα, vj , vβ ]|

= −
1

2

∑
[vα,vj ,vβ ]∈F(M)

(fsα − fsβ)(f tα − f tβ)

2|[vα, vj , vβ ]|
.
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