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A B S T R A C T

This study quantitatively validates the principle that the biological properties associated with a given genotype
are determined by the distribution of amino acids. In order to visualize this central law of molecular biology,
each protein was represented by a point in 250-dimensional space based on its amino acid distribution. Proteins
from the same family are found to cluster together, leading to the principle that the convex hull surrounding
protein points from the same family do not intersect with the convex hulls of other protein families. This
principle was verified computationally for all available and reliable protein kinases and human proteins. In
addition, we generated 2,328,761 figures to show that the convex hulls of different families were disjoint from
each other. The classification performs well with high and robust accuracy (95.75% and 97.5%) together with
reasonable phylogenetic trees validate our methods further.

1. Introduction

The family of eukaryotic protein kinases comprises one of the lar-
gest super families of homologous proteins and genes [1,2]. The pro-
teins in this group play key roles in biology and disease [3,4]. A protein
kinase (PK) is an enzyme that phosphorylates proteins by chemically
adding phosphate groups to specific amino acid residues. The identifi-
cation and classification of eukaryotic protein kinases are fundamental
to a proper understanding of phosphorylation events and will lead to a
better description of the biochemical circuitry of cells. This may guide
the development of more effective drugs [5,6]. The study of Hanks and
Hunter in 1995 classified eukaryotic protein kinases into a four-level
hierarchical structure [7], including group, family, subfamily and in-
dividual PKs based on the conserved sequence and structural profile of
the kinase domain. Eukaryotic protein kinases can also be split into two
broad groups: conventional protein kinases (ePKs) and atypical protein
kinases (aPKs) [8]. The phylogenetic tree of ePKs contains eight major
clusters. A ninth group called the “Other” group consists of a mixed
collection of kinases that do not fit into the previous groups [9,10]. The
aPKs are a small set of protein kinases that do not share clear sequence
similarity with ePKs.

A central problem in protein classification is how proteins are
clustered in relation to each other [11,12]. In previous study, the
techniques used to cluster or classify protein sequences usually required
long computation time to obtain the results, such as multiple sequence

alignment, CD-HIT method [13], UCLUST method [14] and so on. On
the other hand, the information of protein sequences was not totally
reflected by many existing methods, for example, the moment vector
method [15]. In order to get a global view of evolutionary distances
among multiple proteins, the concept of protein space was introduced
[15–18]. A protein space representation using natural vectors was
proposed by Yau [19–22]. Each protein sequence is represented by a
60-dimensional natural vector. The biological distance between any
two proteins can be measured by the Euclidean distance between the
corresponding points in 60-dimensional space. This simplified re-
presentation maintains most of the inherent biological information of
protein sequences in the study of phylogenetic clustering [19]. Using
this method, similar proteins cluster together and arbitrary amino acids
sequences are distinguished from proteins [16,23,24]. However, the 60-
dimensional natural vector representation has limitations. For example,
the 60-dimensional convex hulls of the MAPK family and the STE20
family in our animal protein kinase intersect (Fig. 1A), suggesting that
different protein families cannot be distinctly separated. There is still
room for improvement in the definition of the natural vector re-
presentation.

To improve the 60-dimensional natural vector representation, we
incorporated covariance into our model, a concept widely used in sta-
tistics. We define the correlation between each pair of the amino acids
as their covariance. This quantity indicates the relation between the
distribution of two amino acids in a protein sequence. The detailed
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algorithm to compute the covariance appears in the Materials and
methods section. For each pair of amino acids in a protein sequence, we
get one covariance. When we consider all distinct pairs of amino acids,
there are a total of 190 covariance values. Appending these 190 values
to the original 60-dimensional natural vector, we get a new 250-di-
mensional natural vector that contains more information about the
amino acid distribution than that generated from the original natural
vector. The disjointness of the MAPK and STE20 animal protein kinase
families is shown in Fig. 1B. Latter result indicates that 250-dimen-
sional natural vectors represent protein sequences more optimally than
60-dimensional natural vectors. For the above reasons, we employed
250-dimensional natural vectors to represent proteins of interest. This
strategy is alignment-free and is capable of representing more biolo-
gical information than alignment models.

This current study is underpinned by Anfinsen's central dogma [25]
of molecular biology: all of the biological properties that are elicited as
result of the genotype of a protein are determined by the distribution of
the 20 amino acids within the protein. We propose a new 250-dimen-
sional natural vector to describe the distribution of the 20 amino acids
within a protein. In order to observe this principle of molecular biology,
we performed the convex analysis which states that the convex hull
formed from the natural vectors of proteins from the same family do not
intersect with convex hulls of natural vectors from other families. This
principle indicates that proteins with similar distributions of the 20
amino acids should be in the same family. We verified this principle and
presented the results for large reliable datasets on protein kinase do-
mains and human protein sequences. We subsequently demonstrated
the effectiveness of method on classification and phylogenetic analysis.
Cross-validation and bootstrapping method are also used in this study.
The high and robust accuracy indicating the efficiency of both new
natural vector and convex analysis.

2. Results

2.1. Protein kinase dataset

The protein kinase dataset used in this study consisted of 31,355
protein kinase domains. Please see the Materials and methods section
for further details. Protein kinases mentioned in this study are referring

to protein kinase domains. The animal protein kinase dataset contains
nine groups divided into 87 families with a total of 19,095 sequences.
The plant protein kinase dataset used here contains 12,260 sequences
that were divided into seven groups and 20 families. Fig. 2 displays a
heatmap of the classifications and identification patterns for several of
the major animal protein kinase groups. This heatmap was generated
using the gplots program in the R package (http://www.r-project.org/).
The results show that the numbers of animal protein kinases in the same
group or family can differ greatly across species.

2.2. Convex hull analysis of protein kinase dataset

For each protein kinase, we first calculated the 250-dimensional
natural vector and then constructed the convex hull for each protein
kinase family in 250-dimensional space. From the results of a linear
programming analysis, no intersection was observed between any pair
of the convex hulls for the animal protein kinase families. The same
conclusion was drawn for plant protein kinase families. Our results
indicate that proteins with a similar distribution profile for the 20
amino acids should be in the same family. The results are also con-
sistent with the central law of molecular biology. In order to visualize
the results, we applied the linear discriminant analysis (LDA) method to
facilitate dimension reduction. LDA is a method used to determine
whether two groups are linearly separable. The detailed descriptions
can be found in the Materials and methods section. The dimension of
the natural vectors was reduced from 250 to 2. We have put the com-
pleted results on our website http://yaulab.math.tsinghua.edu.cn/Lda/
. Projections of the convex hulls for several animal protein kinase fa-
milies are shown in Fig. S1. We can clearly see that the points in protein
space are clustered, rather than being broadly distributed. This suggests
that as new protein kinase sequences are included, their points will lie
approximately within the convex hull of the points corresponding to
known protein kinase families.

2.3. Classification of animal protein kinases

We examined the classification performance of the 250-dimensional
natural vectors of the animal protein kinases. The 1-nearest neighbor
algorithm was used to classify the sequences into 87 families from 62

Fig. 1. Convex hulls of MAPK and STE20 family after dimension reduction by LDA method. The red points represent the MAPK family (666 points) and the blue
points represent the STE20 family (1396 points) in the animal protein kinase dataset. Fig. 1A shows that the convex hulls of these two families intersect if we use the
60-dimensional natural vector. In Fig. 1B, the two convex hulls have no intersection using the 250-dimensional natural vector. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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eukaryotic species. The 62 eukaryotic species appeared in both the
training dataset and the test dataset. The accuracy of our classification
was tested by predicting the protein kinases in the test dataset and
comparing against their existing classification. Fig. 3 shows our accu-
racy for the nine protein kinase groups. The total accuracy was 18,284/
19,095 (95.75%) for all of the animal protein kinase dataset.

Good performance was obtained for the classification of the AGC
group (2508/2618). The result of the AGC group classification is shown
in Fig. S2. However, the 1-nearest neighbor algorithm performed less
well on the PDK1 subfamily, where only 48/58 (82.8%) sequences were
classified correctly. In contrast, protein kinases in other families were
classified with an accuracy rate of> 90%. This reflected the high de-
gree of sequence conservation in the AGC group across a large evolu-
tionary distance.

The 1-nearest neighbor algorithm also performed well in relation to
the classification of another large ePKs group, CAMK (3757/3958). The
result of this classification is shown in Table S1. The CAMKL family,
which has the most protein kinases, had a relatively high accuracy rate
(95.6%). Other families apart from the RAD53 family (accuracy rate of
35/43, 81.4%) also exhibited high classification accuracies. This in-
dicates that the greater the number of sequences in the family, the more
features the model can generate which in turn increases the accuracy.
The classification accuracy for other ePKs groups was assessed in a

similar manner. Tables S2–S6 reveal the results of this classification.
Most families from these groups were accurately classified. The families
with the largest number of kinases in these groups have a very high
accuracy rate (96% to 99%). The 1-nearest neighbor algorithm cor-
rectly classified all of the ePKs domains in the TTBK family of the CK1
group.

Classification of atypical protein kinases was extremely accurate
with 1034/1062 (97.4%) of these proteins correctly classified (shown
in Table S7). The sequences in the PDHK family were all correctly
classified and the accuracy rates of the other families were approxi-
mately 97%. This high accuracy reflects a high degree of conservation
among aPKs in many species over a large evolutionary distance.

2.4. Classification of plant protein kinases

We also performed a classification analysis on plant protein kinase
dataset in a similar manner. The dataset used in this study contains
seven groups and 20 families with 12,260 sequences in total. Table 1
shows the accuracy rates for the seven protein kinase groups. The total
accuracy is 11,959/12,260 (97.54%) for all of the plant protein kinase
domains. The 1-nearest neighbor algorithm also performed well on the
classification of plant protein kinases. The protein kinases from the
PDHK family were all correctly classified and the accuracy rates of the

Fig. 2. The heatmap for several major groups of animal protein kinases. Nine major groups of the protein kinases are shown. The pink color grid represents a large
number of proteins for the corresponding species on the right hand in major group below. The blue color gives the opposite meaning. For example, CAMK kinases and
RGC kinases have been both widely detected in animal protein kinases, but the number of CAMK kinases is larger than RGC kinases. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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other families were almost all above 90%. This high accuracy rate also
reflects that natural vectors provide a good representation of protein
space.

2.5. Statistical analysis

The 1-nearest neighbor algorithm performed well in the classifica-
tion of protein kinase families. The low complexity of this algorithm
makes it timesaving and easy to manipulate. To ensure that the model
had high prediction accuracy with low bias and low variance, we ap-
plied k-fold cross-validation to identify the model [26]. We chose ten-
fold validation to generate the results that are listed in Fig. S3 and
Table 2. The complete results on animal protein kinase can be found in
Supplementary material Tables S8–S15. Performing ten-fold cross-

validation yielded high accuracy on animal protein kinase dataset
(94.40%) and plant protein kinase dataset (97.30%). This indicates that
the 1-nearest neighbor algorithm performed robustly on the classifica-
tion of protein kinases and the model is valid.

2.6. Phylogenetic analysis on human protein kinases

In addition, we performed phylogenetic analysis on human protein
kinases to demonstrate the validation of our method. For each group of
ePKs, we chose the center of convex hull to represent this group. After
calculating the 250-dimensional natural vector, we then computed
Manhattan Distance between groups. Manhattan Distance is a widely-
used metric for measuring the difference of high dimensional points. It

Fig. 3. The summary of classification results for animal protein kinase groups.

Table 1
The summary of classification results for plant protein kinase groups.

Group name Family name Total number Correct number Accuracy

AGC MAST 62 59 0.951613
NDR 137 129 0.941606
PDK1 31 29 0.935484
PKA 33 28 0.848485

Atypical ABC1 395 365 0.924051
PDHK 45 45 1
PIKK 118 109 0.923729
RIO 56 50 0.892857

CAMK CAMK1 62 48 0.774194
CK1 CK1 306 291 0.95098
CMGC CDK 686 644 0.938776

CLK 83 80 0.963855
DYRK 162 150 0.925926
GSK 205 201 0.980488
MAPK 372 358 0.962366
RCK 76 68 0.894737

STE STE11 506 483 0.954545
STE20 193 179 0.927461

TKL IRAK 8136 8083 0.993486
MLK 596 560 0.939597

Total / 12,260 11,959 0.975449

Table 2
The summary of the ten-fold cross validation results on plant protein kinase
dataset.

Group name Family name Accuracy

AGC MAST 0.916667
NDR 0.875
PDK1 1
PKA 1

Atypical ABC1 0.952941
PDHK 1
PIKK 1
RIO 1

CAMK CAMK1 0.75
CK1 CK1 0.98
CMGC CDK 0.922078

CLK 0.888889
DYRK 0.909091
GSK 0.953488
MAPK 0.970588
RCK 0.909091

STE STE11 0.938053
STE20 0.926829

TKL IRAK 0.991437
MLK 0.94

Total / 0.973909
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has been successfully used for computing the difference between nat-
ural vectors and constructing phylogenetic trees [18]. We carried out
UPGMA algorithm to reconstruct the phylogeny shown in Fig. 4. Fur-
thermore, the phylogeny of families within each group is also estab-
lished. Fig. 5 shows the phylogenetic relationship for fifteen families of
AGC group. From the phylogenetic tree, we could see that sequences
from the same families clustered well. The close phylogenetic re-
lationship such as AKT and SGK, RSKR and RSKL clustered together in
this tree. To better understand and visualize the disjointness of convex
hulls between different families, we also plotted the two-dimensional
projection using LDA method shown in Fig. S4. For atypical kinase
group, we have also reconstructed the evolutionary relationship of five
families as shown in Fig. S5. Fig. S6-S12 shown in Supplementary
material present the phylogenies of other seven groups. We performed
bootstrapping method to compute the confidence probabilities on
phylogenetic trees. Bootstrapping is a common test to estimate the
significance of the branches in phylogenetic trees and detailed steps can
be found in Materials and methods section. The bootstrap values also

confirm that our methods applied on this dataset are reasonable and
convincing. Moreover, we performed phylogenetic analysis using the
60-dimensional natural vector and moment vector methods on the same
AGC group. The related phylogenetic trees are shown in Fig. S13 and
S14 in Supplementary material. Comparing these two trees with Fig. 5,
we can see that the current 250-dimensional natural vector method
performs better than the other methods. The 250-dimensional natural
vector contains more useful statistics information of sequences in-
cluding the correlations between different nucleotides, which could
make results more precisely in phylogenetic analysis.

2.7. Convex hull analysis of human protein family

Moreover, we applied convex hull method on the human protein
family dataset to illustrate its effectiveness for classification analysis on
anther data platform. This dataset used in our study was downloaded
from Uniprot. The dataset contained a total of 19,593 protein se-
quences, 5912 of which were not annotated with family information.

Fig. 4. Phylogenetic tree for eight ePKs groups of human protein kinases. The tree was constructed using UPGMA algorithm based on center of convex hull. The
number of families and sequences for each group was presented beside the tree. The bootstrap confidence values were generated using 500 permutations.

Fig. 5. Phylogenetic tree for fifteen families in AGC group of human protein kinases. The tree was constructed using UPGMA algorithm with the 250-dimensional
natural vector method. Different colors were allocated to represent different families. The bootstrap confidence values were generated using 500 permutations.

X. Zhao et al.



We removed the sequences without annotation, and applied our new
natural vector method to the 13,681 sequences which were annotated
with family information. There are 4854 families represented in this
dataset. The distribution of sequences into different families is uneven
since the biggest family has 670 sequences while the smallest family has
only one sequence. Among these 4854 families, 2698 have only one
protein member. Except for these 2698 sequences, the other 10,983
sequences belong to 2156 different families. Further detailed informa-
tion can be found in Supplementary material.

For each protein, we first computed the associated 250-dimensional
natural vector based on amino acid sequence and we then constructed
the convex hull for each protein family in 250-dimensional space. Using
linear programming analysis and the LDA method, no intersection was
found between any pair of convex hulls when we used the 250-di-
mensional natural vector representation. This result suggests that based
on the 250-dimensional natural vector representations, the convex hulls
formed by different families were disjoint from each other. We believe
that the 250-dimensional natural vector representation can be applied
to the study of protein sequence clustering. For example, in this study
we illustrate that the 250-dimensional convex hulls of the two biggest
families do not intersect using the LDA method (Fig. S15). We have
produced similar illustrations for each pair of human protein families,
so the interested reader can verify that their convex hulls are disjoint.
The complete graphical visualization results can be found on our
website http://yaulab.math.tsinghua.edu.cn/Lda/.

3. Discussion

3.1. Natural vectors provide a good representation of protein space

In this study, we used 250-dimenstional natural vectors to represent
protein sequences as points in 250-dimensional Euclidean space by
using distribution information for each amino acid within the protein.
Each protein sequence is in one-to-one correspondence with a point in
protein space, where proteins with similar properties stay close to-
gether. Therefore, the distance between two points in protein space
represents the biological distance of the corresponding two proteins.
Following a linear programming analysis, no intersection was observed
between any pair of the convex hulls of protein families using 250-
dimensional natural vectors. This result suggests that when 250-di-
mensional natural vectors are used, the convex hulls formed by dif-
ferent families are disjoint from each other. This disjointness property
indicates that protein sequences from the same family are likely clus-
tered, rather than being broadly distributed. In addition, good perfor-
mances of classification and phylogenetic results using 250-dimensional
natural vectors also suggest that natural vectors appropriately represent
protein space.

3.2. Prediction of unannotated proteins and discovery of new proteins

Using 250-dimensional natural vectors, we can predict families of
unannotated proteins. The convex hulls of protein families where the
associated sequences are represented by 250-dimensional natural vec-
tors can be used as clear boundaries to cluster proteins into families.
This principle can be used to predict which families new proteins be-
long to. If an unknown function protein sequence S is not clustered into
any known protein family, we can calculate the distances between this
sequence and convex hulls of each known protein family. By finding the
minimum value of these distances, we can obtain the protein family F
which has the smallest distance to S. It's reasonable to infer that the
function of sequence S is close to the protein family F and therefore
could be predicted by the properties of the proteins in family F. The
prediction strategy is even more accurate when more annotated protein
families are available. The most significant potential application of our
convex analysis involves searching for new proteins that lie within the
convex hull of a protein family. Because the convex hull is composed of

natural vectors of proteins from the same family, the natural vectors of
undiscovered proteins from a family should also be within the convex
hull. We can test natural vectors within the convex hull. Because nat-
ural vectors and sequences are in one-to-one correspondence, there
should only be one amino acid sequence corresponding to that natural
vector. This amino acid sequence can subsequently be synthesized in
the laboratory. Accordingly, from the sequence we can predict protein
function from the properties of the proteins in the corresponding fa-
mily.

4. Conclusions

We have shown here that a novel 250-dimensional natural vector
has effectiveness for describing the distribution of the 20 amino acids
within a protein. Proteins from the same family are found to cluster
together, and the convex hull surrounding protein points of natural
vectors from the same family do not intersect with convex hulls of other
protein families. This convex analysis implies that proteins with similar
distributions of the 20 amino acids should be in the same family. We
verify our principle computationally by using all available and reliable
sequences on protein kinase datasets and human proteins. In addition,
we also provide graphical figures for each of these 2,328,761 pairs of
convex hulls so that interested readers can visually verify that the
convex hulls of different human protein families or different protein
kinase families are disjoint from each other. The complete visualization
results can be found on our website http://yaulab.math.tsinghua.edu.
cn/Lda/. Moreover, the classification and phylogenetic analysis are also
carried out to validate and demonstrate the method in this study.

There are many applications of convex analysis. It allows us to do
phylogenetic analysis of protein families. It also provides a quick way to
assign a newly discovered protein to a protein family. Perhaps the most
significant potential application of our convex hull principle is to search
for new proteins that lie within the convex hull of a protein family.
Once a new protein is found, it could be classified based on what
convex hull its natural vector belongs to. Its functions could be pre-
dicted from the properties of the proteins in the corresponding family. It
is hoped that this strategy will open up a new combinatorial approach
that encompasses interdisciplinary research in biology, mathematics
and computer science. We believe that our convex analysis will become
a powerful tool in the study of proteins.

5. Materials and methods

5.1. Datasets

The protein kinase dataset used in this study is from the Eukaryotic
Kinase and Phosphatase Database (http://ekpd.biocuckoo.org/) [27],
which is managed and sponsored by the researcher Yu Xue. This dataset
contains information pertaining to animal protein kinases and plant
protein kinases. The current classification scheme for eukaryotic pro-
tein kinases is used in this dataset, where eukaryotic protein kinases are
split into two broad groups: conventional protein kinases (ePKs) and
atypical protein kinases (aPKs). The ePKs contains eight groups: the
AGC group, the CAMK group, the CK1 group, the CMGC group, the RGC
group, the STE group, the TK group and the TKL group. The full names
of these eight groups are as follows: cyclic nucleotide- and calcium-
phospholipid-dependent kinases (the AGC group including the PKA,
PKG, and PKC families), calmodulin-dependent kinases (the CAMK
group), casein kinase 1 (the CK1 group), cyclin-dependent kinases,
mitogen-activated protein kinases, CDK-like kinases, and glycogen
synthase kinase (the CMGC group), receptor guanylate cyclase kinases
(the RGC group), many kinases functioning in MAP kinase cascades (the
STE group), tyrosine kinases (the TK group) and tyrosine kinase-like
kinases (the TKL group). The aPKs are a small set of protein kinases that
do not share clear sequence similarity with ePKs. Only Alpha, PIKK,
PHDK, and RIO families have been shown to exhibit kinase activity.
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Table 3 displays the nine groups of animal protein kinase domains
and seven groups of plant protein kinase domains used in this study
with their respective protein kinase sequence numbers. The minimum,
maximum and average lengths of sequences in each group for animal
and plant protein kinases are shown in Table S16-S17 in Supplementary
material. A total of 19,095 animal protein kinases sourced from 62
different eukaryotic species and 12,260 plant protein kinases from 22
eukaryotic species were analyzed in this study. We verified the convex
hull principle by analyzing these 31,355 protein kinase domains as well
as 20,000 human protein sequences.

5.2. Number, mean position and normalized variation features of natural
vector

Assume S=(s1, s2, s3,⋯, sN) is a protein sequence of length N, i.e.
si∈ {A,R,N,D,C,E,Q,G,H, I,L,K,M,F,P,S,T,W,Y,V} for each positive
integer i from 1 to N. Firstly, we define the following function of twenty
amino acids and sequence positions. For a given amino acid k and po-
sition 1≤ i≤N, we define f(k, i)= 1 if k appears at the ith position of
the sequence, otherwise, f(k, i)= 0. Let nk= ∑i=1

Nf(k, i) be the number
of amino acid k in the sequence, μk= ∑i=1

Ni ∙ f(k, i)/nk be the mean
position of amino acid k in the sequence and= ∑ −=D i µ f k i n N( ) ( , )/( )k

i
N

k k2 1
2 be the normalized variation of the

position for amino acid k.
For example, given a protein sequence ′ACDEAC′, we could compute

nA= nC=2, nD= nE=1. For the mean positions, μA=(1+5)/2=3,
μC=(2+6)/2= 4, μD=3, μE=4. For the normalized variations,
D2

A=[(1− 3)2+ (5− 3)2]/(2 ∙ 6)= 2/3,
D2

C=[(2− 4)2+ (6− 4)2]/(2 ∙ 6)= 2/3, D2
D=(3− 3)2/(1 ∙ 6)= 0,

D2
E=(4− 4)2/(1 ∙ 6)= 0. Here nk= μk=D2

k=0 for the other 16
amino acids k∈ {R,N,Q,G,H, I,L,K,M,F,P,S,T,W,Y,V}.

5.3. Covariance between different amino acids

For two finite point sets A={a1,a2,…,an} and B={b1,b2,…,bm} in
R,where a1 < a2 < … < an and b1 < b2 < … < bm, the covariance
between the two sets Cov(A,B) can be calculated in two cases. If m= n,
we define ∑= − −=Cov A B a µ b µ n( , ) ( )( )/

i
n

i A i B1 (1)

here μA= ∑i=1
nai/n, μB= ∑i=1

mbi/m. If m≠ n, assume that m > n.
Then the covariance between A and any n values in B could be com-
puted. We take the average of these Cm

n results as the final covariance
Cov(A,B) between the two point sets.

For a sequence S of length N, we could compute the covariance
between any pair of amino acids k1 and k2. Assume that position of k1
appeared in the sequence S is A={a1,a2,⋯,an}, the position of k2 is
B={b1,b2,⋯,bm}. Then the covariance formula between k1 and k2 is
defined as

=Cov k k Cov A B N( , ) ( , )/1 2 (2)

As the example of sequence ′ACDEAC′, the covariance of nucleotide
A and C can be computed as follows. Based on μA=3, μC=4 and the
positions of amino acids A={1,5}, C={2,6} in the sequence, we
could get Cov(A,C)= [(1− 3)(2− 4)/2+ (5− 3)(6− 4)/2]/6=2/3.
The other covariances could also be calculated in the same way.

5.4. 250-dimensional natural vector

After getting the covariances of the pairs of amino acids, we add the
covariances to the original natural vector of the sequence S. The
number of pairs of amino acids is C20

2= 190. Therefore, the dimension
of the following natural vector with covariance is 60+ 190=250, and
the 250-dimensional natural vector is⋯ ⋯ ⋯ ⋯n n n µ µ µ D D Cov A R N Cov A N N

Cov Y V N
( , , , , , , , , , , , ( , )/ , ( , )/ ,

( , )/ )
A R V A R V

A V
2 2

(3)

In this study, we used the 250-dimension natural vector with cov-
ariance to represent protein sequence which contains more statistic
information.

5.5. Convex hull of a given point set

Given a point set A={a1,a2,⋯,an} in Rk space, the convex hull of A
is defined as ∑ ∑= = = ≥ ≤ ≤= ={ }Conh A p p λ a λ λ i n( ) | , 1, 0, 1

i
n

i i i
n

i i1 1 (4)

or = ∩ ⊃Conh A C C A C( ) { | , is convex set} (5)

Here a convex set C satisfies that+ ∈ ∈ ∈ + = ≥ ≥λ c λ c C c C c C λ λ λ λfor any , , 1, 0, 01 1 2 2 1 2 1 2 1 2 (6)

According to this definition, a convex hull is the smallest convex set
containing the given points.

5.6. Methods for checking the disjointness of two convex hulls

Given two finite point sets A={a1,a2,⋯,an} and B={b1,b2,⋯,bm}
in Rk, we want to check whether the convex hulls of A and B have
intersection. Based on the definition of convex hull, if there are two
groups of coefficients λi and μj such that.

∑i=1
nλiai= ∑j=1

mμjbj, ∑i=1
nλi=1, ∑j=1

mμj=1, 0≤ λi, μj≤ 1,
1≤ i≤ n, 1≤ j≤m, (7).

then the two convex hulls of A and B have interactions, otherwise,
the two convex hulls are disjoint [28].

On the other hand, the linear discriminant analysis (LDA) method is
also used for determining whether two convex hulls have intersection.
LDA is a generalization of Fisher's linear discriminant. It projects the
high dimensional point sets into low dimensional space to check whe-
ther the two groups are linearly separable. Linearly separable suggests
that the groups can be separated by a linear combination of features
[29]. If two sets are linearly separable, then the two corresponding
convex hulls have no interaction. To better understand and visualize the
disjointness of convex hulls, we use the LDA method to plot two point
sets in two-dimensional space.

5.7. Phylogenetic analysis and comparisons with other methods

After checking the disjointness of convex hulls between different
families, we choose the center of a convex hull to represent this family.
The distance between two centers can be measured by Manhattan
Distance, which is defined as d(x,y)= ∑i=1

250 ∣ xi− yi ∣ . Here x and y
are center points of convex hulls and could be denoted as

Table 3
The group names and number of protein kinase domains of each group as well
as family numbers for each group in this study.

Group

No. sequences for
animal

No. families
for animal

No. sequences
for plant

No. families
for plant

AGC 2618 15 263 4
CAMK 3958 17 62 1
CK1 566 3 306 1
CMGC 2847 8 1584 6
RGC 310 1 0 /
STE 2078 3 699 2
TK 3752 28 0 /
TKL 1904 7 8732 2
Atypical 1062 5 614 4
Total 19,095 87 12,260 20

X. Zhao et al.



x=(x1,x2,⋯,x250) and y=(y1,y2,⋯,y250). In this study, we apply the
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) al-
gorithm for phylogenetic analysis. The bootstrapping method is carried
out to validate the phylogenetic trees further. The bootstrapping pro-
tein sequences are taken from the original protein sequences by using
sampling with replacement, which could be called bootstrap replicate.
In this research, 500 bootstrap replicates for each sequence are created.
By comparing the new subtrees with the original subtree, we could
obtain the confidence probability of the original tree. For comparison
with other clustering methods, we also perform 60-dimensional natural
vector [19] and moment vector [15] methods on the same dataset.
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