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ABSTRACT
Structures and functions of proteins play various essential roles in biological processes. The functions
of newly discovered proteins can be predicted by comparing their structures with that of known-func-
tional proteins. Many approaches have been proposed for measuring the protein structure similarity,
such as the template-modeling (TM)-score method, GRaphlet (GR)-Align method as well as the com-
monly used root-mean-square deviation (RMSD) measures. However, the alignment comparisons
between the similarity of protein structure cost much time on large dataset, and the accuracy still
have room to improve. In this study, we introduce a new three-dimensional (3D) Yau–Hausdorff dis-
tance between any two 3D objects. The (3D) Yau–Hausdorff distance can be used in particular to
measure the similarity/dissimilarity of two proteins of any size and does not need aligning and super-
imposing two structures. We apply structural similarity to study function similarity and perform phylo-
genetic analysis on several datasets. The results show that (3D) Yau–Hausdorff distance could serve as
a more precise and effective method to discover biological relationships between proteins than other
methods on structure comparison.
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1. Introduction

Central problems in protein classification study are how pro-
teins are clustered in relation to each other (Holm & Sander,
1996) and how to compare functional similarity based on
protein structures. In order to get a global view of evolution-
ary distances among multiple proteins, the concept of pro-
tein space was introduced (Smith, 1970). In earlier research,
protein space was defined based on amino acid sequences
of the proteins. Protein space was also known as sequence
space (DePristo, Weinreich, & Hartl, 2005). Under this defin-
ition, each amino acid in a protein sequence was repre-
sented by one dimension (1D), with 20 possibilities in the
space. As the length of natural protein sequences had an
upper limit, all natural proteins could be put in a finite-
dimensional protein space based on sequence (DePristo
et al., 2005; Smith, 1970). The evolutionary distance between
two different proteins in sequence space was measured by
sequence alignment, which was commonly based on substi-
tution matrix such as blocks substitution matrix (BLOSUM)
and point-accepted mutation matrix (PAM) (Henikoff &
Henikoff, 1992). Substitution matrices were introduced to
give a theoretical basis for gene mutation, especially point
mutation. If two protein sequences are highly similar, differ-
ing in only a few amino acids, sequence alignment could

accurately identify the evolutionary kinship of the associated
proteins (Henikoff & Henikoff, 1992; Holm & Sander, 1996).
However, sequence alignment can be inaccurate when the
evolutionary distances are relatively big and the difference
between protein sequences cannot be explained by point
mutation. Furthermore, some compensatory mutations can
happen during evolution, resulting in proteins retaining their
original function even though their sequences have been
altered. Under these circumstances, sequence comparison
cannot reveal the evolutionary distance between proteins,
and a more sophisticated comparison method is required to
identify subtle similarities that remain throughout long-term
evolution (Holm & Sander, 1996).

Another protein space representation using natural vec-
tors was proposed by Yau. The original definition of natural
vector was proposed in 2011 (Deng, Yu, Liang, He, & Yau,
2011) for DNA sequence and in 2013 (Yu et al., 2013a) for
protein sequence. The main idea for natural vector is to rep-
resent each protein sequence as an element in R60, with
each dimension being a statistic for the distribution of amino
acids in the protein sequence. The biological distance
between any two proteins can be represented by the
Euclidean distance between the corresponding points in a
60-dimensional Euclidean space (Tian, Zhao, & Yau, 2018;
Tian et al., 2015; Yu et al., 2013a). In the previous study, the
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natural vector was established simply based on sequence
information and has been widely used in phylogenetic ana-
lysis (Huang et al., 2014; Yu et al., 2013b; Zhao, Tian, He, &
Yau, 2017; Zhao, Wan, He, & Yau, 2016). However, besides
the distribution of amino acids in a sequence, protein struc-
tures contain a large amount of biological information of
proteins. As protein structure closely associates with its func-
tion, how to compare structures efficiently and effectively
becomes a very important research topic. Such a method
will be more sophisticated than the method of sequence
comparison (Holm & Sander, 1996). Meanwhile, the number
of known protein structure is increasing with the rapid devel-
opment of structural biology. Current techniques used to
compare the structures of proteins such as structure align-
ment methods required long computation time to analyze
the experimental results, especially for large protein struc-
tures. Therefore, some new methods were proposed in
studying protein structure comparison. For example, a scor-
ing function pcSM based on the C-alpha Euclidean metric,
secondary structural propensity, surface areas, and an intra-
molecular energy function parameters has showed the
improvement for discriminating a true native structure from
an ensemble of candidate structures (Mishra, Rao, Mittal, &
Jayaram, 2013). The stoichiometry of amino acids of a given
primary sequence together with the Euclidean distance also
reveals strong correlation with backbones of folded proteins
(Mittal & Jayaram, 2011; Mittal, Jayaram, Shenoy, & Bawa,
2010). The D2N metric has been proposed by combining
chemical and physical properties of soluble proteins struc-
tural features which could calculate how far a structure is
from its native state even without knowing the experimental
structure (Mishra, Rana, Mittal, & Jayaram, 2014). Several
measures used to compare protein structure were described,
such as the root-mean-square deviation (RMSD) measure
(Kabsch, 1978), the template-modeling score (TM-score)
(Zhang & Skolnick, 2004), the GRaphlet-based Aligner (GR-
Align) (Noel & Natasa, 2014), and combinatorial extension
(CE) (Prlic et al., 2010). However, these methods have some
limitation to obtain accurate results and often consume
much time to complete structure comparison so that the
computational complexity will be high for large dataset.

Two-dimensional (2D) Yau–Hausdorff distance (Tian et al.,
2015) has been proposed to study the sequence comparison.
Although it performs well for comparison of DNA and pro-
tein sequences, it cannot be used to compare three-dimen-
sional (3D) protein structures. Therefore, we develop a new
metric, called 3D Yau–Hausdorff distance, to measure the
similarity between protein structures. The (3D) Yau–Hausdorff
distance does not require the compared proteins to be
aligned before calculation. It can measure the similarity/dis-
similarity of protein structures without superimposing them
together. The (3D) Yau–Hausdorff is a natural generalization
for the minimum 1D Hausdorff distance and takes all pos-
sible translation and rotation into full consideration. The
complexity of this new method is lower than many other
comparison algorithms by descending dimension in calcula-
tion without losing information of the structure. Compared
with other methods mentioned above, our new approach

could be applied on protein structure dataset more effi-
ciently. These advantages enable it to be a powerful tool for
comparing protein structures. Thus, the (3D) Yau–Hausdorff
distance can measure the similarity even when proteins are
highly dissimilar, filling the gap in which sequence compari-
son lacks accuracy.

In this study, we first tested our method on a benchmark
dataset and compared the results with existing methods. The
accuracy results, running time, and precision–recall (PR)
curves show that the (3D) Yau–Hausdorff method is more
accurate and effective than GR-Align, RMSD, TM-score, and
CE methods on protein structure comparison. We then used
structural similarity measured by the (3D) Yau–Hausdorff dis-
tance to discover function similarity masked by sequence
divergence. We tried to find proteins with similar structures
to IscA, of which homologous protein in fruit fly has a mag-
netic property. After structure comparison, we got a list of
proteins with small (3D) Yau–Hausdorff distance to IscA and
three of them worked in the same biological pathway as
IscA. Moreover, we used structure comparison instead of
sequence alignment as the measure of evolutionary distance
in molecular phylogenetic analysis. Choosing cytochrome c
and b globin as the molecular clock, we compared sequence
alignment, natural vector method, and structure comparison
on their performance when serving as the metric to cluster
species with homologous proteins into phylogenetic trees.
Finally, we drew the conclusion that structure comparison
performed by the (3D) Yau–Hausdorff distance could reveal
the function similarity hidden by sequence dissimilarity. It
can make up the gap where sequence alignment cannot
detect evolutionary relationship at a longer evolution-
ary distance.

2. Materials and methods

2.1. 3D Yau–Hausdorff distance

The 3D Yau–Hausdorff distance is used to calculate the simi-
larity between protein structures. Each protein structure is
regarded as a 3D point set including the coordinates of
backbone chain atoms and side-chain atoms. A detailed
description about how to choose the coordinates is shown
in the supplementary material. The purpose is to compute
the difference between the corresponding point sets of pro-
tein structures. We first define the minimum 1D Hausdorff
distance of two finite point sets A1 and B1 in R as

H1 A1; B1ð Þ ¼ min
t2R

h A1 þ t; B1ð Þ; (1)

where t is a real number, A1 þ t represents the point set
containing the sum of any number in A1; and t and h are
the Hausdorff distance

h A1; B1ð Þ ¼ max max
a2A1

min
b2B1

d a; bð Þ;max
b2B1

min
a2A1

d b; að Þn o
; (2)

here, dða; bÞ is the Euclidean distance between two points
a and b, and hðA1 þ t; B1Þ stands for the Hausdorff distance
between A1 and B1 after shifting A1 by t. The (3D)
Yau–Hausdorff distance D A; Bð Þ of two point sets A and B in
R3 is then defined in terms of H1:
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D A; Bð Þ ¼ max max
h3

min
u3

H1 Px Ah3
� �

; Px Bu
3

� �� �
;

�

max
u3

min
h3

H1 Px Ah3
� �

; Px Bu
3

� �� ��
;

(3)

where Px Ah3ð Þ is a 1D point set representing the projec-
tion of A on the x axis after being rotated by 3D rotation
matrix h3.

The algorithm to compute the (3D) Yau–Hausdorff dis-
tance D of two protein structures is as follows:

Let A ¼ a1; a2; :::; amf g � R3, B ¼ b1; b2; :::; bnf g � R3 be
the corresponding 3D atom coordinate point sets of two
protein structures. The values D1 and D2 will be more precise
if we choose more rotations h3 and u3 in the calculation the-
oretically. That means the computational result gets more
accurate and stable when the numbers of rotations are large
enough. The way for choosing the appropriate rotation times
is explained by a control computation example in the
Discussion section. In general, the rotation number of each
protein structure should be at least 40 and 50 is enough for
obtaining stable results. Here, randomly rotate A 50 times by
h31; h

3
2; :::h

3
50, B 50 times by u3

1;u
3
2; :::u

3
50, and take

M ¼ fh31; h32; :::h350g, N ¼ fu3
1;u

3
2; :::u

3
50g. For each h3 2 M

compute

D1 ¼ max
h32M

min
u32N

H1 Px Ah3
� �

; Px Bu
3

� �� �
; (4)

similarly,

D2 ¼ max
u32N

min
h32M

H1 Px Ah3
� �

; Px Bu
3

� �� �
: (5)

Take

D A; Bð Þ ¼ max D1;D2f g: (6)

as the final (3D) Yau–Hausdorff distance result of the two
protein structures.

The size of protein structure is uniformly measured by
using the unit angstrom. The atomic coordinates in the PDB
files used in this study are also measured based on ang-
strom. Therefore, the unit of (3D) Yau–Hausdorff distance is
still angstrom when we calculate the distance between pro-
teins. No matter what the size of protein is, the result is con-
sidered reliable if the units are kept consistent. There is no
limitation of size difference in protein structure comparison
by our metric.

2.2. PR curve

The prediction accuracy is measured in terms of area under
the PR curve (AUPRC). Given a threshold d on the pairwise
distances between proteins, we compute four values as fol-
lows: (1) the true positives (TP): the number of distances
smaller than d coming from the same group; (2) the true
negatives (TN): the number of distances greater than or
equal to d coming from different groups; (3) the false nega-
tives (FN): the number of distances greater than or equal to
d coming from the same group; (4) the false positives (FP):
the number of distances smaller than d coming from differ-
ent groups. The PR curve plots the precision rate P¼ TP/
(TPþ FP) as a function of recall rate R¼ TP/(TPþ FN), for d
increases from the minimum to the maximum distance. The
AUPRC measures the average precision of these pairwise dis-
tances. Therefore, the closer the AUPRC is to one, the better
the method is applied on classification.

3. Results

3.1. Computation control experiments on the
geometries, sphere, ellipsoid, cylinder, and hourglass

Firstly, we set up a control experiment on four simple ideal
geometries, sphere, ellipsoid, cylinder, and hourglass like
Mittal presented (Mittal & Acharya, 2012) to show the per-
formance of (3D) Yau–Hausdorff distance on different shapes.
Take sphere as an example, and the detailed steps are as fol-
lows. Fifty concentric shells with a radius from 1 to 50 were
constructed. The shape of each shell was simulated with
9900 points forming a geometrical sphere surface and cen-
tered at the origin using Matlab software. For each shell, a
number of Ri (i ¼ 1; 2; :::; 50) were generated randomly
between 0 and 9. Ri fixed the number of sets from the given
geometrical shell. Each set contained 200 random points in
this shell. We then got R1 þ R2 þ � � � R50 ¼ Rtotal 3D point sets
in total. The (3D) Yau–Hausdorff distances between each pair
of the Rtotal sets were computed. A key aspect to be

Figure 1. The normalized relation curves between the number of distances and
distance values on four different geometries sphere, ellipsoid, cylinder, and hour-
glass. Based on each of the four geometries, 10 collections of point sets are gen-
erated. For each collection, the (3D) Yau–Hausdorff distances between each pair
of point sets are calculated and used to plot the curve. Thus, we obtain 10
curves (almost overlap completely) for each geometry. Each curve is normalized
by dividing the corresponding maximal value number Rtotal. The points with x ¼
0; 1; 2; :::; 10; 15; 20; 25; :::; 95 are marked with circles, asterisks, triangles and
plusses for sphere, ellipsoid, cylinder and hourglass, respectively. Blue color,
sphere; red color, ellipsoid; green color, cylinder; pink color, hourglass.

Table 1. The (3D) Yau–Hausdorff distances between identical and differ-
ent geometries.

Distance Spherical Ellipsoidal Cylindrical Hourglass

Spherical 2.8759 12.6317 14.7299 12.5620
Ellipsoidal 12.6317 3.5067 20.6725 15.6916
Cylindrical 14.7299 20.6725 4.7598 8.2008
Hourglass 12.5620 15.6916 8.2008 5.5742

The shadings in Table 1 show the (3D) Yau-Hausdorff distances between iden-
tical geometries. These values should be significantly smaller than the distan-
ces between different geometries in the forms without shading.
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investigated is the distribution of these distance values. We
plotted the relation between a given value and the number
of distances within the fixed value shown in Figure S1, sup-
plementary material. To view this result more directly, each
curve was normalized by dividing the corresponding max-
imal value number Rtotal. This process was repeated 10 times
with the same R1; R2; :::; R50, and 10 curves were drawn to
compare with each other. The same steps were also done for
the other three geometries: ellipsoid, cylinder, and hourglass.
As a result, 40 curves are shown in Figure 1. In this figure,
the 10 curves of each geometry almost overlap completely,
while the curves of different geometries are slightly distinct.
In addition, we also calculated the (3D) Yau–Hausdorff dis-
tances between identical and different geometries including
spherical, ellipsoidal, cylindrical, and hourglass point sets. For
each kind of geometry, we generated 10 point sets with the
given shape in a 100� 100� 100 cube using Matlab soft-
ware. Each point set contains 200 random points. The aver-
age values of (3D) Yau–Hausdorff distances between
identical and different geometries are listed in Table 1. It
shows that the (3D) Yau–Hausdorff distances between identi-
cal geometries are significantly smaller than differ-
ent geometries.

3.2. Classification analysis of 260 protein domains by
(3D) Yau–Hausdorff method

We show the high classification accuracy and effectiveness of
the (3D) Yau–Hausdorff method in a structural similarity com-
parison. The benchmark dataset used in this study consisted
of 260 protein domains. This dataset was downloaded from
the CATH v4.2.0 database, with a number of residues varying
from 44 to 854 and 211 on average. The data can be clus-
tered into two superfamilies. One is C-terminal domain in

DNA helicase RuvA subunit coming from the Alpha class,
Orthogonal Bundle Architecture, Helicase, and Ruva Protein
fold. The other superfamily Homing endonucleases belongs
to the Alpha and Beta class, Roll Architecture, and
Endonuclease I-creI fold. By comparing the results and run-
ning time using different rotation numbers with that
obtained by GR-Align, RMSD, TM-score, and CE, we prove
that our method performs better than those methods on
protein structure comparison.

We applied the (3D) Yau–Hausdorff method with two
rotation numbers 10 and 2500, respectively, to calculate the
pairwise distances between any pair of the 260 protein
domains and got the distance matrix. The 1-nearest neighbor
accuracy rate (1-NN) is an effective way of assessing the
quality of score function methods, by counting the number
of proteins that are from the same class with their nearest
neighbors in the reference classification. The accuracies were
also computed by GR-Align, RMSD, TM-score, and CE meth-
ods. The programs were downloaded from http://bio-nets.
doc.ic.ac.uk/home/software/gralign/ and https://zhanglab.
ccmb.med.umich.edu/TM-score/. All the programs were done
on a PC with a configuration of 2.40GHz and 8Gb RAM.
Table 2 shows the results and running times by these
approaches. The best accuracy was performed by the (3D)
Yau–Hausdorff method with rotation number 2500 (81.5%).
Although the running time of it was longer than GR-Align
and RMSD methods, the accuracy rate was much higher than
GR-Align (62.3%), TM-score (61.5%), CE (60.8%), and RMSD
(59.2%). In order to accelerate the running speed, we tested
the result of the (3D) Yau–Hausdorff method with rotation
number 10, and the result was still better than the other
methods. GR-Align presented a lower accuracy in spite of it
having the fastest computation time. We also drew the PR
curves of these approaches shown in Figure 2. In this figure,
we can see that the AUPRC presented by the (3D)
Yau–Hausdorff method (rotation number 2500) achieves
higher than the other four.

The (3D) Yau–Hausdorff method performs better than GR-
Align, RMSD, TM-score, and CE methods because it takes all
possible translations and rotations into consideration to achieve
the best match of two protein structures. The information of
the structures is not lost during the computing process, and
the distance can precisely measure the difference between pro-
tein structures. This method could complete a global structure
comparison task based on 3D coordinates, no matter how long
the residues are and where the residues locate in the corre-
sponding sequences. Although the classical (3D) Hausdorff dis-
tance under rigid motion can give an accurate distance
between two protein structures, it cannot be implemented due
to its high computational complexity. Our method not only
completes the task but also has a lower complexity than the
(2D) minimum Hausdorff distance, which could help us save
much time in protein structure comparison.

Table 2. The classification results and running times of the (3D) Yau–Hausdorff method with different rotation numbers, GR-
Align method, RMSD method, TM-score method, and CE method.

GR-Align RMSD TM-score CE Yau–Hausdorff (rotation 10) Yau–Hausdorff (rotation 2500)

Accuracy 62.3% 59.2% 61.5% 60.8% 70.8% 81.5%
Running time 2 min 1 h 9 h 20 min 340 h 10 min 4 h 10 min

Figure 2. Precision–recall curves and areas under these curves of (3D)
Yau–Hausdorff (rotation number 2500) as well as traditional methods per-
formed on the 260 protein domains dataset. Blue color, (3D) Yau–Hausdorff;
red color, GR-Align; green color, RMSD; pink color, TM-score; yellow color, CE.
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3.3. Identification of functional similarity via
structural similarity

Based on the principle that protein function is closely related to
its structure, we hope that after structure comparison, we would
be able to identify the functional similarity between proteins
with similar structures. Firstly, we started with a recently
reported protein having a magnetic property (Bilder, Ding, &
Newcomer, 2004). The protein was named MagR and as a newly
identified protein in fruit fly with a never-reported magnetic-
sensing ability. It was highly conserved during evolution, and
the structure of its homologous protein in Escherichia coli, IscA,
was already solved in 2004 (PDB ID: 1R94) (Bilder et al., 2004).

With the purpose of finding more protein candidates with
the magnetic property, we screened a set of proteins by cal-
culating its (3D) Yau–Hausdorff distance with IscA. We
selected 109 proteins from different species by a keyword
search in the PDB database. The keywords used were the
description of properties similar to IscA, such as metal bind-
ing and ion transport. The PDB IDs of 109 proteins are listed
in the supplementary material. The first step was to screen a
small number of proteins with a similar structure as IscA
among these 109 proteins. We retained 17 proteins having
(3D) Yau–Hausdorff distance with IscA less than 3Å which
means they have similar structures with IscA based on a
large number of examples. Thus, we focused on the proper-
ties of the 17 proteins. We found that seven of them are
related to iron–sulfur cluster and three of them, though lack-
ing in sequence similarity with IscA, work with IscA in the
same biological process. The (3D) Yau–Hausdorff distances
between IscA and these three proteins are shown in Table 3.
The distance between IscA and OsCnfU-1A domain I is the
smallest. The other two distances are also less than 3Å
which means their structures have more similarity with IscA
than most of the 109 selected proteins.

The three protein structures of IscU (PDB ID: 1WFZ), SufA
(PDB ID: 2D2A), and OsCnfU-1A domain I (PDB ID: 2JNV) are
shown in Figure 3. IscU was reported to work as a scaffold
for iron–sulfur cluster assembly together with IscA, and
accordingly, both of them got their name (Ollagnier-de-
Choudens, Sanakis, & Fontecave, 2004). SufA is a paralogous
protein of IscA and works as the scaffold in biosynthesis of
iron–sulfur cluster as well. OsCnfU-1A domain I works in
Oryza sativa chloroplasts as the scaffold on which iron–sulfur
cluster assembles (Saio et al., 2007). Therefore, these three
proteins work in the same biological pathway, though from
different species. Moreover, we performed protein blast to
compare the sequence similarity of these three proteins to
IscA. All of them have an alignment Expect value larger than
0.57. This means that they do not show a high sequence
similarity with IscA. However, they still resemble each other
in biological functions, which could be identified by structure
comparison using the (3D) Yau–Hausdorff distance. Structure
comparison by the (3D) Yau–Hausdorff distance can serve as

a sophisticated method to uncover biological relationships
between proteins. We can reasonably deduce that other pro-
tein candidates, which have a small (3D) Yau–Hausdorff dis-
tance with IscA, might work similar as IscA and some of the
candidates might have the same magnetic-sensing property
as MagR, IscA’s homologous protein in fruit fly.

3.4. Molecular phylogenetic analysis choosing
cytochrome c as the molecular barcode

We also want to see the performance of structure compari-
son in clustering homologous proteins from different species
into phylogenetic trees. However, limited by the number of
protein structures solved by now, we could not choose pro-
teins encoded by recognized barcoding genes such as cyto-
chrome c oxidase I (COI) or cytochrome b (Hebert,
Ratnasingham, & de Waard, 2003). Considering the number
of existing structures solved and the extent of conservatism
during evolution, we chose cytochrome c as our first molecu-
lar marker (Wilson & Sarich, 1969). After using the (3D)
Yau–Hausdorff distance to compare structures of cytochrome
c in nine species, we got the distance matrix and con-
structed the UPGMA phylogenetic tree shown in Figure 4.
For comparison, we also used sequence alignment and nat-
ural vector method to generate UPGMA phylogenetic trees
of the same nine species. For sequence alignment method,
we used BLOSUM matrix as the substitution matrix.

The nine species chosen varied from bacteria to mam-
mals, which is a quite big span in evolutionary distance.
From the result, we could see that there are consistent as
well as discrepancies among three phylogenetic trees gener-
ated by three differently defined distances. Mouse and horse
were clustered into a branch in all three methods. Two kinds
of tuna were clustered into the same branch in the (3D)
Yau–Hausdorff and sequence alignment methods. In the
phylogenetic tree generated by (3D) Yau–Hausdorff method,
species in the same branch belonged to the same classes
but four mammals were separated into two remote
branches. Compared to the tree generated by sequence
alignment, in which bacteria fish and mammal were in a bot-
tom-up order, the (3D) Yau–Hausdorff tree showed poor spe-
cies hierarchy. However, sequence alignment method had its
own mistake that cattle was clustered close to bacteria in a
low evolution level. That might be caused by the large evo-
lutionary distances among the species chosen. Therefore, in
general, phylogenetic analysis based on structure comparison
calculated by the (3D) Yau–Hausdorff distance choosing cyto-
chrome c as the molecular barcode could realize the basic
cluster of species. Compared to sequence alignment method,
each of them has its own disadvantages. Structure compari-
son could classify species into clusters well, and sequence
alignment is better at displaying evolutionary hierarchy.

3.5. Molecular phylogenetic analysis choosing b globin
as the molecular barcode

We also selected b globin which is a subunit of hemoglobin
as anther molecular marker. After using the (3D)

Table 3. The (3D) Yau–Hausdorff distances between IscA and three proteins
IscU, SufA, and OsCnfU-1A domain I.

(3D) Yau–Hausdorff distance IscU SufA OsCnfU-1A domain I

IscA 2.365 1.233 0.909
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Yau–Hausdorff distance to compare structures of b globin in
nine species, we got the distance matrix and constructed the
UPGMA phylogenetic tree shown in Figure 5. Sequence
alignment and natural vector method were used again for
comparison. In sequence alignment method, we used
BLOSUM matrix as the substitution matrix.

The nine species chosen this time did not vary a lot, from
fish to mammal. Thus, under this circumstance, sequence
alignment worked well. In its phylogenetic tree, two species
belonged to Perciformes order which were clustered under
the same branch; cattle and goat from Bovidae family were
clustered into the same branch; wolf and dog from Canidae
family were clustered into the same branch, and the evolu-
tionary hierarchy performed well. The tree of (3D)
Yau–Hausdorff structure comparison was highly similar to
the tree of sequence alignment. The only differences in all
lay in details. Wolf and dog were close but not in the same
branch. Cattle and goat were closed but not in the same
branch either. We could see that when it comes to analysis
among closely related species, structure comparison could
cluster species generally well but it does not have a high
resolution. In order to have a high resolution, we need to
use many 3D structures of the same protein. However, even
using only one protein structure for structure comparison,
one could uncover relationship between distant species.
Structure comparison and sequence comparison might com-
plement each other in phylogenetic analysis. The high reso-
lution of sequence alignment could identify kinship between
closely related species well, and structure comparison could
uncover relationship between distant species.

4. Discussion and conclusions

4.1. Complexity analysis of the (3D)
Yau–Hausdorff distance

Given two protein structures with a number of atoms m and
n, the computational complexity of the (3D) Yau–Hausdorff
distance between two structures is Oðmþ nÞ times the min-
imum 1D Hausdorff distance, which is the same as that of
the (2D) Yau–Hausdorff distance (Tian et al., 2015). For two
sets of m and n points, the complexity of their 1D minimum
Hausdorff distance is Oððmþ nÞ logðmþ nÞÞ based on Li’s
algorithm (Li, Shen, & Li, 2008), and the complexity of our
algorithm is Oððmþ nÞ2 logðmþ nÞÞ. No other methods are
able to calculate the precise value of traditional (3D)
Hausdorff distance under rigid motion. The complexity of
our method is even lower than Oððmþ nÞ5 log2ðmnÞÞ which
is the complexity of (2D) Hausdorff distance under rigid
motion (Chew et al., 1997). Thus, the (3D) Yau–Hausdorff dis-
tance method significantly decreases computational com-
plexity by a descending dimension without losing
information of the structure and makes a great improvement
than traditional (3D) Hausdorff distance.

4.2. The choice of rotation number and analysis
of protein length for calculating the (3D)
Yau–Hausdorff distance

We discuss how many rotations are appropriate and enough
to obtain a stable result for computing the (3D)
Yau–Hausdorff distance of two structures. We set up a

Figure 3. Protein structures of IscA (PDB ID: 1R94), IscU (PDB ID: 1WFZ), SufA (PDB ID: 2D2A), and OsCnfU-1A domain I (PDB ID: 2JNV). IscU, SufA, and OsCnfU-1A
domain I have similar structures to IscA, which are proved by small (3D) Yau–Hausdorff distances. Though they lack similarity in amino acid sequences, these three
proteins were all reported to work in the same biological process.
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control experiment here to show that 50 is enough for the
rotation number of the set M and N of two point sets A
and B.

Firstly, we explain that the specific matrix of 50� 50 theta
and phi values results in 2500 rotation positions. Let
M ¼ fh31; h32; :::h3ug, N ¼ fu3

1;u
3
2; :::u

3
vg be two sets containing

u and v 3D rotations, respectively. Fixing each rotation h3 in
M of the point set A, v rotations of the point set B are con-
sidered and the minimum value of H1 Px Ah3ð Þ; Px Bu

3ð Þ� �
is

computed. Thus, for the grid of u theta and v phi values, D1

is calculated according to uv relative rotation positions of
the original 3D point sets A and B. Thus, 50 theta and 50 phi
values result in 2500 rotation positions. D2 is analogous to
the above steps.

We constructed 10 point sets in a ball with radius 50, and
each set contained 200 points randomly generated in this
ball. The (3D) Yau–Hausdorff distances between each pair of
the 10 sets were calculated by choosing the number of

Figure 4. UPGMA phylogenetic tree constructed using cytochrome c as the molecular barcode. The results are based on distance matrix calculated by (A) the (3D)
Yau–Hausdorff distance, (B) sequence alignment using BLOSUM substitution matrix, and (C) natural vector method. Species in the yellow frame are fungi. Species
in the red frame are mammals. Species in the blue frame are fish.
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rotation positions from 100 to 3000. We drew the curves of
the relation between distance value and rotation number for
each pair of point sets. Since there are 45 pairs of distances
among the 10 point sets, a total of 45 curves are shown in
Figure 6. The rotation number increases 100 each time, and
the corresponding distances are marked with an asterisk. In
this figure, we can see that most pairs of distances achieve a
stability when rotation number reaches about 2000.
Therefore, 2500 rotations are enough to get a sta-
ble distance.

On the other hand, we analyze the (3D) Yau–Hausdorff
distance distribution by randomly choosing 100 distance val-
ues of the 260 protein domains dataset used in this study
shown in Figure 7. The x coordinate represents the minimum
length of two protein domains and the y coordinate shows
their (3D) Yau–Hausdorff distance. In this figure, we can see
that the 100 values distribute randomly which have no direct
relation with respect to the protein length. It indicates that
protein length will not influence the (3D)
Yau–Hausdorff distance.

Figure 5. UPGMA phylogenetic tree constructed using β globin as the molecular barcode. The results are based on distance matrix calculated by (A) the (3D)
Yau–Hausdorff distance, (B) sequence alignment using BLOSUM substitution matrix, and (C) natural vector method. Species in green frame are herbivores. Species
in blue frame are fish. Species in red are omnivorous.

8 K. TIAN ET AL.



4.3. The possible applications of structure comparison

In this study, we presented the possibility of using structure
comparison to discover proteins with similar functions based
on structural similarity. Given a protein with a specific func-
tion, we could use structure comparison to find more protein
candidates with the same or similar function. This could be
applied on a broad range of fields, and one of them might
be the field of gene editing. The enzyme with the powerful
function of gene splicing in the famous CRISPR-Cas9 system,
Cas9, was selected by screening proteins with a sequence
similarity to other endonucleases (Mali et al., 2013). A newly
published protein with an even more powerful function,
Argonaute, was found by a similar approach (Gao, Shen,
Jiang, Wu, & Han, 2016). As structure is directly related to
protein function, structure comparison may work better than
sequence comparison in this circumstance. Structure com-
parison may provide more protein candidates with less
sequence similarity but more functional similarity.
Conversely, given a protein with unknown property, we
could predict its possible functions by referring to known

proteins with similar structures. In this way, we would be
able to predict protein functions in a more accurate high-
throughput way.

4.4. Room for improvement of the accuracy of
phylogenetic analysis based on structure comparison

When using homologous protein structures to measure the
evolutionary distance between species, the structures should
be the natural state of proteins in theory. However, proteins
do not maintain one static shape in biological processes.
Most proteins function in a dynamic manner. Under this cir-
cumstance, the structure that could represent one protein
best is a series of dynamic conformations. Structure compari-
son between two proteins should be the Hausdorff distance
between two sets of dynamic structures, where pairwise
structure comparison is calculated by the (3D) Yau–Hausdorff
distance. Cryo-EM method could solve multiple dynamic
structures of a protein at the same time but only around 1%
of the PDB data was solved by EM. Most proteins only have
one crystal structure solved. In our analysis, we dealt with
the multiple structures of b globin in human as different
dynamic conformations since it was solved multiple times. If
the dynamic conformations of other proteins were also avail-
able, the resolution of structure comparison might
be improved.
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