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a b s t r a c t 

Comparing DNA and protein sequence groups plays an important role in biological evolutionary relation- 

ship research. Despite many methods available for sequence comparison, only a few can be used for group 

comparison. In this study, we propose a novel approach using convex hulls. We use statistical information 

contained within the sequences to represent each sequence as a point in high dimensional space. We find 

that the points belonging to one biological group are located in a different region of space than points 

belonging to other biological groups. To be more precise, the convex hull of the points from one group 

are disjoint from the convex hulls of points from other groups. This finding allows us to do phyloge- 

netic analysis for groups in an efficient way. Five different theorems are presented for checking whether 

two convex hulls intersect or are disjoint. Test results for datasets related to HRV, HPV, Ebolavirus, PKC 

and protein phosphatase domains demonstrate that our method performs well and provides a new tool 

for studying group phylogeny. More significantly, the convex analysis presents a new way to search for 

sequences belonging to a biological group by examining points within the group’s convex hull. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Evolutionary and phylogenetic analysis of DNA and protein

groups is a basic task that has been studied in biology for years.

It is important to understand the natural relationships between

groups, such as families, species, or different biological types.

Many approaches have been proposed for sequence comparison

in the past few decades ( Elloumi, 1998; Kantorovitz et al., 2007;

Campello and Hruschka, 2009; Sims et al., 2009; Povolotskaya

and Kondrashov, 2010 ), but only a few can be applied to the

phylogenetic analysis of groups. Traditionally, most comparison

methods are based on multiple alignment, by using dynamic

programming techniques to identify the globally optimal align-

ment solution ( Altschul et al., 1997 ). Unfortunately, multiple

alignment is an NP-hard problem, which means in practice that

the implementations of these algorithms run slowly and use large

amounts of memory. Furthermore, it can’t be used to compare

groups. Recently, alignment-free approaches based on features

descriptor or statistical properties of the sequences have attracted

more and more attention. For example, to avoid complete loss of

sequence pattern, the PseKNC and PseAAC methods are developed

to reflect the core and essential features that are deeply hidden
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n sequences ( Lin et al., 2014; Jia et al., 2016 ). These methods are

sed to cluster sequences and predict their various attributes. The

raphical representation ( Yau et al., 20 03 , 20 08; Yu et al., 2010 ),

he k-mer methods ( Vinga and Almeida, 2003 ) and the natural

ector methods ( Deng et al., 2011; Yu et al., 2013; Zhao et al.,

016 ) provide different ways to represent sequences as points in

igh dimensional space according to their statistical characteris-

ics. Metrics such as the Hausdorff distance ( Huttenlocher et al.,

993; Chew et al., 1997; Yu et al., 2014; Tian et al., 2015; Zhao

t al., 2017 ) are used for measuring the similarity between point

ets representing the corresponding sequence groups. Note that

alculating the Hausdorff distance matrix requires considerable

PU time and memory as the size of the groups increases. 

In this study, we establish a new approach for performing evo-

utionary and phylogenetic analysis of biological sequence groups

sing convex hulls. Based on the natural vector method originated

y Deng et al. (2011) , each sequence is converted into a vector. The

ector contains the occurrence frequencies, the average positions

nd the central moments of the four nucleotides or twenty amino

cids. If the convex hulls of any two groups do not intersect, we

now that the two groups are located in different regions of high

imensional space. A central vector in each group is chosen to rep-

esent the spatial position of the group. 

Then the question remains how to determine whether two con-

ex hulls constructed by two finite point sets intersect or not. Let

 = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point sets in

https://doi.org/10.1016/j.jtbi.2018.07.035
http://www.ScienceDirect.com
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k . Assume S is the convex hull function. The problem is to deter-

ine whether the two convex hulls S(A) and S(B) have intersec-

ion. Although researchers have focused on this problem for years,

he complexity of the known algorithms is high when the dimen-

ion k of the space is large. In the Materials and Methods section,

e present five theorems for solving this problem. The proofs of

ll these methods could be found in the Supplement materials. 

To validate the advantage of approach, in the Results and dis-

ussion section, we test it on several biological sequence datasets

nd compare it with the Hausdorff method. The phylogenetic trees

how that our method give results that conform better to accepted

volutionary and phylogenetic analysis. The high bootstrap val-

es and high accuracy indicate the efficiency of our new convex

nalysis approach. We also present several graphs generated using

ur method to easily visualize the convex hulls of different group

atasets. 

. Materials and methods 

.1. Natural vector method 

Let S = ( s 1 , s 2 , s 3 , · · · , s n ) be a DNA sequence of length n , that

s, s i ∈ { A, C, G, T } , i = 1 , 2 , 3 , · · · n . For each of the 4 nucleotides

 , define 

 k (·) : { A, C, G, T } → { 0 , 1 } 
uch that w k ( s i ) = 1 if s i = k and w k ( s i ) = 0 otherwise. 

(1) Let n k = 

∑ n 
i =1 w k ( s i ) be the number of nucleotide k in the

DNA sequence S . 

(2) Let s [ k ][ i ] = i · w k ( s i ) be the distance from the first nucleotide

(regarded as origin) to the i th nucleotide k in the DNA se-

quence. 

(3) Let T k = 

∑ n k 
i =1 

s [ k ][ i ] be the total distance of each set of the 4

nucleotides. 

(4) We then take μk = T k / n k as the mean position of the nu-

cleotide k . 

(5) Finally, we define the second-order normalized central mo-

ments as follows: 

D 

k 
2 = 

n k ∑ 

i =1 

(
s [ k ] [ i ] − μk 

)2 

n k n 

. 

Then the natural vector of the DNA sequence S is given as fol-

ows: 

( n A , μA , D 

A 
2 , n C , μC , D 

C 
2 , n G , μG , D 

G 
2 , n T , μT , D 

T 
2 ) . 

Similarly, protein sequence could be represented by 60-

imension natural vector using the same definition. 

Given a biological group G with N sequences, we can obtain a

et containing N points A = { a 1 , a 2 , · · · , a N } corresponding to these

equences based on the above natural vector method. Let a 0 =
 N 
i =1 a i /N be the center point of group G . Then the difference be- 

ween two groups is defined as the Euclidean distance of their cen-

er points. The phylogenetic tree is constructed by the distance ma-

rix using UPGMA algorithm. 

In the next part of this section, we introduce five different

ethods to check whether two convex hulls intersect or not in

igh dimensional space. The details of the proofs could be found

n the Supplement materials. 

.2. Projection-line method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point

ets in R k . Assume S is the convex hull function. Then S(A ) ∩ S(B ) =
 is equivalent with that there is a line l ⊂R k , for the projection sets

 ( A ), P ( B ) of A, B in l , s.t. S( P ( A ) ) ∩ S( P ( B ) ) = ∅ . 
This means that if we can find any line such that the two seg-

ents of the projection sets P ( A ) and P ( B ) are disjoint, then the

onvex hulls of the original point sets A and B have no intersec-

ion. The computation is greatly reduced since we transform the

roblem from k -dimensional to one-dimensional. 

.3. Normal vector method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point

ets in R k . Assume S is the convex hull function. Then the neces-

ary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that there is a

ormal vector N of one hyperplane of S ( A ) and S ( B ), for the projec-

ion sets P ( A ), P ( B ) of A, B in line N , s.t. S( P ( A ) ) ∩ S( P ( B ) ) = ∅ . 
This theorem could give confirmatory result after checking all

he possible normal vectors since the number of normal vectors

or any convex hull is finite. One can treat this method as a special

ase of the first theorem with given position of projection-line. 

.4. Subset determination method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point

ets in R k . Assume S is the convex hull function. Then the nec-

ssary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that for all

he possible integers i 1 , i 2 , . . . , i k +1 ∈ [ 1 , n ] and j 1 , j 2 , . . . , j k +1 ∈
 1 , m ] , S( { a i 1 , a i 2 , . . . , a i k +1 

} ) ∩ S( { b j 1 , b j 2 , . . . , b j k +1 
} ) = ∅ . 

According to this method, we can divide each convex hull

nto several convex blocks constructed by k + 1 points and check

hether these small blocks have intersection. In k -dimensional

pace, each of the convex block is composed of k + 1 vertices and

 + 1 faces with any possible k vertices. The equations of each k + 1

aces and corresponding normal vectors of the convex block can be

asily computed. It helps us to determine whether each pair of this

ind of small blocks are disjoint or not based on the normal vector

ethod in a simple way. Therefore, the computation is also signif-

cantly reduced. 

.5. Linear programming method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point

ets in R k . Assume S is the convex hull function. Then S(A ) ∩
(B ) = ∅ is equivalent with that there are no nonnegative real

umbers λ1 , λ2 , . . . , λn , μ1 , μ2 , . . . , μm 

s.t. 
∑ n 

i =1 λi a i =
 m 

j=1 μ j b j and 

∑ n 
i =1 λi = 

∑ m 

j=1 μ j = 1 . 

We can transform the original problem into an algebra problem

y this theorem. If any convex combination of the points in one set

quals to that of points in the other set, we then confirm that the

wo hulls have intersection. No matter how large the dimension of

he space is and how many the points are, we can always solve

his problem easily by the linear programming function in many

inds of software. It is a very timesaving and effective method. 

.6. Minimum distance method 

Let A = { a 1 , a 2 , · · · , a n } , B = { b 1 , b 2 , · · · , b m 

} be two finite point

ets in R k . Assume S is the convex hull function. For nonnegative

eal numbers λ1 , λ2 , . . . , λn , μ1 , μ2 , . . . , μm 

satisfy 
∑ n 

i =1 λi =
 m 

j=1 μ j = 1 , and Let D = in f | ∑ n 
i =1 λi a i −

∑ m 

j=1 μ j b j | . Then the

ecessary and sufficient condition of S(A ) ∩ S(B ) = ∅ is that D > 0. 

Here we translate the problem to another algebra question

bout calculating the minimum distance of the two convex hulls.

hey are disjoint if and only if the minimum distance is positive.

any mathematical software could easily solve this minimization

roblem with quadratic programming functions. 
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Fig. 1. The convex hulls of the 5 HRV and HEV serotypes are mutually disjoint. 
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3. Results and discussion 

3.1. Human rhinovirus 

Firstly, we use the 113 human rhinovirus genomes dataset

(HRVs) with about 7165 nucleotides to verify the disjointness for

convex hulls of different groups. These 113 genomes could be di-

vided into 5 distinct serotypes: HRV-A, HRV-B, HRV-C, HEV-B and

HEV-C. Here the HEV-B and HEV-C serotypes are treated as out-

groups ( Deng et al., 2011 ). After calculating the 12-dimensional

natural vectors of all these whole genomes, we obtain 5 convex

hulls based on the points of each serotype. All the five theorems in

the Materials and Methods section can be used to prove that each

pair of the five convex hulls is disjoint. In order to view the dis-

jointness of these five groups, we project the 5 convex hulls into

two-dimensional space. Each time we choose a two-dimensional

plane randomly until any pair of the 5 projection polygons is dis-

joint in this plane. Since the 5 convex hulls are disjoint mutually

in 12-dimensional space, the two-dimensional plane must exist. In

general, we can first find such plane which satisfies that the pro-

jection of two biggest convex hulls have no intersection, then ad-

just the spatial position of the plane to make all the projections

are disjoint mutually. This is shown in Fig. 1 . In this figure, these

5 serotypes are separated from each other clearly. This means that

the natural vectors of different groups lie in different areas of high

dimensional Euclidean space, which provides a new useful convex

analysis tool in evolutionary relationship and phylogenetic analysis.

3.2. Human papillomavirus 

To test the performance of our convex analysis method, we ap-

ply it on the 400 human papillomavirus genomes dataset (HPVs)

containing about 7914 nucleotides in length which are divided

into 12 genotypes: HPV type 11, 16, 18, 31, 33, 35, 45, 52, 53,

58, 6, 66. Human papillomavirus plays an important role in the

research of the second most common cancer––cervical cancer
 Arbyn et al., 2011 ). Different types of HPVs can lead to different

evels of risk. Therefore, it has crucial significance to cluster HPV

ypes into low and high risk types. Although many methods have

een provided to classify the HPV risk types, these genotypes are

ardly explored for many reasons, for example, some genotypes

ave low amplification signals. Here we use the convex analysis

pproach to cluster these 12 HPV types. The disjointness of these

2 convex hulls constructed by the 12-dimensional natural vector

oints for each genotype is shown in Fig. 2 . In this work, the center

oint in each convex hull is chosen to represent the correspond-

ng HPV type. The matrix is computed based on the Euclidean dis-

ances between the 12 center points. The constructed phylogenetic

ree using UPGMA method is shown in Fig. 3 . For comparison, we

lso use the Hausdorff distance method to construct the tree which

s shown in Fig. 4 . In the previous work, Smith states that HPV

ypes 16, 18, 45, 31, 33, 52, 58, 35 are regarded as high risk geno-

ypes, and the other types 6, 11, 53, 66 have low risk ( Smith et al.,

007 ). Our results are in accordance with that of Smith, while

he low risk genotypes can not be distinguished by the Hausdorff

ethod. For example, the low risk HPV types 6 and 11 are correctly

lustered into one group by our method rather than far from each

ther using the Hausdorff approach. This shows that our method

erforms better in the HPV type dataset. On the other hand, the

ootstrapping method ( Hillis and Bull, 1993 ) is used for computing

he confidence probabilities on phylogenetic tree. Bootstrapping is

 common test used in phylogenetics to estimate the significance

f the branches in a tree. The bootstrapping sequences are taken

rom the original sequences by using sampling with replacement,

hich can be called bootstrap replicate. In this paper, 100 boot-

trap replicates for each sequence are created. We then compared

he new subtrees with the original subtree and obtained the con-

dence probability of the original tree. In this example, the boot-

trap values in our tree are all 100%, by comparison, the average

alue of Hausdorff tree is only 41.9%. These results verify that our
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Fig. 2. The convex hulls of the 12 HPV genotypes are mutually disjoint. 

Fig. 3. The phylogenetic tree of the 12 HPV genotypes by our method. The tree is 

constructed using UPGMA algorithm based on the Euclidean distances between the 

centers of 12 convex hulls. The number of sequences for each group is presented 

besides the tree. The bootstrap confidence values are generated using 100 permu- 

tations. 
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Fig. 4. The phylogenetic tree of the 12 HPV genotypes by Hausdorff method. The 

tree is constructed using UPGMA algorithm based on the Hausdorff distances of 

these 12 genotypes. The number of sequences for each group is presented besides 

the tree. The bootstrap confidence values are generated using 100 permutations. 
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ethods applied on this dataset are stable and convincing with

igh accuracy. 

.3. Ebolavirus 

We also apply the convex analysis method on the Ebolavirus

ataset with about 18,936 nucleotides in length. This dataset con-

ains 68 Ebolaviruses which consists of 34 Ebola virus (EBOV), 11

udan virus (SUDV), 9 Reston virus (RESTV), 1 Tai Forest virus

TAFV), 6 Bundibugyo virus (BDBV), 6 Marburg virus (MARV) and

 Lloviuvirus (LLOV) ( Zheng et al., 2015 ). We prove that the 7

onvex hulls of these species are mutually disjoint based on the

heorems in the Materials and Methods section. Furthermore, the

iggest Ebola virus species is composed of 4 small groups: Zaire
bola virus strain Mayinga, Zaire ebolavirus isolate EBOV, Zaire

bolavirus isolate H.sapiens-wt, and Zaire ebolavirus isolate Ebola

irus. The phylogenetic tree constructed by the 6 species and 4

BOV groups is displayed in Fig. 5 . We could see that the 4 EBOV

roups cluster together. The SUDV branch is clustered with the

BOV and RESTV branches. BDBV and TAFV viruses are grouped

ogether. These results are consistent with those in previous re-

earch. 

.4. Protein kinase c 

To assess our method on phylogenetic analysis of protein se-

uences, we apply it to classify the 124 protein kinase C (PKC) fam-

ly dataset. The average length of these 124 sequences is 789. The
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Fig. 5. The phylogenetic tree of the Ebolavirus species. The tree is constructed using UPGMA algorithm based on the Euclidean distances between the centers of convex 

hulls. The number of sequences for each group is presented besides the tree. 

Fig. 6. The convex hulls of the 6 PKC subfamilies are mutually disjoint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The phylogenetic tree of the 6 PKC subfamilies. The tree is constructed using 
protein kinase C family is a large group of enzymes regulating the

Ca 2 + -dependent pathways in cells ( Nishizuka, 1986 ). PKC is classi-

fied into six subfamilies: aPKC, cPKC, nPKC, PKC1, PKC μ and PRK.

The 6 convex hulls are constructed by the 60-dimensional natural

vectors that represent the protein sequences of these subfamilies

in R 60 space. Each pair of the 6 hulls is demonstrated to be dis-

joint. The two-dimensional projection for visualizing the disjoint-

ness of all the 6 convex hulls is shown in Fig. 6 . The center points

of these 6 convex hulls are used for representing the correspond-

ing subfamily as well as building the phylogenetic tree. As shown

in Fig. 7 , the aPKC, cPKC and nPKC are clustered together and posi-

tioned away from the PRK subfamily. This shows our convex anal-

ysis method characterizes the relationship between proteins in a

way that is closer to the actual nature of the proteins. 

UPGMA algorithm based on the Euclidean distances between the centers of convex 

hulls. The number of sequences for each group is presented besides the tree. The 

bootstrap confidence values are generated using 100 permutations. 



K. Tian et al. / Journal of Theoretical Biology 456 (2018) 34–40 39 

Fig. 8. The phylogenetic tree of the 19 protein phosphatase domain families. The tree is constructed using UPGMA algorithm based on the Euclidean distances between the 

centers of convex hulls. The bootstrap confidence values are generated using 100 permutations. 
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.5. Protein phosphatase domain 

Phosphorylation by protein kinases is recognized as an impor-

ant mechanism playing a role in virtually every activity of eu-

aryotic cells. The classification of protein phosphatase sequences

as gained increasing attention in biological sciences. We ana-

yze phosphatase domain dataset ( Wang et al., 2013 ) containing

802 protein sequences which are divided into 19 families from

2 species. These 19 families belong to 6 groups: CDC25, Classi-

al PTP, DSP, LMWPTP, PPM and PPP. As displayed in Fig. 8 , these

9 families are well clustered using our method. Except for the

DC25 and LMWPTP groups that each of them contains only one

amily, the Classical PTP, DSP, PPM and PPP groups are all gathered

ogether. For example, the 6 families of the dual specificity phos-

hatase group with blue color are classified together correctly. The

 well-known enzyme families PP1, PP2A, PP3, PP4, PP5, PP6 and

P7 with pink color are clustered closed and form the PPP group.

herefore, our method produces accurate and effective classifica-

ion results on phylogenetic analysis. 

. Conclusions 

This article proposes a new convex analysis approach for com-

aring and classifying DNA and protein groups. We introduce five

ifferent approaches to check whether two convex hulls intersect

r not in high dimensional space, which are treated as the basics of

ur method: projection-line method, normal vector method, subset

etermination method, linear programming method and minimum

istance method. Given some groups containing DNA or protein
equences, we first calculate the natural vectors of sequences in

ach group. We then use these five approaches to check whether

ach pair of the convex hulls constructed by the groups are dis-

oint. If so, that means the natural vector points belonging to dif-

erent groups are located in different regions of high dimensional

uclidean space, which provides a new useful convex analysis tool

n evolutionary research. Then the center point in each group is

hosen to represent this group. The Euclidean distances between

hese center points are computed for obtaining a distance matrix

hat contains information about these groups. 

In this study, we test the performance of our method on five

atasets, including the HRV, HPV, Ebolavirus, PKC and protein

hosphatase domain datasets. The convex hulls of each group are

utually disjoint and the phylogenetic trees are reconstructed ac-

ording to the distance matrix. This method produces accurate and

easonable clustering results as well as high reduced computation,

uggesting the potential utility of the approach we describe in con-

tructing the phylogeny in an efficient manner. Using convex analy-

is method, we could study evolutionary relationships between bi-

logical groups. It provides us new insights of analyzing evolution-

ry relationships and phylogeny among groups in molecular bio-

ogical study. 

vailability of data 
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lement materials. 
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