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Abstract

In this paper, we construct a new suboptimal filter by deriving the Ito’s stochastic differential
equations of the estimation of higher order central moments satisfy and imposing some conditions to form
a closed system. The essentially infinite-dimensional cubic sensor problem has been investigated in detail
numerically to illustrate the reasonableness of the imposed conditions, and the numerical experiments
support our discussion. A 2-dimensional polynomial filtering problem has also been experimented.
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I. INTRODUCTION

The nonlinear filtering (NLF) problem involves the estimation of a stochastic process (called
the signal or state process) that cannot be observed directly. Information containing the state
is obtained from observations of a related process, i.e., the observation process. The main goal
of NLF is to determine the conditional expectations, or perhaps even to compute the entire
conditional density of the state, given the observation history. For an excellent introduction to
NLF theory, we refer the readers to the book by Jazwinski [13].

In 1960, Kalman [14] published a historically important paper on linear filtering that are
highly influential in modern industry. It is the so-called Kalman filter (KF). One year later,
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the continuous version of KF has been investigated by Kalman and Bucy [15]. Since then, the
Kalman-Bucy filter has been widely used in science and engineering, for example in navigation
and guidance systems, radar tracking, sonar ranging, satellite and airplane orbit determination,
and forecasting in weather, econometrics and finance. However, the Kalman-Bucy filter has
limited application due to the linearity assumptions of the drift term, the observation term and
the Gaussian assumption of the initial value.

The success of KF for the linear Gaussian estimation problems encouraged many researchers
to generalize the Kalman’s results to nonlinear dynamical systems. However, the NLF problem
is an essentially more difficult problem since the resulting optimal filter is, in general, infinite-
dimensional, i.e., the conditional density depends on all its moments. Those methods which
attempt to compute the density function directly or numerically are called the global approaches,
see the survey paper [18] for detail.

Although the global ones can completely solve the NLF problems, the heavy computation
is one of the major obstacles in their real-time applications. Another way-out is to use the
approximate method to construct a suboptimal filter. The existing approximate filters for the
NLF problems include the extended Kalman filter (EKF), the unscented Kalman filter (UKF),
the ensemble Kalman filter (EnKF), particle filters (PF), and splitting up method, see [29], [10],
[6] and [16]. All of these methods have their own weakness. UKF and EnKF assume that the
probability density of the state vector is Gaussian. PF could be inefficient and is sensitive to
outliers. Resampling step is applied at every iteration, which results in a rapid loss of diversity in
particles. Furthermore, PF are more applicable at low- and moderate high-dimensional systems,
see [3] for the obstacles to high dimensional cases. The splitting up method requires g and h in
the model (1) to be bounded, which even excludes the linear case. Recently, Germani, et. al. [8],
[9] developed a suboptimal method, so-called Carleman approach, based on the alogrithm for
the bilinear system [5]. However, recently the first and the last author found that the Carleman
approach can fail completely in some 1-d NLF problem and developed a suboptimal method
via Hermite polynomials [22]. The use of higher central moments to improve the performance
of NLF has been studied by many researchers, see [23] and references therein. In fact, the
cumulants can be a better choice than the central moments, and the study on the cumulants for
NLF can be found in [30].

In this paper, we shall propose a new suboptimal filter by investigating the Ito’s stochastic
differential equation (SDE) which the higher central moments satisfy. Although the use of the
higher central moments for NLF problems has been attempted for a long time and the second
order EKF has been standard in the literature, see [13], the detailed derivation has never been
clearly written down for NLF, especially the polynomial filtering problems, which can be viewed
as the truncation of Taylor expansion of any nonlinear smooth functions. When arrived at an
infinite dimensional system, the higher central moments are conventionally truncated to form a
closed system as in [19]. No one doubts the reasonableness of the truncation. It is in this paper
that for the first time we investigate other options to form a closed system, say condition (12).
The numerical experiments support the condition. Also we compare our methods with some
existing ones. Our method works in nearly perfect agreement with theory.

An outline of this paper is as follows. In section II, we introduce the continuous-time model
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in this paper. Our method is derived and described in section III. Section IV is devoted to two
numerical experiments, which validate our method. Our method is more flexible by choosing
different truncation mode ~N . The Conclusion is in section V.

II. PRELIMINARIES

The model we consider in this paper is the continuous-state-continuous-observation one:{
dxt = f(xt, t)dt+ g(xt, t)dvt
dyt = h(xt, t)dt+ dwt,

(1)

where xt, vt, yt, and wt are Rn−, Rp−, Rm−, and Rm−valued processes, respectively, and
f : Rn × R+ → Rn, g : Rn × R+ → Rn×m, h : Rn × R+ → Rm are possibly nonlinear
function of x. Assume that {vt, t > 0} and {wt, t > 0} are Brownian motion processes with
V ar[dvt] = Q(t)dt and V ar[dwt] = R(t)dt, respectively. Moreover, {vt, t > 0}, {wt, t > 0}
and x0 are independent. The initial observation is assumed to be y0 = 0.

Without loss of generality, we assume Q(t) is a diagonal matrix, Q(t) = diag(q21, . . . , q
2
n). In

fact, if it is not, we have spectral decomposition of Q(t) = PΛP ′, where PP ′ = I , Λ is diagonal
matrix. By letting g∗ = gP , dv∗ = P ′dv, then V ar[dv∗] = Λdt. We could further assume that
Q(t) = I , due to the function g in front (replacing g by gQ1/2).

Let us clarify the notations we shall use in this paper. Let p ≡ p(x, t | Yt) be the conditional
probability density function of the state xt, given the observation history Yt ≡ {ys, 0 6 s 6 t},
then the conditional expectation of xt is defined as

x̂t ≡ Et[xt] ≡ E[xt | Yt]. (2)

For conciseness, we may use the vector notations, denoted as ~k = (k1, k2, · · · , kn). We say
~k ≤ ~α, if ki ≤ αi, for all 1 ≤ i ≤ n. The strict inequality holds, if ki < αi, for some 1 ≤ i ≤ n.
We denote P~k as

P~k ≡ Et
[
(x1 − x̂1)k1 . . . (xn − x̂n)kn

]
≡ E

[
(x1 − x̂1)k1 . . . (xn − x̂n)kn | Yt

]
.

Say P~k is the lower order of P~α if ~k < ~α. By convention, ~0 = (0, 0, · · · , 0) and ~ei denotes 1 for
the i−th component, 0 otherwise. P~0 = 1 and P~ei = 0, for 1 ≤ i ≤ n.

Furthermore, min
{
~k,~l
}

= (min{k1, l1},min{k2, l2}, · · · ,min{kn, ln}), ~k+~l = (k1+l1, · · · , kn+

ln),
∣∣∣~k∣∣∣

1
=
∑n

i=1 ki and
∣∣∣~k∣∣∣
∞

= max1≤i≤n ki.

III. NEW SUBOPTIMAL FILTER

Let fi(x, t), gij(x, t) and hi(x, t), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be some smooth nonlinear functions
in x. They can be approximated by their truncated Taylor expansions:

fi(x, t)≈
∑

|~m|16Mf

fi;~m(t)
n∏
a=1

xma
a (3)

gij(x, t)≈
∑

|~m|16Mg

gij;~m(t)
n∏
a=1

xma
a (4)
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hi(x, t)≈
∑

|~m|16Mh

hi;~m(t)
n∏
a=1

xma
a (5)

where Mf , Mg and Mh are the highest degrees kept in the expansions of {fi}1≤i≤n, {gij}1≤i≤n,1≤j≤p
and {hi}1≤i≤m, respectively.

In the sequel, we shall focus on the derivation of the method for the polynomial filtering
problems.

Proposition 3.1: For continuous filtering problem given by the system (1) with fi(x, t),
gij(x, t), hi(x, t) approximated by (3)-(5), the conditional mean x̂i satisfies the following Ito’s
SDE

dx̂i =
∑

|~m|16Mf

∑
~06~k6~m

fi;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~kdt

+
∑

1≤j,s≤m

rjs
(
dyj −

∑
|~m|16Mh

∑
~0≤~k≤~m

hj;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~kdt
)

·
( ∑
|~m|16Mh

∑
~0≤~k≤~m

hs;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~k+~ei

)
, (6)

where (rjs)m×m is the matrix R−1.
Proof: According to [13], the conditional mean x̂i satisfies

dx̂i = f̂idt+
(
dy − ĥdt

)T
R−1

(
ĥxi − ĥx̂i

)
. (7)

Using binomial expansion, we have
n∏
a=1

xma
a =

n∏
a=1

(xa − x̂a + x̂a)
ma =

n∏
a=1

∑
~0≤~k≤~m

(
ma

ka

)
(xa − x̂a)ka(x̂a)

ma−ka

=
∑

~0≤~k≤~m

n∏
a=1

(
ma

ka

)
(xa − x̂a)ka(x̂a)

ma−ka (8)

then
n∏
a=1

(xa − x̂a)αahs =
∑

|~m|16Mh

∑
~0≤~k≤~m

hs;~m

n∏
a=1

(
ma

ka

)
(xa − x̂a)αa+ka(x̂a)

ma−ka ,

and hence

Et[
n∏
a=1

(xa − x̂a)αahs] =
∑

|~m|16Mh

∑
~0≤~k≤~m

hs;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~α+~k. (9)
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Similarly, we have

Et[
n∏
a=1

(xa − x̂a)αafi] =
∑

|~m|16Mf

∑
~0≤~k≤~m

fi;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~α+~k. (10)

Especially,

f̂i =Et[
n∏
a=1

(xa − x̂a)0fi]
(10)
=

∑
|~m|16Mf

∑
~0≤~k≤~m

fi;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~k,

ĥj =Et[
n∏
a=1

(xa − x̂a)0hj]
(9)
=

∑
|~m|16Mh

∑
~0≤~k≤~m

hj;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~k,

and

ĥsxi − ĥsx̂i = Et[(xi − x̂i)hs]
(9)
=

∑
|~m|16Mh

∑
~0≤~k≤~m

hs;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~k+~ei .

Equation (6) is followed immediately by pluging the above three equalities into equation (7)

with the fact that (dy − ĥdt)′R−1(ĥxi − ĥx̂i) =
m∑
j=1

(dyj − ĥjdt)
[
m∑
s=1

rjs(ĥsxi − ĥsx̂i)
]

.

It is clear to see that in (6), the central moments P~k+~ei for ~k ≤ ~m, with |~m|1 6 Mh and P~k
for ~k ≤ ~m, with |~m|1 6Mf are needed to compute x̂i. Thus, let us give the Ito’s SDE for P~α
with |~α|1 ≥ 2 in the following proposition.

Proposition 3.2: For continuous filtering problem given by the system (1) with fi(x, t), gij(x, t)
and hi(x, t) approximated by (3)-(5), the SDE for P~α is

dP~α =

(
−

n∑
a=1

αa
∑

|~m|16Mf

∑
~0≤~k≤~m

fa;~m(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)P~kP~α−~ea

+
1

2

n∑
a=1

αa(αa − 1)
( ∑

1≤i,j≤n

rij(
∑

|~m|16Mh

∑
~0≤~k≤~m

hi;~m(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)P~k+~ea)

· (
∑

|~m|16Mh

∑
~0≤~k≤~m

hj;~m(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)P~k+~ea

)
P~α−2~ea

)

+
n∑
i=1

∑
|~m|16Mf

∑
~0≤~k≤~m

αifi;~m(
n∏
a=1

(
ma

ka

)
(x̂a)

ma−ka)P~α+~k−~ei

March 31, 2016 DRAFT



6

+
∑

1≤i<j≤n,
1≤l≤n

∑
|~m1|16Mg ,
|~m2|16Mg

∑
~0≤~k≤~m1+~m2

αiαjgli;~m1glj;~m2(
n∏
a=1

(
m1
a +m2

a

ka

)
(x̂a)

m1
a+m

2
a−ka)P~α+~k−~ei−~ej

+
1

2

n∑
i,l=1

∑
|~m1|≤Mg ,
|~m2|16Mg

∑
~0≤~k≤~m1+~m2

αi(αi − 1)gli;~m1gli;~m2(
n∏
a=1

(
m1
a +m2

a

ka

)
(x̂a)

m1
a+m

2
a−ka)P~α+~k−2~ei

+
∑
a<b

(
αaαbP~α−~ea−~eb

( ∑
1≤i,j≤n

rij(
∑

|~m|16Mh

∑
~0≤~k≤~m

hi;~m(
n∏
c=1

(
mc

kc

)
(x̂c)

mc−kc)P~k+~ea)

· (
∑

|~m|16Mh

∑
~0≤~k≤~m

hj;~m(
n∏
c=1

(
mc

kc

)
(x̂c)

mc−kc)P~k+~eb)
))

−
∑
a=1

(
αa
∑
i,j

rij(
∑

|~m|16Mh

∑
~0≤~k≤~m

hi;~m(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)P~k+~ea)

· (
∑

|~m|16Mh

∑
~0≤~k≤~m

hj;~m(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)(P~α+~k−~ea − P~α−~eaPk))
))

dt

− (dy − ĥdt)′R−1
( ∑
|~m|16Mh

∑
~0≤~k≤~m

[
hi;~m

]
n×1

(
n∏
b=1

(
mb

kb

)
(x̂b)

mb−kb)

·
( n∑
a=1

αaP~k+~eaP~α−~ea − P~α+~k + P~αP~k

))
.

(11)

With equation (6) and (11) by hand, we are ready to propose our new suboptimal method.
Our idea is to cleverly impose some conditions to eliminate the terms P~α in (6) and (11), for
|~α|∞ > | ~N |∞, for some given truncation ~N , such that the equations of x̂t and P~α, ~α ≤ ~N , form a
closed system. Thus, it is solvable and provides, generally speaking, more accurate approximation
than its first order approximation – EKF.

We motivate by observing the last term of (11) for ~α > ~ei, for some 1 ≤ i ≤ n. That is, we
exclude two trivial cases: (a) P~ei = 0, for some 1 ≤ i ≤ n; (b) P~0 = 1. It turns out that the last
term vanishes if we impose the condition that

P~α+~k =
n∑
a=1

αaP~k+~eaP~α−~ea + P~αP~k. (12)
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Notice that P~α−~ei , P~k+~ei , P~α and P~k on the right-hand side of (12) are of lower order of P~α+~k.
Let us state our conditions more precisely. Given the truncation mode ~N > ~ei, for some

1 ≤ i ≤ n, we shall form a closed system of equations for x̂it, 1 ≤ i ≤ n, and P~α, ~α ≤ ~N . For
arbitrary ~α > ~ei, for some 1 ≤ i ≤ n, there are three cases:

Case 1: ~α ≤ ~N . Keep as it is, i.e. P~α;
Case 2: There exist 1 ≤ i 6= j ≤ n such that αi ≤ Ni and αj > Nj . We impose the
condition (12) to P~α = P~β+~k, where ~β = min{~α, ~N} and ~k = ~α− ~β;
Case 3: ~α > ~N . Condition (12) is imposed to P~α = P ~N+~k, where ~k = ~α− ~N .

Remark 3.3: Given any ~α in case 2 or 3, we shall impose the condition accordingly until it
reduces to the combination of P~l s, where all ~l s belong to case 1. Hence, the condition (12) may
be imposed more than once to reduce certain P~α in case 2 or 3 to case 1.

Algorithm of our method For continuous filtering problem given by system (1) with fi(x, t),
gij(x, t), and hi(x, t) approximated by (3)-(5), then a closed system of equations of x̂i, 1 ≤ i ≤ n,
and P~α, ~α ≤ ~N is derived, if the condition (12) is imposed accordingly. Specifically, the closed
system of the equations is given by: equation (6) for conditional mean x̂i, 1 ≤ i ≤ n; SDE (11)
for P~α, for ~α < ~N ; ordinary differential equation (11) for P ~N (the last term of (11) vanishes
here) and all the P~α with ~α in case 2 or 3 are properly reduced to P~α, α in case 1 by condition
(12).

Remark 3.4: By examining term-by-term in (6) and (11) with |~α|1 = 2, we see that when
Mf ,Mg and Mh ≤ 1, they form a closed system under the condition (12), which yields exactly
the Kalman-Bucy filter. Indeed, if f(x, t) = F (t)x, g(x, t) = G(t), and h(x, t) = H(t)x in (1)
for arbitrary n ≥ 1, and the condition (12) is imposed, then our method gives

dx̂ =Fx̂dt+ PHTR−1(dy −Hx̂dt)
dP

dt
=FP + PF T + gQgT − PHTR−1HP,

where x̂ = [x̂1, · · · , x̂n], P = [P~k]|~k|∞=1.
Remark 3.5: When n = 1, the lower bounds for some Pks, k ≥ 2, can be obtained by Jensen’s

inequality and Hölder’s inequality, see details in Lemma 3.6 below. These lower bounds will be
used to check the reasonableness of the conditions (12) imposed in cubic sensor problem in the
next section.

Lemma 3.6 (Lower bound of Pks): Let Pk = Et
[
(x− x̂)k

]
, with convention that P0 = 1, we

have
1) Pk ≥ P

k
l
l , for all k ≥ l ≥ 1 and k, k

l
are even integers greater than 2;

2) If k, l and (k−l)p
1−p are all even integers, then Pk ≤ P

1
p

lpP
1− 1

p

(k−l)p
p−1

, where p ≥ 1, for all k ≥ l ≥ 0.
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Proof: 1) It is trivial to see that when k = l the equality holds. So let us assume that
k > l and look at P2k:

Pk =

∫
R

(x− x̂)k p(x|Yt)dx ≥
∫
R

[
(x− x̂)l p(x|Yt)

] k
l
dx ≥

[∫
R

(x− x̂)l p(x|Yt)
] k

l

dx = P
k
l
l ,

as long as k ≥ l ≥ 1, where the first inequality is due to the fact that 0 ≤ p(x|Yt) ≤ 1 and the
second one follows from Jensen’s inequality. It is Jensen’s inequality that requiresthat k

l
is an

even integer greater than 2, so that x
k
l is convex in R.

2) Similar as before, we have

Pk =

∫
R

(x− x̂)k p(x|Yt)dx =

∫
R

(x− x̂)l+(k−l) p(x|Yt)m+(1−m)dx

≤
(∫

R

[
(x− x̂)l p(x|Yt)m

]p
dx

) 1
p
(∫

R

[
(x− x̂)k−l p(x|Yt)1−m

] p
p−1

dx

)1− 1
p

,

for all p ≥ 1 and 0 ≤ l ≤ k. The conclusion follows by letting mp = 1.
Remark 3.7: Lemma 3.6 indicates that, in general, the moment sequence Pks satisfy the

following lower bounds: P4 ≥ P 2
2 (by 1)); P6 ≥ P 3

2 (by 1)) or P6 ≥ P 2
4

P2
(by 2)), and etc. The

lower bounds for P~ks with n ≥ 2 are not clear [17].

IV. NUMERICAL EXPERIMENTS

In this section, we shall illustrate our method applied to two different filtering problems: cubic
sensor problem and a polynomial filtering problem with 2-dimensional state. In the cubic sensor
problem, we compare our method with N = 2, 3 with EKF and PF with 50 particles. Further, we
formulate and implement our method to a polynomial filtering problem with 2-dimensional state.
The numerical result has been also compared with EKF, UKF and EnKF with 20 ensembles.

A. Cubic sensor problem

This problem is modeled by SDE (1) with f(x, t) = 0, g(x, t) = 1, and h(x, t) = x3, which
has been shown rigorously that it is essentially infinite-dimensional in [11] and has been studied
by many authors, refer to [2], [25] and [28]. In order to get a fair comparison with EKF in
computational complexity, we first propose to pick N = 2. Intuitively, the larger N is, the more
accurate approximation is obtained for the state. Hence, we also pick N = 3 in our method for
comparison.
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Notice that Mh = 3,Mf = Mg = 0. On the right-hand sides of (6) and (11) with α ≤ 2, P3-P5

show up and need to be reduced to some functions of P2, P1 = 0 and P0 = 1. The conditions
we imposed are:

P3 =P2+1
(12)
= 2P2P1 + P1P2 = 3P1P2 = 0;

P4 =P2+2
(12)
= 2P3P1 + P2P2 = P 2

2 ; (13)

P5 =P2+3
(12)
= 2P4P1 + P2P3 = P2P3

(13)
= 0.

The condition on P4 satisfies the lower bound in Remark 3.7. Our method for x̂t and P2 gives
dx̂t =

1

R
(P 2

2 + 3P2(x̂
2
t ))(dy − (3P2x̂t + (x̂t)

3)dt)

dP2

dt
= 1− 1

R
(P 2

2 + 3P2(x̂t)
2)2

(14)

When choosing N = 3 in our method, the conditions imposed are:

P4 =P3+1
(12)
= 3P 2

2 + P1P3 = 3P 2
2 ;

P5 =P3+2
(12)
= 3P2P3 + P2P3 = 4P2P3; (15)

P6 =P3+3
(12)
= 3P2P4 + P 2

3 = 9P 3
2 + P 2

3 .

Again from Remark 3.7, the condition on P4, P6 are also reasonable, in the sense that P4 ≥ P 2
2

and P6 ≥ P 2
4

P2
=

(3P 2
2 )

2

P2
= 9P 3

2 . The SDE given by our method for x̂t, P2 and P3 is:
dx̂t =

1

R
[dy − (x̂3t + 3x̂tP2 + P3)dt] · (3x̂2tP2 + 3x̂tP3 + 3P 2

2 )

dP2

dt
=1− 1

R
(3x̂2tP2 + 3x̂tP3 + 3P 2

2 )2

dP3

dt
=− 3

R
(3x̂2tP2 + 3x̂tP3 + 3P 2

2 ) · (3x̂2tP3 + 6x̂tP
2
2 + 3P2P3)

. (16)

We randomly generate 100 sample paths (except those EKF explodes before T ) with Q =

R = 1 and P0 = 0.01, and apply EKF, PF with 50 particles, our method with N = 2 (14) and
N = 3 (16) to estimate the real state. The PF used in our experiment is the SIR algorithm, see
Algorithm 4, [1]. It is worth to note that there has been much progress in PF since the SIR
algorithm, including: regularised PFs [24], auxiliary PFs [26], particle flow filters [7], Gaussian
PFs [4], transport PFs [27], various MCMC methods (e.g., Metropolis adjusted Langevin or
MALA, hybrid Monte Carlo, Girolami’s geodesic flow on Riemannian manifolds, etc.). The
SDEs of EKF and our methods are numerically solved by Euler-Maruyama scheme [12]. The
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Filters Variance of the errors Average CPU time
PF with 500 particles 0.4566 4.146493s

EKF 4.4487 0.002505s
our method with N = 2 0.4562 0.002325s
our method with N = 3 0.3425 0.003405s

TABLE I: Variance of the estimation errors and average CPU time of different filters applied to the cubic sensor
problem.

Number of particles Variance of estimation errors CPU time
50 0.5167 0.465100s

100 0.4246 0.909719s
200 0.4493 2.642290s
500 0.3596 4.251382s

1000 0.4765 8.555768s
5000 0.4461 37.203790s

TABLE II: Number of particles v.s. variance of estimation error

total experimental time is T = 10 and the time step is dt = 0.01. The averaged mean and
variance of the 100 experiments using EKF, PF and our methods have been displayed in Fig. 1.
The figure shows that our method with N = 3 is superior than the other three. The variance of
the estimation errors and the average CPU time has been list in Table I.

To explain why in Table I the number of particles is chosen to be 500 in PF, we experiment
the cubic sensor problem by generating the sample path using randn(’state’,100), with T = 10

and dt = 0.01. The performance is measured by variance of estimation errors. In Table II, we
display the errors and the CPU times with different number of particles from 50 to 5000. It
shows that using 500 particles the PF accuracy is roughly the same as our method. Presumably,
this is the optimal accuracy, which explains why the performance stops to be improved by using
more particles.

Remark 4.1: The condition (12) on P~α can’t be shown rigorously. It is just like no one can show
that the truncation (conventionally operation to form a close system) yields the theorethically
best approximation of P~α.

In the sequel, we shall use the global method proposed in [20], [21] to numerically com-
pute the Pks of cubic sensor problem. This investigation will give us some indication on the
reasonableness of our condition (12). [20], [21] introduced a method to directly approximate
the conditional density function ρ(x, t), and then we can obtain the approximate higher central
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Fig. 1: Our method with N = 2, 3 for cubic sensor problem are compared with the EKF and the PF with 50

particles. Left: the averaged mean v.s. time; Right: the averaged variance v.s. time.

moment of the states by

Pl = Et[(x− x̂)l] =

∫
R

(x− x̂)lρ(x, t)∫
R ρ(x, t)dx

dx,

where l ≥ 2, for the one-dimensional state. We apply the method in [20], [21] with appropriately
chosen parameters (α = 2.5, truncation modes Nf = 45) to 10 randomly generated real states.
All the real states are generated with Q = R = 1 and the initial density function is assumed
to be u0(x) = e−

x2

2 . The total experimental time is T = 10, and time step is dt = 0.001. The
approximate higher central moments are computed numerically by Gaussian-Hermite quadrature
rule. The averaged higher central moments P2-P6 obtained by method in [20], [21] have been
plotted in Fig. 2. It indicates that we probably should impose P2k+1 ≈ 0 and P2k 6= 0, which
matches the condition (13) and (15).

B. Polynomial filtering problem with 2-dimensional state

In this subsection, we shall illustrate our method formulated for polynomial filtering problems
of higher dimensional states. Let us take the following example:{

f1 = 0

f2 = x21
,

{
h1 = x1x2
h2 = x22

, g =

(
0.1 0

0 0.1

)
, R = I2, (17)

and the initial state (
x10
x20

)
∼ N

((
1.1

1.1

)
,

(
0.1 0

0 0.1

))
. (18)

March 31, 2016 DRAFT



12

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

time

E
t [x

l ]

 

 
P2

P3

P4

P5

P6

Fig. 2: The averaged higher central moments for cubic sensor problem are displayed.

Let us choose ~N = (2, 2) in our method. Notice that Mf = 2 and Mh = 2. Observing the right-
hand side of (6) and (11) for P~α with ~α ≤ ~N , it contains all P~α, ~α ≤ ~N + ~k, for |~k|1 ≤ Mh.
We need to reduce all P~α, ~α in case 2 or 3 by condition (12).

P30 =P(2,0)+(1,0)
(12)
= 2P20P10 + P20P10 = 3P20P10 = 0; (19)

P31 =P(2,1)+(1,0)
(12)
= 2P20P11 + P11P20 + P21P10 = 3P20P11;

P32 =P(2,2)+(1,0)
(12)
= 2P20P12 + 2P11P21 + P22P10 = 2P20P12 + 2P11P21;

P33 =P(2,2)+(1,1)
(12)
= 2P12P21 + 2P21P12 + P22P11 = P12P21 + P22P11;

P40 =P(2,0)+(2,0)
(12)
= 2P30P10 + P 2

20 = P 2
20;

P41 =P(2,1)+(2,0)
(12)
= 2P30P11 + P21P20 + P21P20

(19)
= 2P20P21;

P42 =P(2,2)+(2,0)
(12)
= 2P12P30 + 2P21P21 + P22P20

(19)
= 2P 2

21 + P20P22.

Similar arguments could be used to obtain P03 = 0, P13 = 3P02P11, P23 = 2P02P21 + 2P11P21,
P04 = P 2

02, P14 = 2P02P12 and P24 = 2P 2
12 + P02P22. According to (6) and (11), our method

yields a SDE of x̂1, x̂2, P02, P11, P20, P12, P21 and P22. We don’t write down the lengthy
expression here due to the page limitation.

Numerical results for this example are displayed in Fig. 3. In this example, we generate 20
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IV.3.b: NSF and UKF.
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Fig. 3: NSF compared with EKF, UKF and EnKF with 20 ensembles are displayed for the 2D polynomial filtering
problem (17), (18). The upper one in each subfigure is the trajectory of x̂1, while the lower one is that of x̂2.

March 31, 2016 DRAFT



14

sample paths randomly. The total experimental time is T = 10, and the time step is dt = 0.001.
The figures are the average of 20 runs. One can see that our method tracks as well as EKF and
UKF. But EnKF with 20 ensembles performs not very well. As to the efficiency, our method
takes 15.4s while it costs 163.4s for UKF to obtain the similar result.

V. CONCLUSIONS

In this paper, given a truncation ~N , starting from equation (11) for P~α, we construct our
method by imposing some conditions (12) to reduce all the higher order central moments to the
combination of the lower order ones P~α, ~α ≤ ~N . After the reduction, our method arrives at a
closed system of equations (6) for x̂it, 1 ≤ i ≤ n and (11) for P~α, ~α ≤ ~N . This is completely new
and different from the conventional operation–truncation. Since no one can show the truncation
yields the best approximation, our procedure provides another reasonable way to form a closed
system. Our method is a natural generalization of EKF. It is also more flexible by choosing the
truncation ~N according to the desired accuracy and the demand of computational complexity.
The imposed condition (12) in our method satisfies the lower bounds of Pks, and it is justified
numerically for the cubic sensor problem by using the higher central moments obtained from
Yau-Yau’s method [20]. Our method has also been formulated and implemented for the filtering
problems with 2-dimensional state. Numerical results verifies that our method works in nearly
perfect agreement with theory.
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The captions of all the figures in this manuscript:
1) Fig. 1’s caption: Our method with N = 2, 3 for cubic sensor problem are compared

with the EKF and the PF with 50 particles. Left: the averaged mean v.s. time; Right: the
averaged variance v.s. time.

2) Fig. 2’s caption: The averaged higher central moments for cubic sensor problem are
displayed.

3) Fig. 3’s caption: NSF compared with EKF, UKF and EnKF with 20 ensembles are displayed
for the 2D polynomial filtering problem (17), (18). The upper one in each subfigure is the
trajectory of x̂1, while the lower one is that of x̂2.
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