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Abstract

The surveys in the field of nonlinear filtering (NLF) are enumerous. Most of them are
application-oriented and served as the tutorials for the practioners. The local approaches,
including Kalman filter and its invariants, have already been studied from various point of
views, due to its off-the-shelf implementation and wide applications. However, it cannot give
good estimation of the states in highly nonlinear system or with non-Gaussian initial conditional
density functions. Moreover, while the local methods only approximate the mean and variance,
the global ones seek the way to directly obtain the conditional density function of the states.
Consequently, all the statistical information is acquired. In this survey, we shall briefly go
through the local approaches and put emphases on the existing three major global approaches:
finite-dimensional NLF, sequential Monte Carlo methods (particle filter) and the Yau-Yau’s
on- and off-line solver of Duncan-Mortensen-Zakai’s equation [75]. The discussions are mainly
from the mathematical point of view.

1. Introduction

The field of nonlinear filtering (NLF) has its origin from tracking and signal processing problems.
Yet, the underlying formulation is so general and ubiquitous that it can be widely applied to various
complex dynamical phenomenon modelled by stochastic processes. The aim of filtering is to obtain
good estimates of the states in the stochastic dynamical system recursively in time, based on the
noisy observations of the states. The states are also called signals. The states or signals represent all
kinds of quantities in various applications. For example, the states in the tracking problem [51] are
the moving target’s position and velocity, and the observations are some nonlinear functions of the
states corrupted by noise. The states in volatility calibration problem is the underlying volatility
process while the observations are the security and derivative prices [28]. The signal process in
the ion channel kinetics problem for nerve cells is the underlying molecular dynamics, while the
observations are the channel conductances [53]. In the atmospheric data assimilation problems [27],
the state refers to the location of a hurricane and the observations may be the measurements of the
wind speed at various locations.

The study of stochastic filtering has a long story dated back to 1940s. It was first investigated
in the pioneering work by Wiener [67] and Kolmogorov [48]. The most influential work in filtering
theory is the classic Kalman filter (KF) published in 1960 [45] and subsequent Kalman-Bucy filter
published one year later [46]. After the discovery of KF, its variants and itself have been dominated
the field of filtering theory in signal processing and control area for more than half century. Till
now, KF and its derivatives are still widely applied in various engineering and scientific problems,
including tracking, communications, machine learning, economics, finance and etc. However, the
KF performs poorly once either the linear or the Gaussian assumption is violated [2]. Consequently,
the mathematicians and engineers are urged to pursue a computationally efficient, recursive optimal
solution applicable to the more general NLF problems. Unfortunately, such algorithm only exists
for the limited class of dynamic systems, say Beneš filter [8], Yau filter [14] and etc. It motivates
the researches on the suboptimal solutions of NLF, which can be classified into two categories: the
local and global approaches. The local ones approximate the posterior density function by some
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particular form, say Gaussian or mixture of Gaussian; while the posterior density function in global
approaches are directly computed without any assumptions on its type. More extensive discussions
on the local and global approaches can be found in section 3.1 and 3.2, respectively.

From the formulation of NLF, Bayesian theory is no doubt one of the main tools, which is the
most commonly used method for the study of the dynamic systems. Bayesian theory was originally
discovered by [7] in 1763. It reveals the fundamental probability law governing the process of
logical inference. However, it didn’t receive much attention at that time until the re-discovery of
its modern form by Laplace in “Théorie analytique des probailités”. One of the important branches
in statistics is the Bayesian statistics to statistical inference. Not surprisingly, Bayesian theory was
also investigated in the field of filtering theory. Starting from the KF, although it is first developped
by the orthogonal projection method [45, 40], it has very nice interpretation of Bayesian framework.
It is Ho and Lee who first explored the iterative Bayesian estimation. They specified in [35] the
principle and procedure of Bayesian framework in the context of filtering. In general, the Bayesian
filtering requires a dynamic state-space model (2.2), which consists of two processes: one describes
the evolution of a hidden state of the system, while the other one is the observation process related to
the states and corrupted with noises. In the Bayesian approach, the posterior density of the states,
obtained from Bayes’ theorem, provides a complete statistical description of the state variable at
that time [1]. The procedure of Bayesian filtering consists of prediction-correction recursions. All
sorts of variants of KF and the sequential Monte Carlo methods (particle filters) belong to this
framework.

Besides the Bayesian framework, the conditional density function of the states can also be obtained
by numerically solving the so-called Kusher’s or Duncan-Mortensen-Zakai’s equation. It is shown in
[50] that the conditional density p(xt|Yt) of the states xt based on the observation history Yt satisfies
an Itô stochastic differential equation (SDE), which is called Kusher’s equation. After the change
of measure, the unnormalized conditional density π(xt|Yt) satisfies a linear Itô SDE, so-called DMZ
equation [24, 59, 77]. Apparently, the DMZ equation is the more preferable one. And the solution to
the Kusher’s equation p(xt|Yt) and that to the DMZ equation π(xt|Yt) is one-to-one correspondence.
Detailed discussions can be found in section 2.2. Numerous efforts have been devoted in the past
to solve DMZ equation for a general dynamic systems. We refer the interested readers to the
survey [32] and references therein. By then, the algorithms are neither computational efficient nor
recursive. In 2008, Yau and Yau [75] made a major breakthrough, due to a key observation (see
Proposition 3.1) so that the heavy computation of solving the partial differential equation (PDE)
can be pre-computed, stored and updated by synchronizing with the observations on-line. Thus,
the real-time manner of the algorithm is foreseeable. The convergence of their algorithm has been
rigorously shown when the drift function, the diffusion term and the observation function are time-
invariant. We refer this method as Yau-Yau’s on- and off-line algorithm, and Yau-Yau’s method for
short, in this survey. Recently, Yau and the author validated it also for the time-varying system,
and numerically verified the real-time performance when the state is of one dimension [56, 57].
More recently, Yueh et al. [76] present an efficient algorithm of Yau-Yau’s method, and numerical
simulations with two-dimensional states are performed well. In private communication, they claimed
the feasibility and efficiency of Yau-Yau’s method in even higher dimensions, say for the state with
6 dimension, which is a major breakthrough in this direction. We briefly summerize the idea of
Yau-Yau’s method in this survey.

This survey is aim to present various approaches studied in the literature with the emphases
on the recent advance of the global approaches. We note that it is by no means exhaustive, in
particular the local approaches, i.e. the discussion of some variants of KF, say ensemble Kalman
filter (cf. [3, 36]) is not mentioned in section 3.1, which may be effecient in certain extremely
high-dimensional problems, for example the atmospheric data assimilation.

The paper is organized as follows. We present the general formulation of NLF problems in
both discrete and continous-time versions. In section 2 we describe the stochastic filtering problem
abstractly in two aspects: one is the Bayesian framework; the other one is the Kusher’s and DMZ
equations. Section 3 devotes to summarize local and global approaches of NLF. The KF, as the
most influencial one, is re-derived from the viewpoint of DMZ equation, which provides a natural
relation between the approaches based on Bayesian theory and DMZ equation. Following the KF, its
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variants including extended Kalman filter (EKF), Gaussian sum filter (GSF) and unscented Kalman
filter (UKF), etc are briefly presented. We emphasize the results of global approaches in section
3.2, where we display three of the kind: finite-dimensional filters, sequential Monte Carlo methods
(particle filter) and the Yau-Yau’s method. At last, we arrive the conclution and mention some
possible future developments in section 4.

2. Stochastic filtering problem

The aim of the stochastic filtering is to obtain the “best” estimate of the state or the signal in
some sense, where the state is modelled by a stochastic process or a random sequence, denoted as
{Xt, t ≥ 0} or {Xk, k ∈ N}. The state itself can’t be measured directly, while certain measurements
of the state can be obtained, denoted as {Yt, t ≥ 0} or {Yk, k ∈ N}, which is another stochatic process
or random sequence. The observation usually is a function of the state with some measurement noise
{Wt, t ≥ 0} or {Wk, k ∈ N}. If we are in the continuous-time case, we assume further that Xt,
Yt and all the other processes in the sequel are defined on the probability space (Ω,F ,P). Let
Yt = σ(Ys, s ∈ [0, t]) be the filtration generated by the observation process Yt up to time t, which
contains all the information from the observation history up to time t. The filtering problem is to
estimate Xt based on Yt, i.e. E[Xt|Yt].

Let us describe the discrete-time stochastic filtering as the vector-valued SDE [40], which is
commonly used in the point-based filter.

(2.1)

{
xk =f(xk−1) + wk−1

yk =h(xk) + vk
,

where the state xk is the Nx-vector and the measurement yk is the Ny-vector; wk−1 and vk are
independent white Gaussian process noise and measurement noise with the covariance Qk−1 and
Rk, respectively. The aim of discrete estimation problem is to estimate the state xk based on y1:k,
given certain realization of observations y1:k := {y1,y2, · · · ,yk}, .

Suppose {xt} is a Markov process with an infinitesimal generator, the state-space equations can
be written in the form of Itô stochastic differential equation [62]:

(2.2)

{
dxt =f(t,xt)dt+ G(t,xt)dwt

dyt =h(t,xt)dt+ dvt
,

where f(t,xt) is the drift term, G(t,xt) is the volatility or diffusion coefficient, and h(t,xt) is the
observation function. The two noise processes {wt, t ≥ 0} and {vt, t ≥ 0} are Wiener processes,
with E[dwtdw

T
t ] = Qtdt and E[dvtdv

T
t ] = Rtdt, Rt > 0, respectively. xt ∈ RNx and yt ∈ RNy ,

where Nx and Ny are the dimension of the states and observations, respectively.

2.1. Bayesian estimation framework. In this framework, we assume that

1) The state is a Markov process, i.e. p(xk|x1:k−1) = p(xk|xk−1);
2) The observations are independent of the given states, i.e. y1:k−1 are independent of xk.

Let p(xk|y1:k) denote the probability density function (pdf) of xk under the condition of the
observations y1:k, then from the Bayes’ rule, we have

p(xk|y1:k)
Bayes′

=
p(y1:k|xk)p(xk)

p(y1:k)
=
p(yk,y1:k−1|xk)p(xk)

p(yk,y1:k−1)
=
p(yk|y1:k−1,xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)

Bayes′

=
p(yk|y1:k−1,xk)p(xk|y1:k−1)p(y1:k−1)p(xk)

p(yk|y1:k−1)p(y1:k−1)p(xk)
=
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

(2.3)

It is clear to see from (2.3) that the posterior pdf p(xk|y1:k) is obtained by three terms: the prior
pdf p(xk|y1:k−1), the likelihood function p(yk|xk) and the denominator in (2.3).

The Bayesian filtering consists of recursive prediction and update procedures [40].
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Prediction: Given the prior pdf p(xk−1|y1:k−1), the conditional pdf of p(xk|y1:k−1) satisfies
the Chapman-Kolmogorov equation:

(2.4) p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

Update: When yk is available, the posterior pdf p(xk|y1:k) is given by (2.3), i.e.,

(2.5) p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

.

In the general NLF problems, both prior and posterior conditional pdf can’t be computed in the
analytic form. Therefore, it is essential to approximate prior and likelihood functions in (2.3). As the
consequence, a variety of local approaches have been developped by using different approximations.

2.2. Kusher’s and Duncan-Mortensen-Zakai’s equation. In the continuous-time case, we can
reformulate the stochastic filtering problem, by considering the infinitesimal generator of the state
process {xt, t ≥ 0}:

L(◦) :=
1

2

Nx∑
i,j=1

(GQGT )ij(t,xt)
∂2(◦)
∂xi∂xj

+

Nx∑
i=1

fi(t,xt)
∂(◦)
∂xi

,

where fi and xi are the ith component of the vector-valued function f and the vector state xt,
respectively. The question now can be interpreted as how to find a recursive or finite-dimensional
method to compute the conditional pdf of xt with the filtration Yt, i.e. p(xt|Yt). It turns out that
p(xt|Yt) satisfies the following Kusher’s equation (cf. [50]):

dp(xt|Yt) = L∗p(xt|Yt)dt+ p(xt|Yt)etΣ−1
v,tdt,

where L∗ is the adjoint operator of L, i.e.

(2.6) L∗(◦) =
1

2

Nx∑
i,j=1

∂2((GQGT )ij◦)
∂xi∂xj

−
Nx∑
i=1

∂(fi◦)
∂xi

,

et is the innovation process

(2.7) et = yt −
∫ t

0

E[h(s,xs)|Ys]ds, E[h(s,xs)|Ys] =

∫
h(s,xs)p(xs|Ys)dxs

and Σv,t = E[vt].
Although the Kusher’s equation leads a way to solve the NLF problem completely, it needs to

solve an infinite-dimensional system to get even the conditional mean (cf. [13]). Generally speaking,
the solution is neither in a closed form nor easy to be computed numerically, due to the nonlinearity
with respect to p(xt|Yt) in (2.7).

Through the Kallianpur-Striebel formula [11], one can define the unnormalized conditional pdf
π(xt|Yt) through the following procedure. In particular, for any ϕ ∈ B(Ω), the Borel σ-field on the
state space Ω, which is a complete seperable metric space,

P[ϕ] :=

∫
ϕ(xt)p(xt|Yt)dxt =

Ẽ[z̃tϕ(xt)|Yt]
Ẽ(z̃t|Yt)

, P̃− a.s.,

where the process z̃t satisfying

dz̃t =

Ny∑
i=1

z̃thi(t,xt)dyi,

with hi and yi the ith component of h and y, respectively. P̃ is the probablity measure introduced
by the process z̃t, such that

dP
dP̃

∣∣∣∣
Ft

= z̃t,

for all t ≥ 0, where Ft is the filtration of xt. And Ẽ is the expectation with respect to P̃. Hence, the
unnormalized conditional pdf of xt is defined as following. For any ϕ ∈ B(S), we define

(2.8) Π[ϕ] = P[ϕ]Π[1], ∀ t ≥ 0, P̃(P)− a.s.
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where Π[ϕ] :=
∫
ϕ(xt)π(xt|Yt)dxt. Equation (2.8) explains the usage of the term “unnormalized”

of π(xt|Yt), since the denominator Π[1] can be viewed as the normalizing factor. Under certain
mild condition, the unnormalized conditional pdf π(xt|Yt) satisfies the Duncan-Mortensen-Zakai’s
(DMZ) equation (cf. [24, 59, 77])

(2.9) dπ(xt|Yt) = L∗π(xt|Yt)dt+ h(t,xt)π(xt|Yt)dyt,

where L∗ is defined in (2.6). There is an one-to-one correspondence between the solution of Kusher’s
equation and that of DMZ equation. And it is clear to see that DMZ equation is linear with respect
to the unnormalized conditional pdf π(xt|Yt). Therefore, studies on how to numerically solve the
DMZ equation efficiently is the key to solve NLF problems completely.

3. Two categories: local and global approaches

3.1. Local approach. Around 1960s, the Kalman filtering (KF) has been developed in the seminal
papers [45, 46] by using the orthogonal projection method, under the linear and Gaussian assump-
tions. It has been shown to be optimal in the sense that it is unbiased, i.e. E[x̂k] = E[xk] and is a
minimum variance estimate. In the late 1960s, Kailath [44] reformulated the KF with the innovation
approach [1] and the tool of martingales theory [23]. The KF is also optimal from the viewpoint of
innovation that it is whitening filter. The celebrated KF can also be derived within the Bayesian
framework, which is reduced to the maximum a posteriori (MAP) solution [13] and the maximum
likelihood (ML) solution [64]. The nice Bayesian interpretation of KF can be found in [35]. Re-
cently, the derivation from DMZ equation is investigated in [25, 26]. We refer the interested readers
for a detailed history of KF and its variants to [44, 40, 29] and reference therein. To be somewhat
self-contained, we briefly sketch the re-derivation of the KF from the discrete DMZ equation [26]
under the linear and Gaussian assumptions. Equation (2.1) reduces to the following special case:

(3.1)

{
xk =Fk,k−1xk−1 + wk−1

yk =Hkxk + vk
,

where Fk,k−1 and Hk are called transition matrix and measurement matrix, respectively. Let us
further assume that the state process xk, the observation process yk and the noise processes wk,
vk are mutually independent. To simplify notation, we suppose that {wk}∞k=1 and {vk}∞k=0 are
sequences of independent N (0, INx

) and N (0, INy
) random variables, respectively.

The following theorem provides a recursive formula for unnormalized conditional pdf of xk given
y1:k. It is the discrete time version of DMZ equation.

Theorem 3.1 ([25, 26]). π(xk|y1:k) satisfies the recursion:

(3.2) π(xk|y1:k) =
φ(yk −Hkxk)

φ(yk)

∫
RNx

π(xk−1|y1:k−1)ψ(xk − Fk,k−1xk−1)dxk−1,

where ψ(x) = (2π)−
Nx
2 exp

(
−x′x

2

)
and φ(y) = (2π)−

Ny
2 exp

(
−y′y

2

)
, for x ∈ RNx and y ∈ RNy ,

respectively.

The DMZ equation (3.2) is exact under the linear and Gaussian assumptions, and it has the form
of a convolution equation. It is readily to verify that (3.2) yields the KF.

The KF consists of an iterative prediction-correction procedure. Let us denote xk|k−1 = E[xk|y1:k−1]
the conditional expectation of xk given y1:k−1, and the conditional variance Σk|k−1 = V ar[xk|y1:k−1].
Assume it is xk−1 ∼ N (µk−1,Σk−1), that is, the normalized conditional pdf is

p(xk−1|y1:k−1) = |Σk−1|−
1
2 ψ
(
Σ−1
k−1(xk−1 − µk−1)

)
.

Prediction: Starting from π(xk−1|y1:k−1) ∼ ψ
(
Σ−1
k−1(xk−1 − µk−1)

)
, we have

xk|k−1 =E[xk|y1:k−1]
(3.1)
= E[Fk,k−1xk−1 + wk−1|y1:k−1] = E[Fk,k−1xk−1|y1:k−1] = Fk,k−1µk−1,
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with µk−1 = E[xk−1|y1:k−1], and

Σk|k−1 =E[(xk − xk|k−1)(xk − xk|k−1)′|y1:k−1]

=E[(Fk,k−1(xk−1 − µk−1) + wk−1) (Fk,k−1(xk−1 − µk−1) + wk−1)
′ |y1:k−1]

=Fk,k−1Σk−1F
′
k,k−1 + I2

Nx×Nx

Correction: The posterior conditional pdf is shown to be N (µk,Σk). That is, π(xk|y1:k) ∼
ψ
(
Σ−1
k (xk − µk)

)
, where µk and Σk are given in (3.4) and (3.3) below.

Theorem 3.2 ([26]). Suppose xk−1 ∼ N (µk−1,Σk−1). Then xk ∼ N (µk,Σk), where

Σk =Σk|k−1 −Σk|k−1H
′
k

(
I2
Ny×Ny

+HkΣk|k−1H
′
k

)−1

HkΣk|k−1,(3.3)

and

µk =Fk,k−1µk−1 + Σk|k−1H
′
k

(
I2
Ny×Ny

+HkΣk|k−1H
′
k

)−1

(yk −HkFk,k−1µk−1).(3.4)

The quantity Kk = Σk|k−1H
′
k

(
I2
Ny×Ny

+HkΣk|k−1H
′
k

)−1

is the so-called Kalman gain.

The KF is well-known to be optimal under linear Gaussian assumptions. However, real appli-
cations generally can’t be set up with the model satisfying these assumptions. Therefore, many
variants have been developed, following the idea of the KF in the hope of solving the general NLF
problems.

3.1.1. Linearization methods: extended Kalman filter (EKF) [29]. The basic idea of EKF
is to linearize (2.1) at the previous step’s estimation, i.e.

F̂k,k−1 =
df(x)

dx

∣∣∣∣
x=xk−1

, Ĥk =
dh(x)

dx

∣∣∣∣
x=xk−1

.

Then the KF is applied to this linearized equation. The EKF is biased in general and it only
works well when the true posterior conditional pdf is almost Gaussian. It could perform extremely
poor especially when the true posterior is heavily skew or multimodal or the dynamics are highly
nonlinear. Another drawback of EKF is the heavy computation to evaluate the Jacobian matrix at
each time step. A detailed discussion on EKF and its applications can be found in many books, say
[29, 40] etc.

3.1.2. Finite sum approximation: Gaussian sum filter (GSF) [2, 49]. Unlike the EKF, which
approximate the nonlinear term near the vicinity of the previous estimation, the GSF proposed to
approximate the posterior pdf by a mixture of weighted Gaussians. That is,

p(x) =

M∑
i=1

wiN (µi,Σi),

where the weighted coefficients wi > 0 and
∑
i=1 wi = 1. Then the GSF runs a bank of EKF in

parallel to obtain a suboptimal estimation.

3.1.3. Deterministic points approximation. Ito, et. al [38] improves the GSF further to avoid
the intensive computational part of EKF, i.e. the evaluation of the Jacobian matrix. Indeed, with
the Gaussian assumption, the Bayesian nonlinear filtering framework is given as follows:

Prediction:

xk|k−1 =

∫
RNx

f(xk−1)N (xk−1;µk−1,Σk−1) dxk−1(3.5)

Σk|k−1 =

∫
RNx

f(xk−1)(f(xk−1))′N (xk−1;µk−1,Σk−1) dxk−1 − xk|k−1x
′
k|k−1 + INx×Nx

,(3.6)

where N (xk−1;µk−1,Σk−1) represents the multivariate normal distribution with the mean µk−1

and the covariance Σk−1.
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Correction:

µk =xk|k−1 + Lk(yk − zk)

Σk =Σk|k−1 − LkΣ
′
xz,

where

Lk =Σxz(Rk + Σzz)−1(3.7)

zk =

∫
RNx

h(xk)N
(
xk; xk|k−1,Σk|k−1

)
dxk(3.8)

Σxz =

∫
RNx

(xk − xk|k−1)(h(xk)− zk)′N
(
xk; xk|k−1,Σk|k−1

)
dxk(3.9)

Σzz =

∫
RNx

(h(xk)− zk)(h(xk)− zk)′N
(
xk; xk|k−1,Σk|k−1

)
dxk.(3.10)

The integrals in (3.5)-(3.6) and (3.8)-(3.10) can be approximated by various numerical rules, such as
Gauss quadrature rule, unscented transformation and cubature rule, etc. Consequently, they lead to
different filtering methods, such as unscented Kalman filter (UKF) [42, 43], Gaussian quadrature
Kalman filter (GKF) [38, 5] and cubature Kalman filter (CKF) [4, 6]. Very recently, Jia, et al. [41]
investigated the high-dimensional NLF problems by GKF with the sparse-grid algorithm [66].

3.2. Global approach. The local approaches performs more effective than the global ones. The
real-time manner is very appealing in many real applications. However, the common drawbacks
inherited from KF are the follows:

1) They perform well only when the posterior conditional pdf is close to the Gaussian and the
dynamic system is almost linear.

2) Only mean and variance are obtained. No more statistical information is available.

Unlike the local approaches, the global ones are aim to obtain the approximation of the conditional
pdf. No apriori assumptions need to be imposed on the system or the posterior conditional pdf. All
statistical information is obtained automatically. In this sense, the NLF problems are solved com-
pletely. The only problems are the real-time manner and the heavy computation in high-dimensional
states NLF problems.

In general, the NLF problem is intractable with finite statistics, say mean and moments. It is
interesting to understand under what conditions certain NLF problems can be transformed into
finite dimensional ones. And is there any NLF problem essentially infinite-dimensional?

3.2.1. Finite-dimensional filters. KF is a typical finite-dimensional filter in the sense that it
can be implemented by integrating a finite number of (actually two) ordinary differential equations
(ODE). Or say, it has the sufficient statistics with finite (two) variables, i.e. the conditional mean
and variance. However, not all NLF problems are finite-dimensional. For instance, Hazewinkel et al.
have shown in [34] the nonexistence of finite-dimensional filter for the cubic sensor problem. Hence,
it is meanful to construct finite-dimensional filter for more general NLF problems and to study the
necessary and sufficient conditions to guarantee the existence of such filters.

As far as the author knows, Beneš [8] is the first one to investigate the exact finite-dimensional
filter in the NLF context. Later, Yau [14] gives a more general case including the KF and Beneš
filter as special cases. Around 2000, the exact finite-dimensional filter from the differential geometric
point of view is studied by Brigo et al. [10] and reference therein, which is the so-called projection
filters.

At the International Congress of Mathematicians in 1983, Brockett [11] proposed to systemat-
ically study the finite-dimensional filters by using the estimation algebra to classify all the finite-
dimensional ones. The estimation algebra E of the filtering model (2.2) is defined as the Lie algebra
generated by {L0, L1, . . . , Lm}, where L0 is related to L∗ and Li, i = 1, . . . ,m, are the zero degree
differential operators of multiplication by hi. As an immediate application of the classification, it can
be used to construct new exact finite-dimensional filters for NLF problems. The following theorem
given by Ocone [61] is the first one characterized the functions in a finite-dimensional estimation
algebra.

7



Theorem 3.3 ([61]). Let E be a finite-dimensional estimation algebra. If a function ξ is in E,
then ξ is a polynomial of degree at most two.

In particular, if G = Q = R = I, I is the identity matrix, then

(3.11) L0(◦) :=
1

2

Nx∑
i=1

∂2◦
∂x2

i

−
Nx∑
i=1

fi
∂◦
∂xi
−

Nx∑
i=1

∂fi
∂xi
◦ −1

2

Ny∑
i=1

h2
i ◦,

and Li(◦) := hi◦, where fi and hi are the ith component of f and h, respectively. In real applications,
the actual observations consist of piecewise smooth sample paths y(t). Davis [19] was interested in
constructing robust estimators from these kind of observation paths. He considered a version of (2.9)
dealing with path-wise observation y(t). It follows immediately from an exponential transformation:

u(t,x) = exp

Ny∑
i=1

hi(x)yi(t)

π(t,x).

Equation (2.9) is reduced to the following PDE, which is called robust DMZ equation in our context.

(3.12)
∂u

∂t
(t,x) = L0u(t,x) +

Ny∑
i=1

yi(t)[LNy
, Li]u(t,x) +

1

2

Ny∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]u(t,x),

where [Li, Lj ] is the Lie bracket of the differential operators Li and Lj , defined as [Li, Lj ](φ) :=
Li(Lj(φ))− Lj(Li(φ)), for any φ ∈ C∞.

Yau [69] constructs a class of finite-dimensional filter for NLF problem using estimation algebra
techniques. It is referred as Yau filter in [14], which includes the Kalman-Bucy filter and Beneš
filter as special cases. Yau also gave a necessary and sufficient condition to guarantee the estimation
algebra to be finite-dimensional.

In particular, the following theorem from [69] shows how to construct finite-dimensional filters
from finite-dimensional estimation algebras with maximal rank. The estimation algebra E is said to
be of maximal rank if, for any 1 ≤ i ≤ Nx, there exists a constant ci such that xi + ci is in E.

Theorem 3.4 (Yau [69]). Let E be an estimation algebra of (2.2) satisfying
∂fj
∂xi
− ∂fi

∂xj
= cij,

where the cijs are constants for all 1 ≤ i, j ≤ Nx. Suppose that E is a finite dimensional estimation
algebra of maximal rank. Then E has a basis of the form 1, x1, . . . , xNx

, D1, . . . , DNx
and L0, and∑Nx

i=1
∂fi
∂xi

+
∑Nx

i=1 f
2
i +

∑Ny

i=1 h
2
i is a degree two polynomial

∑Nx

i,j=1 aijxixj +
∑Nx

i=1 bixi + d, where

Di = ∂
∂xi
− fi and L0 is defined in (3.11). The robust DMZ equation (3.12) has a solution for all

t ≥ 0 of the form

u(t,x) = eT (t)erNx (t)xNx . . . er1(t)x1esNx (t)DNx . . . es1(t)D1etL0σ0

where T (t), r1(t), . . . , rNx
(t), s1(t), . . . , sNx

(t) satisfies the following ODEs:

dsi
dt

(t) =ri(t) +

Nx∑
j=1

sj(t)cji +

Nx∑
k=1

hkiyk(t), 1 ≤ i ≤ Nx;

drj
dt

(t) =
1

2

Nx∑
i=1

si(t)(aij + aji), 1 ≤ j ≤ Nx;

dT

dt
=− 1

2

Nx∑
i=1

r2
i (t)−

1

2

Nx∑
i=1

s2
i (t)

Nx∑
j=1

c2ij − aij

+

Nx∑
i=1

ri(t)−
Nx∑
j=2

j∑
i=1

sj(t)cij

+
∑

1≤i<k≤Nx

si(t)sk(t)

Nx∑
j=1

cijcjk +
1

2
(aik + aki)

+
1

2

Nx∑
i=1

si(t)bi

+
1

2

Ny∑
i,j=1

yi(t)yj(t)

Nx∑
k=1

hikhjk −
Nx∑
i,j=1

si(t)rj(t)cij ,

8
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where hk(x) =
∑Nx

j=1 hkjxj + ek, 1 ≤ k ≤ Ny, hkj and ek are constants. In particular, a universal
finite-dimensional filter exists.

The characterization of the condition
∂fj
∂xi
− ∂fi
∂xj

= cij , where cij are constants for all 1 ≤ i, j ≤ Nx,

is also given in [69].

Theorem 3.5 ([69]).
∂fj
∂xi
− ∂fi

∂xj
= cij, where cij are constants for all 1 ≤ i, j ≤ Nx, if and only

if

(f1, . . . , fNx) = (l1, . . . , lNx) +

(
∂ψ

∂x1
, . . . ,

∂ψ

∂xNx

)
,

where l1, . . . , lNx
are polynomials of degree one and ψ is a C∞ function.

And the classification of the finite-dimensional estimation algebra with maximal rank has been
completed in [70, 72].

Theorem 3.6 ([72]). Suppose that the state space of the filtering model (2.2) is of dimension Nx.
If E is the finite-dimensional estimation algebra with maximal rank, then f = ∇φ + (α1, . . . , αNx

),
where φ is a smooth function and αi, 1 ≤ i ≤ Nx are affine functions and E is a real vector space
of dimension 2Nx + 2 with basis given by 1, x1, . . . , xNx , D1, . . . , DNx and L0.

The finite-dimensional filter can also be constructed from the finite-dimensional estimation algebra
with non-maximal rank, see [63]. However, the classification of the non-maximal rank ones is
still wide open, except some partial results, including those for low-dimensional estimation algebra
with arbitrary states’ dimension [73, 15]; the classification with state dimension 2 and arbitrary
dimensional estimation algebra [68].

Besides the classification of the estimation algebra, Yau et al. [74] introduced the direct method
to solve the NLF with finite-dimensional estimation algebra, which has been further generalized by
[37, 72]. Based on the Wei-Norman approach of the estimation algebra to solve the DMZ equation,
one needs to know the basis of the estimation algebra explicitly, so that the DMZ equation can be
reduced to a finite system of ODE and several first-order linear PDEs. Unfortunately, the basis can
only be known when the estimation algebra has maximal rank. The direct method in [74, 37, 71]
is easy to implement and don’t rely on the explicit basis of the estimation algebra, which can be
applied to all Yau filters [14]. Moreover, the number of sufficient statistics required to acquire the
conditional pdf is Nx. More precisely, in [37] Yau et al. assume that the following conditions are
satisfied:

1)
∂fj
∂xi
− ∂fi

∂xj
= cij , where cij are constants, 1 ≤ i, j ≤ Nx. This is so-called Yau filter in [14].

This condition is equivalent to

(3.13) fi(x) = li(x) +
∂F

∂xi
(x),

for 1 ≤ i ≤ Nx, where li(x) =
∑Nx

j=1 dijxj + di for 1 ≤ i ≤ Nx and F is a C∞ function.

2) Yau showed in [69] that the observation functions h1, · · · , hNy
are polynomials of degree at

most one for all the Yau filters with finite-dimensional estimation algebra. Without loss of
generality, we assume that

(3.14) hi(x) =

Nx∑
j=1

cijxj + ci,

for 1 ≤ i ≤ Ny, where cij and ci are constants.
3) It is also shown in [69] that

η(x) :=

Nx∑
i=1

∂fi
∂xi

+

Nx∑
i=1

f2
i +

Ny∑
i=1

h2
i

9



is a polynomial of degree at most two for all the Yau filter with finite-dimensional estimation
algebra. Without loss of generality, let us assume that

(3.15) η(x) =

Nx∑
i,j=1

ηijxixj +

Nx∑
i=1

ηixi + η0,

where ηij , ηi and η0 are constants.

Under the conditions above, the solution of the robust DMZ equation (3.12) can be solved directly
as described in the following theorem:

Theorem 3.7 ([71]). Consider the filtering model (2.2) with Q = G = R = I with the conditions
(3.13)-(3.15). Then the solution u(t,x) for the robust DMZ equation (3.12) is reduced to the solution
of ũ(t,x) for the forward Kolmogorov equation

(3.16)


∂ũ

∂t
(t,x) =

1

2
4ũ(t,x)−

Nx∑
i=1

Hi(x)
∂ũ

∂xi
(t,x)− P (x)ũ(t,x)

ũ(0,x) =eG(x)−F (x)σ0(x)

where

ũ(t,x) = exp

[
c(t) +G(x)−

Nx∑
i=1

ai(t)xi − F (x + b(t))

]
u(t,x + b(t))

and ai(t), bi(t) and c(t) satisfy the following system of ODEs:

(3.17)


a′i(t)−

1

2

Nx∑
j=1

(ηij + ηji)bj(t) +

Nx∑
j=1

djib
′
j(t) = 0

ai(0) = 0

,

(3.18)


b′i(t)− ai(t)−

Nx∑
j=1

dijbj(t) +

Nx∑
j=1

cjiyj(t) = 0

bi(0) = 0

,

(3.19)


c′i(t) = −1

2

Nx∑
i=1

(b′i(t))
2 +

Nx∑
i=1

ai(t)b
′
i(t)−

Nx∑
i=1

dib
′
i(t) +

1

2

Nx∑
i,j=1

ηijbi(t)bj(t) +
1

2

Nx∑
i=1

ηibi(t)

c(0) = 0

,

for 1 ≤ i ≤ Nx, if we can choose H(x), G(x) and P (x) such that

1

2

Nx∑
i=1

H2
i (x)− 1

2

Nx∑
i=1

∂Hi

∂xi
(x)− 1

2
η(x) + P (x) = 0,

where Hi(x)− ∂G
∂xi

(x) = li(x).

The possible choices of H(x), G(x) and P (x) in [71] include the follows:

1) Choose a C∞ function G(x) such that

4G(x) + |∇G|2(x) + 2

Nx∑
i=1

li(x)
∂G

∂xi
(x) =η(x)−

Nx∑
i=1

l2i (x)−
Nx∑
i=1

∂li
∂xi

(x),

Hi(x) =
∂G

∂xi
(x) + li(x),

and

P (x) =

Nx∑
i=1

∂Hi

∂xi
(x) =

Nx∑
i=1

(
∂2G

∂x2
i

(x) +
∂li
∂xi

(x)

)
.

10
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2) Choose

G(x) ≡0;

P (x) =
1

2
η(x)− 1

2

Nx∑
i=1

l2i (x)− 1

2

Nx∑
i=1

∂li
∂xi

(x);

Hi(x) =li(x),

for 1 ≤ i ≤ Nx.
3) Choose a function G(x) such that ∂G

∂xi
(x) = −li(x) if dij = dji for 1 ≤ i, j ≤ Nx. Let

P (x) = 1
2η(x) and Hi(x) ≡ 0, 1 ≤ i ≤ Nx.

4) Choose

G(x) =F (x);

P (x) =
1

2
η(x)− 1

2

Nx∑
i=1

f2
i (x) +

1

2

Nx∑
i=1

∂fi
∂xi

(x);

Hi(x) =fi(x),

for 1 ≤ i ≤ Nx.

3.2.2. Sequential Monte Carlo methods and particle filters (PF). The use of Monte Carlo
methods for NLF can be traced back to [33]. The algorithm is so-called sequential importance
sampling (SIS). Although it has been known since 1970s, it is not commonly used in the NLF prob-
lems, due to some major drawbacks until [30], the so-called bootstrap filter has been developed. In
[30], Gordon et. al. identified the degeneracy of the importance weights as sample improverish-
ment. In brief, it asserts that most of the samples are annihilated due to the very small normalized
importance weights in the long run. The remedy is to rejuvenate by replicating the samples with
high importance weights and removing those with low weights. This is similar as the algorithm in
[65], so-called sampling and importance resampling (SIR). Starting from the bootstrap filter [30],
various similar filtering have been studied, including Monte Carlo filter [47], particle filter [21] and
etc. A good introduction to this field has been written by Künsch [52], while the interesting recent
developments in theory and applications are covered in [20].

The sequential Monte Carlo method is within the Bayesian framework. In the NLF context, we
are concerned to compute the expectations of the form:

E(ϕ) =

∫
ϕ(x)p(x)dx,

where ϕ(◦) are some functions for estimation. For example, ϕ(x) = x gives the mean. The approxi-
mation of integral by Monte Carlo method can be achieved by generating random samples from p,

denoted as
{
x(i)
}N
i=1

, and approximate p by point masses, i.e. p(x) =
∑N
i=1 δx(i)(x), where δa(x) is

the Kronecker-delta function. Henceforth, the expectation E(ϕ) is given by

(3.20) E(ϕ) ≈ 1

N

N∑
i=1

ϕ
(
x(i)
)
.

Intuitively, as N → +∞, E(ϕ) is well approximated.
Sampling directly from the distribution p is no doubt a good choice. However, in the NLF context,

neither the prior pdf p(xk−1|y1:k−1) nor the posterior one p(xk|y1:k) are known. Generally speaking,
we can’t sample directly from p. Instead, we sample from another convenient distribution q, which
is called importance distribution or instruction distribution. To guarantee the unbiased estimation
of E(ϕ), we need to make a correction by

(3.21) E(ϕ) =

∫
ϕ(x)p(x)dx =

∫
ϕ(x)

p(x)

q(x)
q(x)dx

(3.20)
≈ 1∑N

j=1 w
(j)

N∑
i=1

w(i)ϕ
(
x(i)
)
,

where w(i) :=
p(x(i))
q(x(i))

is the unnormalized importance weight.
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Back to the Bayesian framework, let us apply the Monte Carlo sampling technique as follows.

We sample N particles
{

x
(i)
k

}N
i=1

from an importance distribution qk(xk|y1:k) and compute the

unnormalized importance weights

(3.22) w
(i)
k =

p
(
x

(i)
k |y1:k

)
q
(
x

(i)
k |y1:k

) ,
for i = 1, 2, . . . , N . Then the conditional expectation of any function ϕ can be approximated by the

weighted sample
{

x(i), w
(i)
k

}N
i=1

:

(3.23) E(ϕ) =

∫
ϕ(xk)p(xk|y1:k)dxk ≈

N∑
i=1

w
(i)
k∑N

j=1 w
(j)
k

ϕ
(
x

(i)
k

)
.

How does the pair
(
x

(i)
k , w

(i)
k

)
propagate through the dynamic system? The samples

{
x

(i)
k

}N
i=1

are propagated as

(3.24) x
(i)
k+1 ∼ q̃

(
x

(i)
k+1|x

(i)
k ,y1:k+1

)
=
q
(
x

(i)
k+1|y1:k+1

)
q
(
x

(i)
k |y1:k

) ;

and the unnormalized weights
{
w

(i)
k

}N
i=1

are updated as

w
(i)
k+1 =

p
(
x

(i)
k+1|y1:k+1

)
q
(
x

(i)
k+1|y1:k+1

) (3.24)
=

f
(
x

(i)
k+1|x

(i)
k

)
p
(
x

(i)
k |y1:k+1

)
q̃
(
x

(i)
k+1|xk,y1:k+1

)
q
(
x

(i)
k |y1:k

)
(3.22)

= w
(i)
k

f
(
x

(i)
k+1|x

(i)
k

)
p
(
x

(i)
k |y1:k+1

)
q̃
(
x

(i)
k+1|xk,y1:k+1

)
p
(
x

(i)
k |y1:k

) = w
(i)
k

f
(
x

(i)
k+1|x

(i)
k

)
h
(
yk+1|x(i)

k

)
q̃
(
x

(i)
k+1|xk,y1:k+1

)
l(yk+1|y1:k)

,

where f(xk|xk−1) and h(yk|xk) are the transition density and the observation density, respectively,
and l(yk|y1:k−1) is the predictive distribution of yk given y1:k−1. l(yk|y1:k−1) is usually difficult to
evaluate. But it does not depend on the state, and hence it is not necessary to be computed, since
the weights will be renormalized as in (3.21). The algorithm described above is so-called SIS.

Although SIS achieves great success for short data records, it is doomed to fail in the long run,
since the probability mass concentrated on a small portion of the samples after a few iteration
steps, see [22]. The remedy is to resample the particles. The procedure surely will introduce some
additional Monte Carlo variance, but in the long run it alleviates the accumulative error over time
and help to eliminate the particle improverishment. The standard particle filtering algorithm is to
resample the particles according to the normalized weights, and after that, the weights are reset to
be 1

N . In detail, the particles with small importance weights are eliminated; while those with large
ones are replicated. This improved algorithm is referred as SIR.

The structure of the particle filter [18] can be summerized abstractly as follows:

1) Mutation: Draw for i = 1, . . . , N ,

x
(i)
k ∼ Kk

(
x̂

(i)
k−1, dxk

)
,

where x̂
(i)
k are the ith resampled particles at time step k, Kk : Xk−1 → P (Xk) is a given

probability kernel, and Xk is the sample space at time step k.
2) Correction: Assign weights to particles so that, for i = 1, . . . , N ,

w
(i)
k ∝

p
(
x

(i)
k |y1:k

)
p̃
(
x

(i)
k |y1:k−1

) ,
12



The recent progress in NLF

where p̃(·|y1:k−1) =

∫
p(xk−1|y1:k−1)Kk(xk−1, ·)dxk−1.

3) Selection: Resample, according to a given selection scheme,(
x

(i)
k , w

(i)
k

)N
i=1
→
(
x̂

(i)
k , 1

)N
i=1

.

Various resampling strategies give different algorithms. Multinomial resampling [30] amounts to

drawing N independent new particles from the multinomial distribution which produces
{

x
(i)
k

}N
i=1

with the probability w̃
(i)
k , where w̃

(i)
k :=

w
(i)
k∑N

j=1 w
(j)
k

with w
(i)
k defined in (3.22). Residual resam-

pling [54] consists of reproducing
⌊
Nw̃

(i)
k

⌋
times each particle x

(i)
k , where b·c stands for the inte-

ger part. The number of new particles need to draw from the multinomial distribution is Nr =

N −
∑N
i=1

⌊
Nw̃

(i)
k

⌋
. This strategy yields N particles

{
x

(i)
k

}N
i=1

with probability
Nw̃

(i)
k −

⌊
Nw̃

(i)
k

⌋
Nr

. Sys-

tematic resampling [12, 17] is the selection method such that the number of replicates of certain

particle x
(i)
k with the probability in the range of Nw̃

(i)
k ± 1.

It has been discussed in [16, 18] that to what extent (3.23) yields a good approximation of
the expectation as the number of the particles N tends to infinity. The following theorem gives the
central limit theorem of the PF with either multinomial resampling or residual resampling strategies.

Theorem 3.8 ([18]). If the selection strategies are either multinomial resampling or residual

resampling, and provided that the unit function xk 7→ 1 belongs to Φ
(1)
k for every k, where Φ

(d)
k is

the set of measurable functions ϕ : Xk → Rd such that for some δ > 0,

Ep(xk|y1:k−1)||wk · ϕ||2+δ < +∞,

where Xk is the sample space at time step k. Then for any ϕ ∈ Φ
(d)
k , Ep(xk|y1:k−1)(ϕ), Vk(ϕ) and

V̂k(ϕ) are finite quantities, and the following convergences in distribution hold as N → +∞:

N
1
2


∑N
i=1 w

(i)
k ϕ

(
x

(i)
k

)
∑N
j=1 w

(j)
k

− Ep(xk|y1:k)(ϕ)

 D→N (0, Vk(ϕ));

N
1
2

{
N−1

N∑
i=1

ϕ
(
x̂

(i)
k

)
− Ep(xk|y1:k)(ϕ)

}
D→N (0, V̂k(ϕ)),

where

Ṽk(ϕ) =V̂k−1{EKk
(ϕ)}+ Ep(xk−1|y1:k−1){V arKk

(ϕ)};

Vk(ϕ) =Ṽk{wk · (ϕ− Ep(xk|y1:k)ϕ)}.

For multinomial resampling, we have

V̂k(ϕ) = Vk(ϕ) + V arp(xk|y1:k)(ϕ);

while for residual resampling, we have

V̂k(ϕ) = Vk(ϕ) +Rk(ϕ),

with

Rk(ϕ) =Ep̃(xk|y1:k−1){r(wk)ϕϕ′}

− 1

Ep̃(xk|y1:k−1){r(wk)}
[
Ep̃(xk|y1:k−1){r(wk)ϕ}

] [
Ep̃(xk|y1:k−1){r(wk)ϕ}

]′
,

and r(·) = · − b·c. The notation EKk
(ϕ) and V arKk

(ϕ) are the short for EKk(xk−1,·){ϕ(·)} and
V arKk(xk−1,·){ϕ(·)}, respectively.
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3.2.3. Yau-Yau’s method. Various numerical schemes to solve the PDEs can applied to (2.9) to
obtain an approximation to the conditional pdf π. Yet, the main drawback of PDE methods are the
intensive computation. It is almost impossible to achieve the real time performance. To overcome
this shortcoming, the splitting-up algorithm is introduced to move the heavy computation off-line.
It is like the Trotter product formula from semigroup theory. This operator splitting algorithm
is proposed for the DMZ equation by Bensoussan, et al. [9]. More research articles follow this
direction are [31, 60, 39] etc. In 1990s, Lototsky, et al. [55] developed a new algorithm (so-called
S3-algorithm) based on the Cameron-Martin version of Wiener chaos expansion. However, both
the splitting-up method and the S3-algorithm require the boundedness of the drifting term and
the observation term (f and h in (2.2)), which leaves out even the linear case. To overcome this
restriction, Yau and Yau [75] developed a real-time novel algorithm, called Yau-Yau’s method, to
solve the robust DMZ equation, where the boundedness of the drift term and observation term is
replaced by some mild growth conditions on f and h. This algorithm has been further validated
and applied to time-varying system in [56, 57] i.e. f , h and g can be explicitly time-dependent. We
report this method in this section.

Let us assume that we know the observation time sequence a-prior, and denote it as Pk = {0 =
τ0 < τ1 < · · · < τk = T}. But the observation data {yτi} at each sampling time τi, i = 0, · · · , k are
unknown until the on-line experiment runs. We call the computation off-line if it can be performed
without any on-line experimental data; otherwise, it is called on-line computations.

The robust DMZ equation of the model (2.2) in general form is given as following:

(3.25)


∂u

∂t
(t,x) +

∂

∂t

(
hTR−1

)T
ytu(t,x)

= exp
(
−hTR−1yt

) [
L− 1

2
hTR−1h

]
exp

(
hTR−1yt

)
u(t,x)

u(0,x) =π0(x).

,

where L is defined as

L(∗) ≡ 1

2

Nx∑
i,j=1

∂2

∂xi∂xj

[(
GQGT

)
ij
∗
]
−

Nx∑
i=1

∂(fi∗)
∂xi

,(3.26)

by using the exponential transformation [19]

u(t,x) = exp [hT (t,x)R−1(t)yt]π(t,x).(3.27)

More explicitly, (3.25) can be expanded as

(3.28)


∂u

∂t
(t,x) =

1

2
D2
wu(t,x) + F(t,x) · ∇u(t,x) + J(t,x)u(t,x)

u(0,x) = π0(x),

where

D2
w =

Nx∑
i,j=1

(GQGT )ij
∂2

∂xi∂xj
,(3.29)

F(t,x) =

Nx∑
j=1

∂

∂xj

(
GQGT

)
ij

+

Nx∑
j=1

(GQGT )ij
∂K

∂xj
− fi

Nx

i=1

,(3.30)

J(t,x) =− ∂

∂t

(
hTR−1

)T
y(t) +

1

2

Nx∑
i,j=1

∂2

∂xi∂xj

(
GQGT

)
ij

+

Nx∑
i,j=1

∂

∂xi

(
GQGT

)
ij

∂K

∂xj
(3.31)

+
1

2

Nx∑
i,j=1

(GQGT )ij

[
∂2K

∂xi∂xj
+
∂K

∂xi

∂K

∂xj

]
−

Nx∑
i=1

∂fi
∂xi
−

Nx∑
i=1

fi
∂K

∂xi
− 1

2

(
hTR−1h

)
,

in which

K(t,x) = hT (t,x)R−1(t)yt.(3.32)
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Let ui(t,x) be the solution of the robust DMZ equation (3.12) with yt freezed as the observation
yτi−1 on the interval τi−1 ≤ t ≤ τi, i = 1, 2, · · · , k

(3.33)



∂ui
∂t

(t,x) +
∂

∂t

(
hTR−1

)T
yτi−1

ui(t,x)

= exp
(
−hTR−1yτi−1

) [
L− 1

2
hTR−1h

]
exp

(
hTR−1yτi−1

)
ui(t,x)

u1(0,x) =π0(x),

or

ui(τi−1,x) =ui−1(τi−1,x), for i = 2, 3, · · · , k.

Define the norm of Pk by |Pk| = sup1≤i≤k(τi − τi−1). It is shown in [75, 56] that as |Pk| → 0, we
have

k∑
i=1

χ[τi−1,τi](t)ui(t,x)→ u(t,x)

in some sense, for all 0 ≤ t ≤ T , where u(t,x) is the exact solution of (3.25). For the conciseness of
notation, let us denote

N(t,x) ≡− ∂

∂t

(
hTR−1

)
yt −

1

2
D2
wK +

1

2
DwK · ∇K − f · ∇K − 1

2

(
hTR−1h

)
,(3.34)

The proof consists of two steps:

1) The exact solution u(t,x) of the robust DMZ equation (3.25) is well approximated by uR as
R → ∞, for any t ∈ [0, T ], where uR is the solution to (3.25) restricted on BR (the ball
centered at the origin with the radius R) with Dirichlet boundary condition.

Theorem 3.9 ([56]). For any T > 0, let u(t,x) be a solution of the robust DMZ equation
(3.28) in [0, T ] × Rn. Let R � 1 and uR(t,x) be the solution to (3.25) restricted on BR.
Assume the following conditions are satisfied, for all (t,x) ∈ [0, T ]× Rn:
• N(t,x) + 3

2Nx
∣∣∣∣GQGT

∣∣∣∣
∞ + |f −DwK| ≤ C,

• e−
√

1+|x|2 [14Nx
∣∣∣∣GQGT

∣∣∣∣
∞ + 4 |f −DwK|

]
≤ C̃,

where N and K are defined in (3.34) and (3.32), respectively, Dw is defined as

Dw∗ =

Nx∑
j=1

(
GQGT

)
ij

(t,x)
∂∗
∂xj

Nx

i=1

,(3.35)

and C, C̃ are generic constants possibly depending on T . Let v = u − uR, then v ≥ 0 for all
(t,x) ∈ [0, T ]×BR and∫

BR
2

v(T,x) ≤ C̄e− 9
16R

∫
RNx

e
√

1+|x|2π0(x),(3.36)

where C̄ is some constant, which may depend on T .

2) uR(τ,x) is well approximated by uk,R(τ,x), as k → +∞, in the L1 sense, where uk,R is
described in detail in the theorem below.

Theorem 3.10 ([56]). Let Ω be a bounded domain in Rn. Assume that
• |N(t,x)| ≤ C,
• There exists some α ∈ (0, 1), such that

|N(t,x)−N(t,x; t̄)| ≤ C̃|t− t̄|α,(3.37)

for all (t,x) ∈ [0, T ]× Ω, t̄ ∈ [0, T ], where N(t,x) is in (3.34), and N(t,x; t̄) denotes N(t,x)
with the observation yt = yt̄. Let uΩ(t,x) be the solution of (3.28) on [0, T ] × Ω with zero-
Dirichlet boundary condition. For any 0 ≤ τ ≤ T , let Pτk = {0 = τ0 < τ1 < τ2 < · · · < τk = τ}
be a partition of [0, τ ], where τi = iτ

k . Let ui,Ω(t,x) be the approximate solution obtained by
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our algorithm restricted on [τi−1, τi]×Ω. That is, ui,Ω(t,x) is the solution on Ω× [τi−1, τi] of
the equation

(3.38)


∂ui,Ω
∂t

(t,x) =
1

2
D2
wui,Ω(t,x) + F(t,x; τi−1) · ∇ui,Ω(t,x) + J(t,x; τi−1)ui,Ω(x, t)

ui,Ω(τi−1,x) =ui−1,Ω(τi−1,x)

ui,Ω(t,x)|∂Ω =0,

for i = 1, 2, · · · , k, with u1,Ω(0,x) = π0,Ω(x). Here, F(t,x; τi−1), J(t,x; τi−1) denote F(t,x),
J(t,x) with the observation yt = yτi−1 , respectively. Then

uΩ(τ,x) = lim
k→∞

uk,Ω(τ,x),

in the L1 sense in space and the following estimate holds:∫
Ω

|uΩ − uk,Ω|(τ,x) ≤ C̄

kα
,(3.39)

where C, C̃, C̄ are generic constants, possibly depending on T ,
∫

Ω
σ0,Ω. The right-hand side of

(3.39) tends to zero as k →∞.

Generally speaking, it is impractical to solve (3.33) in the real-time manner, since the on-line
data {yτi}, i = 1, · · · , k, are in the coefficients of (3.33). We have to numerically solve the time-
consuming PDE on-line, every time after the new observation data coming in. Yet, the proposition
below helps to move the heavy computations off-line. This is the key ingredient of the Yau-Yau’s
method in [75, 56].

Proposition 3.1 ([75, 56]). For each τi−1 ≤ t < τi, i = 1, 2, · · · , k, ui(t,x) satisfies (3.33) if
and only if

(3.40) ρi(t,x) = exp
[
hT (t,x)R−1(t)yτi−1

]
ui(t,x),

satisfies the Kolmogorov forward equation (KFE)

(3.41)
∂ρi
∂t

(t,x) =

(
L− 1

2
hTR−1h

)
ρi(t,x),

where L is defined in (3.26).

It is clear that (3.41) is independent of the observation path {yτi}ki=0, and the transformation
between ui and ρi is one-to-one. It is also not hard to see that (3.41) could be numerically solved
beforehand. Let us denote U(t) := L − 1

2hTR−1h for short to emphasize its time-dependence.
Under certain conditions, {U(t)}t∈[0,T ] forms a family of strong elliptic operators. Furthermore, the

operator U(t) : D(U(t)) ⊂ L2
(
RNx

)
→ L2

(
RNx

)
is the infinitesimal generator of the two-parameter

semigroup U(t, τ), for t ≥ τ . In particular, with the observation time sequence known {τi}ki=1, we
obtain a sequence of two-parameter semigroup {U(t, τi−1)}ki=1, for τi−1 ≤ t < τi. Let us take the
initial conditions of KFE (3.41) at t = τi as a set of complete orthonormal base in L2

(
RNx

)
, say

{φl(x)}∞l=1. We pre-compute the solutions of (3.41) at time t = τi+1, denoted as {U(τi+1, τi)φl}∞l=1.
These data should be stored in preparation of the on-line computations.

The on-line computation in our algorithm consists of two parts at each time step τi−1, i = 1, · · · , k.

• Project the initial condition ρi(τi−1,x) ∈ L2
(
RNx

)
at t = τi−1 onto the base {φl(x)}∞l=1, i.e.,

ρi(τi−1,x) =
∑∞
l=1 ρ̂i,lφl(x). Hence, the solution to (3.41) at t = τi can be expressed as

ρi(τi,x) = U(τi, τi−1)ρi(τi−1,x) =

∞∑
l=1

ρ̂i,l [U(τi, τi−1)φl(x)] ,(3.42)

where {U(τi, τi−1)φl(x)}∞l=1 have already been computed off-line.
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• Update the initial condition of (3.41) at τi with the new observation yτi . Let us specify the
observation updates (the initial condition of (3.41) ) for each time step. For 0 ≤ t ≤ τ1, the
initial condition is ρ1(x, 0) = π0(x). At time t = τ1, when the observation yτ1 is available,

ρ2(τ1,x)
(3.40)

= exp
[
hT (τ1,x)R−1(τ1)y(τ1)

]
u2(τ1,x)

(3.40),(3.33)
= exp

[
hT (τ1,x)R−1(τ1)y(τ1)

]
ρ1(τ1,x),

with the fact y0 = 0. Here, ρ1(τ1,x) =
∑∞
l=1 ρ̂1,l [U(τ1, 0)φl(x)], where {ρ̂1,l}∞l=1 is computed

in the previous step, and {U(τ1, 0)φl(x)}∞l=1 are prepared by off-line computations. Hence,
we obtain the initial condition ρ2(τ1,x) of (3.41) for the next time interval τ1 ≤ t ≤ τ2.
Recursively, the initial condition of (3.41) for τi−1 ≤ t ≤ τi is

ρi(τi−1,x) = exp
[
hT (τi−1,x)R−1(τi−1)(yτi−1 − yτi−2)

]
· ρi−1(τi−1,x),(3.43)

for i = 2, 3, · · · , k, where ρi−1(τi−1,x) =
∑∞
l=1 ρ̂i−2,l [U(τi−1, τi−2)φl(x)].

The approximation of u(t,x), denoted as ũ(t,x), is obtained

ũ(t,x) =

k∑
i=1

χ[τi−1,τi](t)ui(t,x),(3.44)

where ui(t,x) is obtained from ρi(t,x) by (3.40). And π(x, t) could be recovered by (3.27).
In [57], the algorithm suggested in [75, 56] has been applied to several 1D NLF problems, and the

results have been compared with the EKF and the PF both in accuracy and in real-time manner.
The basis functions of L2 (R) are chosen to be the generalized Hermite functions {Hα,β

n (x)}Nn=0,
where α > 0 and β are the scaling factor and the translating factor, respectively. When applying to
the high-dimensional NLF problems, the curse of dimensionality is arisen. To tackle this difficulty in
some degree, Yau and the author [58] investigate to solve the KFE by using the sparse-grid algorithm
[66]. This shed a light on applying the Yau-Yau’s method to high-dimensional NLF problems.

4. Conclusion and future work

In this survey, starting from the KF, we briefly go through the local approaches, including EKF,
GSF, QKF and etc. The Bayesian interpretation of KF is somewhat clear from [35]. In this survey,
we briefly sketch the re-derivation of KF from DMZ equation according to [26]. Emphases have
been put on the existing three major global approaches: finite-dimensional filter, sequential Monte
Carlo methods (particle filter) and the Yau-Yau’s method.

The study of finite-dimensional filter starts from 1980s. It is well-known that there exits finite-
dimensional estimator for certain type of NLF problem, say [8] and there also exists essentially
infinite-dimensional one [34]. Thus, the natural question is to ask for the borderline. From the
viewpoint of estimation algebra, Yau gave the complete classification for the estimation algebra
with maximal rank [69, 70] and some partial results on those with non-maximal rank [73, 15, 68].
The complete classification of general estimation algebra is still wide open. The greatest benefit
from the classfication is to construct numerous novel finite-dimensional filters.

The sequential Monte Carlo methods is nowadays one of the most popular methods in industry.
The derivation from the prediction-correction recursion has been included in this survey. Also, the
convergence of the PF with multinomial and residual resampling strategy has been stated rigorously.
The performance of PF can be improved further with carefully chosen the instruction distribution
and experienced resampling strategies. However, the PF can never achieve the real-time performance
due to its nature of Monte Carlo simulations.

The Yau-Yau’s method is the most recent algorithm [75, 56, 57] in solving directly the posterior
pdf. The real-time performance is guaranteed for NLF problems with medium low dimensional
states [56, 76], and no further assumptions on the function’s type (say Gaussian). The further
investigations can be carried on how to apply to high-dimensional state NLF problem and break the
so-called “curse of dimension” in certain degree. A possible way-out is to combine the sparse-grid
algorithm [58]. More efforts are needed in this direction, if in aim to solve real applications.
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