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This paper studies the capacity allocation game between duopolistic airlines which could offer callable 

products. Previous literature has shown that callable products provide a riskless source of additional rev- 

enue for a monopolistic airline. We examine the impact of the introduction of callable products on the 

revenues and the booking limits of duopolistic airlines. The analytical results demonstrate that, when 

there is no spill of low-fare customers, offering callable products is a dominant strategy of both airlines 

and provides Pareto gains to both airlines. When customers of both fare classes spill, offering callable 

products is no longer a dominant strategy and may harm the revenues of the airlines. Numerical ex- 

amples demonstrate that whether the two airlines offer callable products and whether offering callable 

products is beneficial to the two airlines mainly depends on their loads and capacities. Specifically, when 

the difference between the loads of the airlines is large, the loads of the airlines play the most important 

role. When the difference between the loads of the airlines is small, the capacities of the airlines play the 

most important role. Moreover, numerical examples show that the booking limits of the two airlines in 

the case with callable products are always higher than those in the case without callable products. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

During the last three decades, the technology of revenue

anagement has been used more and more widely around the

orld, and has played a significant role in improving the profits

f corporations. As a result, this field has attracted much attention

rom scholars (e.g., Steinhardt & Gönsch, 2012; Hu, Caldentey, &

ulcano, 2013; Otero & Akhavan-Tabatabaei, 2015 ). In the airline

ndustry in which the technology of revenue management is most

idely used, airlines usually have to face two types of customers:

ow-valuation customers who accept low-fare tickets only but are

illing to book in advance and high-valuation customers who

re willing to buy expensive tickets but arrive just before the

lane takes off. Usually, the airlines cannot forecast the demand

rom high-valuation customers with certainty or convince them

o book earlier than the low-valuation customers. Thus, “despite

eavy investment in sophisticated revenue management systems,

irlines lose millions of dollars a year in potential revenue; both

hen low-fare bookings displace higher than expected high-fare

ookings (‘cannibalization’) and when airlines fly empty seats pro-

ected for high-fare bookings that do not materialize (‘spoilage’)”
∗ Corresponding author. Tel.: +86 10 6278 7812; fax: +86 10 6277 3400. 
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 Gallego, Kou, & Phillips, 2008 ). Many kinds of mechanisms

re proposed to hedge against demand uncertainty from high-

aluation customers, e.g., overbooking ( Aydın, Birbil, Frenk, &

oyan, 2012; Karaesmen & Van Ryzin, 2004 ), last-minute dis-

ounts ( Ovchinnikov & Milner, 2012 ), flexible products ( Gallego

 Phillips, 2004 ), etc. All these mechanisms have shortcomings:

verbooking adds operational complexity to management; last-

inute discounts may induce the customers to wait rather than

o book early; flexible products require that the customers are

ndifferent among the alternative flights. To avoid the above short-

omings, Gallego et al. (2008) proposed the concept of “callable

roducts”, which refers to units of capacity sold to self-selected

ow-fare customers who willingly grant the airline the option to

call” the capacity at a pre-specified recall price. The concept of

allable products does not add operational complexity and can be

sed together with other mechanisms. 

Gallego et al. (2008) showed that callable products provide a

iskless source of additional revenue for a monopolistic airline.

n practice, airlines usually have to face other competitors. Seat

llocation among different fare classes by one airline affects the

emand and the optimal seat allocation of other airlines. There-

ore, there are several questions to be addressed. In a competitive

nvironment, does offering callable products still provide a risk-

ess source of additional revenues? How does the introduction of

allable products affect the capacity allocation decisions of the air-

ines? What is the order relationship between the booking limits

http://dx.doi.org/10.1016/j.ejor.2016.04.054
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.04.054&domain=pdf
mailto:xiejinxing@tsinghua.org.cn
mailto:jxie@math.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ejor.2016.04.054
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under competition and those under monopoly? This paper aims to

answer these questions. 

This paper studies the capacity allocation game between

duopolistic airlines which could offer callable products. We exam-

ine how the introduction of callable products affects the booking

limits and the revenues of duopolistic airlines. It is shown that

when the low-fare customers do not spill, offering callable prod-

ucts is a dominant strategy of both airlines and provides Pareto

gains to both (In this paper, the word “spill” means that if either

type of customer cannot be satisfied by one airline, the customers

go to the other airline and can be recaptured by the other airline).

When customers of both fare classes spill, offering callable prod-

ucts is no longer a dominant strategy and may harm the revenues

of the airlines. Numerical examples demonstrate that whether the

two airlines offer callable products and whether offering callable

products is beneficial to the two airlines mainly depends on their

loads and capacities (the load of an airline is the ratio of the av-

erage total demand of the airline to the capacity of the airline).

Specifically, when the difference between the loads of the airlines

is large, the loads of the airlines play the most important role.

When the difference between the loads of the airlines is small, the

capacities of the airlines play the most important role. Moreover,

numerical examples demonstrate that the booking limits of the

two airlines in the case with callable products are always higher

than those in the case without callable products. 

The rest of the paper is organized as follows. Section 2 re-

views the literature on callable products and on revenue manage-

ment game. Section 3 describes the key elements of the model.

Section 4 presents a comprehensive model analysis. Specifically,

Section 4.1 gives sufficient conditions for the existence and unique-

ness of the Nash equilibrium; Section 4.2 examines the impact of

callable products on the revenues of the airlines when there is no

low-fare spill; Section 4.3 compares the booking limits under com-

petition with those under monopoly; Section 4.4 conducts a sensi-

tivity analysis of the booking limits with respect to the price pa-

rameters. In Section 5 , we run numerical examples to examine the

impact of offering callable products on the revenues and the book-

ing limits of the two airlines, where both the low-fare and high-

fare customers spill. Section 6 concludes the paper and points out

directions for future research. 

2. Literature review 

Two streams of literature are related to our study: one is

callable products, and the other is revenue management game. 

Many forms of callable products have been used in various in-

dustries. Some companies use an option named “callback” to re-

call previously committed advertisement time by paying a prede-

termined amount. The callable concept is also used by Caterpillar

to reduce the inventory risk of its dealers ( Sheffi, 2005 , pp. 229–

231). Biyalogorsky, Carmon, Fruchter, and Gerstner (1999) showed

that the use of overselling with opportunistic cancellations can in-

crease expected profits in an airline context. Biyalogorsky and Ger-

stner (2004) demonstrated that contingent pricing can be used for

sellers in response to demand uncertainty. In contingent pricing

arrangements, price is contingent on whether the seller succeeds

in obtaining a higher price within a specified period. It is shown

that contingent pricing is profitable regardless of buyers’ risk atti-

tudes, and that contingent pricing benefits buyers as well as sell-

ers. Gallego et al. (2008) differed from and extended Biyalogorsky

and Gerstner (2004) in the following ways. First, Biyalogorsky and

Gerstner (2004) considered sales of a single unit of capacity and

Gallego et al. (2008) extended the analysis to sales of multiple

units. Second, Biyalogorsky and Gerstner (2004) assumed common

willingness-to-pay among buyers, whereas Gallego et al. (2008) as-

sumed that demand for callable products is uncertain and depends
n the recall price. Gallego et al. (2008) showed that callable prod-

cts provide a riskless source of additional revenue to a monopo-

istic airline. Biyalogorsky (2009) considered a model with strate-

ic consumers who can decide when to show up in the market

nd investigated whether, in the face of strategic behavior by con-

umers, it can be profitable for sellers to use contingent pricing

o induce the low-high arrival pattern typical in the airline indus-

ry. Elmaghraby, Lippman, Tang, and Yin (2009) examined a situa-

ion in which the firm offers both callable and non-callable units

t different prices at any point in time. They showed that strategic

ustomer behavior can render the customer to be worse off and

he retailer to be better off. Therefore, more purchasing options

o not necessarily benefit customers. Aydın, Birbil, and Topalo ̆glu

2016) developed single-leg revenue management models that con-

ider contingent commitment decisions, where commitment op-

ion allows passengers to reserve a seat for a fixed duration be-

ore making a final purchase decision. We introduce the concept

f callable products into a capacity allocation game between two

irlines and examine its impact on the revenues and the booking

imits of the two airlines. 

The second stream of literature related to our study is rev-

nue management game. Lederer and Nambimadom (1998) dis-

ussed how the entire airline network determines the routes and

requencies of flights when multiple airlines interact with each

ther. Using data on U.S. airline departure times from 1975, when

ares were regulated, and 1986, when fares were not regulated,

orenstein and Netz (1999) empirically estimated the effect of

ompetition on product differentiation. Richard (2003) analyzed

he welfare consequences of airline mergers in terms of ticket price

nd flight frequency. The above research considers the competition

etween price, flight frequency and departure time, which is differ-

nt from seat allocation competition as considered in this paper. 

Netessine and Shumsky (2005) was the first published paper

hat places the seat allocation problem in a competitive framework

nd examines the seat inventory control problem. The analytical

esults demonstrated that more seats are protected for high-fare

assengers under horizontal competition than when a single air-

ine acts as a monopoly. Li, Oum, and Anderson (2007) showed the

xistence of an equilibrium booking strategy such that both airlines

rotect the same number of seats for the high fare and that the to-

al number of seats available for the low fare under competition is

maller than the total number of seats that would be available if

he two airlines were to collude. Li, Zhang, and Zhang (2008) ex-

ended Li et al. (2007) by incorporating the cost asymmetry of dif-

erent airlines. While Netessine and Shumsky (2005) took the dif-

erentiation approach by assuming separate demand for each fare

lass offered by an airline, Li et al. (2007) and Li et al. (2008) chose

he homogeneous market approach, i.e., two airlines face common

arket demand and the demand is split between the two airlines.

he splitting rules of the demand in Li et al. (20 07 , 20 08) are

nalogous to Rule 3 (Incremental Random Splitting) in Lippman

nd McCardle (1997) and generate demand that is independent

r perfectly correlated, whereas the demand form in Netessine

nd Shumsky (2005) is more general as demand of different fare

lasses and different airlines can be partially correlated. We in-

orporate the concept of callable products into the framework of

etessine and Shumsky (2005) and examine its impact on the rev-

nues and the booking limits of the two airlines. 

Furthermore, Song and Parlar (2012) also studied the capacity

llocation game between two airlines, where the demand form is

imilar to that in Netessine and Shumsky (2005) . Song and Par-

ar (2012) took into account the penalty cost for each reserva-

ion of the transfer customers rejected by an airline. They used a

onnested model to approximate the original nested booking limit

odel and showed the existence of a unique Nash equilibrium in

he noncooperative situation. Zhao, Atkins, (2002) made a major
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Table 1 

Notation description. 

Notation Meaning 

C i Capacity of Airline i 

p Hi Price of the high-fare tickets of Airline i 

p Li Price of the low-fare tickets of Airline i 

p i Recall price of Airline i 

D Hi Initial high-fare demand of Airline i 

D Li Initial low-fare demand of Airline i 

D T 
Hi 

Total high-fare demand of Airline i 

D T 
Li 

Total low-fare demand of Airline i 

B i Booking limit of Airline i 

π i Expected revenue of Airline i 
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ttempt to address the joint pricing and allocation problem when

wo airlines compete for passengers in one demand class. Lim

2009) examined the practice of overselling in a duopoly context

here late-arriving consumers value the good higher than early-

rriving ones but the former’s arrival is uncertain. 

There are some papers studying the airline alliances, includ-

ng capacity control of the airlines, revenue sharing of the airlines,

tc. (e.g., Graf & Kimms, 2011; Kimms & Çetiner, 2012; Hu et al.,

013; Graf & Kimms, 2013 ). Particularly, Kimms and Grauberger

2016) investigated the problem of two airlines in which they co-

perate within an alliance on one hand, but on the other hand they

ontinue to compete for customers within a revenue management

etting. It is the first paper to consider simultaneous horizontal and

ertical competition within alliances on a network with multiple

lasses. 

. Problem description 

Our model is similar to that of Netessine and Shumsky

2005) and the difference is that the airlines in our model could of-

er callable products. Suppose there are two airlines offering flights

etween the same origin and the same destination. Use subscripts

 = 1 , 2 to distinguish the two airlines. Both airlines face two types

f customers: low-fare customers and high-fare customers. The

ow-fare customers accept low-fare tickets only but are willing to

ook in advance; the high-valuation customers are willing to buy

xpensive tickets but arrive just before the plane takes off. There-

ore, we can assume that the low-fare customers arrive in the first

eriod and the high-fare customers arrive in the second period.

uppose that the capacity of Airline i is C i , and that the prices

f the low-fare tickets and high-fare tickets of Airline i are p Li 

nd p Hi , respectively. The initial low-fare demand and the initial

igh-fare demand of Airline i are represented by the random vari-

bles D Li and D Hi , respectively. Assume that the support sets of D Li 

nd D Hi are nonnegative and that the cumulative distribution func-

ions of D Li and D Hi are differentiable. If either type of customer

annot be satisfied by one airline, they spill to the other airline

nd can be recaptured by the other airline. We call these spilled

ustomers. 

The low-fare tickets are either callable products or noncallable

roducts: if an airline offers callable products, the low-fare tick-

ts are callable products, which means that the low-fare tickets

an be recalled at a pre-specified price; if an airline does not of-

er callable products, the low-fare tickets are noncallable products,

hich means that the low-fare tickets are regular tickets and can-

ot be recalled. If an airline offers callable products, when the ca-

acity available for the high-fare customers could not satisfy their

emand, the airline can recall some or all of the callable tickets

i.e., low-fare tickets). Suppose the recall price of Airline i is p i ( p Li 

 p i < p Hi ). Denote the booking limit of Airline i as B i . Each airline

eeds to determine the booking limit for the low-fare customers

t the beginning of the first period. 

Unless particularly specified, we analyze the case where both

irlines offer callable products. The expected revenue of Airline i

s: 

πi = E 
{

p Li min (D 

T 
Li , B i ) + p Hi min 

(
D 

T 
Hi , C i − min (D 

T 
Li , B i ) 

)

+(p Hi − p i ) min 

(
( min (D 

T 
Li , B i ) + D 

T 
Hi − C i ) 

+ , min (D 

T 
Li , B i ) 

)}
, 

(1) 

here D 

T 
Li 

= D Li + (D L j − B j ) 
+ is the total low-fare demand for Air-

ine i and D 

T 
Hi 

= D Hi + (D H j − C j ) 
+ is the total high-fare demand for

irline i ( i, j = 1 , 2 and i � = j ). The meanings of the three items in

q. (1) are as follows: the first item is the revenue from selling the
ow-fare tickets, the second item is the revenue from selling the

est of the tickets to the high-fare customers and the third item is

he additional revenue brought by recalling some low-fare tickets.

he marginal revenue of one unit of callable product is p Hi − p i . 

Similar to Netessine and Shumsky (2005) , we apply the method

escribed in Rudi (2001 , pp. 27–31) to obtain the derivative of Air-

ine i ’s expected revenue: 

∂πi 

∂B i 

= p Li P r(D 

T 
Li > B i ) − p Hi P r(D 

T 
Li > B i , D 

T 
Hi > C i − B i ) 

+ (p Hi − p i ) P r(D 

T 
Li > B i , D 

T 
Hi > C i − B i ) 

= P r(D 

T 
Li > B i ) 

(
p Li − p i P r(D 

T 
Hi > C i − B i | D 

T 
Li > B i ) 

)
. 

(2) 

For ease of exposition, Table 1 summarizes the notation we

sed, where i = 1 , 2 . 

Note that the booking limit B i is the only decision of Airline i .

he prices p Li , p Hi and p i are not decision variables and they are

ssumed to be determined somehow in advance. We consider the

ffects of different prices with numerical studies in Section 5 . It is

bvious that, for Airline i to obtain higher profit, it should be bet-

er to determine the prices p Li , p Hi and p i and the booking limit B i 
imultaneously. However, due to the complexity of computations

nd analyses, this problem is rarely considered in the competitive

evenue management situation ( Zhao & Atkins, (2002) . Further-

ore, the decisions of pricing and booking limit are at different

ecision levels in reality, as stated by Petrick, Gönsch, Steinhardt,

nd Klein (2010) , “Revenue management is essentially achieved by

he application of two instruments: In a first step, on a rather tac-

ical planning level, price differentiation is performed, leading to a

ariety of differently priced products defined on the same set of

esources. In a second step, on the operational level, the availabil-

ty of the products is permanently adjusted by means of capacity

ontrol, according to the current forecast regarding future demand

ithin the selling horizon”. In addition, the focus of the paper is

n examining the impact of callable products on the revenues and

he booking limits of the airlines. Therefore, we assume that the

rices p Li , p Hi and p i are exogenously given. 

. Model analysis 

This section provides a comprehensive model analysis.

ection 4.1 presents the conditions under which a unique Nash

quilibrium exists. Section 4.2 examines the impact of callable

roducts on the revenues of the airlines when there is no low-fare

pill. Section 4.3 compares the booking limits under competition

ith those under monopoly. Section 4.4 conducts a sensitivity

nalysis to investigate the impact of price parameters, i.e., ticket

rices and recall prices, on the booking limits. Note that only

ection 4.2 considers the situation where there is no spill of

ow-fare customers while Sections 4.1, 4.3 and 4.4 all consider the

ituation where both low-fare and high-fare customers spill. 
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4.1. Nash equilibrium conditions 

This subsection presents the sufficient conditions for the exis-

tence and uniqueness of a pure-strategy Nash equilibrium. We uti-

lize two properties: totally positive of order 2 ( TP 2 ) and multivari-

ate totally positive of order 2 ( MTP 2 ) (for a thorough discussion of

TP 2 and MTP 2 , see Joe, 1997 ). 

Definition 1. ( Joe, 1997 , p. 23). A non-negative function b on A 

2 ,

where A ⊂ R , is TP 2 if for all x 1 < y 1 , x 2 < y 2 , with x 1 , x 2 , y 1 , y 2 ∈
A , 

b(x 1 , x 2 ) b(y 1 , y 2 ) ≥ b(x 1 , y 2 ) b(y 1 , x 2 ) . (3)

Definition 2. ( Joe, 1997 , p. 24). Random variables X and Y are TP 2 
if the joint probability density function of X and Y is TP 2 . 

Definition 3. ( Joe, 1997 , p. 24). Let X be a random m -vector with

density f . X of f is multivariate totally positive of order 2 ( MTP 2 ) if

f ( x ∨ y ) f ( x ∧ y ) ≥ f ( x ) f ( y ) , (4)

for all x , y ∈ R m 

, where 

x ∨ y = ( max { x 1 , y 1 } , max { x 2 , y 2 } , ..., max { x m 

, y m 

} ) , 
x ∧ y = ( min { x 1 , y 1 } , min { x 2 , y 2 } , ..., min { x m 

, y m 

} ) . (5)

The definition of TP 2 indicates that it is more possible for the

realizations of the two random variables to be both low or both

high, than to be mixed low and high. Many useful bivariate distri-

butions are TP 2 , such as any set of independent random variables,

Gamma and F distributions, the multivariate logistic and the bivari-

ate normal distributions with positive correlation ( Kalin & Rinotta,

1980; Netessine & Shumsky, 2005 ). The TP 2 property can be ex-

tended to the MTP 2 . 

Lemma 1. (Theorem 2.1 in Vives, 2001 ). Consider a game with n (n

≥ 2 ) players. If the strategy sets are nonempty convex and compact

subsets of Euclidean space and the payoff to firm i is continuous in

the actions of all firms and quasiconcave in its own action, there is a

Nash equilibrium. 

Proposition 1. When both airlines offer callable products, if D Li and

D 

T 
Hi 

( i = 1 , 2 ) are TP 2 , there exists a unique pure-strategy Nash equi-

librium. Furthermore, the best response functions of the airlines are

decreasing. 

Proposition 1 demonstrates that the best response functions

are decreasing, i.e., if one airline increases the booking limit, the

other airline will decrease the booking limit, which is the same

as that in Netessine and Shumsky (2005) . Recall that in Netessine

and Shumsky (2005) the Nash equilibrium exists but may not

be unique. When the low-fare tickets of the airlines are callable,

Proposition 1 indicates that the Nash equilibrium is unique, which

facilitates the subsequent analysis. Note that Proposition 1 requires

D Li and D 

T 
Hi 

to be TP 2 while the realization of D 

T 
Hi 

depends on the

realizations of D Hi and D Hj . Corollary 1 describes conditions on the

four underlying demand distributions. 

Corollary 1. When both airlines offer callable products, if (D L 1 , D L 2 ,

D H 1 , D H 2 ) are MTP 2 in their density functions, the results in Proposi-

tion 1 hold. 

In the previous analysis, we assume that, if the low-fare tickets

are callable, all the low-fare customers grant the airlines the call

option. If only a fraction of the low-fare customers grant the air-

lines the call option, Proposition 2 gives conditions under which a

pure-strategy Nash equilibrium exists. 

Proposition 2. Suppose only α ( 0 ≤ α ≤ 1 ) proportion of the low-

fare customers grant the airlines the call option when the low-fare
ickets are callable. If D Li and D 

T 
Hi 

( i = 1 , 2 ) are TP 2 or (D L 1 , D L 2 , D H 1 ,

 H 2 ) are MTP 2 , a pure-strategy Nash equilibrium exists. In addition,

he best-response functions of the airlines are decreasing. 

For mathematical tractability, in the following analysis, we still

iscuss the case where all the low-fare customers grant the airlines

he call option if the low-fare tickets are callable. In this situation,

he uniqueness of the Nash equilibrium ( Proposition 1 ) facilitates

he analysis. If only a fraction of the low-fare customers grant the

irlines the call option, we conjecture that the insights of the cur-

ent paper still hold. 

.2. Impact of callable products on the revenues of the airlines 

In this subsection, we consider the case where the low-fare

ustomers do not spill to the other airline while the high-fare

ustomers do spill. This applies to the situation where low-fare

emand is so high that the booking limits of the two airlines

an always be reached, and therefore low-fare spill is irrelevant

 Netessine & Shumsky, 2005 ). The case where both the low-fare

ustomers and the high-fare customers spill is examined numeri-

ally in Section 5 . 

To investigate the impact of callable products on the revenues

f the airlines, we consider three other scenarios: neither of the

wo airlines offers callable products; only Airline i ( i = 1 , 2 ) offers

allable products. 

(1) If neither of the two airlines offers callable products, the

xpected revenue of Airline i is: 

i = E 
[

p Li min (D Li , B i ) + p Hi min 

(
˜ D 

T 
Hi , C i − min (D Li , B i ) 

)]
, (6)

here ˜ D 

T 
Hi 

= D Hi + 

(
D H j − C j + min (D L j , B j ) 

)+ 
is the total high-fare

emand for Airline i ( i, j = 1 , 2 and i � = j ). The first order condition

or the maximization of (6) is: 

∂πi 

∂B i 

= p Li P r(D Li > B i ) − p Hi P r(D Li > B i , ˜ D 

T 
Hi > C i − B i ) 

= P r(D Li > B i ) 
(

p Li − p Hi P r( ̃  D 

T 
Hi > C i − B i | D Li > B i ) 

)

= 0 . 

(7)

That is, 

 r( ̃  D 

T 
Hi > C i − B i | D Li > B i ) = 

p Li 

p Hi 

. (8)

(2) If only Airline i offers callable products, the expected rev-

nues of Airline i and j are 

πi = E 
[

p Li min (D Li , B i ) + p Hi min ( ̃  D 

T 
Hi , C i − min (D Li , B i )) 

+(p Hi − p i ) min (( min (D Li , B i ) + 

˜ D 

T 
Hi − C i ) 

+ , min (D Li , B i )) 
]
, 

(9)

nd 

j = E 
[

p L j min (D L j , B j ) + p H j min (D 

T 
H j , C j − min (D L j , B j )) 

]
, (10)

espectively. The first order conditions for the maximization of

9) and (10) are: 

∂πi 

∂B i 

= p Li P r(D Li > B i ) − p i P r(D Li > B i , ˜ D 

T 
Hi > C i − B i ) 

= P r(D Li > B i ) 
(

p Li − p i P r( ̃  D 

T 
Hi > C i − B i | D Li > B i ) 

)

= 0 , 

(11)

nd 

∂π j 

∂B j 

= p L j P r(D L j > B j ) − p H j P r(D L j > B j , D 

T 
H j > C j − B j ) 

= P r(D L j > B j ) 
(

p L j − p H j P r(D 

T 
H j > C j − B j | D L j > B j ) 

)

= 0 , 

(12)
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(2) both of them increase with p . 
espectively. Eqs. (11) and (12) can be simplified as: 

 r( ̃  D 

T 
Hi > C i − B i | D Li > B i ) = 

p Li 

p i 
, (13)

nd 

 r(D 

T 
H j > C j − B j | D L j > B j ) = 

p L j 

p H j 

. (14)

When D Li and D 

T 
Hi 

are TP 2 , applying a similar analysis as the

roof of Proposition 1 , it can be shown that there is a unique Nash

quilibrium for each game corresponding to the above three sce-

arios. Let π
k 1 k 2 
i 

( k 1 , k 2 = 0 , 1 , i = 1 , 2 ) denote the revenue of Air-

ine i in different scenarios. The superscripts k 1 and k 2 indicate

hether the low-fare tickets of the two airlines are callable: 1 is

allable while 0 is not. For example, π10 
1 

denotes the revenue of

irline 1 when the low-fare tickets of Airline 1 are callable while

hose of Airline 2 are not. Similarly, B 
k 1 k 2 
i 

is the booking limit of

irline i in different scenarios. 

Recall that Gallego et al. (2008) showed that offering callable

roducts brings a riskless revenue improvement to a monopolistic

irline, which is intuitive as an airline offers callable products if

nd only if it is beneficial to itself. Proposition 3 indicates that, if

here is no spill of low-fare customers, offering callable products

s a dominant strategy of both airlines and brings Pareto gains to

oth. 

roposition 3. Suppose that D Li and D 

T 
Hi 

(i = 1 , 2) are TP 2 . If there

s no spill of low-fare customers, the following inequalities hold: 

(1) π00 
1 

< π10 
1 

, π01 
1 

< π11 
1 

; 

(2) π00 
2 

< π01 
2 

, π10 
2 

< π11 
2 ; 

(3) π00 
i 

< π11 
i 

, i = 1 , 2 . 

Parts (1) and (2) of Proposition 3 indicate that offering callable

roducts improves an airline’s revenue no matter whether the

ther airline offers callable products. Thus, offering callable prod-

cts is a dominant strategy of both airlines. Parts (1) and (2) can

e interpreted as follows. If Airline j does not offer callable prod-

cts, Airline i ’s ( i, j = 1 , 2 and i � = j ) revenue when Airline i of-

ers callable products is no lower than that when Airline i does

ot offer callable products. If Airline j offers callable products, the

igh-fare customers of Airline j spill to Airline i only when the re-

lized high-fare demand of Airline j is higher than the capacity of

irline j . Given this situation, Airline i ’s revenue when Airline i of-

ers callable products is no lower than that when Airline i does not

ffer callable products either. Thus, offering callable products is a

ominant strategy of both airlines. 

Part (3) of Proposition 3 implies that offering callable prod-

cts provides Pareto gains to both airlines, which can be in-

erpreted intuitively. Note that, when one airline does not offer

allable products, some of its high-fare customers may spill to the

ther airline. However, if one airline offers callable products, its

igh-fare customers spill to the other airline only when the re-

lized high-fare demand is higher than the capacity of the air-

ine. Thus, offering callable products provides Pareto gains to both

irlines. In other words, when there is no spill of low-fare cus-

omers, Proposition 3 demonstrates that offering callable products

s a dominant strategy of both airlines and brings Pareto gains to

oth. When customers of both fare classes spill, Section 5 numeri-

ally shows that offering callable products is no longer a dominant

trategy and may harm the revenues of the airlines. 

.3. Comparing the competitors with a monopolist 

This subsection compares the behavior of two airlines in com-

etition with that of a monopolist. The monopolist may be two

irlines in an alliance to coordinate the revenue management deci-
ions, i.e., booking limits ( Graf & Kimms, 2011; Kimms & Çetiner,

012 ). Denote the optimal booking limits of the monopolist to

e B C 
i 

( i = 1 , 2 ) and the booking limits in equilibrium to be B ∗
i 

 i = 1 , 2 ), respectively. Assume that B ∗
i 

and B C 
i 

are interior points,

.e., B ∗
i 
, B C 

i 
∈ (0 , C i ) . 

roposition 4. When both airlines offer callable products, if D Li and

 

T 
Hi 

are TP 2 , and the two airlines are symmetric (i.e., p L 1 = p L 2 , p H1 =
p H2 , p 1 = p 2 , C 1 = C 2 , ( D L 1 , D H 1 ) and ( D L 2 , D H 2 ) are identically dis-

ributed), the booking limits under competition are higher than those

nder monopoly: B ∗
i 

≥ B C 
i 
, where i = 1 , 2 . 

Proposition 4 shows that, when the two airlines are symmet-

ic, the airlines always provide more tickets to low-fare customers

n the decentralized situation compared to the centralized situa-

ion, which implies that the airlines compete more intensely for

ow-fare customers. This is different from the result when the two

irlines do not offer callable products: if only the high-fare cus-

omers spill, the airlines set lower booking limits in the decentral-

zed situation; if only the low-fare customers spill, the airlines set

igher booking limits in the decentralized situation ( Netessine &

humsky, 2005 ). The reason behind the difference is that when the

ow-fare tickets are callable, the airlines can avoid cannibalization

rom the low-fare customers by recalling the low-fare tickets, so

oth airlines pay more attention to the scramble for the low-fare

ustomers. 

.4. Impact of price parameters on the booking limits 

The main difference between callable products and the regular

roducts is that callable products can be recalled at a pre-specified

ecall price. Obviously, recall price has a great impact on the book-

ng limits of the airlines. Although recall price is not taken as a

ecision variable, we can examine its impact on the booking limits

hrough comparative static analysis. 

roposition 5. If D Li and D 

T 
Hi 

(i = 1 , 2) are TP 2 , 

(1) B ∗
i 

decreases with p i while increases with p j ( i, j = 1 , 2 , i � = j); 

(2) B ∗
i 

increases with p Li while decreases with p Lj ( i, j = 1 , 2 , i � = j).

Part (1) of Proposition 5 shows that as the recall price of Air-

ine i increases, Airline i lowers its booking limit while Airline j

aises its booking limit. This result is intuitive as the higher the

ecall price of Airline i , the higher the cost for Airline i to recall

he low-fare tickets; at the same time, Airline j has a comparative

dvantage in recalling the low-fare tickets. This is also consistent

ith Proposition 1 which states that the best response functions

f the airlines are decreasing. The interpretation of Part (2) is sim-

lar to that of Part (1). Note that the impact of p Li on B i and B j is

pposite to that of p i , as the airlines weigh the deterministic rev-

nue p Li against the potential recall cost p i when determining the

ooking limits. 

In addition, we find that the booking limits of the airlines are

ot affected by the prices of the high-fare tickets. For the high-fare

ustomers, the airline could avoid cannibalization from the low-

are customers by recalling the low-fare tickets. Therefore, when

etting the booking limits, the airlines focus on the tradeoff be-

ween the immediate revenue p Li and the potential recall cost p i . 

Proposition 6 examines the case in which the two airlines are

ymmetric, i.e., p L 1 = p L 2 = p L , p H1 = p H2 = p H , p 1 = p 2 = p, C 1 =
 2 = C, ( D L 1 , D H 1 ) and ( D L 2 , D H 2 ) are identically distributed. 

roposition 6. When the two airlines are symmetric, if D Li and D 

T 
Hi 

(i = 1 , 2) are TP 2 , B 
∗
1 

is equal to B ∗
2 

and 

(1) both of them decrease with p ; 
L 
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Table 3 

Parameter values in the symmetric case under which 
When the recall price increases, the airlines cost more to recall

the low-fare tickets, so they will lower the booking limits. We can

consider the following two extreme cases. First, if the recall price

is equal to the price of the low-fare tickets, the airlines will set

the booking limit to be the capacity; second, if the recall price is

equal to the price of the high-fare tickets, the game between the

two airlines degenerates to that when the two airlines do not offer

callable products. Part (1) of Proposition 6 implies that, when the

two airlines are symmetric, the booking limits of the two airlines

when they offer callable products are higher than those when they

do not offer callable products. When the two airlines are asym-

metric, numerical examples in Section 5 shows that the result still

holds. 

5. Numerical examples 

In this section, we run numerical examples to examine, when

both the low-fare and high-fare customers spill, whether the two

airlines offer callable products and how callable products impact

the booking limits and the revenues of the airlines in equilib-

rium. Referring to the parameter values in Netessine and Shumsky

(2005) , the parameter values are as follows. 

• Capacity (C 1 and C 2 ): We run two sets of experiments: a sym-

metric case with C 1 = C 2 = 200 , and an asymmetric case with

C 1 = 200 and C 2 = 100 . 
• Ratio of high fare to low fare (p H / p L ): We define three scenar-

ios, p H /p L = [1 . 3 , 2 . 6 , 4] , for both the symmetric and asymmet-

ric cases. 
• Recall price (p 1 and p 2 ): The recall prices of the two airlines are

assumed to be equal. We set p 1 = p 2 = p L + α(p H − p L ) , where

α = [0 . 4 , 0 . 6 , 0 . 8] . 
• Proportion of demand due to low-fare passengers: Let μLi and

μHi be the average low-fare demand and the average high-fare

demand of Airline i , respectively. For both the symmetric and

asymmetric cases, set γ = μLi / (μLi + μHi ) = [0 . 5 , 0 . 74 , 0 . 9] . 
• Total demand and demand faced by each airline: We consider

two scenarios: first, the average total demand is equal to the

total airline capacity, i.e., μL 1 + μH1 + μL 2 + μH2 = C 1 + C 2 , re-

ferred to as T D = T C case; second, the average total demand

is slightly larger than the total airline capacity, where μL 1 +
μH1 + μL 2 + μH2 = 1 . 1(C 1 + C 2 ) , referred to as T D = 1 . 1 T C case.

Describe the allocation of demand between the two airlines in

terms of load, where the load for Airline i equals (μLi + μHi ) /C i .

For ease of exposition, Table 2 presents the loads of the two air-

lines in different cases. 
• Variability: Netessine and Shumsky (2005) supposed the coeffi-

cient of variation (CV) of the four demand distributions to be

the same and CV = [0.2, 0.33, 0.6]. To limit the number of pa-

rameters, we assume CV of the four demand distributions to be

the same and CV = [0.2, 0.6]. 
• Correlation: Netessine and Shumsky (2005) assumed the corre-

lations among all demand are equal and the correlation ρ =
[ −0 . 3 , 0 . 0 , 0 . 3 , 0 . 6] . As stated by Netessine and Shumsky (2005) ,

correlation among airline demand classes is usually small and

when correlation is significant, it is more likely to be positive

than negative. Thus, to limit the number of parameters, we as-
Table 2 

Loads of the two airlines in different cases. 

Cases l 1 l 2 

Symmetric, TD = TC [0.5, 0.75, 1] [1.5, 1.25, 1] 

Symmetric, TD = 1.1TC [0.5, 0.8, 1.1] [1.7, 1.4, 1.1] 

Asymmetric, TD = TC [0.5, 1, 1.25] [2, 1, 0.5] 

Asymmetric, TD = 1.1TC [0.5, 1.1, 1.4] [2.3, 1.1, 0.5] 
sume that the correlations among all demand are equal and the

correlation ρ = [0 . 2 , 0 . 5] . 
• Probability density: For each of the scenarios, assume that the

demand distribution is a multivariate Normal distribution and

is truncated at zero. The negative values of the demand are

added to a mass point at zero. 

When combined, the above parameters define 2 ∗3 ∗3 ∗3 ∗6 ∗

 

∗2 = 1296 scenarios. There are 648 scenarios in Netessine and

humsky (2005) . The parameter values in the current paper are

he same as those in Netessine and Shumsky (2005) except CV and

. In addition, there is no recall price in Netessine and Shumsky

2005) . We use a simple gradient algorithm to find the solutions

nd evaluate the gradients by Monte Carlo integration. 

Proposition 3 shows that, when there is no spill of low-fare cus-

omers, offering callable products is a dominant strategy and pro-

ides Pareto gains to both airlines. When low-fare customers spill,

umerical examples demonstrate that whether the two airlines of-

er callable products and whether offering callable products is ben-

ficial to them mainly depends on the loads and the capacities of

he two airlines. For ease of exposition, we refer to the case where

he two airlines do not offer callable products as the case without

allable products and the case where both airlines could choose

hether or not to offer callable products as the case with callable

roducts. We present the numerical results in the symmetric case

nd the asymmetric case, respectively. 

In the symmetric case, we obtain the following three results.

1) When the loads of the two airlines are not equal, and the ratio

f high fare to low fare ( p H / p L ) is low or the recall price ( p 1 and

 2 ) is high, the airline with a lower load does not offer callable

roducts while the airline with a higher load offers callable prod-

cts in equilibrium. Specifically, if the parameter values belong to

able 3 , Airline 1 does not offer callable products while Airline 2

ffers callable products in equilibrium. Under other parameter val-

es, both airlines offer callable products in equilibrium. This result

s intuitive and we could interpret it as follows. Compared to the

irline with a higher load, the airline with a lower load is at a dis-

dvantage. The ratio of high fare to low fare being low or the recall

rice being high indicates that the market is pessimistic to the air-

ines. This result implies that when the market is pessimistic to the

irlines, the airline at a disadvantage does not offer callable prod-

cts in equilibrium. (2) When the loads of the two airlines are not

qual, the revenue of the airline with a higher (resp. lower) load

n the case with callable products is higher (resp. lower) than that

n the case without callable products. That is, the airline at an ad-

antage always benefits from offering callable products while the

irline at a disadvantage is always worse off no matter whether or

ot it offers callable products in the case with callable products.

pecifically, when the loads of Airlines 1 and 2 are different, Air-

ine 2’s (resp. Airline 1’s) revenue in the case with callable prod-

cts is higher (resp. lower) than that in the case without callable

roducts. (3) When the loads of the two airlines are equal, both

irlines offer callable products in equilibrium and they are better

ff or worse off by offering callable products simultaneously. If the
Airline 1 does not offer callable products while Airline 

2 offers callable products. 

Cases l 1 l 2 p H / p L α

TD = TC 0.5 1.5 130 0.4, 0.6, 0.8 

260 0.8 

0.75 1.25 130 0.4, 0.6, 0.8 

260 0.8 

TD = 1.1TC 0.5 1.7 130 0.4, 0.6, 0.8 

0.8 1.4 130 0.4, 0.6, 0.8 
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Table 4 

Parameter values in the symmetric case under 

which both airlines are better off by offering 

callable products. 

Cases l 1 l 2 p H / p L α

TD = TC 1 1 260, 400 0.4 

TD = 1.1TC 1.1 1.1 260, 400 0.4 

Table 5 

Parameter values in the asymmetric case under which Air- 

line 1 does not offer callable products while Airline 2 offers 

callable products. 

Cases l 1 l 2 p H / p L α

TD = TC 0.5 2 130 0.4, 0.6 

130, 260, 400 0.8 

TD = 1.1TC 0.5 2.3 130 0.4, 0.6, 0.8 
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Table 6 

Parameter values in the asymmetric case under which 

both airlines are worse off by offering callable products. 

Cases l 1 l 2 p H / p L α

TD = TC 1 1 130 0.4, 0.6 

130, 260, 400 0.8 

TD = 1.1TC 1.1 1.1 130 0.6 

130, 260, 400 0.8 
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l  

a  
atio of high fare to low fare ( p H / p L ) is high and the recall price ( p 1 
nd p 2 ) is low, both airlines are better off while they are worse off

nder other parameter values. Specifically, both airlines are better

ff by offering callable products when the parameter values belong 

o Table 4 . Under other parameter values, both airlines are worse

ff by offering callable products. Therefore, callable products may

ring Pareto gains or Prisoner’s Dilemma to the two airlines. 

In the asymmetric case, we obtain the following three results.

1) When the difference between the loads of the two airlines is

arge, and the ratio of high fare to low fare ( p H / p L ) is low or the

ecall price ( p 1 and p 2 ) is high, the airline with a lower load does

ot offer callable products while the airline with a higher load of-

ers callable products in equilibrium. Specifically, if the parameter

alues belong to Table 5 , Airline 1 does not offer callable products

hile Airline 2 offers callable products in equilibrium. Under other

arameter values, both airlines offer callable products in equilib-

ium. The interpretation of the result is as follows. The revenues of

he airlines depend on the proportion of high-fare demand to ca-

acity (i.e., μH i 
/C i ) to a large degree. Thus, compared to the other

irline, whether an airline is at an advantage depends on the ra-

io of their proportion of high-fare demand to capacity. Note that

H i 
/C i = (1 − γ ) l i , where i = 1 , 2 . Obviously, the higher l i is, the

igher μH i 
/C i is. Therefore, an airline with a higher load is at an

dvantage no matter whether its capacity is larger than the other

irline. This result implies that, when the market is pessimistic, the

irline at a disadvantage does not offer callable products in equilib-

ium. (2) When the loads of the two airlines are not equal, the rev-

nue of the airline with a higher (resp. lower) load in the case with

allable products is higher (resp. lower) than that in the case with-

ut callable products. Specifically, if the load of Airline i is higher,

irline i ’s (resp. Airline j ’s ) revenue in the case with callable prod-

cts is higher (resp. lower) than that in the case without callable

roducts, where i, j = 1 , 2 and i � = j . This result is intuitive and is

imilar to that in the symmetric case. (3) When the loads of the

wo airlines are equal, both airlines offer callable products in equi-

ibrium. If the ratio of high fare to low fare ( p H / p L ) is low or the

ecall price ( p 1 and p 2 ) is high, both airlines are worse off by of-

ering callable products. Specifically, if the parameter values belong

o Table 6 , both airlines are worse off by offering callable products.

nder other parameter values, the airline with a higher capacity

s better off while the one with a lower capacity is worse off by

ffering callable products. The result is intuitive. Note that, when

he ratio of high fare to low fare is low or the recall price is high,

he market is pessimistic. So both airlines are worse off by offering

allable products. Moreover, when the loads of the two airlines are

qual, the airline with a higher capacity is at an advantage. 
In general, when the low-fare customers spill, offering callable

roducts is no longer a dominant strategy and may harm the

evenues of the airlines. Numerical examples demonstrate that

hether the two airlines offer callable products and whether of-

ering callable products is beneficial to them mainly depends on

he loads and the capacities of the two airlines. Especially, when

he difference between the loads of the airlines is large, the loads

f the airlines play the most important role. We obtain the follow-

ng two insights: (1) if the ratio of high fare to low fare is low or

he recall price is high, the airline with a lower load does not offer

allable products in equilibrium; (2) the revenue of the airline with

 higher (resp. lower) load is higher (resp. lower) in the case with

allable products than that in the case without callable products.

hen the difference between the loads of the airlines is small, the

apacities of the airlines play the most important role. If the dif-

erence between the capacities of the airlines is also small, the two

irlines are worse off or better off by offering callable products si-

ultaneously. If the difference between the capacities of the air-

ines is large, the airline with a lower capacity is always worse off

y offering callable products while the one with a higher capacity

ay be worse off or better off which depends on the ratio of high

are to low fare and the recall price. 

Furthermore, Proposition 6 implies that, when the two airlines

re symmetric, the booking limits of the two airlines when they

ffer callable products are higher than those when they do not of-

er callable products. Numerical examples show that, the booking

imits of the two airlines in the case with callable products are

igher than those in the case without callable products. This re-

ult is intuitive. In the case with callable products, one airline may

r may not offer callable products in equilibrium. If the airline of-

ers callable products, it can recall some of the low-fare tickets if

eeded, so it will set a higher booking limit. If the airline does

ot offer callable products, its opponent will offer callable prod-

cts and set a higher booking limit. To cope with the competition

rom its opponent, this airline will set a higher booking limit than

hat in the case without callable products. 

. Conclusion 

This paper introduces the concept of callable products into the

apacity allocation game between duopolistic airlines. We examine

he impact of the introduction of callable products on the revenues

nd the booking limits of the two airlines. The analytical results

emonstrate that, if there is no spill of low-fare customers, offering

allable products is a dominant strategy of both airlines and pro-

ides Pareto gains to both airlines. If customers of both fare classes

pill, numerical examples demonstrate that whether the two air-

ines offer callable products and whether offering callable products

s beneficial to the two airlines mainly depends on the loads and

he capacities of them. Moreover, numerical examples demonstrate

hat the booking limits of the two airlines in the case with callable

roducts are always higher than those in the case without callable

roducts. 

There are some limitations in our study. First, to focus on air-

ine competition with regard to booking limits, we take the prices

s exogenously given, including the prices of low-fare tickets, the
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prices of high-fare tickets and the recall prices. Letting the prices

be endogenously determined is a direction for future research. Sec-

ond, in our model, the low-fare tickets are either callable or non-

callable. In reality, airlines can sell both regular low-fare tickets

and callable tickets. One might explore the case in which the low-

fare customers can choose between regular low-fare tickets and

callable tickets. Third, we implicitly assume that the price of reg-

ular low-fare tickets and the price of callable tickets are the same.

In fact, the prices should be different. 
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Appendix A. Proof of Proposition 1 

Proof. Different from the proof of the existence of Nash equilib-

rium in Netessine and Shumsky (2005) , we apply Theorem 2.1 in

Vives (2001) (as shown in Lemma 1 ) to obtain the existence of

Nash equilibrium more directly. 

We first show the existence of the pure-strategy Nash equilib-

rium. The strategy space of the game is [0, C 1 ] × [0, C 2 ] which is

a bounded closed convex set. In addition, according to Eq. (2) , 

∂πi 

∂B i 

= P r(D 

T 
Li > B i ) 

(
p Li − p i P r(D 

T 
Hi > C i − B i | D 

T 
Li > B i ) 

)

= P r(D 

T 
Li > B i ) 

(
p Li − p i P r(D 

T 
Hi > C i − B i | D Li 

> B i − (D Li − B j ) 
+ ) 

)
. (A.1)

As D Li and D 

T 
Hi 

are TP 2 , D Li and D 

T 
Hi 

are right tail increasing

(Proposition 2.3 of Joe, 1997 ), i.e., P r(D 

T 
Hi 

> C i − B i | D Li > B i − (D Li −
B j ) 

+ ) is increasing in B i . It is obvious that ∂ π i / ∂ B i is always pos-

itive or first positive and then negative. Therefore, π i is quasi-

concave in B i . Apparently, π i is continuous in both B i and B j . Re-

ferring to Lemma 1 , there exists a pure-strategy Nash equilibrium

for the game. 

In the following, we show that best response functions of the

airlines are decreasing. Similar to the proof of Proposition 2 in

Netessine and Shumsky (2005) , when the best response functions

are differentiable, we use the Implicit Function Theorem (IFT) to

show that they are non-increasing (Part I). However, Part I does

not eliminate the possibility of jumps up. Part II demonstrates that

the best response functions do not have jumps up. In Part III, we

show the uniqueness of the Nash equilibrium. 

Part I: By the IFT, 

∂B i 

∂B j 

= − ∂ 2 πi 

∂ B i ∂ B j 

/ 
∂ 2 πi 

∂B 

2 
i 

. (A.2)

At Airline i ’s best response, the inequality ∂ 2 πi / ∂B 2 
i 

< 0 holds. We

will show that, when the first order conditions hold, the inequality

∂ 2 π i / ∂ B i ∂ B j < 0 holds. Equivalently, we need to show that ∂ π i / ∂ B i
monotonically decreases in B j . 

∂πi 

∂B i 

= P r(D 

T 
Li > B i ) 

(
p Li − p i P r(D 

T 
Hi > C i − B i | D 

T 
Li > B i ) 

)
. (A.3)

From Proposition 2.3 of Joe (1997) , TP 2 implies that D Li and

D 

T 
Hi 

are right tail increasing, so P r(D 

T 
Hi 

> C i − B i | D Li > B i − (D Li −
B j ) 

+ ) is increasing in B j . Thus the second item in (A.3) is de-
reasing in B j , i.e., p Li − p i P r(D 

T 
Hi 

> C i − B i | D 

T 
Li 

> B i ) is decreasing in

 j . If B ∗
i 
(B ∗

j 
) is some point on player i ’s best response function,

hen ∂πi / ∂B i | (B ∗
i 
,B ∗

j 
) = 0 . So p Li − p i P r(D 

T 
Hi 

> C i − B i | D 

T 
Li 

> B i ) equals

o zero at the point (B ∗
i 
, B ∗

j 
) . Denote ε as a sufficiently small pos-

tive amount, then p Li − p i P r(D 

T 
Hi 

> C i − B i | D 

T 
Li 

> B i ) is smaller than

ero at the point 

(
B i (B ∗

j 
+ ε) , B ∗

j 
+ ε

)
. Thus, ∂πi / ∂B i | (B i (B ∗

j 
+ ε) ,B ∗

j 
+ ε) 

s smaller than zero. Therefore, ∂ π i / ∂ B i decreases with B j . 

Part II: It needs to eliminate the possibility of jumps up in the

est response functions. The proof is similar to Part II in the proof

f Proposition 2 in Netessine and Shumsky (2005) , so it is omitted.

Parts I and II together know that the best response functions

re decreasing. 

Part III: We show that the Nash equilibrium is unique. The

roof is by contradiction. Suppose there are two different Nash

quilibrium solutions (B ∗
i 
, B ∗

j 
) and (B ∗

i 
+ δi , B 

∗
j 
− δ j ) . As the best re-

ponses are decreasing, δi and δj are larger than zero or smaller

han zero simultaneously. We only consider the case where they

re larger than zero. According to the definition of Nash equi-

ibrium and the first order condition for Airline i in Eq. (2) , we

ave, 

P r(D 

T 
Hi > C i − B i | D Li > B i − (D L j − B j ) 

+ ) 

= P r(D 

T 
Hi > C i − B i − δi | D Li > B i + δi − (D L j − B j + δ j ) 

+ ) 

= 

p Li 

p i 
. (A.4)

The item after the first equal sign increases with δi and de-

reases with δj . In order to guarantee that the first equality holds,

i should be smaller than δj . Doing the same analysis to Airline j ,

e obtain that δi > δj , which makes a contradiction. Thus, there is

 unique Nash equilibrium. �

ppendix B. Proof of Proposition 3 

roof. We only show that π00 
1 

≤ π10 
1 

as the analysis of other parts

re similar. Referring to Eqs. (8) and (14) , we obtain the following

quation: 

 r(D 

T 
H2 > C 2 − B 

10 
2 | D L 2 > B 

10 
2 ) = P r( ̃  D 

T 
H2 > C 2 − B 

00 
2 | D L 2 > B 

00 
2 ) . 

(B.1)

As ˜ D 

T 
H2 

> D 

T 
H2 

, the inequality B 10 
2 

> B 00 
2 

holds. Therefore, we

ave the following inequalities: 

π00 
1 = π00 

1 (B 

00 
1 , B 

00 
2 ) ≤ π00 

1 (B 

00 
1 , B 

10 
2 ) ≤ π00 

1 (B 

00 
1 (B 

10 
2 ) , B 

10 
2 ) 

≤ π10 
1 (B 

00 
1 (B 

10 
2 ) , B 

10 
2 ) ≤ π10 

1 (B 

10 
1 , B 

10 
2 ) = π10 

1 . 
(B.2)

The first inequality holds as ∂ π00 
1 

/∂ B 2 > 0 . Note that an incre-

ental increase in the booking limit of one airline results in more

igh-fare customers for the other airline but has no effect on the

ow-fare demand of the other airline. 

The second inequality holds as in the first scenario B 00 
1 

(B 10 
2 

) is

he best response of Airline 1 to the booking limit B 10 
2 

of Airline 2.

The third inequality holds as callable products can bring riskless

evenue improvement. 

The fourth inequality holds as in the second scenario B 10 
1 

is the

est response of Airline 1 to the booking limit B 10 
2 

of Airline 2. �

ppendix C. Proof of Proposition 4 

roof. The objective function of the alliance is the sum of the

wo airlines’ objective functions, π = πi + π j , and the centralized
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ptimality condition ∂ (πi + π j ) /∂ B i = 0 can be written as 

P r(D 

T 
Hi > C i − B 

C 
i | D Li > B 

C 
i − (D L j − B 

C 
j ) 

+ )) 

= 

p Li 

p i 
+ 

∂π j 

∂B i 

1 

p i P r(D Li > B 

C 
i 

− (D L j − B 

C 
j 
) + )) 

. (C.1) 

Clearly, ∂ π j / ∂ B i is larger than zero as an incremental increase

n the booking limit by one airline results in fewer low-fare cus-

omers for the other airline but has no effect on the high-fare de-

and of the other airline. 

The decentralized optimality condition ∂ πi /∂ B i = 0 can be writ-

en as 

 r(D 

T 
Hi > C i − B i | D 

T 
Li > B i ) = 

p Li 

p i 
. (C.2)

Comparing Eqs. (C.2) and (C.1) , we find that 

P r(D 

T 
Hi > C i − B 

∗
i | D Li > B 

∗
i − (D L j − B 

∗
j ) 

+ ) > 

P r(D 

T 
Hi > C i − B 

C 
i | D Li > B 

C 
i − (D L j − B 

C 
j ) 

+ ) . 
(C.3) 

According to Proposition 1 , the Nash equilibrium exists, so in

he symmetric case, there is a symmetric Nash equilibrium ( B ∗
1 

=
 

∗
2 
) which is also the unique one as Proposition 1 also demon-

trates that the Nash equilibrium is unique. Therefore, B ∗
i 

= B ∗
j 
<

 

C 
i 

= B C 
j 

or B ∗
i 

= B ∗
j 
≥ B C 

i 
= B C 

j 
. As D Li and D 

T 
Hi 

are TP 2 , only the lat-

er case holds. �

ppendix D. Proof of Proposition 5 

roof. The proofs of Part (1) and Part (2) are similar, we only

resent the proof of Part (1) here. 

Denote the Nash equilibrium solution as (B ∗
i 
, B ∗

j 
) when the re-

all prices are p i and p j . If p i increases to p ′ 
i 
, denote the corre-

ponding Nash equilibrium solution by (B 
′ 
i 
, B 

′ 
j 
) . (B ∗

i 
, B ∗

j 
) and (B 

′ 
i 
, B 

′ 
j 
)

atisfy the optimality condition (C.2) . So, 

P r(D 

T 
Hi > C i − B 

∗
i | D Li > B 

∗
i − (D L j − B 

∗
j ) 

+ ) > 

P r(D 

T 
Hi > C i − B 

′ 
i | D Li > B 

′ 
i − (D L j − B 

′ 
j ) 

+ ) , 
(D.1) 

P r(D 

T 
H j > C j − B 

∗
j | D L j > B 

∗
j − (D Li − B 

∗
i ) 

+ ) = 

P r(D 

T 
H j > C j − B 

′ 
j | D L j > B 

′ 
j − (D Li − B 

′ 
i ) 

+ ) . 
(D.2) 

Now consider the following four cases: 

1. B ∗
i 

< B 
′ 
i 
, B ∗

j 
< B 

′ 
j 
. Given the TP 2 assumption, the probability item

in (D.1) is increasing in both B i and B j , so this case is impossible

to happen. 

2. B ∗
i 

< B 
′ 
i 
, B ∗

j 
> B 

′ 
j 
. As the probability item in (D.1) is increasing

in both B i and B j , the increment of B i increases the probability

item in (D.1) and the decrement of B j decreases the probability

item in (D.1) . In order to guarantee Inequality (D.1) holds, the

inequality | B ∗
i 

− B 
′ 
i 
| < | B ∗

j 
− B 

′ 
j 
| must hold. However, the analysis

of Inequality (D.2) leads to an opposite requirement | B ∗
i 

− B 
′ 
i 
| >

| B ∗
j 
− B 

′ 
j 
| , which is a contradiction. 

3. B ∗
i 

> B 
′ 
i 
, B ∗

j 
> B 

′ 
j 
. Given the TP 2 assumption, the probability item

in (D.2) is increasing in both B i and B j , so this case is impossible

to happen. 

The only remaining case is that B ∗
i 

≥ B 
′ 
i 

and B ∗
j 
≤ B 

′ 
j 
. Therefore,

 

∗
i 

decreases with p i while B ∗
j 

increases with p i . �

ppendix E. Proof of Proposition 6 

roof. The proofs of Part (1) and Part (2) are similar, we only

resent the proof of Part (1). 
The optimality condition (C.2) requires that, if ( B i , B j ) is an equi-

ibrium solution, the following equation holds: 

 r 
(
D 

T 
Hi > C i − B i | D Li > B i − (D L j − B j ) 

+ ) = 

p L 
p 

. (E.1) 

ccording to Proposition 1 , the Nash equilibrium exists. Thus, in

he symmetric case, there must exist a symmetric Nash equi-

ibrium (B ∗
i 
, B ∗

j 
) where B ∗

i 
= B ∗

j 
, which is also the unique one

s Proposition 1 also demonstrates that the Nash equilibrium is

nique. As p increases, B ∗
i 

and B ∗
j 

increase or decrease simultane-

usly. If they increase simultaneously as p increases, the left hand

ide of Eq. (E.1) increases while the right hand side of (E.1) de-

reases, which leads to a contradiction. Therefore, B ∗
1 

and B ∗
2 

both

ecrease with p . �
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