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1. Introduction

A linear code C over the finite field Fq of length n is a subspace of Fn
q . It is called 

cyclic if it also satisfies that any (c0, c1, · · · , cn−1) ∈ C implies (cn−1, c0, · · · , cn−2) ∈ C. 
By the one-to-one correspondence

σ : C → R := Fq[x]/(xn − 1)

(c0, c1, · · · , cn−1) �→ c0 + c1x + · · · + cn−1x
n−1,

each cyclic code C is equivalent to an ideal of R. Since R is a principal ideal ring, there 
exists a unique monic polynomial g(x) with least degree such that σ(C) = g(x)R and 
g(x) | (xn−1). The g(x) is called the generator polynomial of C and h(x) := (xn−1)/g(x)
is called the parity-check polynomial of C. The cyclic code C is called irreducible (resp. 
reducible) if h(x) is irreducible (resp. reducible) over Fq. For C reducible, we say that 
C has t (≥ 2) nonzeros if h(x) has t irreducible factors over Fq. (In the literature some 
authors call C as “the dual of a cyclic code with t zeros” instead.)

Denote by Ai the number of codewords of C with Hamming weight i. The weight 
enumerator of C with length n is a polynomial in Z[Y ] defined by

A0 + A1Y + A2Y
2 + · · · + AnY

n.

The sequence (A0, A1, · · · , An) is called the weight distribution of C. The study of the 
weight distribution of a linear code is important in both theory and application, since it 
gives the minimum distance and thus the error correcting capability of the code, and the 
determination of weight distribution of a code allows the computation of the probability 
of error detection and correction with respect to some algorithms [14]. Moreover, the 
weight distribution is always related to interesting and challenging problems in number 
theory [5,27].

For irreducible cyclic codes, an identity due to McEliece [20] shows that the weights of 
the codes can be expressed via Gauss sums. Because Gauss sums in general are extremely 
difficult to evaluate, the weight distribution of irreducible cyclic codes is still quite dif-
ficult to obtain, however, extensive studies have been carried out with much success by 
various number theoretic techniques [1–3,12,20,21,25,28,33]. In particular nice charac-
terizations were given in [8,29,30] for irreducible cyclic codes with exactly one nonzero 
weight; necessary and sufficient conditions were provided and conjectures were also raised 
by Schmidt and White [26] for irreducible cyclic codes with at most two nonzero weights. 
Interested readers may consult the survey paper [8] for more updated information on the 
weight distribution of irreducible cyclic codes.

For reducible cyclic codes, it has been known that the determination of weight distri-
bution involves the evaluation of exponential sums. This may be even more difficult in 
general. For many special families of reducible cyclic codes where neat expressions are 
available, various delicate techniques from number theory and algebraic combinatorics 
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have been developed and utilized, and for some of such families, the weight distribution 
can been obtained (see for example [7,9–11,13,16–19,22,23,31,32,34–36,38]). However, to 
our best knowledge, most of these literature works focus on reducible cyclic codes with 
two or three nonzeros. The exponential sums which have been explicitly evaluated seem 
to share a common feature that they attain only a few distinct values.

For reducible cyclic codes with more than three nonzeros, not much is known. In a 
beautiful work [15], the authors obtained the weight distribution of a class of cyclic codes 
with arbitrary number of nonzeros. Their work built upon an unexpected connection 
between the corresponding exponential sums and the spectra of Hermitian forms graphs 
which were known in the literature. In another recent work [37] a general family of 
reducible cyclic codes with arbitrary number of nonzeros were constructed and under 
certain conditions the weight distribution was also obtained. The purpose of this paper is 
to explore the construction of [37] much further and to determine the weight distribution 
for another new family of reducible cyclic codes with arbitrary number of nonzeros. 
Compared with [37], we achieve our goal by more advanced theory of Jacobi sums and 
by more subtle treatment of some complicated combinatorial identities.

The rest of the paper is organized as follows. The codes we consider will be introduced 
in Section 2, so are the main results (Theorems 1, 2 and 3). Section 3 introduces some 
mathematical tools such as cyclotomy, Gaussian periods and general Jacobi sums that 
will be needed later. In Sections 4 and 5 we prove our main theorems. To streamline the 
proofs of Theorems 1, 2 and 3 we have left out the proof of a complicated combinatorial 
identity to Section 6. Section 7 concludes this paper.

2. Weight distribution of code C(a1,···,at)

We first fix some notations. Let p be a prime, q = ps, r = qm for some integers 
s, m � 1. Let Fr be a finite field of order r and γ be a generator of the multiplicative 
group F∗

r := Fr \ {0}. For any t ≥ 2, the family of reducible cyclic codes C(a1,···,at) with 
t nonzeros were introduced in [37] as follows.

Let e, t be integers such that e � t � 2, and assume that

i) a �≡ 0 (mod r − 1) and e|(r − 1);
ii) ai ≡ a + r−1

e Δi (mod r − 1), 1 � i � t, where Δi �≡ Δj (mod e) for any i �= j and 
gcd(Δ2 − Δ1, . . . , Δt − Δ1, e) = 1;

iii) deg ha1(x) = · · · = deg hat
(x) = m, and hai

(x) �= haj
(x) for any 1 � i �= j � t, 

where hai
(x) is the minimal polynomial of γ−ai over Fq;

iv) N = gcd
(

r−1
q−1 , ae

)
;

v) δ = gcd(r − 1, a1, a2, · · · , at), n = r−1
δ .

The cyclic code C(a1,···,at) with t nonzeros γ−a1 , · · · , γ−at is given by
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C(a1,···,at) =
{
c(x1, x2, · · · , xt) =

(
Trr/q

(∑t
j=1 xjγ

aji
))n−1

i=0
: ∀x1, · · · , xt ∈ Fr

}
,

(1)

where Trr/q denotes the trace map from Fr to Fq.
It shall be noted that Condition iii) can be easily verified, for example, it holds if 

r−1
q�−1 � N for any proper factor � of m (i.e. � | m and � < m, see [37, Lemma 6]). In 
particular this is always the case if N = 2, which is our interest in the paper.

Delsarte’s Theorem [6] states that C(a1,···,at) is an [n, tm] cyclic code over Fq with 
parity-check polynomial h(x) = ha1(x) · · ·hat

(x). This class of codes C(a1,···,at) contains 
many interesting cyclic codes as special cases which have been extensively studied in the 
literature [19,7,11,32,34–36], all of which focus on the case t = 2.

For any t ≥ 2, in [37] we obtain the weight distribution of C(a1,···,at) under either of 
the following conditions:

• for any t, e ≥ 2 when N = 1; or
• for any t = e ≥ 2 with N = 1, 2, 3; or with N = (pj + 1)/k for some positive integers 

j, k; or with N being a prime number such that N ≡ 3 (mod 4), 
(

p
N

)
= 1 (here 

(∗
∗
)

denotes the Legendre symbol).

In this paper we obtain the weight distribution of C(a1,···,at) for any t ≥ 2 such that 
t = e − 1 and N = 2. Note that under these conditions, it is necessary that q is odd, m
is even and 2|ae. Our main results are stated as follows.

Theorem 1. In the case of N = 2, t = e − 1 � 2, and we further assume that

e|(qm/2 − 1) and 2|a. (2)

The code C(a1,...,at) is an [n, tm] cyclic code over Fq with the minimal Hamming distance 

d = 2(q−1)(r−√
r)

(t+1)qδ . It has (at most) 1
2 (t2 + 5t − 2) non-zero distinct weights.

(i). If q ≡ 1 (mod 4), then the weight distribution is listed in Table 1.
(ii). If q ≡ 3 (mod 4), then the weight distribution is listed in Table 2.

We remark that if N = 2 and t = e − 1 is even, then the condition (2) will be always 
satisfied, so this settles the case completely. In particular the special case N = 2, e = 3, 
t = 2 was already studied in [32]. When N = 2 and t = e − 1 is odd, there are two 
cases: if the condition (2) is satisfied, this is again settled by Theorem 1; on the other 
hand, if the condition (2) is not satisfied, in principle the weight distribution still can be 
obtained. However, the formulas become quite complicated. To illustrate that, we first 
present the weight distribution for the simple case t = 3 in Theorem 2, and then give a 
computational formula for the general case in Theorem 3.
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Table 1
The weight distribution of C when N = 2 and t = e − 1 � 2: Case (i).

Weight Frequency (∀ 1 � k � t, 0 � u � k + 1)
0 once

q−1
(t+1)qδ ·

{
(k + 1)r − (k + 1 − 2u)

√
r

} (r−1)
r2k+2 ·

(t+1
k+1
)(k+1

u

)
·
{
2(r − 1)k

−(−1)k
{
(1 +

√
r)u(1 − √

r)k+1−u

+(1 − √
r)u(1 +

√
r)k+1−u

}}

Table 2
The weight distribution of C when N = 2 and t = e − 1 � 2: Case (ii).

Weight Frequency (∀ 1 � k � t, 0 � u � k + 1)
0 once

q−1
(t+1)qδ ·

{
(k + 1)r

−(−1)m/2(k + 1 − 2u)
√
r

}
(r−1)
r2k+2 ·

(t+1
k+1
)(k+1

u

)
·
{
2(r − 1)k

−(−1)k
{
(1 +

√
r)u(1 − √

r)k+1−u

+(1 − √
r)u(1 +

√
r)k+1−u

}}

Theorem 2. In the case of N = 2, t = e − 1 = 3, the code C(a1,a2,a3) is an [n, 3m] cyclic 

code over Fq with the minimal Hamming distance d = (q−1)(r−√
r)

2qδ . It has (at most) 12
non-zero weights.

(i). If 2|a, then its weight distribution is listed in Table 3 (or Table 1 with t = 3).
(ii). If 2 � a, then its weight distribution is listed in Table 4.

We now consider the general case for N = 2 and t = e − 1. Denote g := γa and 
β := γ(r−1)/e. And let A be the Vandermonde matrix of size (t + 1) × (t + 1), given by

A :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1
1 β · · · βe−1

1 β2 · · · β2(e−1)

...
...

...
1 βe−1 · · · β(e−1)2

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Take B be the (t +1) ×t-matrix whose columns consist of the {	1+1, . . . , 	t+1} (mod e)
columns of A, where 	i are the basic parameters of C(a1,···,at). Let

(y0, · · · , yt)T = B(x1, · · · , xt)T . (4)

Since rankB = t (see also [37, Lemma 18]), this gives a one-to-one correspondence 
between (y1, . . . , yt) and (x1, . . . , xt), and there exist some 0 �= λi ∈ Fq for 1 � i � t

such that



46 J. Yang et al. / Finite Fields and Their Applications 36 (2015) 41–62
Table 3
The weight distribution of C(a1,a2,a3) when t = e − 1 = 3, 
N = 2 and 2 | a.

Weight Frequency

0 once

q−1
2δq (r +

√
r) 3(r − 1) times

q−1
2δq (r − √

r) 3(r − 1) times
3(q−1)

4δq (r +
√
r) (r − 1)(r − 5)/2 times

3(q−1)
4δq (r − √

r) (r − 1)(r − 5)/2 times
(q−1)
4δq (3r +

√
r) 3(r − 1)2/2 times

(q−1)
4δq (3r − √

r) 3(r − 1)2/2 times
(q−1)

δq (r +
√
r) (r − 1)(r2 − 2r + 9)/16 times

(q−1)
δq (r − √

r) (r − 1)(r2 − 2r + 9)/16 times
(q−1)
2δq (2r +

√
r) (r − 1)(r2 − 4r + 3)/4 times

(q−1)
2δq (2r − √

r) (r − 1)(r2 − 4r + 3)/4 times
(q−1)

δq r 3(r − 1)3/8 times

Table 4
The weight distribution of C(a1,a2,a3) when t = e − 1 = 3, 
N = 2 and 2 � a.

Weight Frequency

0 once

q−1
2δq (r +

√
r) (r − 1) times

q−1
2δq (r − √

r) (r − 1) times
q−1
2δq r 4(r − 1) times
3(q−1)

4δq (r +
√
r) (r − 1)2/2 times

3(q−1)
4δq (r − √

r) (r − 1)2/2 times
(q−1)
4δq (3r +

√
r) (r − 1)(3r − 7)/2 times

(q−1)
4δq (3r − √

r) (r − 1)(3r − 7)/2 times
(q−1)

δq (r +
√
r) (r − 1)3/16 times

(q−1)
δq (r − √

r) (r − 1)3/16 times
(q−1)
2δq (2r +

√
r) (r − 1)(r2 − 4r + 3)/4 times

(q−1)
2δq (2r − √

r) (r − 1)(r2 − 4r + 3)/4 times
(q−1)

δq r (r − 1)(3r2 − 6r + 11)/8 times

y0 +
t∑

i=1
λiyi = 0.

We note that {λi}ti=1 depend only on the parameters {	i (mod e)}ti=1 and β. We further 
define



J. Yang et al. / Finite Fields and Their Applications 36 (2015) 41–62 47
l0 = #{i | λig
i is a square in Fr, 1 � i � t};

l1 = #{i | λig
i is a nonsquare in Fr, 1 � i � t}. (5)

Next, we extend the definition of binomial coefficient to all integers such that(
n

i

)
= 0, for i < 0 and i > n.

With such preparations, we give our main result for the general case as follows.

Theorem 3. In the case of N = 2 and t = e −1 � 2, the code C(a1,...,at) is an [n, tm] cyclic 

code over Fq with the minimal Hamming distance d = 2(q−1)(r−√
r)

(t+1)qδ , and the Hamming 
weight of its codewords takes the value 0 once and the value

(q − 1)
(t + 1)qδ

[
k(r − 1) − 2uη(2,r)

0 − 2(k − u)η(2,r)
1

]
,

for any 2 ≤ k ≤ t + 1 and 0 � u ≤ k, with the frequency

k∑
k0=0

u∑
u0=0

(
l0 + 1
k0

)(
l1

k − k0

)(
k0

u0

)(
k − k0

u− u0

)
Ω 0 · · · 0︸ ︷︷ ︸

2u0+k−k0−u,

1 · · · 1︸ ︷︷ ︸
k0+u−2u0

,

where η(2,r)
0 , η(2,r)

1 are given by Lemma 5, Ω0 · · · 0︸ ︷︷ ︸
u

1 · · · 1︸ ︷︷ ︸
v

is determined by Lemma 10 and 

l0, l1 are defined by (5).

We remark that Theorem 3 is a general computational formula for the weight distri-
bution of C(a1,···,at), and the results of Theorem 1 and Theorem 2 can be viewed as its 
corollaries. However, the frequency formula in Theorem 3 is complicated since it depends 
on the choice of 	1, · · · , 	t, and there seems no easy way to write them down in a simple 
closed form as Theorem 1.

In the end of this section, we give several numerical examples to illustrate our main 
theorems.

Example 4. Let (q, m, e, t) = (5, 2, 4, 3), then r−1
3 = 52−1

4 = 6. Let γ be the generator of 
F∗

25 with characteristic polynomial γ2 + 4γ + 2 = 0. Let (	1, 	2, 	3) = (1, 2, 3).

(1). For a = 2 we have (a1, a2, a3) = (8, 14, 20), (δ, n) = (2, 12) and

ha1(x) = x2 + x + 1, ha2(x) = x2 + 3x + 4, ha3(x) = x2 + 4x + 1.

The parity-check polynomial of C is h(x) = x6 + 3x5 + 3x3 + 3x + 4. The code C is 
a [12, 6, 4]-cyclic code over F5 with weight enumerator given by
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1 + 72Y 4 + 312Y 6 + 864Y 7 + 1740Y 8 + 3408Y 9 + 5184Y 10 + 3168z11 + 876Y 12.

This also follows from Table 3. There are 8 distinct non-zero weights because some 
of the weights in Table 3 turn out the same. More precisely,

(q−1)
2δq (r +

√
r) = 3(q−1)

4δq (r −√
r),

(q−1)
4δq (3r +

√
r) = (q−1)

δq (r −√
r),

3(q−1)
4δq (r +

√
r) = (q−1)

2δq (2r −√
r). (6)

(2). For a = 1 we have (a1, a2, a3) = (7, 13, 19), (δ, n) = (1, 24) and

ha1(x) = x2 + x + 2, ha2(x) = x2 + 2x + 1, ha3(x) = x2 + 4x + 2.

The parity-check polynomial of C is h(x) = x6 + 2x5 + 4x4 +x3 + 2x2 + 3x + 4. The 
code C is a [24, 6, 8]-cyclic code over F5 with weight enumerator given by

1 + 24Y 8 + 96Y 10 + 312Y 12 + 816Y 14 + 1680Y 16 + 3456Y 18 + 5208z20

+ 3168Y 22 + 864Y 24.

This also follows from Table 4. There are 9 distinct non-zero weights because some 
of the weights in Table 4 turn out the same. More precisely, equations (6) still hold 
true.

3. Cyclotomy, Gaussian periods and Jacobi sums

An additive character of Fr is a non-zero function φ from Fr to the set of complex 
numbers such that φ(x + y) = φ(x)φ(y) for any pair (x, y) ∈ F2

r. Let Trr/p denote the 
trace function from Fr to Fp and ζp = e2π

√
−1/p be the primitive p-th complex root of 

unit. The additive character ψ given by

ψ(c) = ζ
Trr/p(c)
p for any c ∈ Fr (7)

is called the canonical additive character of Fr. For any x ∈ Fr, one can easily check the 
orthogonal property

1
r

∑
x∈Fr

ψ(ax) =
{

1, if a = 0;
0, if a ∈ F∗

r .
(8)

Let r−1 = lL for two positive integers l, L � 1, and let γ be a fixed primitive element 
of Fr. Define C(L,r)

i = γi〈γL〉 for i = 0, 1, . . . , L − 1, where 〈γL〉 denotes the subgroup of 
F∗
r generated by γL. The C(L,r)

i are called the cyclotomic classes of order L in Fr. The
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Gaussian periods of order L are defined by

η
(L,r)
i =

∑
x∈C

(L,r)
i

ψ(x), i = 0, 1, . . . , L− 1.

The values of Gaussian periods are difficult to compute in general. However, they 
are known in a few cases. We will need the following whose proofs can be found in [4]
and [24].

Lemma 5. When L = 2, the Gaussian periods are given by

η
(2,r)
0 =

{
−1+(−1)s·m−1r1/2

2 , if p ≡ 1 (mod 4)
−1+(−1)s·m−1(

√
−1)s·mr1/2

2 , if p ≡ 3 (mod 4)

and η(2,r)
1 = −1 − η

(2,r)
0 .

A multiplicative character of Fr is a non-zero function χ from F∗
r to the set of complex 

numbers such that χ(xy) = χ(x)χ(y) for all the pairs (x, y) ∈ F∗
r × F∗

r . For j = 1, 2,
. . . , r − 1, one can easily check that the functions χ(j) with

χ(j)(γk) = ζjkr−1 for k = 0, 1, . . . , r − 2

give all the multiplicative character of order dividing r−1, here ζr−1 denotes the primitive 
complex (r − 1)-th root of unit. When j = r − 1, ε(c) := χ(r−1)(c) = 1 for all c ∈ F∗

r , 
which is called the trivial multiplicative character of Fr. One can check the following 
orthogonal property of multiplicative characters

1
r − 1

∑
x∈F∗

r

χ(x) =
{

1, if χ = ε;
0, otherwise.

(9)

Furthermore, we may extend the definition of any multiplicative character χ to Fr as 
follows,

χ(0) =
{

0, if χ �= ε;
1, if χ = ε.

Let k � 2 and χ1, · · · , χk be multiplicative characters of Fr. The Jacobi sum related 
with χ1, · · · , χk over Fr is defined by

J(χ1, · · · , χk) :=
∑

z1,···zk∈Fr
z1+···+zk=1

χ1(z1)χ2(z2) · · ·χk(zk).

The following [4] are elementary properties of Jacobi sums.
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Lemma 6.
(a). J(ε, · · · , ε︸ ︷︷ ︸

k

) = rk−1.

(b). J(χ1, · · · , χk) = 0 if some but not all of χ1, · · · , χk are trivial.
(c). When r is odd, let ρ be the quadratic multiplicative character of Fr, then

J(ρ, · · · , ρ︸ ︷︷ ︸
k

) =
{

−ρ(−1) k
2 r

k−2
2 , if k is even;

ρ(−1) k−1
2 r

k−1
2 , if k is odd.

We now define the reduced Jacobi sum below,

J∗(χ1, · · · , χk) :=
∑

z1,···zk∈F∗r
z1+···+zk=1

χ1(z1)χ2(z2) · · ·χk(zk), (10)

which is needed in the next section.
Notice that J∗(χ1, · · · , χk) = J(χ1, · · · , χk) if all of χ1, · · · , χk are non-trivial. The fol-

lowing results give the evaluation of J∗(χ1, · · · , χk) if some of χ1, · · · , χk are trivial. The 
proof is not difficult but may be of independent interest. It is essential in Section 6 to es-
tablish a complicated combinatorial identity, which is needed in the proofs of Theorems 1
and 2.

Lemma 7.
(a). J∗(ε, · · · , ε) =

{
(r − 1)k − (−1)k

}
/r.

(b). Define J(χ) := 1 for any multiplicative character χ. Let u be an integer such that 
0 � u � k − 1. If χ1, · · · , χk−u are all nontrivial multiplicative characters, then

J∗(χ1, · · · , χk−u, ε, · · · , ε︸ ︷︷ ︸
u

) = (−1)uJ(χ1, · · · , χk−u).

Proof. By definition, we have

J∗(ε, · · · , ε) = J(ε, · · · , ε) −
∑
I

∑
∑
i∈I

zi=1

ε(
∏
i∈I

zi),

where the subscript I under the 
∑

symbol means to sum over all subsets I such that 
I � {1, 2, · · · , k}. Using the inclusion–exclusion principle, Part (a) of Lemma 7 can be 
easily proved. Now for Part (b), let I ′ � {k − u + 1, · · · , k}, then

J∗(χ1, · · · , χk−u, ε, · · · , ε︸ ︷︷ ︸
u

)

= J(χ1, · · · , χk−u, ε, · · · , ε︸ ︷︷ ︸
u

) −
∑
I′

∑
∑k−u

j=1 zj+
∑

′
zi=1

χ1(z1)χ2(z2) · · ·χk(zk−u)ε(
∏
i∈I′

zi)
i∈I
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= 0 −
(
u
1
)
J∗(χ1, · · · , χk−u, ε, · · · , ε︸ ︷︷ ︸

u−1

) −
(
u
2
)
J∗(χ1, · · · , χk−u, ε, · · · , ε︸ ︷︷ ︸

u−2

)

− · · · −
(
u
u

)
J∗(χ1, · · · , χk−u).

By induction, Part (b) can be also verified. �
4. Proof of Theorem 1

4.1. The weight distribution of C(a1,···,at) and summation of Gaussian periods

We now consider the weight distribution of the cyclic code C(a1,···,at) given in (1). 
Using the orthogonal relation (8) and some computational techniques, in [37] the authors 
expressed the Hamming weight of the codeword c(x1, · · · , xt) by

wH(c(x1, · · · , xt)) = (r − 1)(q − 1)
qδ

− N(q − 1)
eqδ

e−1∑
h=0

η̄
(N,r)

gh·
t∑

τ=1
xτβh

τ

, (11)

where g = γa, βτ = γ
r−1
e Δτ for 1 � τ � t and η̄(N,r)

v =
∑

z∈C
(N,r)
0

ψ(vz) for any v ∈ Fr. 

These η̄(N,r)
v are called the modified Gaussian periods, given by⎧⎨⎩ η̄

(N,r)
0 = r−1

N ,

η̄
(N,r)
γj = η

(N,r)
i , for 0 � j � r − 2,

where 0 � i � N−1 such that i ≡ j (modN), and these η(N,r)
i are the ordinary Gaussian 

periods. Thus, to compute the weight distribution of cyclic code C(a1,···,at), it suffices to 
compute the value distribution of the sum

T (x1, · · · , xt) :=
e−1∑
h=0

η̄
(N,r)
gh·
∑t

τ=1 xτβh
τ
, (∀x1, · · · , xt ∈ Fr). (12)

Now we deal with it under the assumption of N = 2 and t = e − 1 ≥ 2.

4.2. The case of N = 2 and t = e − 1 ≥ 2

Since N = 2, it is easy to see that q is odd, m is even and −1 = γ
qm−1

2 is a square. 
For simplicity, let us write

η̄x := η̄(2,r)
x , ∀x ∈ Fr.

Make a change of variables
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yh =
t∑

τ=1
xτβ

h
τ , 0 ≤ h ≤ t = e− 1,

which can be written as

(y0, · · · , yt)T = B(x1, · · · , xt)T (13)

for some (t + 1) × t matrix B. Recall that β = γ(r−1)/e is an e-th root of unity in Fr. 
Since βτ = β�τ , the matrix B consists of t columns of the Vandermonde matrix A, 
defined by (3). By [37, Lemma 18], any t rows of B are linearly independent over Fq. 
This gives a one-to-one correspondence between (y1, . . . , yt) and (x1, . . . , xt) and there 
exist λ1, · · · , λt ∈ F∗

qm such that

y0 +
t∑

h=1

λhyh = 0. (14)

We define λ̃h (1 � h � t) as

λ̃h =
{

1, if λhg
h is a square in Fr;

γ, if λhg
h is a nonsquare in Fr,

(15)

and we change variables again λhyh → yh, then we see that to compute the weight 
distribution of the cyclic code C(a1,···,at), it suffices to compute the value distribution of 
the sum

T̃ (y0, · · · , yt) := η̄y0 +
t∑

h=1

η̄λ̃hyh
, ∀ (y1, · · · , yt) ∈ Ft

r, (16)

where y0 := y0(y1, . . . , yt) satisfies

y0 +
t∑

h=1

yh = 0 (17)

4.3. Proof of Theorem 1

When 2|a, then g = γa is a square. Moreover, e|(qm/2 − 1) means that β =
γ(qm/2+1)(qm/2−1)/e ∈ Fqm/2 , hence the matrix A is defined over Fqm/2 , so are all the 
λh in (14), thus λh are all squares in Fqm , that is, λ̃h = 1 (∀h).

To study the value distribution of T̃ := T̃ (y0, . . . , yt), we will divide the space of 
(y1, . . . , yt) ∈ Ft

r according to the integer κ, which counts the number of i (0 ≤ i ≤ t) 
such that yi = 0. Obviously 0 ≤ κ ≤ t + 1.

If κ ≥ t, i.e., at least t terms of y0, y1, . . . , yt equal to 0, then all of them equal to 0, 
T̃ = (t + 1)η̄0 and the frequency is 1.
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If κ = t − 1, i.e., exactly (t − 1) terms of y0, y1, . . . , yt equal to 0, say for example the 
two terms which are not 0 are yi, yj for some 0 ≤ i < j ≤ t, the number of choices of 
such i, j is 

(
t+1
2
)
, and the constraint (17) becomes yi + yj = 0, or yi = −yj . Hence for 

this i, j we find that

T̃ = (t− 1)η̄0 + η̄yj
+ η̄−yj

= (t− 1)η̄0 + 2η̄yj
.

So the value distribution of T̃ for κ = t − 1 is as follows:

Value T̃ Frequency
(t− 1)η̄0 + 2η0,

r−1
2 ·
(
t+1
2
)

(t− 1)η̄0 + 2η1,
r−1
2 ·
(
t+1
2
)

Now suppose in general κ = t − k for some k with 1 ≤ k ≤ t. Say the (k + 1) terms 
which are not 0 are yi0 , yi1 , . . . , yik for some 0 ≤ i0 < i1 < · · · < ik ≤ t. The number of 
ways to choose such ij ’s is 

(
t+1
k+1
)
, and for such ij ’s, the constraint (17) becomes

yi0 + yi1 + · · · + yik = 0,

and we find that

T̃ = (t− k)η̄0 + η̄yi0
+ η̄yi1

+ · · · + η̄yik
.

In order to compute the value distribution of T̃ for these cases, it suffices to compute 
for any positive integer u and any sequence i1, · · · , iu, iu+1 ∈ {0, 1} the value Ωi1···iuiu+1

given by

Ωi1···iuiu+1 := #

⎧⎨⎩(x1, · · · , xu) ∈ (F∗
r)u

∣∣∣∣∣∣ x1 ∈ C
(2,r)
i1

, · · · , xu ∈ C
(2,r)
iu

,

u∑
j=1

xj ∈ C
(2,r)
iu+1

⎫⎬⎭ .

(18)

We will prove in Section 6 that the value Ωi1···iuiu+1 depends only on the number of 
0’s and 1’s in the sequence i1, . . . , iu+1. More precisely for any u + v ≥ 1 we have (see 
Lemma 10 in Section 6)

Ω0 · · · 0︸ ︷︷ ︸
u

1 · · · 1︸ ︷︷ ︸
v

=

r−1
r2u+v+1

{
2(r − 1)u+v−1 + (−1)u+v

{
(1 +

√
r)u(1 −

√
r)v + (1 −

√
r)u(1 +

√
r)v
}}

.

Note that the number of ways to choose a fixed u ≥ 0 is 
(
k+1
u

)
. So, for the case that 

κ = t − k, 1 ≤ k ≤ t, the value distribution of T̃ is given as follows
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Value T̃ Frequency (∀u, v ≥ 0, u + v = k + 1)
(t− k)η̄0 + uη0 + vη1,

(
t+1
k+1
)(

k+1
u

)
Ω0 · · · 0︸ ︷︷ ︸

u

1 · · · 1︸ ︷︷ ︸
v

As for the values η̄0, η0, η1, we have η̄0 = r−1
2 and from Lemma 5

{
η0 = −1−√

r
2 , η1 = −1+

√
r

2 , if q ≡ 1 (mod 4),
η0 = −1−(−1)ms/2√r

2 , η1 = −1+(−1)ms/2√r
2 , if q ≡ 3 (mod 4).

Now we have obtained the value distribution of T̃ . Returning to (12) and (11) gives us 
the weight distribution of the cyclic code C(a1,···,at), which is summarized in Tables 1
and 2 in Theorem 1. This completes the proof of Theorem 1.

5. Proof of Theorem 2 and Theorem 3

5.1. Proof of Theorem 3

Recall from (16) and (17) that to compute the weight distribution of the cyclic 
code C(a1,···,at), it suffices to compute the value distribution of the sum, ∀(y1, · · · , yl0 ,
z1, . . . , zl1) ∈ Fl0+l1

r ,

T̃ (y0, y1, · · · , yl0 , γz1, · · · , γzl1) :=
l0∑

h=0

η̄yh
+

l1∑
h=1

η̄γzh , (19)

where l0, l1 are defined by (5) so that l0 + l1 = t and y0 := y0(y1, . . . , yl0 , z1, . . . , zl1)
satisfies

y0 + y1 + · · · + yl0 + z1 + · · · + zl1 = 0. (20)

To study the value distribution of T̃ in (19), we consider the different subcases according 
to different (k0, k1), where k0, k1 are defined by

k0 := #{i | 0 � i � l0, yi �= 0};

k1 := #{i | 1 � i � l1, zi �= 0}.

If k0 + k1 ≤ 1, by (20), all of y0, y1, . . . , yl0 , z1, . . . , zl1 are 0, the frequency is 1 and 
T̃ = (t + 1)η̄0.

If k0 + k1 ≥ 2, the number of ways to choose exactly k0 non-zero terms in y0, . . . , yl0
and exactly k1 non-zero terms in z1, . . . , zl1 is 

(
l0+1
k0

)(
l1
k1

)
. Once they are chosen, without 

loss of generality we may assume that they are y1, . . . , yk0 and z1, . . . , zk1 . Then in this 
case we have
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T̃ = (t + 1 − k0 − k1)η̄0 +
k0∑
i=1

η̄yi
+

k1∑
i=1

η̄γzi ,

and the constraint (20) becomes

y1 + · · · + yk0 + z1 + · · · + zk1 = 0.

In order to compute the value distribution of T̃ for these cases, let us consider for any 
i1, . . . , ik0 , j1, . . . , jk1 ∈ {0, 1} the value Ω′

i1···ik0 ;j1···jk1
, given by

Ω′
i1···ik0 ;j1···jk1

:=

#
{

(y1, · · · , yk0 ; z1, · · · , zk1) ∈ (F∗
r)k0+k1

∣∣∣∣ yu∈C
(2,r)
iu

,γzv∈C
(2,r)
jv

,1≤u≤k0,1≤v≤k1

y1+···+yk0+z1+···+zk1=0

}
.

For any i ∈ {0, 1}, define ī ∈ {0, 1} by ī ≡ i + 1 (mod 2). Clearly

Ω′
i1···ik0 ;j1···jk1

= Ωi1···ik0 j̄1···j̄k1
,

which is defined in (18) and is evaluated in Section 6. In {i1, . . . , ik0}, let u0 be the 
number of 0’s and u1 be the number of 1’s; similarly, in {j1, . . . , jk1}, let v0 be the 
number of 0’s and v1 be the number of 1’s. Given such u0, u1, v0, v1, we have

T̃ = (t + 1 − k0 − k1)η̄0 + (u0 + v0)η0 + (u1 + v1)η1,

and the frequency is (
l0 + 1
k0

)(
l1
k1

)(
k0

u0

)(
k1

v0

)
Ω0 · · · 0︸ ︷︷ ︸

u0+v1

1 · · · 1︸ ︷︷ ︸
u1+v0

.

Now let k and u be fixed such that k0+k1 = k and u0+v0 = u, where 0 ≤ u ≤ k0+k1 = k

and 2 ≤ k ≤ l0 + l1 + 1 = t + 1, we conclude that T̃ takes the value

T̃ = (t + 1 − k)η̄0 + uη0 + (k − u)η1, (21)

and the frequency is

k∑
k0=0

u∑
u0=0

(
l0 + 1
k0

)(
l1

k − k0

)(
k0

u0

)(
k − k0

u− u0

)
Ω 0 · · · 0︸ ︷︷ ︸

2u0+k−k0−u,

1 · · · 1︸ ︷︷ ︸
k0+u−2u0

. (22)

This, after returning to (11), provides the weight distribution of the cyclic code C(a1,...,at)
for the general case N = 2, t = e − 1 � 2.
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5.2. Proof of Theorem 2

From N = 2 = gcd ((qm − 1)/(q − 1), 4a) and t = e − 1 = 3, it is easy to see that 
q ≡ 1 (mod 4), m ≡ 2 (mod 4) and e = 4 | (qm/2 − 1). If 2|a, the weight distribution has 
been obtained from (i) of Theorem 1 with t = 3. Thus Table 3 can be worked out. If 
2 � a, we use Theorem 3 to calculate the weight distribution. In this case l0 = 1, l1 = 2, 
from (21) and (22), for any k, u with 2 ≤ k ≤ 4, 0 ≤ u ≤ k, the sum T̃ takes the value

T̃ = (4 − k)η̄0 + uη0 + (k − u)η1,

with frequency

k∑
k0=0

u∑
u0=0

(
2
k0

)(
2

k − k0

)(
k0

u0

)(
k − k0

u− u0

)
Ω 0 · · · 0︸ ︷︷ ︸

2u0+k−k0−u,

1 · · · 1︸ ︷︷ ︸
k0+u−2u0

.

Using the values ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω00 = Ω11 = r−1
2 ; Ω01 = 0;

Ω000 = Ω111 = r−1
8 (r − 5);

Ω001 = Ω011 = (r−1)2
8 ;

Ω0000 = Ω1111 = r−1
16 (r2 − 2r + 9);

Ω0001 = Ω0111 = r−1
16 (r2 − 4r + 3);

Ω0011 = (r−1)3
16 ,

which we can obtain from Lemma 10 in Section 6, we find that for k = 2,

Value Frequency
2η̄0 + 2η0, Ω00 + 4Ω01 + Ω11 = r − 1

2η̄0 + 2η1, Ω00 + 4Ω01 + Ω11 = r − 1

2η̄0 + η0 + η1, 4Ω00 + 4Ω01 + 4Ω11 = 4(r − 1)

and for k = 3,

Value Frequency
η̄0 + 3η0, 2Ω001 + 2Ω011 = (r−1)2

2

η̄0 + 3η1, 2Ω001 + 2Ω011 = (r−1)2
2

η̄0 + 2η0 + η1, 4Ω011 + 2Ω000 + 2Ω111 + 4Ω001

= (r−1)
2 (3r − 7)

η̄0 + η0 + 2η1, 4Ω011 + 2Ω000 + 2Ω111 + 4Ω001

= (r−1) (3r − 7)
2
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and for k = 4,

Value Frequency

4η0, Ω0011 = (r−1)3
16

4η1, Ω0011 = (r−1)3
16

3η0 + η1, 2Ω0111 + 2Ω0001 = (r−1)
4 (r2 − 4r + 3)

η0 + 3η1, 2Ω0111 + 2Ω0001 = (r−1)
4 (r2 − 4r + 3)

2(η0 + η1), Ω1111 + 4Ω0011 + Ω0000 = (r−1)
8 (3r2 − 6r + 11).

Now we have obtained the value distribution of T̃ . Returning to (12) and (11) gives 
us the weight distribution of the cyclic code C(a1,a2,a3) with 2 � a, which is summarized 
in Table 4 in Theorem 2. This completes the proof of Theorem 2.

6. Appendix: Calculation of Ωi1···iuiu+1

Recall that for positive integer u and any sequence i1, · · · , iu, iu+1 ∈ {0, 1}, Ωi1···iuiu+1

is defined by

Ωi1···iuiu+1 :=

#
{

(x1, · · · , xu) ∈ (F∗
r)u

∣∣∣∣∣ x1 ∈ C
(2,r)
i1

, · · · , xu ∈ C
(2,r)
iu

,
u∑

j=1
xj ∈ C

(2,r)
iu+1

}
.

We first prove that the value of Ωi1···iuiu+1 is related to reduced quadratic Jacobi sums 
which were introduced in Section 3 before.

Lemma 8. The number Ωi1···iuiu+1 defined above equals to

r − 1
2u+1

∑
0≤v2,···,vu+1≤1

(−1)
u+1∑
j=2

(i1+ij)vj
ρ

(
(−1)

u∑
j=2

vj

)
J∗(ρv2 , · · · , ρvu+1),

where ρ is the quadratic multiplicative character of Fr.

Proof. For x ∈ F∗
r , let χ denote a multiplicative character of Fr. It is easy to check that

1
2
∑
χ2=ε

χ(xγi) =
{

1, if x ∈ C
(2,r)
i ;

0, otherwise.
(23)

Suppose χ1, χ2, · · · , χu+1 denote multiplicative characters of Fr. By the relation (23), we 
have
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Ωi1···iuiu+1

=
∑

x1,···xu∈F∗
r

[
1
2
∑

χ2
1=ε

χ1(x1γ
i1)
]
· · ·
[

1
2
∑

χ2
u=ε

χu(xuγ
iu)
][

1
2
∑

χ2
u+1=ε

χu+1(γiu+1
u∑

j=1
xj)
]
.

Expanding the right hand side and changing the order of summation we obtain

1
2u+1

∑
χ2
j=ε

j=1,···,u+1

χ1(γi1) · · ·χu(γiu)χu+1(γiu+1)

·
∑

x1,...,xu∈F∗
r

χ1(x1) · · ·χu(xu)χu+1(x1 + x2 + · · · + xu),

which gives

1
2u+1

∑
χ2
j=ε

j=1,···,u+1

χ1(γi1)χ2(−γi2) · · ·χu(−γiu)χu+1(γiu+1)

·
∑

x1,...,xu∈F∗
r

χ1χ2 · · ·χu+1(x1)χ2(x2) · · ·χu(xu)χu+1(1 − x2 − · · · − xu).

This is

r − 1
2u+1

∑
χ2
j=ε

j=2,···,u+1

χ2(−γi1+i2) · · ·χu(−γi1+iu)χu+1(γi1+iu+1)

·
∑

x2,···,xu∈F∗
r

χ2(x2) · · ·χu(xu)χu+1(1 − x1 − · · · − xu).

So we obtain

Ωi1···iuiu+1 = r − 1
2u+1

∑
0≤v2,···,vu+1≤1

(−1)
u∑

j=2
(i1+ij)vj

ρ

(
(−1)

u∑
j=2

vj

)
J∗(ρv2 , · · · , ρvu+1).

This completes the proof of Lemma 8. �
Lemma 9. Suppose that −1 is a square in Fr, then

Ωi1···iuiu+1 =

r−1
2u+1

{
1
r

(
(r − 1)u − (−1)u

)
− (−1)u

∑
1≤l≤u+1

2
rl−1∑

1≤j1<j2<···<j2l≤u+1(−1)
2l∑

k=1
ijk

}
.

Proof. Since N = gcd( q
m−1
q−1 , ea) = 2 implies 2|m, −1 = γ

qm−1
2 is always a square in this 

paper. From Lemma 8 we have
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Ωi1···iuiu+1 = r−1
2u+1

∑
0≤v2,···,vu+1≤1

(−1)
u∑

j=2
(i1+ij)vj

J∗(ρv2 , · · · , ρvu+1).

Note that J∗(ρ1, , · · · , ρu) does not depend on the order of the characters ρ1, . . . , ρu, so 
we have

Ωi1···iuiu+1 = r−1
2u+1

∑
I⊂{2,...,u+1}

(−1)
∑
j∈I

(i1+ij)
J∗(ε, . . . , ε︸ ︷︷ ︸

u−#I

, ρ, · · · , ρ︸ ︷︷ ︸
#I

).

Separating the cases that I = ∅, #I > 0 is even and #I is odd and applying Lemmas 6
and 7, we can obtain

Ωi1···iuiu+1 = r−1
2u+1 {A + B + C} ,

where

A = J∗(ε, · · · , ε︸ ︷︷ ︸
u

) = 1
r

(
(r − 1)u − (−1)u

)
,

B = (−1)u+1
∑

∅�=I⊂{2,...,u+1}
#I is even

(−1)
∑
j∈I

ij
r(#I−2)/2,

and

C = (−1)u+1
∑

I⊂{2,...,u+1}
#I is odd

(−1)
i1+

∑
j∈I

ij
r(#I−1)/2.

Set #I = 2l if #I is even and #I = 2l − 1 if #I is odd, then we complete the proof of 
Lemma 9. �

It is easy to see from Lemma 9 that the value Ωi1···iuiu+1 does not depend on the order 
of the sequence i1, . . . , iu, iu+1. Now we can prove

Lemma 10. Suppose that −1 is a square in Fr, then

Ω0 · · · 0︸ ︷︷ ︸
u

1 · · · 1︸ ︷︷ ︸
v

=

r−1
r2u+v+1

{
2(r − 1)u+v−1 + (−1)u+v

{
(1 +

√
r)u(1 −

√
r)v + (1 −

√
r)u(1 +

√
r)v
}}

.

Proof. From Lemma 9, it suffices to compute
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P =
∑

1≤l≤u+v
2

rl−1
∑

1≤j1<j2<···<j2l≤u+v

(−1)
2l∑

k=1
ijk

.

Since ij = 0 for 1 ≤ j ≤ u and ik = 1 for u + 1 ≤ j ≤ u + v, we have

∑
1≤j1<j2<···<j2l≤u+v

(−1)
2l∑

k=1
ijk =

2l∑
s=0

(
u

2l − s

)(
v

s

)
(−1)s,

and the right hand side is the coefficient of x2l in the expansion of the polynomial 
f(x) := (1 + x)u(1 − x)v. Hence letting

f(x) = 1 +
u+v∑
n=1

anx
n, an ∈ R,

then

P = 1
r

∑
1≤l≤u+v

2

a2l(
√
r)2l.

Clearly the right hand side is

1
r

{
f(
√
r) + f(−√

r)
2 − 1

}
.

This completes the proof of Lemma 10. �
7. Conclusions

In this paper, we determine the weight distributions of a new family of cyclic codes 
with arbitrary number of nonzeros, more precisely the cyclic codes C(a1,···,at) given by 
(1) with any t ≥ 2 nonzeros under the conditions that t = e − 1 and N = 2. Our main 
results are as follows:

• For N = 2, t = e − 1 � 2, 2|a and e|(qm/2 − 1), we obtain the weight distribution of 
C(a1,···,at).

• For N = 2 and t = e − 1 = 3, we obtain the weight distribution of C(a1,···,at).
• For the general case of N = 2 and t = e −1 � 2, we present a computational formula 

to determine the weight distribution of C(a1,···,at).

Except for these cases (in [37] and this paper), the weight distribution of the code 
C(a1,···,at) is open in most cases when t < e. It would be good if some of these open cases 
can be settled.
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