AN ADAPTIVELY REFINED LEAST-SQUARES FINITE ELEMENT METHOD
FOR GENERALIZED NEWTONIAN FLUID FLOWS USING THE CARREAU
MODEL *
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Abstract. We implemented an adaptively refined least-squares findi@eaht approach for the Navier-Stokes
equations that govern generalized Newtonian fluid flowsg.tfie Carreau model. To capture the flow region, we
developed an adaptive mesh refinement approach based agasiiestiuares method. The generated refined grids
agree well with the physical attributes of the flows. We alsavpd that the least-squares approximation converges
to the linearized versions solutions of the Carreau modgsleabest possible rate. Model problems considered in the
study are the flow past a planar channel and 4-to-1 contraptioblems. We presented the numerical results of the
model problems, revealing the efficiency of the proposeémseh and investigated the physical parameter effects.
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1. Introduction. Animportant non-Newtonian fluid is the generalized Newaorfiuid
that describes viscous effects in the form of a shear-rgtemtent viscosity. This fluid has
been applied in the petroleum industry, chemical engingethe food industry, medical sci-
ence, and bioengineering [1]. Numerical algorithms hagem#dy been developed to simulate
flow problems [2, 3, 4]. Despite considerable progressagertnsolved difficulties such as
corner singularity and the computational limitations iagsfrom the presence of multiple
variables require a compatibility condition on finite elarhspaces when the standard mixed
method approach is used [4].

Compared to Galerkin methods, least-squares methods basftite element formu-
lations have been shown to offer several theoretical andoatational advantages for use
in solving boundary value problems that arise in fields sicnd5]. Least-squares is easy
to implement because the algebraic system generated byidtretization is always sym-
metric and positive definite, and a single approximatingear all variables can be used
for programming least-squares finite element methods [B]e Mavier-Stokes equations
can be expressed in terms of the primary variables (e.g¢iigls and pressure), secondary
variables (velocity gradients, vorticity, stream funati@nd stresses), or a combination of
the two [7, 8, 9, 10, 11, 12]. In [12], the researchers preskatnew reformulation of the
Navier—Stokes equations containing the gradient of velocitiespaadsure. Their results re-
vealed an improvement in both convergence rate and massrwatisn accuracy relative to
the original vorticity formulation. Bolton and Thatched]lpresented a least-squares method
for the stress and stream formulations of the Navi&tokes equations. They discovered
mass loss with an unweighted functional but achieved masserwation through the appro-
priate weight. Deang and Gunzburger [13] also studied massecvation in least-squares
formulations and showed better mass conservation thanwwaighted formulations, but the
conditioning number of the resultant coefficient matrixdr@e high. In [14], Bose and Carey
presented a least-squares method using p-type finite etsmet mesh redistribution for do-
mains with singularities for upper-convected Maxwell aniddgham fluids. They indicated
that scaling original differential equations is importémtleast-squares minimization. Non-
linear weighted least-squares methods (NWLS), based oretbeity-stress-pressure formu-
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lation of the Stokes equations, have recently applied toNaetonian, Carreau, Oldroyd-B,
and Giesekus models for numerical experiments [15, 4, 16¢ rEsults derived from using
uniform meshes indicated that when linear approximatiaralivariables were employed,
the least-squares solutions exhibited numerical convexgeates ofd(h?) in the L?-norm
for all dependent variables (or nearly so for the viscoalasise). However, mathematical
analysis of the least-squares functional for the Carreadeimnwas not provided in [4] and
the inertial effects were neglected in these results. If fhe researchers indicated that the
inertial term in the momentum equation cannot be neglected @& the case of very low
Reynolds numbers. The inertia effects on non-Newtoniad flows should be discussed in
future studies.

Although using NWLS methods obtains promising results, fiicdity in solving real
case flow problems is the computational limitation arisingnf the large number of un-
knowns. To reduce the size of the linearized system of egumtind resolve the singularities
arising from geometric discontinuities, adaptive gridgra¢d with high gradient regions are
often necessary to produce efficient and accurate resal{d.8], Berger and Jameson indi-
cated that the complex geometrical regions where the soluéquires finer grid resolution
are finely zoned in the initial grid generation phase, anddbation of the inaccurate regions
changes with changes in flow parameters. Adaptive finite elermethods are being used
extensively as powerful tools for approximating solutiafgartial differential equations in
a variety of application fields [19, 20, 21]. In [19], Sterdkad¢ investigated the behavior of
two efficiency-based grid refinement strategies which taikh brror reduction and work into
account for adaptive finite element solution to partialefiéntial equations (PDES). They
indicated that use of a graded grid for elements with a san@fylleads to significant im-
provement. Cai and Westphal [20] presented an adaptiveddesst-squares finite element
method for steady Oldroyd type viscoelastic fluids, and @dapnesh refinement is based
on a nonlinear least-squares functional. They proved-lg@sares functional ellipticity and
error bounds for linearized viscoelastic fluids. In [21],|&det al. proposed new adaptive
local refinement strategies for first-order system leastsgs finite elements in conjunction
with algebraic multigrid methods in the context of nestexdation. The algorithms choose
which elements to refine based on optimal computationaiefiay, taking into account both
error reduction and computational cost. In [22], adaptaast-squares finite element meth-
ods for viscoelastic flow problems were developed. The tesudicated that graded meshes
agree with the physical attributes of these models and dmeddtiangulation improves con-
vergence rates and errors. However, grid effects of nontmifneshes were also reported in
[22] for the NWLS method using lower-order basis functions.

Based on these studies, we developed an adaptively refiastidguares approxima-
tion to the Carreau model of generalized Newtonian fluid flows avoid grid effects with
nonlinear weighting function and mass loss with unweighéadt-squares functional when
lower-order basis functions are used, a linear weightestdeguares method involving ap-
propriate mass conservation weights was used for the meWeapproach nonlinear PDEs
by linearizing the equations and then applying a leastie&guaethod to them. We also de-
rived the coercivity and continuity estimates for the homogpus least-squares functional,
which involves the sum of the equation residuals measuréiugih?-norm. The analysis of
error bounds for the linearized generalized Newtonian fusohg the least-squares method
follows the concept introduced in [23] and [20]. To capture flow region, unlike previous
research that uses optimal grids generated by equidistrgha grading function throughout
the domain [22] and the least-squares functional [20], weldped a new adaptive algorithm
based on the mesh redistribution with numerical solutidngtcity gradient refinement for
a least-squares functional. We applied the graded recaowetlyod to improve the accuracy
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of the gradient velocity variable [24] and to refine grid geinWe employed the nonlinear
least-squares functional which is a posteriori error egtta® to adjust the weight of the diver-
gence term. When we used continuous piecewise linear filiteant spaces for all variables,
properly adjusting the importance of the mass conservatiwhwith adaptive mesh refine-
ments, the least-squares solutions exhibit optirkalorm error convergence in all dependent
variables. We extended the implementation to simulate ttee 4contraction problem con-
sidered in [15] and addressed the physical parameter effedt3], Zinani and Frey presented
a Galerkin least-squares (GLS) method with an equal ordeatiinterpolation function that
adds stabilized formulations for the Carreau model. Weertesl a least-squares finite ele-
ment approach to the Carreau model for generalized Newtdhias, which makes use of a
grading function to adaptively refine the mesh. Our solutigihod, least-squares is simpler
than GLS, in which a stabilizing least-squares form of theegoing equation is added to the
Galerkin form. We showed that the results of the adaptivefiped LS approach are compati-
ble to those of the reduced GLS method presented by Zinarframdn [3]. We also showed
that properly refined grids on areas where physical featvmegrapidly are necessary for
obtaining the expected accuracy.

The rest of this paper is organized as follows. Section thices the governing equa-
tions. Section 3 presents the notation, preliminaries, @etcivity and continuity of the
homogeneous least-squares functional. Section 4 prothdesror estimates of tHe® least-
squares approximations and the nonlinear iteration. @e8tpresents the adaptive grid gen-
eration algorithm for flow problems. Section 6 provides ntins results for the flow past a
planar channel and a 4-to-1 contraction problem, and sectiffers concluding remarks.

2. Governing Equations. Consider the steady-state, incompressible Nav&tokes prob-
lem in a two-dimensional?, with boundary,

u-Ou—0-7+0p=F inQ,

- AVWIDW) _ g (2.1)
noRe
O-u=0inQ,
u=0onrl,

whereD(u) = 0.5(0u+ Ou') is the standard strain rate tensdRe> 1 is the Reynolds
numberRe= LUp/no, in whichng is the zero-shear-rate viscosityandU are characteristic
length and velocity, respectively, apds the densitﬁ is the body force vector, the unknowns
u andr are the velocity and the extra-stress tensor, respectaetlp is the scalar pressure.
We assume that the pressyreatisfies a zero mean constraint,

/ pdx= 0,
Q

in order to ensure the uniqueness of pressure; see [5]. Alsdaystem (2.1), it was illustrated
in [14] that the system is suitable for incompressible n@whbnian flows when a direct
approximation of the extra-stress tensor is desired.
Lety(u) = /2(D(u) : D(u)) be the shear rate with the double-dot product between two

second-order tensotsando defined as

T.0= Z‘nj oji.

I’J
We implement the generalized Newtonian fluid equation knasrthe Carreau model [4],
ie.,
1

n(y(u)) = nol1+ Acy(u))? 'z, (2.2)
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wherel. is a Carreau time constant ands a power law exponent. In the caserof 1,
the model reduces to the linear Newtonian model, the NaxBéokes equations. For a shear-
thinning fluid,nis less than one, which means that the viscosity decreasesieasing shear
rate. For large values gf the Ostwald-de Waele powerlaw function is recovered with the
consistency indexX, corresponding tqoA\?~* [3]. The Carreau model is commonly used for
modeling blood flow [25] and describes the shearing visgasipolymer melts that exhibit
a Newtonian behavior at low strain rates followed by a pola@rbehavior for increasing
strain rates [26].

3. Notation and preliminaries. Typically, the solution of the nonlinear NavieGtokes
equations using the Carreau model in (2.1) is approximayea $equence of the linearized
Navier—Stokes equations which is formulated in this section. Eatdrinediate, linear step
is discretized by minimizing a least-squares finite elenfanttional. In this section we
describe the function spaces for the unknowns, the leastreg minimization, and the ellip-
ticity of the least-squares finite element functional. Tlalmear iteration is discussed in
detail in section 4.

Let » (Q) be the linear space of infinitely differentiable functionghwompact supports
onQ, that s,

D (5) ={W|q: WY e D(0) for some open subse@ C 0 C RZ};

see [31]. LeH3(Q), s> 0, be the Sobolev spaces with the standard associated iroterqts
(,)s and their respective nornjs||;. Fors= 0, H%(Q) coincides withL?(Q), andH§(Q)
denotes the closure af (Q) with respect to the norif ||. For positive values of, the space
H~3(Q) is defined as the dual spaceH§(Q) equipped with the norm

(0,v)

[oll_s:= sup :
0AveHS(Q) [Vl

where(.,.) is the duality pairing betweerd —°(Q) andHg (Q) when there is no risk of confu-
sion. LetH (div; Q) = v € L2(Q)?: O-v € L2(Q) with the respective nordﬁuHH(div;Q) =

2 2.1
(l0]lg+ I0-llo) . _ N o
The function spaces used in our variational formulatioesisfined as

V:i={v|veH (Q)? v=00ndQ},
Q::{q|q6L2(Q>,/qux:0},
Bs:={o |0 cL?(Q), 0y = 0ji},

and let the product space:=V x Q x Xs.
Based on [20], linearizing (2.1) about the approximation

where we assume - ug = 0 and
M := max{||uo||e, ||EUo||e } < 00, (3.2)
results in the following replacement rules:

U-0u = up-Ou+u-Oug— ug- Oup,
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n(y(u))D(u) ~ n(y(uo))D(u) +n(y(u))D(uo) —nN(¥(uo))D(uo),
and
n(Y(Uo)) ~ No.

As stated in [4], we apply Newton’s method to the nonlineacebity equation (2.2). Let
u = 0 + ug, whereug is the initial guess and is the correction in the Newton iteration. A
binomial expansion af (y(up + €li)) yields the equation

N (V(uo +£0)) = n (V(Uo)) [1+€G (uo, T) + O (€%)], (3.2)
where
- D(up) : D(@i)
G =2(n— N —. 3.3
(Uo,U) (n ) Cl+}\g[y(uo)]2 ( )
Hence,
n(y(u)) =~ no[1+ G(up,u) — G(ug,Uo)]. (3.4)
The linearized velocity-pressure-stress system may nowriten as
Up-Ou+4u-Oup—0O-7+0p=Ff inQ, (3.5)
2 2 :
T—@D(u)—ﬁeD(uo)G(uo,u):g inQ, (3.6)
O-u=0inQ, (3.7)
u=0 onf, (3.8)
where we define
f =ug-0ug +/f\,

-2
9= RgP(Uo)G(uo, o)
The least-squares functional for (3-58.8) we consider is given by

J(u,p,7;F) = |lup- Du+u-Oup—O- 7+ Op—F||3

r_ ED(u) - 3D(uo)G (Uo,u)—g

+ Re

2
+KRe2|0-ul3, (3.9)
0

where the weighRe 2 is considered based on the inertial term. The positive massarva-
tion constanK is chosen based on similar considerations as those use8,id,[16]. The
results indicate that least-squares solutions can be wedrby sufficiently scaling the mass
conservation term. Note that weighting the divergence teitn Re 2 will put less weight
on this when the Reynolds number is large. To solve the pnoblee denote the nonlinear
least-squares functional of the residual of the systemn) & follows:

2n (Y(u)) D(u)

R 2
g(u,p,7:f) = Hu~Du—D~7-+Dp—?HO+HT— noRe

2
+0-ul3.  (3.10)
0

The nonlineat_? functional is a posteriori error estimates for first-ordgstem least-squares
finite element methods as in [19, 21] and serves as an inditagaljust the weighk = 10™,
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wheremranges from 1 to 8 in (3.9). Note that the rangesnofary with the problems and
the computational domain in [15, 27]. The practicality o throposed a posteriori error
estimates for adjusting the weight of the divergence terithlvei shown in section 6, and
then numerical results show that the weigt 2 would not hurt the mass conservation in the
system when the Reynolds number is large. However, the wEighset to one here for the
convenience of the analysis.

Denote two norms as

2 2 1 2 12
. p. Il = (Il + P15 + gz i)

and

1 1/2
Pl = (171 + 1PIE + oz )

over®. Note that Kim and Shin [23] presented Hn1-norms least-squares method for the
Stokes equations with the stress tenser 2D (u)/Reand established the following a priori
estimate:

2 2 1 )
-D — 0.
T (u) t re /10 ullo

Clitu,p 2 < |- =2

+||-0-7+0p|?,, (3.11)

where a constar@ > 0 is independent dRe V(u, p,7) € ®.

We now derive some a priori estimates for the first-orderesyq3.5), i.e., the coercivity
and continuity estimates for the homogeneous least-sgfianetional. The a priori estimates
identify the dependence of the estimate on the Reynolds atiReand will play crucial roles
in the error estimates of our least-squares finite elemetitade

Theorem 1. For any(u, p,7) € ®, there are positive constants,andc;, which depend on
Q, n, Ac, andM in (3.1), such that

col|(u, p,7)|1? < I(u, p,7;0) < ca|l|(u, p, )12 (3.12)

for sufficiently smallM in Q satisfying

M< —. (3.13)

Proof.

Let (u,p,7) € ®. The upper bound follows naturally from the triangle indigyand (3.13).
We proceed to show the validity of the lower bound in (3.13) tf8e continuity of the embed-
ding L2(Q) ¢ H1(Q), using the inequalityfja+b||* > (1/2)|/a]|*> — |b||* and the estimate
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(3.11), we have

J(u,p,7;0)

2 2 ‘1 2
> T_ﬁeD(u)_ﬁeD(uo)G(uo’u) o4—@”5'“”0
+|‘_D.T+Dp+uo-Du+u-Duon,l

2 2 ‘1 2
> T_EeD(u)_EeD(uO)G(uo’u) O—F@HD'UHO+

—|luo- Du+u-Oug|% 4

=2 Re

—|\uo~Du+u-Duo|\g

L _ 250
2

Y

1

1 2 2 1 5 5
25T P W +gelIP-ullo+[I-0-7+0pl%,
0

1 2 2
o+@ [0-ullg+I-0-7+0p[|2,

1
EH—D'T‘F Opl%,

4{|D(uo)||3
)——” U8 1 o) 13

) Gl 12\Re M u2 - Ca2] 2

2 2, 1 2
> (I3 IpIf-+ g Il — Sl -2l

1
> o I+ I1pIE + g IulE (1 W~ REM?) ).

By using (3.13), we have 1 M* — R&€M? > 0. Hence,

J(u,p,7;0) > col||(u, p,7)]|?

for some positive constang which is independent dke

O

Therefore, the coercivity and continuity estimates of thectionalJ(u, p,7;0) have
been established in Theorem 1. The least-squares miniorizatoblem for the solution of

system (3.5)(3.8) is to chooséu, p, ) € @ such that

J(u F) =
(u,p,7;F) vl o

inf  J(v,q,0;F).

(3.14)

4. Finite element approximation. For the finite element approximation, we assume
that the domai is a polygon and thatj is a partition of2 into finite element€) = Urc, T
with h=max{diam(T) : T € 7,,}. Assume that the triangulatiar is regular and satisfies the
inverse assumption (see [23]). The grid size is defindd-a2+/A/v/N, whereA is the area
of the domain and\ is the number of elements in,. Let P (T) denote the standard space of
degreea polynomials on elemerk. Define finite element spaces for the approximatéuof

p, T):

V= (W [V e vn(CUQ))%, VI |t € Pya(T)? VT € 7},
Q"= {d"| q" € QNCYQ), g" [+ € Pry1(T) VT € 7i},
3 ={c"|o" € BN (COQ)*?2, 0" |1 € Py (T2 VT € 7}

Let ®":= V" x Q" x = be finite element subspaces®diwith the following approximation
prosperities. Le§" = {u€ C%(Q) : ujt € P41(T) VT € 75,} admit the property

uhesn

inf Hu_uhHI < CH"|Jul| YU € H™ (Q),

(4.1)
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forl =0,1.
The discrete minimization problem is to chodsé, p", 7") € ®" such that
h h _h.py ; h h _h
J", p", ™" F) = (Vh’th’r;fh)eq)h\](v ,q",0 ;F). 4.2)

Then the finite element approximation to (4.2) is equivaleseek for(u", p", 7") € ®" such
that

B((u", p",7"); (v, g, 0") = F((V", g, o)) (4.3)

V(v g, oM) € d", where

B((u", P (V" eM)
:/ uo-Duh+uh~Duo—D~Th+Dph)-(uo~Dvh+vh-Duo—D-ah+th)dQ

2 Y. (h 2o 2 h
—i—/ (T ——D )—EeD(Uo)G(Uo,U )) : (0' _EeD(V )—EeD(Uo)G(Uo,V) dQ
+ KRe™ /(D-u )(O-vMdQ,
Q

and

F(v"a"oM)

2 2

Y P O | h (n 2.0 2 h
_/Qf (uo Ov'4+v'-Oup—0-0"+0q )+g <0' ReD(v) ReD(uo)G (uo,v )>dQ.

Sinced" is a finite element subspace ®f using arguments similar to those in [15] and
[28], and Theorem 1, the LaxMlilgram lemma, and (4.3), the following theorem is proved.

Theorem 2. Suppose assumptions (3.1) and (3.13) hold. The least-ag@anctional (3.9)
has a unique solutiofu", p",7") € ®" for any h, and the solution satisfies the following
stability estimate:

[[can, oo < (illo+ gl @4

Moreover, the matrix of the linear algebraic system assediwith the least-squares scheme
(4.3) is symmetric and positive definite.

We now give error estimates for the solution to (4.2). Usimgilar arguments in [20],
Theorem 1, and the approximation properties (4.1), thefotlg error estimate is estab-
lished.

Theorem 3. Consider approximating the solution to (3.5)-(3.8) thriotlge discrete mini-
mization problem (4.2) under the assumptions in (3.1) art3)3 Assume thafu, p,7) € ®
is the solution to (3.14); then the solution to (4.2) satssfie

[lw=up= oz =7 <t (I [Pl + ggluls) — @5)

form<r+1.
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Proof.
Theorem 1 directly leads to the bound

h h h :
u—u" p— — < in (u—v"
H’( P=PLT T)’H (vhgh, hgq;hcow P q T—a H

which, using the approximation properties in (4.1), yiellds desired error bound fon <
r+1.
O
The results of the stress formulation are similar to worksttmn convergence of the
velocity-vorticity-pressure least-squares method fogdirized Navier Stokes equations gov-
erning the Oseen problem by Tsai and Yang [28]. Note that $leeofi continuous piecewise
linear polynomials for all unknowns yields the error estiesa

1
[lw=stp=prr = <on(iiel + ol + glule). @)
We expect the following rates:

I~ "o = O(h). | p— p"lo = O(h).and]lu — u"]|s = O(h.

The theoretically predicted error bounds are a@lyn) in the L?>-norm for p and+ andO(h)
in the H1-norm foru. Hence, we have the optimal convergence rate of the velatitiye
H1-norm and suboptimal convergence rates of the stress assiypeein the_2-norm.

Finally, we end this section by detailing the procedure ef Hewton iteration scheme
for solving the Navie+ Stokes equations with the Carreau model (2.1) using thé sepgres
approach. The solution of the nonlinear Navi@tokes systems in (2.1) was approximated
by a sequence of the linearized velocity-pressure-stysssm (3.5)-(3.8). The least-squares
approach to the linearized system (3-£3.8) provided an iterative procedure as follows.

We give an initial approximatioﬂuo, pg,fg) and then attempt to seek approximations
Wl ol ) edfore=0, 1, 2, ... satisfying

h o oh _h ey h h _h.
Jo(Upy 1, Pry 1 T i F) = (Vh,th,f;fh)eq)hJé(V ,q", 0" F), (4.7)

where the least-squares functioddlu, p, 7;F) is defined as
h h 2
J(u, p,7;F) = Hug Ou+u-Oul— 07+ Dp—fHo

2 Soome (uh ? 2 2
— DG (ul.u) —gH0+ KRe 2| 0-ul2, (4.8)

where

over the space.
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5. The adaptively refined algorithm for flow problems. Adaptive grids aligned with
high gradient regions are often necessary to reduce the@sthe linearized system of equa-
tions and to resolve the singularities arising from geoioefiscontinuities. In our previous
work [22], adaptive least-squares finite element methodsgiscoelastic flow problems were
developed. The idea is to adjust the position of the grid {samd produce a mesh with the
same number of unknowns, which is more aptly graded for thengproblem. In [22], re-
sults indicated that the graded meshes agree with the @thadtabutes of these models and
smoothed triangulation can improve convergence rates andse However, grid effects of
nonuniform meshes were also reported in [22] for the NWLShoeéusing lower-order basis
functions. Unlike previous research [22], we developedmadaptive algorithm, which adds
new grids on the high gradient region, but does not adjusptisition of the original mesh.
The advantage of this method is that it maintains the acgusathe low gradient region,
which has low accuracy in previous methods in which gridsraoeed toward high gradi-
ent regions. We itemize an adaptive algorithm to constrefited grids of the least-squares
approximations for our model equations (3.5)-(3.8) afed:

1. Select initial grids, e.g., quasi-uniform grids.

2. Triangulate the point set by a Delaunay grid generatichrtiggue considered by
Shewchuk [29] and produce a meshwith elementsT. Solve the problem by the
finite element method.

3. Compute the grading function

or = [R(Og)[r, (5.1)

whereR is a gradient recovery technique employed to compute thdigmaof the
scalarg. Our implementation follows from [24] by defining an averagee recovery
schemeR: OVy — VYV x Vi with

_ Zrew [Tl[Oanir

Wi , (5.2)

R(Han) (%)
where for all verticesi € 7, w; is the patch including the vertices, that is, the
union of all triangles contair, and| - | is the two-dimensional Lebesgue measure.

4. Compute the mesh redistribution functibfipr ), wheref is defined by
AT
Agr’
where|T |max=max{|T|:VT € T }, AIT| = |T|max— | T |min, @ndAQPr = @10 — P

5. If T € 7 satisfiesf (¢r) < |T|, thenT is subdivided.

6. Update the grid point information. Continue to step 2 tangulate the point set,
check if the stopping criterion (the variation of the minimb between consecutive
iterations is less than some prescribed tolerance) idisdtisnd repeat the process
if not.

Note that the least-squares method in (3.9) is used in stpd2all the computations are per-
formed using linear interpolation for all unknowns. Thesiesquares method is simpler to
implement than either the GLS or the NWLS method. In step8&gttading functionpr that
varies with the scalag in (5.1) is used to generate the required refined nodes inotmgpata-
tional domain. To illustrate the capability of the algonthadaptive mesh refinements on the
square test domain are performed in Section 6 on three scplathere velocity magnitude

lul2 = |/ug + ug, stress magnitude|> = /7 + 73, + 73, and pressure ip|. Note that the

choice ofq depends on the physical property of the flows that we are enadeavith. For the
4-t0-1 contraction domain, the velocity magnitude is usedlastrate the effectiveness and
robustness of the algorithm.

f(@r) = [TImax— (@1 — Pryin)
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6. Numerical results. The governing equations are solved on two domains in this sec
tion. The first domain is a square test domain with exact bagnebnditions used to measure
convergence rates. The second is the 4-to-1 contractiomehproblem consisting of an up-
stream channel that abruptly narrows to a channel one quartke original width. These
domains with boundaries are shown in Figure 6.1.

For the first test domain, the boundary conditions are aeviali

u=ur on Cin, Fwail, Mout, (6.1)
P=Po on Mout NI sym (6.2)
u-n=0,w:nt =0 on I sym (6.3)

For the 4-to-1 contraction domain, lat= (u,v), which includes the following boundary
conditions:

u=ur on Cin, (6.4)

u=20 on Mwall, (6.5)

v=0, p=0 on I outs (6.6)
un=0w:nt =0 on I sym (6.7)

Note thatn andt are unit vectors outward normal and tangent to the boundaspectively.
7 = pI — 7 is the Cauchy stress tensor, amd and 7+ are specified boundary functions.
These boundary conditions are also used in [15].

Our method couples the least-squares functional (4.8) adtptive mesh refinement.
The resulting linear algebraic system of equations with mragtric positive define coef-
ficient matrix is solved using the Gaussian elimination radth Convergence of the iter-
ation scheme in (4.7) was declared when the relative nornhefrésidual in velocities,
Hu?H— u?H/Hu?HH, between two consecutive iterations was less tharf.1Both cases
presented here use linear basis functions for all variatftesvious studies [11] showed that
mass conservation is not favorable in least-squares basedilations when low-order ba-
sis functions are used. To properly adjust the weidhts 10™ in (4.8), we iterate om,
wheremranges from 1 to 8, to determine approximate convergendeediinctionag!/2 in
(3.10). The functionag’/? is used as a posteriori error estimates for the first-ordstesy
least-squares finite element method. Note that the rangesvafy with the problems and
the computational domain in [15] and [27]. In addition, thedtionalg/2 is also used in
a refinement process to illustrate convergence of the metBaded on [20, 21, 30], under
certain smoothness assumptions, the following error basinded to estimate the functional
which is equivalent to thel'-norm [31]:

~ 1/2
g2, ", 7" F) & (Ju =+ 1p— B + = 7)< Ch(lrly+ Pl + ).

Thus, for the finite element space used here, optimal coewesgimplieg/? = O(h).

We provide numerical results for the NavigBtokes equations using the Carreau model
(2.1) by using the iteration schemes (4.7). Each iteratimolived the linearized velocity-
pressure-stress NavieBtokes equations (3.5)-(3.8) which were analyzed in sedtidiow-
ever, the results for the linearized velocity-pressuresstsystem provided guidance on what
the optimal rates would be. It was reasonable to expect thatergence rates of the least-
squares approximations for the NavieStokes equations using the Carreau model were sim-
ilar to those for the linearized velocity-pressure-staggem. The least-squares solution of
the linearized velocity-pressure-stress system predlidigcretization error bounds &ih)
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Fic. 6.1.Computational domains.

08

06

0.2

N h L N NN L
0 0.2 0.4 0.6 0.8 1
X

Fic. 6.2.Mesh D is a uniform directional Delaunay triangular meshresponding to k= Tls-

in the L2-norm for p and+ and asO(h) in the H'-norm of O(h) for u by using continuous
piecewise linear elements for all variables. Although fqilal convergence rates mand
T are obtained in our analysis for the least-squares methiad asentinuous piecewise lin-
ear elements for all variables, we show that the optimal emgence rates dd(h?) in the
L2-norm for all variables can be achieved in the least-squaethod using properly refined
grids on high gradient regions.

6.1. Example 1: Flow in planar channel. The first problem is the planar channel flow
on the square domaif, 1] x [0, 1] considered in [4] with a symmetry line aloyg= 0. The
flow domain is shown in Figure 6.1(a). Because of the symnaboggy = 0, the computed
domain is reduced to half. The exact solutions in Cartesiandinates are given in [4] by

1—y“}

Uexact = |: 0
and

2
Pexact= —X".
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For the square test domain in Figure 6.1(a), the exact solditir the extra-stress tensor is
calculated using

1 .
Texact = T]O—Re (2n (Y(Uexact)) D(Uexact)) -

A forcing function,f, must be added to the momentum equation, specifically

n-3
2

f— %a<12y2(1+16n)\gy6) (1+16A2y5) >_2X'

In the convergence results, the constitutive equationrpetars in (2.2) are set &&= 1,
No=1,n=0.5, and\; = 1 for the Carreau model. In the following calculation, therrasical
simulation is performed using the two-dimensional incoesgible Navier Stokes equations
governing generalized Newtonian flows in the stress bas&eldiider form. We linearize the
resulting discrete model using Newton’s method.

To illustrate convergence of the method and the influencé@fmass conservation in
the first problem, we employed three uniform directionalddelay triangular Meshes D with
8, 16, and 32 partitions per unit length, as shown in Figu2e §Ve list the weighK, the
number of element, the number of Newton steps, and the nonlinear functighdiin Table
6.1. Table 6.1 shows that wh&h> 100, for all cases the nonlinear functional nagi? is
almost consistent, and whé&nh> 107, the iterative process exceeds the maximum number of
Newton steps (100) for the caseNf= 2084. The results show poor conservation of mass is
improved by scaling the divergence equation. However, amesighted divergence equation
will worsen the condition of the system, which results in @detation of the performance of
the solver, as shown in [13]. In Figure 6.3, we display cogeeace rates of least-squares
solutions using weights ranging froh= 1 toK = 10°. The results indicate that the solutions
of the cases wheld > 100 are almost identical and that the least-squares spfitiontaining
proper mass conservation weight are improved. Based onxgarience using the least-
squares method witk = 100, the convergence of the function&l? and the convergentrates
for the least-squares solutions agree well with thosk of 100. Therefore, it is sufficient
to useK = 100 for satisfactory results. The mass conservation paeaiie= 100 is chosen
in the least-squares formulations in the example. NoteFRiwire 6.3 reveals that the best
convergence rates in thé-norm of the least-squares solutions in whi¢k= 100 is usedy,

T, andpare 2.0, 1.4, and 1.3, respectively, and that inHAenorm foru is 1.0. The resulting
convergence rates for the velocity are the optimal convergeatesO(h?) in the L?>-norm
andO(h) in the H1-norm and for the stress and pressure are suboptimal ceneggates
O(h) in theL?-norm. The computed error bounds for the velocity, stress,essure agree
well with those that are theoretically predicted in section

Next, in Figure 6.2, we consider the directional Delaun@niyular uniform Mesh D
with 16 partitions per unit length. The least-squares metiessed on the adaptively refined
algorithm in section 5 (called the AR-NLS method) is perfedmsing initial Mesh D. Re-
fined mesh convergence was declared when the norm of theiaésidninimum mesh length
between two consecutive iterations was less th@f,Qvhich required two refined iterations.
To understand the influence of the grading functions in ogorthm, we consider three
scalargy (5.1) in relation to velocity magnitude|,, stress magnitude-|2, and pressurfp|.
Convergent adaptively refined Meshes DA, DB and DC are gésetley velocity magnitude,
stress magnitude, and pressure in Figures 6.4(a), (c)gneépectively, and their contours
are shown in Figures 6.4(b), (d), and (f), respectively. fidsrlts show that Meshes DA, DB,
and DC are refined near the wall, near the midpoint fafr the domain, and near the outlet,
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N =128 N =512 N = 2048
WeightK | Steps| g%/? Steps| g%/2 Steps| g2

1 7 0.003095 9 0.000870( 10 0.000249
10t 7 0.003184 9 0.000898| 10 0.000257
10° 6 0.003192 8 0.000906( 10 0.000259
103 5 0.003187 6 0.000905 9 0.000259
10t 4 0.003187 6 0.000905 8 0.000260
10° 4 0.003187 5 0.000905 9 0.000260
10° 4 0.003187 4 0.000905( 22 0.000260
10 3 0.003187 4 0.000905| 100* | 0.000260
108 3 0.003187 5 0.000905| 100* | 0.000260

TABLE 6.1

Least-squares method on Mesh D for Carreau model acRen = 0.5, andA¢; = 1. Nonlinear

functional norm &2 in nonlinear nested iteration for various weights K. Herediinotes the total
number of elements and steps mean the number of Newton Stepgcates the maximum number of
Newton steps (100) has been exceeded.

respectively. These meshes are refined along larger \@riateas of the selected variable’s
magnitude and agree with the physical features of the floncufate velocity profiles are
helpful to understand the feature of the flow. Hence, thearglanagnitude gradient is used
for the grading refined function in the work.

To illustrate adaptive algorithm capability in the AR-LSw&ions, the adaptive refined
meshes are generated by Mesh D with 8, 16, and 32 partitionsgdength as initial meshes.
The errors of the adaptive mesh refinement solutions arersiowigure 6.5. The conver-
gence rates in the2-norm of the AR-LS solutions fou, 7, and p are 2.8, 2.6, and 2.3,
respectively, and in thid2-norm foru the convergence rate is 1.5. Note also that the conver-
gence rate of the AR-LS method improves over the least-sguaethod. In fact, the optimal
convergence rates of the AR-least-squares method araneltai all variables. Based on the
results, the convergence rate can be restored using aglapish refinements.

6.2. Example 2: Flow in the 4-to-1 contraction channel.To further show the AR-
LS scheme capability for the Carreau model, we applied thoakto the 4-to-1 contraction
channelin Figure 6.1(b), witk(the flow direction) varying as-5 < x < 5 and the contraction
occurring atk = 0. The upstream channel width is 1; thus the downstreamisdif. In our
computations;-5 < x <5 corresponds to the upstream length 28d the downstream length
20L, where we usé. as the downstream channel width. In the Carreau viscositgtiion
(2.2), the zero-shear-rate viscosity was taken equal to one, so that three dimensionless
parameters were needed to defined the flee:A¢, andn.

Figure 6.6 shows a uniform criss-crossed Mesh C generat&elapay triangular grids
with 16 partitions per unit length. Recall that for the flonaiplanar channel, it is necessary to
choose proper weight§ in the LS method to obtain accurate results. In the seconmpbea
using weights ranging fro{ = 1 to K = 108 in the LS functional on Mesh C, the values of
the functionaby’/2 are shown in Table 6.2 for the Newtonian modeRat= 1 and 100, and for
the Carreau model &e= 1, \. = 10, anch=0.5. The results indicate that wh&n> 10°, we
obtained convergence of the functiog&l2. Therefore, setting = 10° is sufficient to obtain
satisfactory results. The mass conservation pararfeted 0° is chosen in the least-squares
formulations in the second example.

In our computations, Mesh C is considered as the initial médkfined mesh conver-



ADAPTIVELY REFINED LSFEM FOR CARREAU FLUID FLOWS

Re=1, AC=1. n=0.5, Carreau

10

107

L2errorin u

10

O K=1

slope =1.9
*  K=10
slope =2
+ k=10
slope =2
K=10°
slope =2

x K=10"
slope=2 |]
40 K=10°
slope =2
K=10°
slope =2
v K=10°
slope =2

10

10

10° 10
h
(a)

Re=1, )\Czl, n=0.5, Carreau

L2 error in p
=
O‘
kS

10

10

107 10

(©)

Zerrorin 1

Herrorin u

15

Re=1, )\C=l, n=0.5, Carreau

10

10

100

O K=1

slope =1.3

*  K=10

slope =1.4

+ k=107
slope =1.4
K=10°

< slope =1.4

x K=10*

slope =1.4]

4 k=10°

slope =1.4

10°

10

10" 10

(b)

Re=1, )\C:I, n=0.5, Carreau

=
o
[
T

10

O K=1
slope =1
*  K=10
slope =1
+ k=10
slope =1
K=10%
slope =1
x K=10*
slope =1}
A K=10°
slope =1
K=10°
slope =1
v Kk=10°
slope =1

10°

107 10

(d)

Fic. 6.3. Errors in least-squares solutions with various weights K @arreau model at Re- 1,
Ac =1, and n=0.5. L2 errors in (a)u, (b) 7, (c) p, and (d) H errors inu.

Re= 1, Newtonian| Re= 100, Newtonian| Re=1, Carreau
WeightK | Steps gt/? Steps gt/? Steps| g%/?

1 2 0.00077 4 0.00077 3 0.000769
10t 2 0.00074 4 0.000712 12 0.001322
107 3 0.010137 5 0.000439 5 0.007039
103 3 0.079862 8 0.0001 5 0.007658
104 3 0.119331 6 0.000022 5 0.007722
10° 3 0.124843 6 0.000027 5 0.007728
10° 3 0.125416 6 0.000028 5 0.007729
107 3 0.125474 6 0.000028 5 0.007729
10° 3 0.125479 6 0.000028 5 0.007729

TABLE 6.2

Least-squares method on Mesh C for Newtonian model at Reand Re= 100 and Carreau

model at Re= 1, n= 0.5, andA¢ = 10. Nonlinear functional norm ’g’z in nonlinear nested iteration
for various weights K. Here steps means the number of Newaps.s
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Fic. 6.4. Carreau model at Re- 1, Ac = 1, and n= 0.5. Convergent adaptively refined Meshes
DA, DB, and DC with two iterations respectively generated/élpcity, stress, and pressure and their
contours.
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Fic. 6.5.Errors in AR-LS solutions for Carreau model at Rel, Ac = 1, and n=0.5.
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Mesh C
Fic. 6.6.Mesh C is a uniform criss-crossed mesh with 16 partitionsypetrlength.

gence was declared when the norm of the residual in minimushriength between two
consecutive iterations was less tha@@b, which can be achieved within three iterations.
Figures 6.7(a), (b), and (c) show three adaptive Meshes, CA2, and CA3, generated by
the AR-LS method for the Newtonian mod&d€= 1 andRe= 100) and the Carreau model
(Re=1,A; = 10,n=0.5), respectively, using Mesh C as the initial mesh. The teshiow
that these adaptive meshes are more refined near the reaeanaer and downstream bound-
ary layers. Figures 6.8, 6.9, and 6.10 show contours of thiicaevelocityv on Meshes C
and CAL1 for the Newtonian model Re= 1, those on Meshes C and CA2 for the Newtonian
model atRe= 100, and those on Meshes C and CA3 for the Carreau moRekatl, A\c = 10,
andn = 0.5, respectively. The results show that contours of theaartielocityv on Mesh C
are not smooth enough, and contoury@h the adaptively refined Meshes CA1, CA2, and
CAS provide a better contraction impression than does Mesth@@h reveals that the refine-
ment results are of good quality. Figure 6.11 shows that dmeergence rates ig/? of the
AR-LS solutions for the Newtonian modelRe= 1 andRe= 100, and for the Carreau model
(Re=1,A;=10,n=0.5) are 1.4, 1.3, and 1.6, respectively. The figure resulsaldhat the
functionalg/2 approaches the optimal convergence r@gs) for all cases. In Figure 6.12,
we display a comparison between our AR-LS results and the @sdts of Zinani and Frey
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Re=1, Newtonian Re=100, Newtonian
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(a) Mesh CA3

Fic. 6.7. Adaptively refined meshes with two iterations using théainilesh C for Newtonian
model: (a) Mesh CA1 for Re 1, (b) Mesh CA2 for Re- 100, and (c) Mesh CAS3 for Carreau model at
Re=1,n=0.5, andA; = 10.

[3] for the horizontal velocityu profiles along the symmetric line in the contraction plane
for the Newtonian modelRe= 1 andRe= 100) and the Carreau modé&é= 1, A = 10,
n=0.5). We show the same for the profilesutk, 0) along the symmetric line by employing
two adaptive meshes with minimum grid sizggn of 0.03125 and 0.015625. Accordingly,
we obtained convergent velocity profiles by using the AR-L&hmod in all cases, as shown
in Figure 6.12. The figure also shows that the profiles uselddiAR-LS method are similar
to those used in the GLS method by Zinani and Frey [3], exaaphie velocity profile near
the contraction when the Reynolds number is hiBle+£ 100). The results show that the
main differences likely occurred because of inertia effetttat is, the AR-LS method would
be sensitive to high Reynolds numbers for resolving theudargies arising from geometric
discontinuities. The issue will be investigated furthethe future. Nevertheless, we obtain
the same maximum velocity for all cases in the regions oftillg fleveloped flow, as shown
in [3]. It is assumed that the results are in good agreement.

We next evaluate the effects of power-law indiceand Carreau time numb@g on
adaptive meshes. Far = 1 andRe= 1 in the Carreau model, we employeé- 0.75, 0.5,
0.25, and 0.125 in Figure 6.13. Foe= 0.5 andRe= 1, we considered; = 0.1 and 100 in
Figure 6.14. Because of the shear thinning effect in thegaarmodel, the results show that
adaptively refined meshes depend on shear thinning phymtalvior and are refined along
the large variation area of the flow. FBe= 1 andA.; = 1, the profiles of the horizontal
velocity component in the contraction plane along= 0 with indicesn = 0.75, 0.5, 0.25,
and 0.125 in the Carreau viscosity function are presentEdyure 6.15(a). The figure results
show that whem = 0.125, the shear thinning fluid velocity near the wall is higtiem other
values ofn, causing the flattest velocity profile in the contractionngla Because the low
index fluid near the wall has low viscosity, the velocity gthwate away from the wall of
the low power-law index fluid is greater than the high indexdfluTo evaluate the effects
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Fic. 6.8.Contours of the vertical velocity v on (a) Mesh C and (b) Me#i @r Newtonian model

at Re= 1.
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Fic. 6.9.Contours of the vertical velocity v on (a) Mesh C and (b) Mes{2 @r Newtonian model

at Re= 100
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Fic. 6.10.Contours of the vertical velocity v on (a) Mesh C and (b) Me#t8@r Carreau model
at Re=1,Ac =10, n=0.5.

of Carreau time numbeéy;, we employed\; = 0.1, 1, 10, and 100 in the Carreau model at
n= 0.5 andRe= 1 in Figure 6.15(b), which shows the horizontal velocity gamenu in the
contraction plane along= 0. The Carreau time numbgg controls the fluid thinning effect
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Fic. 6.11. Nonlinear least-squares functional norm versus grid siz@rhNewtonian model at
Re=1(0) and Re= 100(*) and Carreau at Re= 1, \c = 10, n=0.5 (+).

and indicates the velocity growth rate away from the walhafhighA. fluid, which is greater
than that of the lovik fluid. The figure also shows that the profiles used in the AR-leshod

are similar to those used in the NWLS method by Chen et al. Thg results show that the
effect of increasing\ is similar to that of decreasingfor a low flow, Re= 1, as expected.

To evaluate the inertia effects, we employ®d= 1, 10, and 100 in the Carreau model at
n=0.125 and\; = 0.1 in Figure 6.16. In contrast to the case whBe= 1 andRe= 10,

the velocity profile wheré&ke= 100 reveals an obvious difference. The results indicate the
inertia effect cannot be neglected in some cases of non-dteavt fluid flows. We showed
the effects of physical parameters on the velocity field agvith those obtained by Zinani
and Frey [3].

Finally, we employed another least-squares finite elemegthad to illustrate the ca-
pability of the adaptively refined algorithm. In [5], Bochand Gunzburger introduced a
weighted least-squares functional involvirignorms of the residuals of the momentum equa-
tion multiplied by a mesh dependent weighaind they applied it to the Stokes equations.
They showed that with correctly chosen mesh-dependenhigithe approximations to the
solutions of the Stokes equations are optimal. To evallegetfects of mesh weight in the
least-squares approach for solving the Navigtokes problem, we employed the following
weighted least-squares functiod@lfor (=0, 1, 2, ... based on the adaptively refined algo-
rithm (called the AR-WDLS method) for the Carreau moddRat= 1, Ac = 1, andn = 0.5,
as follows:

I(u, p,m;F) = h?||ub- o 0. «lP
o (U, P, T )—h uy, COu+u DUZ O ‘l'+|:|p fo

2
- 2pu)- 2pUG (u?,u) —gH +KRe2|0-ul2. (6.8)
0

+ Re

We obtained two convergent adaptively refined meshes geadrg the AR-LS and AR-
WDLS methods usiné = 10° and their streamline patterns, as shown in Figure 6.17.r€igu
6.17 shows that the two convergent adaptively refined meateedifferent, and the sizes of
the corner vortex, the distance between the vortex reafiagit and the top corner, using
the AR-LS and AR-WDLS methods were approximately 0.375 ab@82b, respectively. The
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results show that in comparison with the AR-LS solution, tbeirculation zone of fluid in
the AR-WDLS solution seems too large. Note that the AR-LSIltesagree with the NWLS
results of Chen et al. [4]. Therefore, the AR-LS method oritpens the AR-WDLS method
and yields results which are compatible to those presentgd.i

7. Conclusion. We presented an adaptively refined finite element approioméd the
Carreau generalized Newtonian model. We provided an a prior estimate for the lin-
earized velocity-pressure-stress first-order systeml@nobnd showed numerical results sup-
porting the estimate. To resolve the high gradient regimes the domain, we developed an
adaptive mesh refinement based on the least-squares metben we used continuous
piecewise linear finite element spaces for all variablesperly adjusting the importance of
the mass conservation and with adaptive mesh refinementhtamed optimal convergence
rates for all variables which are better than those of theritecal prediction. The adaptively
refined algorithm is efficient because we show the leastreguanctional optimal conver-
gence rate, and these adaptive meshes are refined alonggbedaiation area of the flow,
which agrees well with the physical attributes of the modeislaptive refinement for the
4-to-1 contraction problem depends on the shear thinniygipal behavior, and our results
agree with those obtained in published GLS and NWLS resigr results show that the
adaptively refined meshes are automatic local grid refin¢migm different flow parameters,
and the refinement results are of good quality. Finally, mizakexperiments indicate that
the AR-LS method can be extended to more general 4-to-1 aiign problems without
major difficulty.
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Fic. 6.12. Profiles of the horizontal velocity(x, 0) along the symmetric line for (a) Newtonian
model at Re= 1, (b) Newtonian model at Re 100, and (c) Carreau model at Re 1, Ac = 10, and
n=0.5.
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Fic. 6.13.Carreau model at Re- 1, A; = 1. Adaptive refined meshes at (aH0.75, (b) n= 0.5,
() n=0.25, and (d) n=0.125
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Fic. 6.14. Carreau model at Re- 1, n= 0.5. Adaptive refined meshes at @& = 0.1 and (b)
Ac =100
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FiG. 6.15.Profiles of the horizontal velocity(Q,y) at (a) Re= 1, \c = 1forn=0.75(0), n=0.5
(+),n=0.25(0), n=0.125(A), and (b) Re=1, n=05for Ac = 0.1 (0), A\c = 1 (+), A\c = 10(0),
Ac=100(A).
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Fic. 6.16.Profiles of the horizontal velocity(Q,y) at n= 0.125 A¢ = 0.1 for Re= 1 (0), Re= 10
(+), and Re=100(0).
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(a) AR-LS mesh (b) AR-WDLS mesh
Re=1, Ac=1, n=0.5 Re=1, Ac=1, n=0.5

(c) Streamlines in AR-LS (d) Streamlines in AR-WDLS

Fic. 6.17.Carreau model at Re- 1, Ac = 1, and n= 0.5. Adaptive refined meshes of the (a) AR-LS
and (b) AR-WDLS methods. Streamlines in (c) AR-LS and (d)VBRS solutions.



