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Abstract. We implemented an adaptively refined least-squares finite element approach for the Navier-Stokes
equations that govern generalized Newtonian fluid flows using the Carreau model. To capture the flow region, we
developed an adaptive mesh refinement approach based on the least-squares method. The generated refined grids
agree well with the physical attributes of the flows. We also proved that the least-squares approximation converges
to the linearized versions solutions of the Carreau model atthe best possible rate. Model problems considered in the
study are the flow past a planar channel and 4-to-1 contraction problems. We presented the numerical results of the
model problems, revealing the efficiency of the proposed scheme, and investigated the physical parameter effects.
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1. Introduction. An important non-Newtonian fluid is the generalized Newtonian fluid
that describes viscous effects in the form of a shear-rate dependent viscosity. This fluid has
been applied in the petroleum industry, chemical engineering, the food industry, medical sci-
ence, and bioengineering [1]. Numerical algorithms have recently been developed to simulate
flow problems [2, 3, 4]. Despite considerable progress, certain unsolved difficulties such as
corner singularity and the computational limitations arising from the presence of multiple
variables require a compatibility condition on finite element spaces when the standard mixed
method approach is used [4].

Compared to Galerkin methods, least-squares methods basedon finite element formu-
lations have been shown to offer several theoretical and computational advantages for use
in solving boundary value problems that arise in fields such as in [5]. Least-squares is easy
to implement because the algebraic system generated by the discretization is always sym-
metric and positive definite, and a single approximating space for all variables can be used
for programming least-squares finite element methods [6]. The Navier−Stokes equations
can be expressed in terms of the primary variables (e.g., velocities and pressure), secondary
variables (velocity gradients, vorticity, stream function, and stresses), or a combination of
the two [7, 8, 9, 10, 11, 12]. In [12], the researchers presented a new reformulation of the
Navier−Stokes equations containing the gradient of velocities andpressure. Their results re-
vealed an improvement in both convergence rate and mass conservation accuracy relative to
the original vorticity formulation. Bolton and Thatcher [11] presented a least-squares method
for the stress and stream formulations of the Navier−Stokes equations. They discovered
mass loss with an unweighted functional but achieved mass conservation through the appro-
priate weight. Deang and Gunzburger [13] also studied mass conservation in least-squares
formulations and showed better mass conservation than an unweighted formulations, but the
conditioning number of the resultant coefficient matrix became high. In [14], Bose and Carey
presented a least-squares method using p-type finite elements and mesh redistribution for do-
mains with singularities for upper-convected Maxwell and Bingham fluids. They indicated
that scaling original differential equations is importantfor least-squares minimization. Non-
linear weighted least-squares methods (NWLS), based on thevelocity-stress-pressure formu-
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lation of the Stokes equations, have recently applied to theNewtonian, Carreau, Oldroyd-B,
and Giesekus models for numerical experiments [15, 4, 16]. The results derived from using
uniform meshes indicated that when linear approximations in all variables were employed,
the least-squares solutions exhibited numerical convergence rates ofO(h2) in the L2-norm
for all dependent variables (or nearly so for the viscoelastic case). However, mathematical
analysis of the least-squares functional for the Carreau model was not provided in [4] and
the inertial effects were neglected in these results. In [17], the researchers indicated that the
inertial term in the momentum equation cannot be neglected even in the case of very low
Reynolds numbers. The inertia effects on non-Newtonian fluid flows should be discussed in
future studies.

Although using NWLS methods obtains promising results, a difficulty in solving real
case flow problems is the computational limitation arising from the large number of un-
knowns. To reduce the size of the linearized system of equations and resolve the singularities
arising from geometric discontinuities, adaptive grids aligned with high gradient regions are
often necessary to produce efficient and accurate results. In [18], Berger and Jameson indi-
cated that the complex geometrical regions where the solution requires finer grid resolution
are finely zoned in the initial grid generation phase, and thelocation of the inaccurate regions
changes with changes in flow parameters. Adaptive finite element methods are being used
extensively as powerful tools for approximating solutionsof partial differential equations in
a variety of application fields [19, 20, 21]. In [19], Sterck et al. investigated the behavior of
two efficiency-based grid refinement strategies which take both error reduction and work into
account for adaptive finite element solution to partial differential equations (PDEs). They
indicated that use of a graded grid for elements with a singularity leads to significant im-
provement. Cai and Westphal [20] presented an adaptive mixed least-squares finite element
method for steady Oldroyd type viscoelastic fluids, and adaptive mesh refinement is based
on a nonlinear least-squares functional. They proved least-squares functional ellipticity and
error bounds for linearized viscoelastic fluids. In [21], Adler et al. proposed new adaptive
local refinement strategies for first-order system least-squares finite elements in conjunction
with algebraic multigrid methods in the context of nested iteration. The algorithms choose
which elements to refine based on optimal computational efficiency, taking into account both
error reduction and computational cost. In [22], adaptive least-squares finite element meth-
ods for viscoelastic flow problems were developed. The results indicated that graded meshes
agree with the physical attributes of these models and smoothed triangulation improves con-
vergence rates and errors. However, grid effects of nonuniform meshes were also reported in
[22] for the NWLS method using lower-order basis functions.

Based on these studies, we developed an adaptively refined least-squares approxima-
tion to the Carreau model of generalized Newtonian fluid flows. To avoid grid effects with
nonlinear weighting function and mass loss with unweightedleast-squares functional when
lower-order basis functions are used, a linear weighted least-squares method involving ap-
propriate mass conservation weights was used for the method. We approach nonlinear PDEs
by linearizing the equations and then applying a least-squares method to them. We also de-
rived the coercivity and continuity estimates for the homogeneous least-squares functional,
which involves the sum of the equation residuals measured intheL2-norm. The analysis of
error bounds for the linearized generalized Newtonian fluidusing the least-squares method
follows the concept introduced in [23] and [20]. To capture the flow region, unlike previous
research that uses optimal grids generated by equidistributing a grading function throughout
the domain [22] and the least-squares functional [20], we developed a new adaptive algorithm
based on the mesh redistribution with numerical solutions of velocity gradient refinement for
a least-squares functional. We applied the graded recoverymethod to improve the accuracy
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of the gradient velocity variable [24] and to refine grid points. We employed the nonlinear
least-squares functional which is a posteriori error estimates to adjust the weight of the diver-
gence term. When we used continuous piecewise linear finite element spaces for all variables,
properly adjusting the importance of the mass conservationand with adaptive mesh refine-
ments, the least-squares solutions exhibit optimalL2-norm error convergence in all dependent
variables. We extended the implementation to simulate the 4-to-1 contraction problem con-
sidered in [15] and addressed the physical parameter effects. In [3], Zinani and Frey presented
a Galerkin least-squares (GLS) method with an equal order linear interpolation function that
adds stabilized formulations for the Carreau model. We presented a least-squares finite ele-
ment approach to the Carreau model for generalized Newtonian fluids, which makes use of a
grading function to adaptively refine the mesh. Our solutionmethod, least-squares is simpler
than GLS, in which a stabilizing least-squares form of the governing equation is added to the
Galerkin form. We showed that the results of the adaptively refined LS approach are compati-
ble to those of the reduced GLS method presented by Zinani andFrey in [3]. We also showed
that properly refined grids on areas where physical featuresvary rapidly are necessary for
obtaining the expected accuracy.

The rest of this paper is organized as follows. Section 2 introduces the governing equa-
tions. Section 3 presents the notation, preliminaries, andcoercivity and continuity of the
homogeneous least-squares functional. Section 4 providesthe error estimates of theL2 least-
squares approximations and the nonlinear iteration. Section 5 presents the adaptive grid gen-
eration algorithm for flow problems. Section 6 provides numerical results for the flow past a
planar channel and a 4-to-1 contraction problem, and section 7 offers concluding remarks.

2. Governing Equations. Consider the steady-state, incompressible Navier−Stokes prob-
lem in a two-dimensional,Ω, with boundaryΓ,

u ·∇u−∇ ·τ +∇p= f̂ in Ω,

τ − 2η(γ̇(u))D(u)
η0Re

= 0 in Ω, (2.1)

∇ ·u = 0 in Ω,

u = 0 onΓ,

whereD(u) = 0.5(∇u+∇uT) is the standard strain rate tensor.Re≥ 1 is the Reynolds
number,Re≡ LUρ/η0, in whichη0 is the zero-shear-rate viscosity,L andU are characteristic
length and velocity, respectively, andρ is the density.̂f is the body force vector, the unknowns
u andτ are the velocity and the extra-stress tensor, respectively, andp is the scalar pressure.
We assume that the pressurep satisfies a zero mean constraint,∫

Ω
pdx= 0,

in order to ensure the uniqueness of pressure; see [5]. As forthe system (2.1), it was illustrated
in [14] that the system is suitable for incompressible non-Newtonian flows when a direct
approximation of the extra-stress tensor is desired.

Let γ̇(u) =
√

2(D(u) : D(u)) be the shear rate with the double-dot product between two
second-order tensorsτ andσ defined as

τ : σ = ∑
i, j

τi jσ ji .

We implement the generalized Newtonian fluid equation knownas the Carreau model [4],
i.e.,

η(γ̇(u)) = η0[1+(λcγ̇(u))2]
n−1

2 , (2.2)
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whereλc is a Carreau time constant andn is a power law exponent. In the case ofn = 1,
the model reduces to the linear Newtonian model, the Navier−Stokes equations. For a shear-
thinning fluid,n is less than one, which means that the viscosity decreases byincreasing shear
rate. For large values ofγ̇, the Ostwald−de Waele power−law function is recovered with the
consistency index,K, corresponding toη0λn−1

c [3]. The Carreau model is commonly used for
modeling blood flow [25] and describes the shearing viscosity of polymer melts that exhibit
a Newtonian behavior at low strain rates followed by a power-law behavior for increasing
strain rates [26].

3. Notation and preliminaries. Typically, the solution of the nonlinear Navier−Stokes
equations using the Carreau model in (2.1) is approximated by a sequence of the linearized
Navier−Stokes equations which is formulated in this section. Each intermediate, linear step
is discretized by minimizing a least-squares finite elementfunctional. In this section we
describe the function spaces for the unknowns, the least-squares minimization, and the ellip-
ticity of the least-squares finite element functional. The nonlinear iteration is discussed in
detail in section 4.

LetD (Ω) be the linear space of infinitely differentiable functions with compact supports
on Ω, that is,

D
(
Ω̄
)
= {ψ|Ω : ψ ∈ D (O ) for some open subsectΩ ⊂ O ⊂ R

2};

see [31]. LetHs(Ω), s≥ 0, be the Sobolev spaces with the standard associated inner products
(·, ·)s and their respective norms‖·‖s. For s= 0, Hs(Ω) coincides withL2 (Ω), andHs

0 (Ω)
denotes the closure ofD (Ω) with respect to the norm‖·‖s. For positive values ofs, the space
H−s(Ω) is defined as the dual space ofHs

0 (Ω) equipped with the norm

‖σ‖−s := sup
0 6=v∈Hs

0(Ω)

(σ,v)
‖v‖s

,

where(., .) is the duality pairing betweenH−s(Ω) andHs
0 (Ω) when there is no risk of confu-

sion. LetH (div;Ω) = υ ∈ L2 (Ω)2 : ∇ ·υ ∈ L2 (Ω) with the respective norm‖υ‖H(div;Ω) :=

(‖υ‖2

0+ ‖∇ ·υ‖2

0)
1
2 .

The function spaces used in our variational formulations are defined as

V : = {v | v ∈ H1(Ω)2 , v = 0 on ∂Ω},

Q : = {q | q∈ L2 (Ω) ,

∫
Ω

qdx= 0},

Σs : = {σ | σ ∈ L2 (Ω)2 , σi j = σ ji},

and let the product spaceΦ := V ×Q×Σs.
Based on [20], linearizing (2.1) about the approximation

u0 ≈ u,

where we assume▽ ·u0 = 0 and

M := max{‖u0‖∞, ‖∇u0‖∞}< ∞, (3.1)

results in the following replacement rules:

u ·∇u ≈ u0 ·∇u+u ·∇u0−u0 ·∇u0,
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η(γ̇(u))D(u) ≈ η(γ̇(u0))D(u)+η(γ̇(u))D(u0)−η(γ̇(u0))D(u0),

and

η(γ̇(u0))≈ η0.

As stated in [4], we apply Newton’s method to the nonlinear viscosity equation (2.2). Let
u = ũ+u0, whereu0 is the initial guess and̃u is the correction in the Newton iteration. A
binomial expansion ofη(γ̇(u0+ εũ)) yields the equation

η(γ̇(u0+ εũ)) = η(γ̇(u0))
[
1+ εG(u0, ũ)+O

(
ε2)] , (3.2)

where

G(u0, ũ) = 2(n−1)λ2
c

D(u0) : D(ũ)
1+λ2

c[γ̇(u0)]2
. (3.3)

Hence,

η(γ̇(u)) ≈ η0 [1+G(u0,u)−G(u0,u0)] . (3.4)

The linearized velocity-pressure-stress system may now bewritten as

u0 ·∇u+u ·∇u0−∇ ·τ +∇p= f in Ω, (3.5)

τ − 2
Re

D(u)− 2
Re

D(u0)G(u0,u) = g in Ω, (3.6)

∇ ·u = 0 in Ω, (3.7)

u = 0 onΓ, (3.8)

where we define

f = u0 ·∇u0+ f̂,

g=
−2
Re

D(u0)G(u0,u0) .

The least-squares functional for (3.5)−(3.8) we consider is given by

J(u, p,τ ;F) = ‖u0 ·∇u+u ·∇u0−∇ ·τ +∇p− f‖2
0

+

∥∥∥∥τ − 2
Re

D(u)− 2
Re

D(u0)G(u0,u)−g

∥∥∥∥
2

0
+KRe−2‖∇ ·u‖2

0 , (3.9)

where the weightRe−2 is considered based on the inertial term. The positive mass conserva-
tion constantK is chosen based on similar considerations as those used in [15, 4, 16]. The
results indicate that least-squares solutions can be improved by sufficiently scaling the mass
conservation term. Note that weighting the divergence termwith Re−2 will put less weight
on this when the Reynolds number is large. To solve the problem, we denote the nonlinear
least-squares functional of the residual of the system (2.1) as follows:

g(u, p,τ ; f̂) :=
∥∥∥u ·∇u−∇ ·τ +∇p− f̂

∥∥∥
2

0
+

∥∥∥∥τ − 2η(γ̇(u))D(u)
η0Re

∥∥∥∥
2

0
+ ‖∇ ·u‖2

0 . (3.10)

The nonlinearL2 functional is a posteriori error estimates for first-order system least-squares
finite element methods as in [19, 21] and serves as an indicator to adjust the weightK = 10m,
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wherem ranges from 1 to 8 in (3.9). Note that the ranges ofm vary with the problems and
the computational domain in [15, 27]. The practicality of the proposed a posteriori error
estimates for adjusting the weight of the divergence term will be shown in section 6, and
then numerical results show that the weightRe−2 would not hurt the mass conservation in the
system when the Reynolds number is large. However, the weight K is set to one here for the
convenience of the analysis.

Denote two norms as

‖|(u, p,τ )|‖=
(
‖τ‖2

0+ ‖p‖2
0+

1
Re2 ‖u‖2

1

)1/2

and

‖|(u, p,τ )|‖1 =

(
‖τ‖2

1+ ‖p‖2
1+

1
Re2 ‖u‖2

1

)1/2

overΦ. Note that Kim and Shin [23] presented anH−1-norms least-squares method for the
Stokes equations with the stress tensorτ = 2D(u)/Reand established the following a priori
estimate:

C‖|(u, p,τ )|‖2 ≤
∥∥∥∥τ − 2

Re
D(u)

∥∥∥∥
2

0
+

1
Re2 ‖∇ ·u‖2

0

+‖−∇ ·τ +∇p‖2
−1 , (3.11)

where a constantC> 0 is independent ofRe, ∀(u, p,τ ) ∈ Φ.

We now derive some a priori estimates for the first-order system (3.5), i.e., the coercivity
and continuity estimates for the homogeneous least-squares functional. The a priori estimates
identify the dependence of the estimate on the Reynolds numberReand will play crucial roles
in the error estimates of our least-squares finite element method.

Theorem 1. For any(u, p,τ ) ∈ Φ, there are positive constants,c0 andc1, which depend on
Ω, n, λc, andM in (3.1), such that

c0‖|(u, p,τ )|‖2 ≤ J(u, p,τ ;0)≤ c1‖|(u, p,τ )|‖2
1 (3.12)

for sufficiently smallM in Ω satisfying

M ≤ 1
2Re

. (3.13)

Proof.
Let (u, p,τ ) ∈ Φ. The upper bound follows naturally from the triangle inequality and (3.13).
We proceed to show the validity of the lower bound in (3.12). By the continuity of the embed-
ding L2(Ω) ⊂ H−1(Ω), using the inequality‖a+b‖2 ≥ (1/2)‖a‖2 − |b‖2 and the estimate



ADAPTIVELY REFINED LSFEM FOR CARREAU FLUID FLOWS 7

(3.11), we have

J(u, p,τ ;0)

≥
∥∥∥∥τ − 2

Re
D(u)− 2

Re
D(u0)G(u0,u)

∥∥∥∥
2

0
+

1
Re2 ‖∇ ·u‖2

0

+‖−∇ ·τ +∇p+u0 ·∇u+u ·∇u0‖2
−1

≥
∥∥∥∥τ − 2

Re
D(u)− 2

Re
D(u0)G(u0,u)

∥∥∥∥
2

0
+

1
Re2 ‖∇ ·u‖2

0+
1
2
‖−∇ ·τ +∇p‖2

−1

−‖u0 ·∇u+u ·∇u0‖2
−1

≥ 1
2

(∥∥∥∥τ − 2
Re

D(u)

∥∥∥∥
2

0
+

1
Re2 ‖∇ ·u‖2

0+ ‖−∇ ·τ +∇p‖2
−1

)
− 4‖D(u0)‖2

0

Re2 ‖G(u0,u)‖2
0

−‖u0 ·∇u+u ·∇u0‖2
0

≥ 1
2

(∥∥∥∥τ − 2
Re

D(u)

∥∥∥∥
2

0
+

1
Re2 ‖∇ ·u‖2

0+ ‖−∇ ·τ +∇p‖2
−1

)
−C1(n−1)2λ4

cRe−2M4‖u‖2
1−C2M2‖u‖2

1

≥C3

(
‖τ‖2

0+ ‖p‖2
0+

1
Re2 ‖u‖2

1−
1

Re2M4‖u‖2
1−M2‖u‖2

1

)

≥C3

(
‖τ‖2

0+ ‖p‖2
0+

1
Re2 ‖u‖2

1

(
1−M4−Re2M2)

)
.

By using (3.13), we have 1−M4−Re2M2 > 0. Hence,

J(u, p,τ ;0)≥ c0‖|(u, p,τ )|‖2

for some positive constantc0 which is independent ofRe.
�

Therefore, the coercivity and continuity estimates of the functionalJ(u, p,τ ;0) have
been established in Theorem 1. The least-squares minimization problem for the solution of
system (3.5)−(3.8) is to choose(u, p,τ ) ∈ Φ such that

J(u, p,τ ;F) = inf
(v,q,σ)∈Φ

J(v,q,σ;F). (3.14)

4. Finite element approximation. For the finite element approximation, we assume
that the domainΩ is a polygon and thatTh is a partition ofΩ into finite elementsΩ=

⋃
T∈Th T

with h=max{diam(T) : T ∈ Th}. Assume that the triangulationTh is regular and satisfies the
inverse assumption (see [23]). The grid size is defined ash= 2

√
A/

√
N, whereA is the area

of the domain andN is the number of elements inTh. Let Pr(T) denote the standard space of
degreer polynomials on elementT. Define finite element spaces for the approximate of(u,
p, τ ):

V
h = {vh | vh ∈ V ∩ (C0(Ω))2, vh |T ∈ Pr+1(T)

2 ∀T ∈ Th},
Qh = {qh | qh ∈ Q∩C0(Ω), qh |T ∈ Pr+1(T) ∀T ∈ Th},
Σ

h
s = {σh | σh ∈Σs∩ (C0(Ω))2×2, σh |T ∈ Pr+1(T)

2×2 ∀T ∈ Th}.

Let Φh := Vh×Qh×Σ
h
s be finite element subspaces ofΦ with the following approximation

prosperities. LetSh = {u∈C0(Ω) : u|T ∈ Pr+1(T) ∀T ∈ Th} admit the property

inf
uh∈Sh

∥∥∥u−uh
∥∥∥

l
≤Chm‖u‖m+l ∀u∈ Hm+l (Ω) , (4.1)



8 H.C. Lee

for l = 0,1.
The discrete minimization problem is to choose(uh, ph,τ h) ∈ Φh such that

J(uh, ph,τ h;F) = inf
(vh,qh,σh)∈Φh

J(vh,qh,σ
h
;F). (4.2)

Then the finite element approximation to (4.2) is equivalentto seek for(uh, ph,τ h)∈ Φh such
that

B((uh, ph,τ h);(vh,qh,σh)) = F((vh,qh,σh)) (4.3)

∀(vh,qh,σh) ∈ Φh, where

B((uh, ph,τ h);(vh,qh,σh))

=
∫

Ω

(
u0 ·∇uh+uh ·∇u0−∇ ·τ h+∇ph

)
·
(

u0 ·∇vh+ vh ·∇u0−∇ ·σh+∇qh
)

dΩ

+
∫

Ω

(
τ

h− 2
Re

D(uh)− 2
Re

D(u0)G
(
u0,uh)

)
:

(
σ

h− 2
Re

D(vh)− 2
Re

D(u0)G
(

u0,vh
))

dΩ

+ KRe−2
∫

Ω
(∇ ·uh)(∇ ·vh)dΩ,

and

F((vh,qh,σh))

=
∫

Ω
f ·
(

u0 ·∇vh+ vh ·∇u0−∇ ·σh+∇qh
)
+g ·

(
σ

h− 2
Re

D(vh)− 2
Re

D(u0)G
(

u0,vh
))

dΩ.

SinceΦh is a finite element subspace ofΦ, using arguments similar to those in [15] and
[28], and Theorem 1, the Lax−Milgram lemma, and (4.3), the following theorem is proved.

Theorem 2. Suppose assumptions (3.1) and (3.13) hold. The least-squares functional (3.9)
has a unique solution(uh, ph,τ h) ∈ Φh for any h, and the solution satisfies the following
stability estimate:

∥∥∥
∣∣∣(uh, ph,τ h)

∣∣∣
∥∥∥≤ (‖f‖0+ ‖g‖0) . (4.4)

Moreover, the matrix of the linear algebraic system associated with the least-squares scheme
(4.3) is symmetric and positive definite.

We now give error estimates for the solution to (4.2). Using similar arguments in [20],
Theorem 1, and the approximation properties (4.1), the following error estimate is estab-
lished.

Theorem 3. Consider approximating the solution to (3.5)-(3.8) through the discrete mini-
mization problem (4.2) under the assumptions in (3.1) and (3.13). Assume that(u, p,τ ) ∈ Φ
is the solution to (3.14); then the solution to (4.2) satisfies

∥∥∥
∣∣∣(u−uh, p− ph,τ −τ

h)
∣∣∣
∥∥∥≤Chm

(
‖τ‖m+1+ ‖p‖m+1+

1
Re

‖u‖m+1

)
(4.5)

for m≤ r +1.
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Proof.
Theorem 1 directly leads to the bound

∥∥∥
∣∣∣(u−uh, p− ph,τ −τ

h)
∣∣∣
∥∥∥≤ inf

(vh,qh,σh)∈Φh

c1

c0

∥∥∥
∣∣∣(u− vh, p−qh,τ −σ

h)
∣∣∣
∥∥∥

1
,

which, using the approximation properties in (4.1), yieldsthe desired error bound form≤
r +1.

�

The results of the stress formulation are similar to works onthe convergence of the
velocity-vorticity-pressure least-squares method for linearized Navier−Stokes equations gov-
erning the Oseen problem by Tsai and Yang [28]. Note that the use of continuous piecewise
linear polynomials for all unknowns yields the error estimates

∥∥∥
∣∣∣(u−uh, p− ph,τ −τ

h)
∣∣∣
∥∥∥≤Ch

(
‖τ‖2+ ‖p‖2+

1
Re

‖u‖2

)
. (4.6)

We expect the following rates:

‖τ −τ
h‖0 = O(h), ‖p− ph‖0 = O(h),and‖u−uh‖1 = O(h).

The theoretically predicted error bounds are onlyO(h) in theL2-norm for p andτ andO(h)
in the H1-norm for u. Hence, we have the optimal convergence rate of the velocityin the
H1-norm and suboptimal convergence rates of the stress and pressure in theL2-norm.

Finally, we end this section by detailing the procedure of the Newton iteration scheme
for solving the Navier−Stokes equations with the Carreau model (2.1) using the least-squares
approach. The solution of the nonlinear Navier−Stokes systems in (2.1) was approximated
by a sequence of the linearized velocity-pressure-stress system (3.5)−(3.8). The least-squares
approach to the linearized system (3.5)−(3.8) provided an iterative procedure as follows.

We give an initial approximation(uh
0, p

h
0,τ

h
0 ) and then attempt to seek approximations

(uh
ℓ+1, p

h
ℓ+1,τ

h
ℓ+1) ∈ Φh for ℓ= 0, 1, 2, . . . satisfying

Jℓ(uh
ℓ+1, p

h
ℓ+1,τ

h
ℓ+1;F) = inf

(vh,qh,σh)∈Φh
Jℓ(vh,qh,σh;F), (4.7)

where the least-squares functionalJℓ(u, p,τ ;F) is defined as

Jℓ(u, p,τ ;F) =
∥∥∥uh

ℓ ·∇u+u ·∇uh
ℓ −∇ ·τ +∇p− f

∥∥∥
2

0

+

∥∥∥∥τ − 2
Re

D(u)− 2
Re

D(uh
ℓ )G

(
uh
ℓ ,u
)
−g

∥∥∥∥
2

0
+KRe−2‖∇ ·u‖2

0 , (4.8)

where

f = uh
ℓ ·∇uh

ℓ + f̂,

g=
−2
Re

D(uh
ℓ)G

(
uh
ℓ ,u

h
ℓ

)
,

over the spaceΦ.
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5. The adaptively refined algorithm for flow problems. Adaptive grids aligned with
high gradient regions are often necessary to reduce the sizeof the linearized system of equa-
tions and to resolve the singularities arising from geometric discontinuities. In our previous
work [22], adaptive least-squares finite element methods for viscoelastic flow problems were
developed. The idea is to adjust the position of the grid points and produce a mesh with the
same number of unknowns, which is more aptly graded for the given problem. In [22], re-
sults indicated that the graded meshes agree with the physical attributes of these models and
smoothed triangulation can improve convergence rates and errors. However, grid effects of
nonuniform meshes were also reported in [22] for the NWLS method using lower-order basis
functions. Unlike previous research [22], we developed a new adaptive algorithm, which adds
new grids on the high gradient region, but does not adjust theposition of the original mesh.
The advantage of this method is that it maintains the accuracy of the low gradient region,
which has low accuracy in previous methods in which grids aremoved toward high gradi-
ent regions. We itemize an adaptive algorithm to construct refined grids of the least-squares
approximations for our model equations (3.5)-(3.8) as follows:

1. Select initial grids, e.g., quasi-uniform grids.
2. Triangulate the point set by a Delaunay grid generation technique considered by

Shewchuk [29] and produce a meshT with elementsT. Solve the problem by the
finite element method.

3. Compute the grading function

φT = |R(∇q)|T , (5.1)

whereR is a gradient recovery technique employed to compute the gradient of the
scalarq. Our implementation follows from [24] by defining an averagetype recovery
schemeR : ∇VN 7→ V̄N × V̄N with

R(∇qN)(xi) =
∑T∈wi

|T||∇qN|T
|wi |

, (5.2)

where for all verticesxi ∈ T , wi is the patch including the verticesxi , that is, the
union of all triangles containxi , and| · | is the two-dimensional Lebesgue measure.

4. Compute the mesh redistribution functionf (φT ), wheref is defined by

f (φT) = |T|max− (φT −φTmin)
∆|T|
∆φT

,

where|T|max=max{|T| : ∀T ∈ T }, ∆|T|= |T|max−|T|min, and∆φT = φTmax−φTmin.
5. If T ∈ T satisfiesf (φT)< |T|, thenT is subdivided.
6. Update the grid point information. Continue to step 2 to triangulate the point set,

check if the stopping criterion (the variation of the minimum h between consecutive
iterations is less than some prescribed tolerance) is satisfied, and repeat the process
if not.

Note that the least-squares method in (3.9) is used in step 2,and all the computations are per-
formed using linear interpolation for all unknowns. The least-squares method is simpler to
implement than either the GLS or the NWLS method. In step 3, the grading functionφT that
varies with the scalarq in (5.1) is used to generate the required refined nodes in the computa-
tional domain. To illustrate the capability of the algorithm, adaptive mesh refinements on the
square test domain are performed in Section 6 on three scalars q, where velocity magnitude

|u|2 =
√

u2
x +u2

y, stress magnitude|τ |2 =
√
τ 2

xx+τ 2
yy+τ 2

xy, and pressure is|p|. Note that the

choice ofq depends on the physical property of the flows that we are concerned with. For the
4-to-1 contraction domain, the velocity magnitude is used to illustrate the effectiveness and
robustness of the algorithm.
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6. Numerical results. The governing equations are solved on two domains in this sec-
tion. The first domain is a square test domain with exact boundary conditions used to measure
convergence rates. The second is the 4-to-1 contraction channel problem consisting of an up-
stream channel that abruptly narrows to a channel one quarter of the original width. These
domains with boundaries are shown in Figure 6.1.

For the first test domain, the boundary conditions are as follows:

u = uΓ on Γin, Γwall , Γout, (6.1)

p= p0 on Γout∩Γsym, (6.2)

u ·n = 0, π : nt = 0 on Γsym. (6.3)

For the 4-to-1 contraction domain, letu = (u,v), which includes the following boundary
conditions:

u = uΓ on Γin, (6.4)

u = 0 on Γwall , (6.5)

v= 0, p= 0 on Γout, (6.6)

u ·n = 0, π : nt = 0 on Γsym. (6.7)

Note thatn andt are unit vectors outward normal and tangent to the boundary,respectively.
π = pI − τ is the Cauchy stress tensor, anduΓ andτΓ are specified boundary functions.
These boundary conditions are also used in [15].

Our method couples the least-squares functional (4.8) withadaptive mesh refinement.
The resulting linear algebraic system of equations with a symmetric positive define coef-
ficient matrix is solved using the Gaussian elimination method. Convergence of the iter-
ation scheme in (4.7) was declared when the relative norm of the residual in velocities,
‖uh

ℓ+1−uh
ℓ‖/‖uh

ℓ+1‖, between two consecutive iterations was less than 10−4. Both cases
presented here use linear basis functions for all variables. Previous studies [11] showed that
mass conservation is not favorable in least-squares based formulations when low-order ba-
sis functions are used. To properly adjust the weightsK = 10m in (4.8), we iterate onm,
wherem ranges from 1 to 8, to determine approximate convergence of the functionalg1/2 in
(3.10). The functionalg1/2 is used as a posteriori error estimates for the first-order system
least-squares finite element method. Note that the ranges ofm vary with the problems and
the computational domain in [15] and [27]. In addition, the functionalg1/2 is also used in
a refinement process to illustrate convergence of the method. Based on [20, 21, 30], under
certain smoothness assumptions, the following error boundis used to estimate the functional
which is equivalent to theH1-norm [31]:

g1/2(uh, ph,τ h; f̂)≈
(
‖u−uh‖2

1+ ‖p− ph‖2
1+ ‖τ −τ

h‖2
1

)1/2
≤Ch(‖τ‖2+ ‖p‖2+ ‖u‖2) .

Thus, for the finite element space used here, optimal convergence impliesg1/2 = O(h).
We provide numerical results for the Navier−Stokes equations using the Carreau model

(2.1) by using the iteration schemes (4.7). Each iteration involved the linearized velocity-
pressure-stress Navier−Stokes equations (3.5)-(3.8) which were analyzed in section 4. How-
ever, the results for the linearized velocity-pressure-stress system provided guidance on what
the optimal rates would be. It was reasonable to expect that convergence rates of the least-
squares approximations for the Navier−Stokes equations using the Carreau model were sim-
ilar to those for the linearized velocity-pressure-stresssystem. The least-squares solution of
the linearized velocity-pressure-stress system predicted discretization error bounds asO(h)
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FIG. 6.1.Computational domains.
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FIG. 6.2.Mesh D is a uniform directional Delaunay triangular mesh corresponding to h= 1
16.

in theL2-norm for p andτ and asO(h) in theH1-norm ofO(h) for u by using continuous
piecewise linear elements for all variables. Although suboptimal convergence rates inp and
τ are obtained in our analysis for the least-squares method using continuous piecewise lin-
ear elements for all variables, we show that the optimal convergence rates ofO(h2) in the
L2-norm for all variables can be achieved in the least-squaresmethod using properly refined
grids on high gradient regions.

6.1. Example 1: Flow in planar channel.The first problem is the planar channel flow
on the square domain[0,1]× [0,1] considered in [4] with a symmetry line alongy= 0. The
flow domain is shown in Figure 6.1(a). Because of the symmetryalongy= 0, the computed
domain is reduced to half. The exact solutions in Cartesian coordinates are given in [4] by

uexact=

[
1− y4

0

]

and

pexact=−x2.
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For the square test domain in Figure 6.1(a), the exact solution for the extra-stress tensor is
calculated using

τexact=
1

η0Re
(2η(γ̇(uexact))D(uexact)) .

A forcing function,f, must be added to the momentum equation, specifically

f =




1
Re

(
12y2

(
1+16nλ2

cy
6
)(

1+16λ2
cy

6
) n−3

2

)
−2x

0


 .

In the convergence results, the constitutive equation parameters in (2.2) are set asRe= 1,
ηo = 1,n= 0.5, andλc = 1 for the Carreau model. In the following calculation, the numerical
simulation is performed using the two-dimensional incompressible Navier−Stokes equations
governing generalized Newtonian flows in the stress based first-order form. We linearize the
resulting discrete model using Newton’s method.

To illustrate convergence of the method and the influence of the mass conservation in
the first problem, we employed three uniform directional Delaunay triangular Meshes D with
8, 16, and 32 partitions per unit length, as shown in Figure 6.2. We list the weightK, the
number of elementsN, the number of Newton steps, and the nonlinear functionalg1/2 in Table
6.1. Table 6.1 shows that whenK ≥ 100, for all cases the nonlinear functional normg1/2 is
almost consistent, and whenK ≥ 107, the iterative process exceeds the maximum number of
Newton steps (100) for the case ofN = 2084. The results show poor conservation of mass is
improved by scaling the divergence equation. However, an overweighted divergence equation
will worsen the condition of the system, which results in degradation of the performance of
the solver, as shown in [13]. In Figure 6.3, we display convergence rates of least-squares
solutions using weights ranging fromK = 1 toK = 108. The results indicate that the solutions
of the cases whenK ≥ 100 are almost identical and that the least-squares solutions containing
proper mass conservation weight are improved. Based on our experience using the least-
squares method withK = 100, the convergence of the functionalg1/2 and the convergent rates
for the least-squares solutions agree well with those ofK ≥ 100. Therefore, it is sufficient
to useK = 100 for satisfactory results. The mass conservation parameterK = 100 is chosen
in the least-squares formulations in the example. Note thatFigure 6.3 reveals that the best
convergence rates in theL2-norm of the least-squares solutions in whichK = 100 is used,u,
τ , andp are 2.0, 1.4, and 1.3, respectively, and that in theH1-norm foru is 1.0. The resulting
convergence rates for the velocity are the optimal convergence ratesO(h2) in the L2-norm
andO(h) in the H1-norm and for the stress and pressure are suboptimal convergence rates
O(h) in theL2-norm. The computed error bounds for the velocity, stress, and pressure agree
well with those that are theoretically predicted in section4.

Next, in Figure 6.2, we consider the directional Delaunay triangular uniform Mesh D
with 16 partitions per unit length. The least-squares method based on the adaptively refined
algorithm in section 5 (called the AR-NLS method) is performed using initial Mesh D. Re-
fined mesh convergence was declared when the norm of the residual in minimum mesh length
between two consecutive iterations was less than 0.01, which required two refined iterations.
To understand the influence of the grading functions in our algorithm, we consider three
scalarsq (5.1) in relation to velocity magnitude|u|2, stress magnitude|τ |2, and pressure|p|.
Convergent adaptively refined Meshes DA, DB and DC are generated by velocity magnitude,
stress magnitude, and pressure in Figures 6.4(a), (c), and (e), respectively, and their contours
are shown in Figures 6.4(b), (d), and (f), respectively. Theresults show that Meshes DA, DB,
and DC are refined near the wall, near the midpoint ofy for the domain, and near the outlet,



14 H.C. Lee

N = 128 N = 512 N = 2048
WeightK Steps g1/2 Steps g1/2 Steps g1/2

1 7 0.003095 9 0.000870 10 0.000249
101 7 0.003184 9 0.000898 10 0.000257
102 6 0.003192 8 0.000906 10 0.000259
103 5 0.003187 6 0.000905 9 0.000259
104 4 0.003187 6 0.000905 8 0.000260
105 4 0.003187 5 0.000905 9 0.000260
106 4 0.003187 4 0.000905 22 0.000260
107 3 0.003187 4 0.000905 100* 0.000260
108 3 0.003187 5 0.000905 100* 0.000260

TABLE 6.1
Least-squares method on Mesh D for Carreau model at Re= 1, n= 0.5, andλc = 1. Nonlinear

functional norm g1/2 in nonlinear nested iteration for various weights K. Here, Ndenotes the total
number of elements and steps mean the number of Newton steps.* indicates the maximum number of
Newton steps (100) has been exceeded.

respectively. These meshes are refined along larger variation areas of the selected variable’s
magnitude and agree with the physical features of the flow. Accurate velocity profiles are
helpful to understand the feature of the flow. Hence, the velocity magnitude gradient is used
for the grading refined function in the work.

To illustrate adaptive algorithm capability in the AR-LS solutions, the adaptive refined
meshes are generated by Mesh D with 8, 16, and 32 partitions per unit length as initial meshes.
The errors of the adaptive mesh refinement solutions are shown in Figure 6.5. The conver-
gence rates in theL2-norm of the AR-LS solutions foru, τ , and p are 2.8, 2.6, and 2.3,
respectively, and in theH1-norm foru the convergence rate is 1.5. Note also that the conver-
gence rate of the AR-LS method improves over the least-squares method. In fact, the optimal
convergence rates of the AR-least-squares method are obtained in all variables. Based on the
results, the convergence rate can be restored using adaptive mesh refinements.

6.2. Example 2: Flow in the 4-to-1 contraction channel.To further show the AR-
LS scheme capability for the Carreau model, we applied the method to the 4-to-1 contraction
channel in Figure 6.1(b), withx (the flow direction) varying as−5≤ x≤ 5 and the contraction
occurring atx= 0. The upstream channel width is 1; thus the downstream widthis 1/4. In our
computations,−5≤ x≤ 5 corresponds to the upstream length 20L and the downstream length
20L, where we useL as the downstream channel width. In the Carreau viscosity function
(2.2), the zero-shear-rate viscosityη0 was taken equal to one, so that three dimensionless
parameters were needed to defined the flow:Re, λc, andn.

Figure 6.6 shows a uniform criss-crossed Mesh C generated byDelauay triangular grids
with 16 partitions per unit length. Recall that for the flow ina planar channel, it is necessary to
choose proper weightsK in the LS method to obtain accurate results. In the second example,
using weights ranging fromK = 1 to K = 108 in the LS functional on Mesh C, the values of
the functionalg1/2 are shown in Table 6.2 for the Newtonian model atRe= 1 and 100, and for
the Carreau model atRe= 1,λc= 10, andn= 0.5. The results indicate that whenK ≥ 105, we
obtained convergence of the functionalg1/2. Therefore, settingK = 105 is sufficient to obtain
satisfactory results. The mass conservation parameterK = 105 is chosen in the least-squares
formulations in the second example.

In our computations, Mesh C is considered as the initial mesh. Refined mesh conver-
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FIG. 6.3. Errors in least-squares solutions with various weights K for Carreau model at Re= 1,
λc = 1, and n= 0.5. L2 errors in (a)u, (b) τ , (c) p, and (d) H1 errors inu.

Re= 1, Newtonian Re= 100, Newtonian Re= 1, Carreau
WeightK Steps g1/2 Steps g1/2 Steps g1/2

1 2 0.00077 4 0.00077 3 0.000769
101 2 0.00074 4 0.000712 12 0.001322
102 3 0.010137 5 0.000439 5 0.007039
103 3 0.079862 8 0.0001 5 0.007658
104 3 0.119331 6 0.000022 5 0.007722
105 3 0.124843 6 0.000027 5 0.007728
106 3 0.125416 6 0.000028 5 0.007729
107 3 0.125474 6 0.000028 5 0.007729
108 3 0.125479 6 0.000028 5 0.007729

TABLE 6.2
Least-squares method on Mesh C for Newtonian model at Re= 1 and Re= 100 and Carreau

model at Re= 1, n= 0.5, andλc = 10. Nonlinear functional norm g1/2 in nonlinear nested iteration
for various weights K. Here steps means the number of Newton steps.
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FIG. 6.4. Carreau model at Re= 1, λc = 1, and n= 0.5. Convergent adaptively refined Meshes
DA, DB, and DC with two iterations respectively generated byvelocity, stress, and pressure and their
contours.
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FIG. 6.6.Mesh C is a uniform criss-crossed mesh with 16 partitions perunit length.

gence was declared when the norm of the residual in minimum mesh length between two
consecutive iterations was less than 0.005, which can be achieved within three iterations.
Figures 6.7(a), (b), and (c) show three adaptive Meshes, CA1, CA2, and CA3, generated by
the AR-LS method for the Newtonian model (Re= 1 andRe= 100) and the Carreau model
(Re= 1, λc = 10,n= 0.5), respectively, using Mesh C as the initial mesh. The results show
that these adaptive meshes are more refined near the reentrant corner and downstream bound-
ary layers. Figures 6.8, 6.9, and 6.10 show contours of the vertical velocityv on Meshes C
and CA1 for the Newtonian model atRe= 1, those on Meshes C and CA2 for the Newtonian
model atRe= 100, and those on Meshes C and CA3 for the Carreau model atRe= 1,λc = 10,
andn= 0.5, respectively. The results show that contours of the vertical velocityv on Mesh C
are not smooth enough, and contours ofv on the adaptively refined Meshes CA1, CA2, and
CA3 provide a better contraction impression than does Mesh C, which reveals that the refine-
ment results are of good quality. Figure 6.11 shows that the convergence rates ing1/2 of the
AR-LS solutions for the Newtonian model atRe= 1 andRe= 100, and for the Carreau model
(Re= 1, λc = 10,n= 0.5) are 1.4, 1.3, and 1.6, respectively. The figure results reveal that the
functionalg1/2 approaches the optimal convergence ratesO(h) for all cases. In Figure 6.12,
we display a comparison between our AR-LS results and the GLSresults of Zinani and Frey
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FIG. 6.7. Adaptively refined meshes with two iterations using the initial Mesh C for Newtonian
model: (a) Mesh CA1 for Re= 1, (b) Mesh CA2 for Re= 100, and (c) Mesh CA3 for Carreau model at
Re= 1, n= 0.5, andλc = 10.

[3] for the horizontal velocityu profiles along the symmetric line in the contraction plane
for the Newtonian model (Re= 1 andRe= 100) and the Carreau model (Re= 1, λc = 10,
n= 0.5). We show the same for the profiles ofu(x,0) along the symmetric line by employing
two adaptive meshes with minimum grid sizeshmin of 0.03125 and 0.015625. Accordingly,
we obtained convergent velocity profiles by using the AR-LS method in all cases, as shown
in Figure 6.12. The figure also shows that the profiles used in the AR-LS method are similar
to those used in the GLS method by Zinani and Frey [3], except for the velocity profile near
the contraction when the Reynolds number is high (Re= 100). The results show that the
main differences likely occurred because of inertia effects, that is, the AR-LS method would
be sensitive to high Reynolds numbers for resolving the singularities arising from geometric
discontinuities. The issue will be investigated further inthe future. Nevertheless, we obtain
the same maximum velocity for all cases in the regions of the fully developed flow, as shown
in [3]. It is assumed that the results are in good agreement.

We next evaluate the effects of power-law indicesn and Carreau time numberλc on
adaptive meshes. Forλc = 1 andRe= 1 in the Carreau model, we employedn= 0.75, 0.5,
0.25, and 0.125 in Figure 6.13. Forn= 0.5 andRe= 1, we consideredλc = 0.1 and 100 in
Figure 6.14. Because of the shear thinning effect in the Carreau model, the results show that
adaptively refined meshes depend on shear thinning physicalbehavior and are refined along
the large variation area of the flow. ForRe= 1 andλc = 1, the profiles of the horizontal
velocity componentu in the contraction plane alongx = 0 with indicesn= 0.75, 0.5, 0.25,
and 0.125 in the Carreau viscosity function are presented inFigure 6.15(a). The figure results
show that whenn= 0.125, the shear thinning fluid velocity near the wall is higherthan other
values ofn, causing the flattest velocity profile in the contraction plane. Because the low
index fluid near the wall has low viscosity, the velocity growth rate away from the wall of
the low power-law index fluid is greater than the high index fluid. To evaluate the effects



ADAPTIVELY REFINED LSFEM FOR CARREAU FLUID FLOWS 19

67

8 9

10

10 11

11

12

1213

13

13

13

14

14

14

14

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
Level V

14 -0.01
13 -0.0192308
12 -0.0284615
11 -0.0376923
10 -0.0469231
9 -0.0561538
8 -0.0653846
7 -0.0746154
6 -0.0838462
5 -0.0930769
4 -0.102308
3 -0.111538
2 -0.120769
1 -0.13

Re=1, Newtonian

7

8

9

10

11

11

12

12

12

13

13

13

13

14 14

14

14

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
Level V

14 -0.01
13 -0.0192308
12 -0.0284615
11 -0.0376923
10 -0.0469231
9 -0.0561538
8 -0.0653846
7 -0.0746154
6 -0.0838462
5 -0.0930769
4 -0.102308
3 -0.111538
2 -0.120769
1 -0.13

Re=1, Newtonian

(a) (b)

FIG. 6.8.Contours of the vertical velocity v on (a) Mesh C and (b) Mesh CA1 for Newtonian model
at Re= 1.
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FIG. 6.9.Contours of the vertical velocity v on (a) Mesh C and (b) Mesh CA2 for Newtonian model
at Re= 100.
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FIG. 6.10.Contours of the vertical velocity v on (a) Mesh C and (b) Mesh CA3 for Carreau model
at Re= 1, λc = 10, n= 0.5.

of Carreau time numberλc, we employedλc = 0.1, 1, 10, and 100 in the Carreau model at
n= 0.5 andRe= 1 in Figure 6.15(b), which shows the horizontal velocity componentu in the
contraction plane alongx= 0. The Carreau time numberλc controls the fluid thinning effect
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FIG. 6.11. Nonlinear least-squares functional norm versus grid size hfor Newtonian model at
Re= 1 (o) and Re= 100(*) and Carreau at Re= 1, λc = 10, n= 0.5 (+).

and indicates the velocity growth rate away from the wall of the highλc fluid, which is greater
than that of the lowλc fluid. The figure also shows that the profiles used in the AR-LS method
are similar to those used in the NWLS method by Chen et al. [4].The results show that the
effect of increasingλc is similar to that of decreasingn for a low flow, Re= 1, as expected.
To evaluate the inertia effects, we employedRe= 1, 10, and 100 in the Carreau model at
n = 0.125 andλc = 0.1 in Figure 6.16. In contrast to the case whereRe= 1 andRe= 10,
the velocity profile whereRe= 100 reveals an obvious difference. The results indicate the
inertia effect cannot be neglected in some cases of non-Newtonian fluid flows. We showed
the effects of physical parameters on the velocity field agree with those obtained by Zinani
and Frey [3].

Finally, we employed another least-squares finite element method to illustrate the ca-
pability of the adaptively refined algorithm. In [5], Bochevand Gunzburger introduced a
weighted least-squares functional involvingL2-norms of the residuals of the momentum equa-
tion multiplied by a mesh dependent weighth and they applied it to the Stokes equations.
They showed that with correctly chosen mesh-dependent weights, the approximations to the
solutions of the Stokes equations are optimal. To evaluate the effects of mesh weight in the
least-squares approach for solving the Navier−Stokes problem, we employed the following
weighted least-squares functionalJh

ℓ for ℓ= 0, 1, 2, . . . based on the adaptively refined algo-
rithm (called the AR-WDLS method) for the Carreau model atRe= 1, λc = 1, andn= 0.5,
as follows:

Jh
ℓ (u, p,τ ;F) = h2

∥∥∥uh
ℓ ·∇u+u ·∇uh

ℓ −∇ ·τ +∇p− f
∥∥∥

2

0

+

∥∥∥∥τ − 2
Re

D(u)− 2
Re

D(uh
ℓ)G

(
uh
ℓ ,u
)
−g

∥∥∥∥
2

0
+KRe−2‖∇ ·u‖2

0 . (6.8)

We obtained two convergent adaptively refined meshes generated by the AR-LS and AR-
WDLS methods usingK = 105 and their streamline patterns, as shown in Figure 6.17. Figure
6.17 shows that the two convergent adaptively refined meshesare different, and the sizes of
the corner vortex, the distance between the vortex reattachpoint and the top corner, using
the AR-LS and AR-WDLS methods were approximately 0.375 and 0.5625, respectively. The
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results show that in comparison with the AR-LS solution, therecirculation zone of fluid in
the AR-WDLS solution seems too large. Note that the AR-LS results agree with the NWLS
results of Chen et al. [4]. Therefore, the AR-LS method outperforms the AR-WDLS method
and yields results which are compatible to those presented in [4].

7. Conclusion. We presented an adaptively refined finite element approximation to the
Carreau generalized Newtonian model. We provided an a priorerror estimate for the lin-
earized velocity-pressure-stress first-order system problem and showed numerical results sup-
porting the estimate. To resolve the high gradient regions over the domain, we developed an
adaptive mesh refinement based on the least-squares method.When we used continuous
piecewise linear finite element spaces for all variables, properly adjusting the importance of
the mass conservation and with adaptive mesh refinements, weobtained optimal convergence
rates for all variables which are better than those of the theoretical prediction. The adaptively
refined algorithm is efficient because we show the least-squares functional optimal conver-
gence rate, and these adaptive meshes are refined along the large variation area of the flow,
which agrees well with the physical attributes of the models. Adaptive refinement for the
4-to-1 contraction problem depends on the shear thinning physical behavior, and our results
agree with those obtained in published GLS and NWLS results.Our results show that the
adaptively refined meshes are automatic local grid refinement with different flow parameters,
and the refinement results are of good quality. Finally, numerical experiments indicate that
the AR-LS method can be extended to more general 4-to-1 contraction problems without
major difficulty.
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FIG. 6.12. Profiles of the horizontal velocity u(x,0) along the symmetric line for (a) Newtonian
model at Re= 1, (b) Newtonian model at Re= 100, and (c) Carreau model at Re= 1, λc = 10, and
n= 0.5.
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FIG. 6.13.Carreau model at Re= 1, λc = 1. Adaptive refined meshes at (a) n= 0.75, (b) n= 0.5,
(c) n= 0.25, and (d) n= 0.125.
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