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ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS

GALERKIN METHOD FOR CONSERVATION LAWS

ON MOVING SIMPLEX MESHES

PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

Abstract. In Klingenberg, Schnücke, and Xia (Math. Comp. 86 (2017), 1203–
1232) an arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG)
method to solve conservation laws has been developed and analyzed. In this
paper, the ALE-DG method will be extended to several dimensions. The
method will be designed for simplex meshes. This will ensure that the method
satisfies the geometric conservation law if the accuracy of the time integrator is
not less than the value of the spatial dimension. For the semidiscrete method
the L2-stability will be proven. Furthermore, an error estimate which provides
the suboptimal (k+ 1

2
) convergence with respect to the L∞(

0, T ; L2(Ω)
)
-norm

will be presented when an arbitrary monotone flux is used and for each cell
the approximating functions are given by polynomials of degree k. The two-
dimensional fully-discrete explicit method will be combined with the bound-
preserving limiter developed by Zhang, Xia, and Shu (in J. Sci. Comput. 50
(2012), 29–62). This limiter does not affect the high-order accuracy of a nu-
merical method. Then, for the ALE-DG method revised by the limiter, the
validity of a discrete maximum principle will be proven. The numerical sta-
bility, robustness, and accuracy of the method will be shown by a variety of
two-dimensional computational experiments on moving triangular meshes.

1. Introduction

The present paper investigates the development and analysis of an arbitrary
Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method for scalar conser-
vation laws in several space dimensions,

∂tu+∇ · f (u) = 0, in Ω× (0, T ) ,(1.1)

with initial condition u0(x) and suitable boundary conditions. The domain Ω ⊆ R
d

is an open convex polyhedron and the flux f (u) := (f1 (u) , . . . , fd (u))
T is a suitable

vector field. In general problem (1.1) has no classical solutions. Discontinuities like
shock waves could appear in the solution, regardless of the smoothness of the initial
data. Hence, the problem needs to be investigated with a class of generalized
solutions. The existence of a unique physical relevant solution for the problem
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was proven by Kružkov in [18]. This solution is called the entropy solution. In
particular, Kružkov proved that the unique entropy solution satisfies the maximum
principle. This means the entropy solution is bounded by the interval [m,M ], where

(1.2) M := max
x∈Ω

u0 (x) and m := min
x∈Ω

u0 (x) .

The discontinuous Galerkin (DG) method, introduced by Reed and Hill [30]
in the context of a neutron transport equation, is a finite element method with
discontinuous basis functions. The choice of discontinuous basis functions gives
the method a local structure (elements only communicate with immediate neigh-
bors) and the property to handle complex mesh geometries. These features of the
DG method are attractive for parallel and high performance computing. There-
fore, in particular, the explicit Runge-Kutta DG (RK-DG) method for convection-
dominated problems developed and analyzed by Cockburn, Shu, and several co-
authors in a series of publications (cf. the review article [6] for a summation of
their pioneering works) became very popular in the last decades.

The RK-DG method of Cockburn and Shu was developed for a static computa-
tional mesh, but in engineering applications like aeroelastic computations of wings
(cf. for instance Robinson et al. [31]) numerical methods with a deformable mov-
ing mesh are desirable. Nevertheless, a deformable computational domain can lead
to strong distortions in the mesh geometry which can be the source of numerical
artifacts and instabilities. In the arbitrary Lagrangian-Eulerian (ALE) approach
the mesh can move with the fluid like in the Lagrangian specification or the mesh
can be static as in the Eulerian specification. This flexibility has a stabilizing ef-
fect on an ALE method, since it is possible to switch to the Eulerian specification
whenever distortions appear in the mesh geometry. The ALE kinematics were rig-
orously described by Donea et al. [7]. Moreover, in the literature there are different
strategies to combine the ALE approach with the RK-DG method. Among others
Lomtev, Kirby, Karniadakis [23], Nguyen [27], Persson et al. [29,34], Kopriva et al.
[17, 26], and Boscheri, Dumbser [2] developed and analyzed ALE-DG methods for
convection-dominated problems on a moving domain.

In this paper, an ALE-DG method for solving problem (1.1) on moving simplex
meshes is introduced. This method is an extension of the ALE-DG method devel-
oped by Klingenberg et al. [14, 15]. In order to describe the ALE kinematics, we
assume that the distribution of the grid points is explicitly given for an upcoming
time level by a suitable moving grid methodology. On the basis of this assumption,
we can define local affine linear ALE mappings which connect the time-dependent
simplex cells with a time-independent reference simplex cell. This simple construc-
tion of the ALE mappings ensures that our ALE-DG method has a local structure
like the RK-DG method and the discrete geometric conservation law (D-GCL) is
satisfied when a suitable high-order accurate Runge-Kutta (RK) method is used.
The geometric conservation law (GCL) describes the time evolution of the metric
terms in a grid deformation method and has an important influence on the stabil-
ity and accuracy of a method. The significance of the GCL was first analyzed by
Lombard and Thomas [22], thenceforth the GCL was investigated in the context of
moving mesh finite volume and finite element methods by Farhat et al. [9, 12, 21],

Mavriplis, Yang [25], and Étienne, Garon, Pelletier [8].
Besides the D-GCL, a discrete maximum principle is discussed for our ALE-DG

method. In general, even on a static mesh, it is not easy to design a high-order
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method which satisfies a discrete maximum principle for problem (1.1) without
affecting the high-order accuracy of the method. Two approaches are commonly
used in the literature. The first approach is the flux correction approach. Based on
this approach Xu [36] developed a technique to ensure that a high-order method
satisfies the maximum principle and maintains the high-order accuracy. Moreover,
an algebraic flux correction approach for finite element methods was introduced by
Kuzmin in [20] and [19, Chapter 4]. Another approach was developed by Zhang and
Shu [41]. This approach was based on a bound-preserving limiter which does not
affect the high-order accuracy of a high-order method. In particular, the bound-
preserving limiter was developed for rectangular meshes by Zhang and Shu [41]
and for triangular meshes by Zhang, Xia, and Shu [42]. This approach allows
the development of a high-order accurate maximum principle satisfying schemes
by a simple investigation of the forward Euler step, since the common convexity
argument (cf. Gottlieb and Shu [10]) can be used to extend the result for the
forward Euler step to the high-order total-variation-diminishing RK (TVD-RK)
methods. However, Farhat, Geuzaine, and Grandmont [9] proved that for ALE
finite volume methods a discrete maximum principle is satisfied if and only if the
D-GCL is satisfied. Unfortunately, for our ALE-DG method the D-GCL is only
fulfilled if the accuracy of the RK method corresponds with the spatial dimension.
Hence, we cannot expect that our forward Euler ALE-DGmethod satisfies a discrete
maximum principle when the bound-preserving limiter is applied. Nevertheless,
it turns out that the GCL is an ODE in our ALE-DG method. This ODE can
be solved exactly by an RK method with an order not less than the value of the
spatial dimension. In two dimensions, we use the second- and the third-order TVD-
RK methods developed by Shu in [32] to solve the GCL and the actual ALE-DG
method. Then the RK stage solutions for the GCL are used to update the metric
terms in the RK stages of the actual ALE-DG method. This time integration
strategy allows us to develop second- and third-order accurate fully-discrete ALE-
DG methods. We prove that these methods satisfy a discrete maximum principle
when the bound-preserving limiter is applied. Furthermore, we present numerical
experiments which support the expectation that the ALE-DG method also satisfies
a discrete maximum principle when the five-stage fourth-order TVD-RK method
developed by Spiteri and Ruuth in [33] and the bound-preserving limiter are used.

In addition, we present an a priori error estimate for our ALE-DG method. A
priori error analysis to smooth solutions of the second- and third-order RK-DG
method on a static mesh for scalar and symmetrizable systems of conservation laws
were mainly done by Zhang, Shu, et al. More precisely, Zhang and Shu proved in
[37] and [38] that under a slightly more restrictive Courant-Friedrichs-Lewy (CFL)
constraint than the commonly used constraint the a priori error of the second-order

RK-DG method behaves as O
(
�t2 + hk+ 1

2

)
in the L2-norm when a local poly-

nomial basis of degree k ≥ 1 and an arbitrary monotone flux are applied. In this
context the quantity �t denotes the time step and h denotes the maximum cell
length. Likewise, Zhang and Shu proved in [39] that under the usual CFL con-
straint the a priori error of the third-order RK-DG method for scalar conservation

laws behaves as O
(
�t3 + hk+ 1

2

)
in the L2-norm. This result was extended to sym-

metrizable systems of conservation laws by Luo, Shu, and Zhang [24]. Furthermore,
a priori error estimates for the third-order RK-DG method in the context of linear
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scalar conservation laws with discontinuous initial data were proven in [40]. In this
work, we merely prove that for smooth solutions of problem (1.1) the a priori error

of the semidiscrete ALE-DG method behaves as O
(
hk+ 1

2

)
when polynomials of

degree k ≥ max
{
1, d

2

}
are used on the reference cell and an arbitrary monotone

flux is applied.
The rest of the paper is organized as follows. In Section 2, we introduce the

local affine linear ALE mappings, a time-dependent test function space, and our
semidiscrete ALE-DG method. In Section 3, we present some theoretical results
for the semidiscrete ALE-DG method. In particular, the L2-stability is proven.
Afterward, in Section 4, the fully-discrete ALE-DG method is investigated. We
prove that the D-GCL is satisfied under certain conditions which are related to the
spatial dimension. Furthermore, in two dimensions second- and third-order accurate
fully-discrete ALE-DG methods on moving triangular meshes are presented. We
prove that these methods satisfy a discrete maximum principle when the bound-
preserving limiter for triangular meshes developed by Zhang, Xia, and Shu in [42]
is applied. In Section 5, we validate the theoretical results by some computational
examples and show that the ALE-DG method is numerically stable and high-order
accurate. Finally, we give some concluding remarks in Section 6.

Constants and notation. In the present paper, vectors, vector-valued functions,
and matrices are denoted by bold letters. Scalar quantities are denoted by reg-
ular letters. The set K (t) denotes a time-dependent open simplex cell in a d-
dimensional domain with the edges F ν

K(t), ν = 1, . . . , d + 1. Volume integrals

with respect to the open set K (t) and surface integrals with respect to the edges
F ν
K(t), ν = 1, . . . , d+ 1, are denoted by the bracket notation. Hence, for all v, w ∈

L2 (K (t))∪L2 (∂K (t)) and ν = 1, . . . , d+1 the notation (v, w)K(t) :=
∫
K(t)

vw dx,

〈v, w〉F ν
K(t)

:=
∫
F ν

K(t)

vw dΓ, and 〈v, w〉∂K(t) :=
∑d+1

ν=1 〈v, w〉F ν
K(t)

is applied. Fur-

thermore, to avoid confusion with different constants, we denote by C a positive
constant, which is independent of the mesh size and the numerical solutions for the
conservation law (1.1), but may depend on the solution of the PDE and may have
a different value in each occurrence.

2. The ALE-DG discretization

In this section, we present the semidiscrete ALE-DG discretization of problem
(1.1). At first, the ALE framework to derive the ALE-DG method in several di-
mensions is briefly listed. Afterward, the ALE framework is used to derive the
semidiscrete ALE-DG method for solving problem (1.1).

2.1. The ALE-DG setting. In this section, we present the time-dependent cells
and introduce some identities for the metric quantities to transform derivatives on
a reference cell.

2.1.1. The time-dependent simplex mesh. We assume that there exists a regular
mesh T(tn) of simplices at any time level tn, n = 0, . . . ,N , which covers exactly the
convex polyhedron domain Ω such that

Ω =
⋃{

K(tn) | K(tn) ∈ T(tn)
}
.
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The mesh topology of T(tn) and T(tn+1) is assumed to be the same. This means:

a) T(tn) and T(tn+1) are simplex meshes of the domain Ω.
b) T(tn) and T(tn+1) have the same number of cells.
c) The cells of both simplex meshes are positively oriented with respect to the

reference simplex

(2.1) Kref :=

{
ξ = (ξ1, . . . , ξd)

T ∈ R
d : ξν ≥ 0 ∀ν and

d∑
ν=1

ξν ≤ 1

}
.

The d+ 1 vertices of each simplex K(tn) ∈ T(tn) are denoted by vn
1 , . . . ,v

n
d+1. We

define for all t ∈ [tn, tn+1] and � = 1, . . . , d+ 1 time-dependent straight lines

(2.2) v� (t) := vn
� + ωKn,� (t− tn) , ωKn,� :=

1

�t

(
vn+1
� − vn

�

)
.

These straight lines are for any t ∈ [tn, tn+1] the vertices of a time-dependent
simplex cell given by

K (t) :=int (conv {v1 (t) , . . . ,vd+1 (t)}) , ∂K (t) =

d+1⋃
ν=1

F ν
K(t),

F ν
K(t) := conv ({v1 (t) , . . . ,vd+1 (t)} \ {vν (t)}) ,

(2.3)

where int (·) and conv (·) denote the interior and the convex hull of a set. In the
following, the set of all time-dependent cells K(t) is denoted by T(t). Furthermore,
for any cell K (t) ∈ T(t) the diameter of the cell and the radius of the largest ball,
contained in K (t), are denoted by hK(t) and ρK(t). Additionally, we define the
following global length:

(2.4) h := max
t∈[0,T ]

max
K(t)∈T(t)

hK(t).

Henceforth, we assume:

(A1) The domain Ω is for all t ∈ [0, T ] exactly covered by the time-dependent

cells (2.3) such that Ω =
⋃

K(t)∈T(t)
K (t).

(A2) For all t ∈ [0, T ] and all cells K (t) ∈ T(t), JK(t) = det
(
AK(t)

)
> 0.

(A3) Constants κ > 0 and τ > 0 exist, independent of h, such that for all
t ∈ [0, T ]

hK(t) ≤ κρK(t) and h ≤ τhK(t) ∀K (t) ∈ T(t).

2.1.2. The ALE mapping and the grid velocity field. The time-dependent simplex
cells (2.3) can be mapped to the time-independent reference simplex element (2.1)
by the affine linear time-dependent mapping

(2.5) χK(t) : Kref → K (t), ξ → χK(t) (ξ, t) := AK(t)ξ + v1 (t) ,

where the matrix AK(t) is given by

(2.6) AK(t) := (v2 (t)− v1 (t) , . . . ,vd+1 (t)− v1 (t)) .

We note that the matrix AK(t) is the Jacobian matrix of the mapping χK(t) and
the corresponding determinant is

(2.7) JK(t) = det
(
AK(t)

)
= d! |K (t)| ,

where |K (t)| denotes the volume of the cell K (t). In particular, JK(t) is indepen-

dent of the spatial variables and belongs to P d ([tn−1, tn]). It is worth mentioning
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Figure 2.1. Left: The vertices of a triangle element at the cur-
rent time level move to the vertices of a triangle element at the
next time level. Right: The corners of a rectangular element at
the current time level move to the corners of a trapezoid element
at the next time level.

that in general for nonsimplicial moving meshes JK(t) depends on spatial and tem-
poral variables, since the shape of the elements can change when the corners move
with different speed. In Figure 2.1 the two-dimensional situation for a triangular
element and a rectangular element is illustrated. The implementation of metric
quantities which depend on spatial variables is not easy and requires caution (e.g.
cf. Kopriva [16]).

Since the matrix AK(t) is the Jacobian matrix of the mapping (2.5), we have the
following metric transformations:
(2.8)

∇ · f = ∇ξ ·
[(

A−1
K(t)

)
f∗
]
, ∇u = A−T

K(t)∇ξu
∗, nK(t) = JK(t)A

−T
K(t)nKref

,

where f : R → R
d is an arbitrary vector field with f∗ = f ◦ χK(t), u is a scalar

function with u∗ = u ◦ χK(t), nK(t) is the normal of the cell K (t), and nKref
is

the reference normal. A proof of these metric transformations is given in Ciarlet
[3, p. 461]. Moreover, the mapping (2.5) provides the grid velocity field in the point
x = χK(t) (ξ, t):

(2.9) ωK(t) (x, t) :=
d

dt

(
χK(t) (ξ, t)

)
.

The definition (2.9) provides the relation

(2.10) ∂ξiωj

(
χK(t) (ξ, t)

)
, t
)
=

[
d

dt

(
AK(t)

)]
ji

, i, j = 1, . . . , d,

where ωj are the coefficients of the grid velocity and
[
d
dt

(
AK(t)

)]
ji

are the coef-

ficients of the matrix d
dt

(
AK(t)

)
. We are also interested to find an identity for

the time derivative of the determinant JK(t). Hence, we apply Jacobi’s formula (cf.

Bellman [1]), using the equation relating the adjugate of AK(t) to the inverse A−1
K(t)
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and apply the identity (2.10). This results in the identity

d

dt

(
JK(t)

)
=tr

[
adj

(
AK(t)

) d

dt

(
AK(t)

)]
=

d∑
i=1

d∑
j=1

(−1)
i+j

M ij
K(t)

[
d

dt

(
AK(t)

)]
ji

=

⎛⎝ d∑
i=1

d∑
j=1

[
A−1

K(t)

]
ij
(∂ξiωj)

⎞⎠ JK(t)

=

(
d∑

i=1

[
A−1

K(t) (∂ξiω)
]
i

)
JK(t),

(2.11)

where tr (·) denotes the trace of a matrix, adj (·) denotes the adjoint of a matrix,

and M ij
K(t) is the (i, j) minor of AK(t). Moreover, since the matrix AK(t) does not

depend on spatial variables, we obtain

(2.12)
d

dt

(
JK(t)

)
=

(
d∑

i=1

[
A−1

K(t) (∂ξiω)
]
i

)
JK(t) =

(
∇ξ ·

[
A−1

K(t)ω
])

JK(t).

Finally, we summarize some properties of the grid velocity. These properties will
be used in the next sections.

Lemma 2.1. The grid velocity ω defined by (2.9) has the following properties:

(i) For all t ∈ [tn, tn+1] the grid velocity belongs to the space P 1
(
Kref ,R

d
)
.

(ii) The grid velocity is time independent for all points contained in the set
∂Kref .

(iii) The divergence of the grid velocity satisfies

(2.13) (∇ · ω)JK(t) =
(
∇ξ ·

[
A−1

K(t)ω
])

JK(t) ∈ P d−1 ([tn−1, tn]) .

Proof. Since the matrix
[
d
dt

(
AK(t)

)]
ij

is time independent, property (i) follows

from the definition of the grid velocity (2.9).
Property (ii) follows directly from the definitions of the time-dependent straight

lines (2.2), the cells (2.3), and the grid velocity (2.9).
Finally, property (iii) follows from the metric transformations (2.8) and the

identity (2.12), since
[
d
dt

(
AK(t)

)]
ij

is time independent and the minors M ij
K(t),

i, j = 1, . . . , d, belong to the space P d−1 ([tn−1, tn]). �
2.2. The approximation space. We define the approximation space

(2.14) Vh(t) :=
{
v ∈ L2 (Ω) : v ◦ χK(t) ∈ P k (Kref) ∀K (t) ∈ T(t)

}
,

where P k (Kref) denotes the space of polynomials in Kref of degree at most k. The
functions from the space Vh(t) are discontinuous along the interface of two adjacent
cells. Thus, we define for a function v ∈ Vh(t) for an arbitrary cell K (t) ∈ T(t), and
for all ν = 1, . . . , d+ 1 the following limits:

vintK(t) (x) := lim
ε→0+

v
(
x− εnν

K(t)

)
,

vextK(t) (x) := lim
ε→0+

v
(
x+ εnν

K(t)

)
∀x ∈ F ν

K(t),
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where the vector nν
K(t), ν = 1, . . . , d + 1, is the outward normal of the cell K (t)

with respect to the simplex face F ν
K(t). Then, the cell average and jump of the

function v along the simplex face F ν
K(t) are defined by

{{v}} :=
1

2

(
vintK(t) + vextK(t)

)
, �v� := vextK(t) − vintK(t) .

2.3. The semidiscrete ALE-DG method. For each cell K(t) ∈ T(t), we approx-
imate the solution u of problem (1.1) by the function

(2.15) uh (x, t) =

r∑
j=1

u
K(t)
j (t)φ

K(t)
j (x, t) for all t ∈ [tn, tn+1) and x ∈ K (t) ,

where r := (k+d)!
d!k! and

{
φ
K(t)
1 (x, t) , . . . , φ

K(t)
r (x, t)

}
is a basis of the space Vh (t)

in the cell K(t). The coefficients u
K(t)
1 (t) , . . . , u

K(t)
r (t) in (2.15) are the unknowns

of the method. In order to determine these coefficients, we plug the function (2.15)
in (1.1), multiply the equation by a test function v ∈ Vh(t), and use the change of
variables theorem for integrals. This results in the equation

(2.16)
(
JK(t) (∂tuh) , v

∗)
Kref

+
(
JK(t) (∇x · f (uh)) , v

∗)
Kref

= 0,

where v∗ = v ◦ χK(t). The chain rule formula and the metric transformations (2.8)
provide

(2.17)
d

dt
u∗
h = ∂tuh + ω · ∇uh = ∂tuh + ω ·A−T

K(t)∇ξu
∗
h,

where u∗
h = uh ◦ χK(t). Next the identities (2.12) and (2.17) provide

(2.18) JK(t) (∂tuh) =
d

dt

(
JK(t)u

∗
h

)
− JK(t)∇ξ ·

[
A−1

K(t)

(
ωu∗

h

)]
.

Then the equation (2.16) becomes

(2.19)

(
d

dt

(
JK(t)u

∗
h

)
, v∗

)
Kref

+
(
JK(t) (∇ξ · g̃ (ω, u∗

h)) , v
∗)

Kref
= 0,

where g̃ (ω, u∗
h) := A−1

K(t)

(
g (ω, u∗

h)
)
with

(2.20) g (ω, u) := f (u)− ω (x, t)u.

At this point, we proceed similarly as in the derivation of the standard DG method
on a static mesh. First, we apply the integration by parts formula in the second

integral in (2.19). Then, we replace the flux function g̃
(
ω, u

∗,intKref

h

)
· nKref

in the

surface integrals by a numerical flux function ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)

with ñ (t) = A−T
K(t)nKref

. The numerical flux function needs to satisfy certain prop-

erties. These properties are discussed in Section 2.4. Finally, on the reference cell,
the semidiscrete ALE-DG method appears as the following problem.
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Problem 1 (The semidiscrete ALE-DG method on the reference cell). Find a
function uh ∈ Vh(t) such that for all v ∈ Vh(t) and all cells K (t) ∈ T(t),

(
d

dt

(
JK(t)u

∗
h

)
, v∗

)
Kref

=
(
JK(t)g̃ (ω, u∗

h) ,∇ξv
∗)

Kref

−
〈
ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)
, v∗,intKref

〉
∂Kref

,

(2.21)

where ñ (t) = A−T
K(t)nKref

.

Since the test functions v∗ = v ◦χK(t) are time independent on the reference cell
Kref , we obtain

(2.22)

(
d

dt

(
JK(t)u

∗
h

)
, v∗

)
Kref

=
d

dt

(
JK(t)u

∗
h, v

∗)
Kref

=
d

dt
(uh, v)K(t) .

Therefore, on the physical domain, Problem 1 is equivalent to the following.

Problem 2 (The semidiscrete ALE-DG method). Find a function uh ∈ Vh(t) such
that for all v ∈ Vh(t) and all cells K (t) ∈ T(t),

d

dt
(uh, v)K(t) =(g (ω, uh) ,∇v)K(t)

−
〈
ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nK(t)

)
, vintK(t)

〉
∂K(t)

.
(2.23)

2.4. The numerical flux function. The numerical flux in the ALE-DG method
should satisfy:

(P1) The flux is consistent with g (ω, u) · nK(t).

(P2) The function u → ĝ
(
ω, u, ·,nK(t)

)
is increasing and Lipschitz continuous.

(P3) The function u → ĝ
(
ω, ·, u,nK(t)

)
is decreasing and Lipschitz continuous.

(P4) The flux is conservative such that

ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nK(t)

)
= −ĝ

(
ω, u

extK(t)

h , u
intK(t)

h ,−nK(t)

)
.

Remark 1. Properties (P1)–(P4) of the numerical flux give for any cell K(t) ∈ Th(t)
and all v ∈ [min (u1, u2) ,max (u1, u2)]

(2.24)
(
g (ω, v) · nK(t) − ĝ

(
ω, u1, u2,nK(t)

))
(u2 − u1) ≥ 0.

The inequality (2.24) is the e-flux condition, which was introduced by Osher [28].

In general every numerical flux with these properties can be used in the ALE-DG
method. A common example is the Lax-Friedrichs flux. This flux is given by

(2.25a) ĝ
(
ω, u1, u2,nK(t)

)
:= ĝ+

(
ω, u1,nK(t)

)
− ĝ−

(
ω, u2,nK(t)

)
,

(2.25b) ĝ±
(
ω, u,nK(t)

)
:=

1

2

[
λnu± g (ω, u) · nK(t)

]
,

(2.25c) λn := max
{∣∣(∂ug (ω, u)) · nK(t)

∣∣ : u ∈ [m,M ] , t ∈ [tn, tn+1]
}
.

We note that the functions ĝ±
(
ω, u,nK(t)

)
are increasing in the second argument.
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10 PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

3. Theoretical results for the semidiscrete method

In this section, we present some theoretical results for the semidiscrete ALE-DG
method. We start with a proof for the L2-stability of the semidiscrete ALE-DG
method. This proof requires techniques which were introduced by Jiang and Shu in
[13] to proof a cell entropy inequality for the DG method. We note that for scalar
conservation laws the function η (u) = 1

2u
2 is an entropy. Thus, the L2-stability

also provides entropy stability in the sense that the total entropy at a certain time
point is bounded by the total entropy at initial time.

Proposition 3.1. The solution uh of the semidiscrete ALE-DG method satisfies
for any t ∈ [0, T ]

(3.1) ‖uh(t)‖L2(Ω) ≤ ‖uh(0)‖L2(Ω)

when problem (1.1) is considered with periodic boundary conditions.

Proof. Let K(t) ∈ T(t) be an arbitrary cell. We use the ALE-DG solution u∗
h =

uh ◦ χK(t) as a test function in equation (2.21) and obtain

(
d

dt

(
JK(t)u

∗
h

)
, u∗

h

)
Kref

=
(
JK(t)g̃ (ω, u∗

h) ,∇ξu
∗
h

)
Kref

−
〈
ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)
, u

∗,intKref

h

〉
∂Kref

.

(3.2)

We obtain by identity (2.12) and the change of variables theorem for integrals(
d

dt

(
JK(t)u

∗
h

)
, u∗

h

)
Kref

=
1

2

d

dt

(
(u∗

h)
2 , JK(t)

)
Kref

+
1

2

(
JK(t)∇ξ ·

[(
A−1

K(t)

)
ω
]
, (u∗

h)
2
)
Kref

=
1

2

d

dt
(uh, uh)K(t) +

1

2

(
∇ · ω, u2

h

)
K(t)

.

(3.3)

Next, we define the vector-valued functions
(3.4)

F (u) :=

(∫ u

f1 (u) du, . . . ,

∫ u

fd (u) du

)T

and G (ω, u) := F (u)− 1

2
ωu2.

Then, by the metric transformations (2.8), the functions (3.4), and the change of
variables theorem for integrals, we obtain

(
JK(t)g̃ (ω, u∗

h) ,∇ξu
∗
h

)
Kref

− 1

2

(
JK(t)∇ξ ·

[(
A−1

K(t)

)
ω
]
, (u∗

h)
2
)
Kref

=
(
JK(t)

(
A−1

K(t)

)
f (u∗

h) ,∇ξu
∗
h

)
Kref

− 1

2

(
JK(t)

(
A−1

K(t)

)
ω,∇ξ (u

∗
h)

2
)
Kref

− 1

2

(
JK(t)∇ξ ·

[(
A−1

K(t)

)
ω
]
, (u∗

h)
2
)
Kref

=
(
JK(t)

(
A−1

K(t)

)
f (u∗

h) ,∇ξu
∗
h

)
Kref

− 1

2

(
JK(t)∇ξ ·

[(
A−1

K(t)

)
ω (u∗

h)
2
]
, 1
)
Kref

=
(
JK(t)∇ξ ·

((
A−1

K(t)

)
G (ω, u∗

h)
)
, 1
)
Kref

= (∇ ·G (ω, uh) , 1)K(t) .

(3.5)
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Furthermore, the divergence theorem gives

(3.6) (∇ ·G (ω, uh) , 1)K(t) =
d+1∑
ν=1

〈
G
(
ω, u

intK(t)

h

)
· nν

K(t), 1
〉
F ν

K(t)

,

where the vectors nν
K(t), ν = 1, . . . , d+1, are the outward normals of the cell K (t)

with respect to the simplex faces F ν
K(t), ν = 1, . . . , d + 1. Likewise, the metric

transformations (2.8) provide〈
ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)
, u

∗,intKref

h

〉
∂Kref

=
〈
ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nK(t)

)
, u

intK(t)

h

〉
∂K(t)

=

d+1∑
ν=1

〈
ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nν
K(t)

)
, u

intK(t)

h

〉
F ν

K(t)

.

(3.7)

Next, we rearrange equation (3.2) by applying the identities (3.3), (3.5), (3.6), and
(3.7). This results in the equation

1

2

d

dt
(uh, uh)K(t) =

d+1∑
ν=1

〈
G
(
ω, u

intK(t)

h

)
· nν

K(t), 1
〉
F ν

K(t)

−
d+1∑
ν=1

〈
ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nν
K(t)

)
, u

intK(t)

h

〉
F ν

K(t)

.

(3.8)

Then, we sum equation (3.8) over all cells K(t) ∈ T(t) and obtain

1

2

d

dt
‖uh‖2L2(Ω) −

1

2

∑
K(t)∈T(t)

d+1∑
ν=1

〈
�G (ω, uh) · nν

K(t)�, 1
〉
F ν

K(t)

−1

2

∑
K(t)∈T(t)

d+1∑
ν=1

〈
ĝ
(
ω, u

intK(t)

h , u
extK(t)

h ,nν
K(t)

)
, �uh�

〉
F ν

K(t)

= 0,

(3.9)

since we consider problem (1.1) with periodic boundary conditions. The definition
of the function G(ω, u) in (3.4) yields ∂uG(ω, u) = g(ω, u). Thus, for any cell
K(t) ∈ T(t) the mean value theorem and the e-flux condition (2.24) provide for all
ν = 1, . . . , d+ 1

(3.10)
〈
g
(
ω, θνK(t)

)
· nν

K(t) − ĝ
(
ω, uintK(t) , uextK(t) ,nν

K(t)

)
, �uh�

〉
F ν

K(t)

≥ 0,

where θνK(t) is a value between min
(
u
intK(t)

h , u
extK(t)

h

)
and max

(
u
intK(t)

h , u
extK(t)

h

)
.

Hence, inequality (3.1) follows by integrating equation (3.9) over the interval [0, t].
�

Furthermore, for sufficiently smooth solutions of the initial value problem (1.1),
we have a suboptimal a priori error estimate in the sense of the L∞ (

0, T ; L2 (Ω)
)
-

norm for the semidiscrete ALE-DG method.

Theorem 3.2. Consider the initial value problem (1.1) with periodic boundary
conditions and let u ∈ W1,∞ (

0, T ; Hk+1 (Ω)
)
be the exact solution, let the flux

function f ∈ C3
(
R,Rd

)
and the grid velocity field ω be bounded in Ω × [0, T ] and
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12 PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

have bounded derivatives, and let uh be the solution of the semidiscrete ALE-DG
method. The test function space (2.14) is given by piecewise polynomials of degree
k ≥ max

{
1, d

2

}
and the initial data for the ALE-DG method is given by Ph (u0).

Furthermore, (A1)–(A3) are satisfied and the global length h is given by (2.4).
Then, a constant C exists, which depends on the final time T and is independent
of h and uh, such that

(3.11) ‖u− uh‖L∞(0,T ;L2(Ω)) ≤ Chk+ 1
2 .

Theorem 3.2 can be proven with standard techniques from approximation theory
(cf. Ciarlet [4]). In particular, a one-dimensional proof is given in [14] and in
[15] two-dimensional error analysis for a semidiscrete ALE-DG method to solve
the Hamilton-Jacobi equations is given. In addition, error analysis for the fully
discrete-discrete ALE-DG methods is given in [43]. Since there are already these
publications on error analysis for the ALE-DG method in the literature and the
proof of Theorem 3.2 varies merely in technical details, we skip the proof in this
paper.

Remark 2. The proof of Theorem 3.2 requires the a priori assumption

(3.12) ‖u− uh‖L∞(Ω×[0,T ]) ≤ h
1
2 .

This a priori assumption is not necessary if problem (1.1) is considered with a
linear flux function f (u) = cu, c ∈ R

d. In the one-dimensional case, the a priori
assumption

(3.13) ‖u− uh‖L∞(0,T ;L2(Ω)) ≤ h

can be applied, since for d = 1 inequality (3.13) and the inverse inequality [4, The-
orem 3.2.6] provide the a priori assumption (3.12). The assumption (3.13) was
applied in [35, 37]. Moreover, the statement of Theorem 3.2 can also be proven
for flux functions with less smoothness. Nevertheless, this requires a more restric-
tive a priori assumption and more restrictive bounds for the parameter k. This
assumption was applied by Klingenberg et al. in [14].

4. The fully-discrete method

In this section, we discuss the time discretization of the ALE-DG method. In the
first part of this section, we prove that the fully-discrete ALE-DG method satisfies
the discrete geometric conservation law (D-GCL). Afterward, in two dimensions, we
prove that the second- and the third-order accurate fully-discrete ALE-DG methods
satisfy the maximum principle when the bound-preserving limiter developed by
Zhang, Xia, and Shu in [42] is applied.

4.1. Total-variation-diminishing Runge-Kutta (TVD-RK) methods. We
apply the high-order TVD-RK methods developed by Shu in [32] for the time
discretization, which is also known as strong stability preserving Runge-Kutta (SSP-
RK) methods [10, 11]. For a given ODE ut = q (u, t), an s-stage TVD-RK method
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Table 4.1. The coefficients for the second-order TVD-RKmethod
from Shu [32].

TVD-RK2

γ0 = 0 α10 = 1 β10 = 1
γ1 = 1 α20 = 1

2 , α21 = 1
2 β20 = 0, β21 = 1

2

Table 4.2. The coefficients for the third-order TVD-RK method
from Shu [32].

TVD-RK3

γ0 = 0 α10 = 1 β10 = 1
γ1 = 1 α20 = 3

4 , α21 = 1
4 β20 = 0, β21 = 1

4
γ2 = 1

2 α30 = 1
3 , α31 = 0, α32 = 2

3 β30 = 0, β31 = 0, β32 = 2
3

can be written as

un,0 =un,(4.1)

un,i =
i−1∑
j=0

(
αiju

n,j +�tβijq
(
un,j , tn+γj

))
for i = 1, . . . , s,(4.2)

un+1 =un,s,(4.3)

where tn+γj
:= tn + γj�t. The coefficients of the s-stage TVD-RK method (4.1)

need to satisfy

(4.4) 0 ≤ γj ≤ 1, αij , βij ≥ 0, αij = 0 ⇒ βij = 0,
i−1∑
j=0

αij = 1,

for all i = 1, . . . , s and j = 0, . . . , s − 1. In Section 4.3, we will investigate the
commonly used second- and third-order TVD-RK methods from Shu [32]. The
coefficients for these methods are given in Tables 4.1 and 4.2.

4.2. The discrete geometric conservation law (D-GCL). For the time dis-
cretization of the semidiscrete ALE-DG Problem 1, it is convenient to introduce
the notation

G
(
u∗
h, v

∗, JK(t), t
)
:=

(
JK(t)g̃ (ω (t) , u∗

h) ,∇ξv
∗)

Kref

−
〈
ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)
, v∗,intKref

〉
∂Kref

.

(4.5)

At this point, we note that the grid velocity satisfies property (ii) in Lemma 2.1.
Therefore, in order to avoid confusion with the time-dependency of the grid velocity,
we will highlight the time variable if the grid velocity depends on time, otherwise the
time variable will be omitted. For all v ∈ Vh(t) with v∗ = v ◦χK(t) equation (2.21)
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14 PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

can be written as

(4.6)

(
d

dt

(
JK(t)u

∗
h

)
, v∗

)
Kref

= G
(
u∗
h, v

∗, JK(t), t
)
.

In accordance with Guillard and Farhat [12], we introduce the following definition.

Definition 4.1. A fully-discrete moving mesh method for the initial value problem
(1.1) satisfies a D-GCL if for all c ∈ R and n = 0, . . . ,N − 1

uh (x, tn) = c for all x ∈ Ω ⇒ uh (x, tn+1) = c for all x ∈ Ω.

Lemma 4.2. Let c ∈ R be a constant. Then for all t ∈ [tn, tn+1], K (t) ∈ T(t), and
v ∈ Vh(t) with v∗ = v ◦ χK(t), it holds that

(4.7) G
(
c, v∗, JK(t), t

)
=
(
JK(t)∇ξ ·

[
A−1

K(t)

(
ω (t) c

)]
, v∗

)
Kref

.

Proof. Since f (c) contains merely constant coefficients and

g̃ (ω, c) = A−1
K(t)

(
g (ω, c)

)
= A−1

K(t)

(
f (c)

)
−A−1

K(t)

(
ω (t) c

)
,

the integration by parts formula gives

(
JK(t)g̃ (ω (t) , c) ,∇ξv

∗)
Kref

=
(
JK(t)∇ξ ·

[
A−1

K(t)

(
ω (t) c

)]
, v∗

)
Kref

+
〈
g̃ (ω (t) , c) ·

(
JK(t)nKref

)
, v∗,intKref

〉
∂Kref

.

(4.8)

Furthermore, since ñ (t) = A−T
K(t)nKref

, property (P1) of the numerical flux gives

ĝ
(
ω, c, c, JK(t)ñ (t)

)
= g̃ (ω (t) , c) ·

(
JK(t)nKref

)
.(4.9)

Thus, we obtain the identity (4.7) by (4.8) and (4.9). �

Next, we assume that u∗
h = c solves the semidiscrete ALE-DGmethod Problem 1.

Then, we obtain by (4.6) and (4.7)

(4.10)

(
d

dt

(
JK(t)c

)
, v∗

)
Kref

=
(
JK(t)∇ξ ·

[
A−1

K(t)

(
ω (t) c

)]
, v∗

)
Kref

.

The equation (4.10) and the ODE (2.12) are equivalent, since c is an arbitrary
constant, v ∈ Vh(t) with v∗ = v ◦ χK(t) is an arbitrary test function, and the
quantities
(4.11)

JK(t) ∈ P d ([tn, tn+1]) ,
(
∇ξ ·

[
A−1

K(t)

(
ω (t)

)])
JK(t) ∈ P d−1 ([tn, tn+1])

are merely time dependent. We note that the time evolution of the metric terms
JK(t) needs to be respected in the time discretization of the semidiscrete ALE-
DG method Problem 1. Therefore, we discretize the ODE (2.12) and (4.6) simul-
taneously by the same TVD-RK method. The stage solutions of the TVD-RK
discretization for (2.12) will be used to update the metric terms in the TVD-RK
discretization for (4.6).
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The fully-discrete ALE-DG method. First, the ODE (2.12) is discretized by
an s-stage TVD-RK method:

(4.12a) JKn,0 = JKn ,

(4.12b)

JKn,i =
i−1∑
j=0

(
αijJKn,j + βij�t

(
∇ξ ·

[
A−1

Kn+γj

(
ωn+γj

)])
JKn,j

)
for i = 1, . . . , s,

(4.12c) JKn+1 = JKn,s ,

where Kn+γj := K (tn + γj�t) and ωn+γj := ω (tn + γj�t). The stage solutions
{JKn,i}si=0 are used to update the metric terms in the TVD-RK discretization of
(4.6). The Runge-Kutta method needs to solve the ODE (2.12) exactly such that

(4.13) JKn+1 = JK(tn+1) = d! |K (tn+1)| ∀K (tn+1) ∈ T(tn+1),

where T(tn+1) is the regular mesh of simplices which has been used in Section 2.1
to construct the time-dependent cells (2.3). We note that in a d-dimensional space
a TVD-RK method with order greater than or equal to d is necessary to compute
the metric term JKn+1 exactly, since the right-hand side of equation (2.12) belongs
to the space P d−1 ([tn, tn+1]).

Problem 3 (The fully-discrete ALE-DG method on the reference cell). Find a
function uh ∈ Vh(t), such that for all v ∈ Vh(t) there holds

(4.14a)
(
JKn,0un,0,∗

h , v∗
)
Kref

=
(
JKnun,∗

h , v∗
)
Kref

,

(
JKn,iun,i,∗

h , v∗
)
Kref

=
i−1∑
j=0

αij

(
JKn,jun,j,∗

h , v∗
)
Kref

+

i−1∑
j=0

βij�tG
(
un,j,∗
h , v∗, JKn,j , tn+γj

)
for i = 1, . . . , s,(4.14b)

(4.14c)
(
JKn+1un+1,∗

h , v∗
)
Kref

=
(
JKn,sun,s,∗

h , v∗
)
Kref

,

where the metric terms {JKn,i}si=0 are computed by (4.12).

We note that on a static mesh the cells K(t) are time independent. Thus, on
a static mesh, Problem 3 corresponds to the TVD-RK DG method developed by
Cockburn and Shu in [6]. Next, we prove that the fully-discrete ALE-DG method
satisfies the following statement.

Theorem 4.3. Suppose an s-stage TVD-RK method with order greater than or
equal to d is used in (4.12) and Problem 3, and the solutions {JKn,i}si=0 are used
to compute the metric terms in Problem 3. Moreover, the solution at time level tn
satisfies un,∗

h = c ∈ R. Then it is un,i,∗
h = c for all i = 0, . . . , s.

Proof. Let i ∈ {0, . . . , s} be an arbitrary fixed index and let v ∈ Vh(t) be an
arbitrary test function. We are interested in investigating the ith Runge-Kutta
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stage in Problem 3. Hence, we can assume that un,j,∗
h = c for all j = 0, . . . , s − 1.

Then, equation (4.7) in Lemma 4.2 gives

(
JKn,iun,i,∗

h , v∗
)
Kref

=

i−1∑
j=0

αij (JKn,jc, v∗)Kref

+

i−1∑
j=0

βij�t
(
JKn,j∇ξ ·

[
A−1

Kn+γj

(
ωn+γjc

)]
, v∗

)
Kref

.

(4.15)

Next, we multiply equation (4.12b) by cv∗ and integrate the result over the reference
element Kref . This gives the identity

(JKn,ic, v∗)Kref
=

i−1∑
j=0

αij (JKn,jc, v∗)Kref

+

i−1∑
j=0

βij�t
(
JKn,j∇ξ ·

[
A−1

Kn+γj

(
ωn+γjc

)]
, v∗

)
Kref

.

(4.16)

Since the metric terms {JKn,j}i−1
j=0 in (4.14b) are computed by (4.12), equation

(4.16) can be plugged into equation (4.15) and it follows that(
JKn,iun,i,∗

h , v∗
)
Kref

= (JKn,ic, v∗)Kref
.

Thus, it follows that un,i,∗
h = c, since the metric term JKn,i is merely time dependent

and the test function v ∈ Vh(t) was chosen arbitrarily. �

Theorem 4.3 shows that constant initial data is preserved in each Runge-Kutta
stage. In particular, a direct consequence of Theorem 4.3 is the following result.

Corollary 4.4. Suppose an s-stage TVD-RK method with order greater than or
equal to d is used in (4.12) and Problem 3. Furthermore, the solutions {JKn,i}si=0

given by (4.12) are used to compute the metric terms in Problem 3. Then the
fully-discrete ALE-DG method satisfies the D-GCL in the sense of Definition 4.1.

4.3. The discrete maximum principle. In this section, we investigate the fully-
discrete ALE-DG method Problem 3 in two dimensions. First, we review the bound-
preserving limiter which was developed by Zhang, Xia, and Shu in [42]. Then, we
consider the second- and third-order accurate TVD-RK methods given in Tables
4.1 and 4.2. We prove that for these methods the fully-discrete ALE-DG method
satisfies the maximum principle when the bound-preserving limiter is applied.

4.3.1. The bound-preserving limiter. In the following, we briefly review the bound-
preserving limiter methodology for an arbitrary s-stage TVD-RK method (4.1).
Let un

h be the DG solution at time level t = tn, let K ⊆ Ω be an arbitrary cell, and
let QK ⊆ K be a set of quadrature points. The corresponding quadrature formula
needs to be exact for the integration of polynomials with degree k on the cell K and
the set QK needs to contain all quadrature points which are necessary to evaluate
the surface integrals along the edges of K in the DG method. A quadrature rule
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ALE-DG METHOD FOR CONSERVATION LAWS 17

with these properties has been developed in [42] and will be presented in Section
4.3.3. Then the cell average

un
K :=

1

|K| (uh, 1)K

of the numerical solution uh can be computed exactly by the quadrature formula.
The limiter methodology is applied in two steps:

(L1) It needs to be ensured that the s-stage TVD-RK method satisfies

(4.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un,0
h |QK

= un
h|QK

,

for � = 1, . . . , s :

un,j
h |QK

∈ [m,M ] ∀j = 0, . . . , �− 1 ⇒ un,�
K ∈ [m,M ] ,

un+1
K = un,s

K ,

where m as well as M are given by (1.2), un,�
h is the solution given by the

�th stage of the RK-DG method, and un,�
K denotes the corresponding cell

average with respect to the cell K.
(L2) If (L1) is satisfied, the solution uh will be revised for all � = 1, . . . , s by

(4.18) ũn,�
h |K := Θ

(
un,�
h |K − un,�

K

)
+ un,�

K ,

Θ := min

{∣∣∣∣∣ M − un,�
K

MK − un,�
K

∣∣∣∣∣ ,
∣∣∣∣∣ m− un,�

K

mK − un,�
K

∣∣∣∣∣ , 1
}
,

where MK := maxx∈QK
un,�
h (x), mK := minx∈QK

un,�
h (x). Then it is

ensured that ũn,�
h |K ∈ [m,M ] for all � = 1, . . . , s.

The stability property (L1) is the maximum principle property for the cell averages
of the numerical solution uh. We note that by an adjustment of the CFL con-
straint the stability property (L1) is satisfied for any high-order TVD-RK method
if the forward Euler step satisfies (L1), since the TVD-RK methods are convex
combinations of the forward Euler step (cf. Gottlieb and Shu [10]). However, the
forward Euler method is merely first-order accurate and thus this method is not
an appropriate choice for the discretization of the ODE (2.12) and the semidis-
crete ALE-DG method Problem 1 in two dimensions, since it does not provide that
equation (4.13) holds. Therefore, the convexity argument in Gottlieb and Shu [10]
cannot be used to analyze a fully-discrete ALE-DG method which has a high-order
TVD-RK method as time integrator and uses the bound-preserving limiter. For
this reason, each high-order TVD-RK method needs to be investigated separately.

4.3.2. High-order time discretization methods. Step (L1) in the bound-preserving
limiter methodology is related to the cell averages of the numerical solution. Thus,
a scheme satisfied by the cell averages of the ALE-DG solution uh needs to be
investigated. In this section, we will derive the fully-discrete ALE-DG method from
Problem 3 with the TVD-RK2 and the TVD-RK3 methods. Later, in Sections 4.3.4
and 4.3.5, these schemes will be used to prove that the TVD-RK2 and the TVD-
RK3 ALE-DG methods satisfy indeed the maximum principle, when the bound-
preserving limiter (4.18) is applied.
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18 PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

The TVD-RK2 ALE-DG method. We note that by identity (2.7) the metric
term JK(t) can also be written as 2 |K (t)|. Thus, for the TVD-RK2 method in
Table 4.1 the scheme (4.12) becomes∣∣Kn,1

∣∣ = |Kn|+�t
(
∇ξ ·

[
A−1

Kn

(
ωn

)])
|Kn| ,(4.19a) ∣∣Kn+1

∣∣ =1

2
|Kn|+ 1

2

∣∣Kn,1
∣∣+ �t

2

(
∇ξ ·

[
A−1

Kn+1

(
ωn+1

)]) ∣∣Kn,1
∣∣ .(4.19b)

Next, we apply the TVD-RK2 method and the test function v∗ = 1 in (4.14) and
obtain ∣∣Kn,1

∣∣un,1
Kn,1 = |Kn|un

Kn +�tG
(
un,∗
h , 1, JKn , tn

)
,(4.20a)

∣∣Kn+1
∣∣un+1

Kn+1 =
1

2
|Kn|un

Kn +
1

2

∣∣Kn,1
∣∣un,1

Kn,1 +
�t

2
G
(
un,1,∗
h , 1, JKn,1 , tn

)
,

(4.20b)

where un
Kn , u

n,1
Kn,1 , and un+1

Kn+1 are the cell average values of the ALE-DG solution

uh and the quantities |Kn|,
∣∣Kn,1

∣∣, ∣∣Kn+1
∣∣ are computed by (4.19). We note that

|K (tn+1)| =
∣∣Kn+1

∣∣, since in two space dimensions, the TVD-RK2 method in Table
4.1 solves the ODE (2.12) exactly.

The TVD-RK3 ALE-DG method. For the TVD-RK3 method in Table 4.2 the
method (4.12) becomes∣∣Kn,1

∣∣ = |Kn|+�t
(
∇ξ ·

[
A−1

Kn (ωn)
])

|Kn| ,(4.21a) ∣∣Kn,2
∣∣ =3

4
|Kn|+ 1

4

∣∣Kn,1
∣∣+ �t

4

(
∇ξ ·

[
A−1

Kn+1

(
ωn+1

)]) ∣∣Kn,1
∣∣ ,(4.21b) ∣∣Kn+1

∣∣ =1

3
|Kn|+ 2

3

∣∣Kn,2
∣∣+ 2�t

3

(
∇ξ ·

[
A−1

Kn+1
2

(
ωn+ 1

2

)]) ∣∣Kn,2
∣∣ ,(4.21c)

where tn+ 1
2

:= 1
2 (tn + tn+1) and Kn+ 1

2 = K
(
tn+ 1

2

)
. In two and three space

dimensions, the third-order TVD-RK3 method in Table 4.2 solves the ODE (2.12)
exactly and thus |K (tn+1)| =

∣∣Kn+1
∣∣. Next, we apply the test function v∗ = 1 in

(4.14) and obtain the scheme∣∣Kn,1
∣∣un,1

Kn,1 = |Kn|un
Kn +�tG

(
un,∗
h , 1, JKn , tn

)
,(4.22a) ∣∣Kn,2

∣∣un,2
Kn,2 =

3

4
|Kn|un

Kn +
1

4

∣∣Kn,1
∣∣un,1

Kn,1

+
�t

4
G
(
un,1,∗
h , 1, JKn,1 , tn+1

)
,

(4.22b)

∣∣Kn+1
∣∣un+1

Kn+1 =
1

3
|Kn|un

Kn +
2

3

∣∣Kn,2
∣∣un,2

Kn,2

+
2�t

3
G
(
un,2,∗
h , 1, JKn,2 , tn+ 1

2

)
,

(4.22c)

where the values un
Kn , u

n,1
Kn,1 , u

n,2
Kn,2 , and un+1

Kn+1 are the cell average values of the

ALE-DG solution uh and the quantities |Kn|,
∣∣Kn,1

∣∣, ∣∣Kn,2
∣∣, ∣∣Kn+1

∣∣ are computed
by (4.21).

4.3.3. A quadrature rule to decompose the cell average value. In order to prove
that the second- and the third-order fully-discrete ALE-DG methods satisfy the
maximum principle when the ALE-DG solution is revised by the limiter (4.18), we
proceed similarly to the derivation by Zhang, Xia, and Shu in [42]. For this task,
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we need to apply a special quadrature formula developed by Zhang, Xia, and Shu
to decompose the cell average values of the ALE-DG solution. In the following this
quadrature formula is briefly reviewed.

First of all, it should be noted that in the implementation of the ALE-DG method
the edge integrals are approximated by a k + 1-point 2k + 1 accurate Gauss quad-
rature formula. Hence, we obtain〈

ĝ
(
ω, u

∗,intKref

h , u
∗,extKref

h , JK(t)ñ (t)
)
, 1
〉
∂Kref

≈
k+1∑
β=1

3∑
ν=1

σβ ĝ
(
ων,β , u

∗,intKref

ν,β , u
∗,extKref

ν,β , JK(t)ñF ν
Kref

(t)
)
�F ν

Kref
,

(4.23)

where ñ (t) = A−T
K(t)nKref

, ñF ν
Kref

(t) = A−T
K(t)nF ν

Kref
, F ν

Kref
, ν = 1, 2, 3, are the edges

of the reference cell Kref , and the corresponding normals and lengths of the edges

are nF ν
Kref

and �F ν
Kref

. Moreover, we denote by u
∗,intKref

ν,β and u
∗,extKref

ν,β the values

of the mapped ALE-DG solution u∗
h := uh ◦ χK(t) evaluated in the βth Gauss

quadrature point on the edge F ν
Kref

. The corresponding quadrature weights for

the interval
[
− 1

2 ,
1
2

]
are σβ. Likewise, ων,β are the values of the grid velocity ω

evaluated in the βth Gauss quadrature point on the edge F ν
Kref

. We obtain for a
constant c ∈ R〈

(ωc) · JK(t)ñ (t) , 1
〉
∂Kref

=
k+1∑
β=1

3∑
ν=1

σβ (ων,βc) ·
(
JK(t)ñF ν

Kref
(t)

)
�F ν

Kref
,(4.24)

since the edge integrals are approximated by a 2k + 1 accurate Gauss quadrature
formula and the grid velocity belongs to the space P 1

(
Kref ,R

d
)
for all t ∈ [tn, tn+1]

according to Lemma 2.1. Thus, it follows for a constant c ∈ R

k+1∑
β=1

3∑
ν=1

σβ ĝ
(
ων,β, c, c, JK(t)ñF ν

Kref
(t)
)
�F ν

Kref

=
〈
(f (c)− ωc) · (JK(t)ñ (t)), 1

〉
∂Kref

=
〈
g (ω, c) · (JK(t)ñ (t)), 1

〉
∂Kref

,

(4.25)

since the numerical flux has property (P1). Therefore, the statement of Theorem 4.3
stays true when we approximate the edge integrals in (4.5) by a 2k + 1 accurate
Gauss quadrature formula.

The cell average values need to be decomposed by a quadrature formula, which
includes the Gauss quadrature points for the edges F ν

Kref
, ν = 1, 2, 3. A quadrature

formula with this property has been developed by Zhang et al. in [42]. Let us
assume that N is the smallest integer with 2N − 3 ≥ k. The 3(N − 1)(k+1)-point
quadrature formula for triangular elements in [42] has the properties:

• The quadrature formula is exact for the integration of polynomials with
degree k on a triangular element.

• The quadrature points include the Gauss quadrature points for the edges
F ν
Kref

, ν = 1, 2, 3.
• All the quadrature weights are positive and the weights for the Gauss quad-
rature points are given by

(4.26) σβσ̂ :=
2

3
σβ σ̃, σ̃ =

1

N(N − 1)
, β = 1, . . . , k + 1,
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20 PEI FU, GERO SCHNÜCKE, AND YINHUA XIA

where σ̃ corresponds to the 1st and Nth Gauss-Lobatto quadrature weights
for the interval

[
− 1

2 ,
1
2

]
.

• The quadrature formula has L := 3(N − 2)(k + 1) points in the interior of
a triangular element.

This quadrature formula ensures that the cell average values can be written as

(4.27) uK(t) =
3∑

ν=1

k+1∑
β=1

σβσ̂u
∗,intKref

ν,β +
L∑

γ=1

σ̃γu
∗,intKref
γ .

We denote by u
∗,intKref
γ , γ = 1, . . . , L, the values of the mapped ALE-DG solution

u∗
h := uh ◦χK(t) evaluated in the quadrature points which are lying in the interior

of the reference cell Kref . The corresponding quadrature weights are denoted by
σ̃γ .

4.3.4. The maximum principle for the TVD-RK2 ALE-DG method. In this section,
we prove that the TVD-RK2 ALE-DG method satisfies the maximum principle
when the ALE-DG solution is revised by the bound-preserving limiter (4.18).

First of all, we show property (L1). Therefore, similar to the process in [42],
we decompose the stages of the scheme (4.20) in a sum of monotone increasing
functions, which preserve constant states. Therefore, it is convenient to use vector
notation. In particular, we define the set

M :=
{
v = (v1,v2,v3) : vν = (vν,1, . . . , vν,k+1) ∈ [m,M ]

k+1 ∀ν = 1, 2, 3
}

with m and M given by (1.2), and we apply for any cell K (t) ∈ T(t) and all
ν = 1, 2, 3 the vector notation

u
∗,intKref
ν :=

(
u
∗,intKref
ν,1 , . . . , u

∗,intKref

ν,k+1

)
,(4.28a)

u
∗,extKref
ν :=

(
u
∗,extKref
ν,1 , . . . , u

∗,extKref

ν,k+1

)
,

(4.28b) ũ∗,intKref :=
(
ũ
∗,intKref
1 , . . . , ũ

∗,intKref

L

)
,

u∗,intKref :=
(
u
∗,intKref
1 ,u

∗,intKref
2 ,u

∗,intKref
3

)
,(4.28c)

u∗,extKref :=
(
u
∗,extKref
1 ,u

∗,extKref
2 ,u

∗,extKref
3

)
.

Then, by applying the decomposition (4.27) of the cell average values, the scheme
(4.20) can be written as

un,1
Kn,1 = L

(
ũn,∗,intKref ,un,∗,intKref ,un,∗,extKref ,

∣∣Kn,1
∣∣ , |Kn| , tn

)
,(4.29a)

un+1
Kn+1 =

1

2
H
(
ũn,∗,intKref ,un,∗,intKref ,

∣∣Kn+1
∣∣ , |Kn|

)
+
1

2
L
(
ũn,1,∗,intKref ,un,1,∗,intKref ,un,1,∗,extKref ,

∣∣Kn+1
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
,(4.29b)
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where for all a ∈ [m,M ]L and b, c ∈ M

H (a,b, |K1| , |K2|) :=
L∑

γ=1

σ̃γ

(
1− 1

|K1|
(|K1| − |K2|)

)
aγ

+

k+1∑
β=1

3∑
ν=1

σβσ̂

(
1− 1

|K1|
(|K1| − |K2|)

)
bν,β,(4.30a)

L (a,b, c, |K1| , |K2| , t) :=
L∑

γ=1

σ̃γ

(
1− 1

|K1|
(|K1| − |K2|)

)
aγ

+

k+1∑
β=1

σβσ̂H1 (b1,β , b2,β , c1,β, |K1| , |K2| , t)

+
k+1∑
β=1

σβσ̂H2 (b1,β , b2,β , b3,β , c2,β , |K1| , |K2| , t)

+
k+1∑
β=1

σβσ̂H3 (b2,β , b3,β , c3,β, |K1| , |K2| , t)(4.30b)

with

H1 (b1,β , b2,β , c1,β , |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)

)
b1,β

− �t

σ̂ |K1|
ĝ
(
ω1,β , b1,β , c1,β , JK2

A−T
K(t)nF 1

Kref

)
�F 1

Kref

+
�t

σ̂ |K1|
ĝ
(
ω1,β , b2,β , b1,β , JK2

A−T
K(t)nF 1

Kref

)
�F 1

Kref

,

(4.30c)

H2 (b1,β , b2,β , b3,β , c2,β, |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)

)
b2,β

− �t

σ̂ |K1|
ĝ
(
ω1,β , b2,β , b1,β , JK2

A−T
K(t)nF 1

Kref

)
�F 1

Kref

− �t

σ̂ |K1|
ĝ
(
ω2,β , b2,β , c2,β , JK2

A−T
K(t)nF 2

Kref

)
�F 2

Kref

− �t

σ̂ |K1|
ĝ
(
ω3,β , b2,β , b3,β , JK2

A−T
K(t)nF 3

Kref

)
�F 3

Kref

,

(4.30d)

H3 (b2,β , b3,β , c3,β , |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)

)
b3,β

− �t

σ̂ |K1|
ĝ
(
ω3,β , b3,β , c3,β , JK2

A−T
K(t)nF 3

Kref

)
�F 3

Kref

+
�t

σ̂ |K1|
ĝ
(
ω3,β , b2,β , b3,β , JK2

A−T
K(t)nF 3

Kref

)
�F 3

Kref

.

(4.30e)
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In Section 4.3.3, we mentioned that the result in Theorem 4.3 also holds when
the edge integrals in (4.5) are approximated by a 2k+1 accurate Gauss quadrature

formula. Therefore for a vector (c, c, c) ∈ [m,M ]L ∪ M with vector components
given by the constant c ∈ [m,M ], we obtain by Theorem 4.3

(4.31) L
(
c, c, c,

∣∣Kn,1
∣∣ , |Kn| , tn

)
= c,

(4.32)
1

2
H
(
c, c,

∣∣Kn+1
∣∣ , |Kn|

)
+

1

2
L
(
c, c, c,

∣∣Kn+1
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
= c.

Henceforth, for the sake of simplicity, we will use the Lax-Friedrichs flux (2.25) for
the analysis. However, it should be noted that the techniques which are presented
in this section can also be applied to any other monotone flux. The use of the
Lax-Friedrichs flux ensures the proofs of the following lemmas.

Lemma 4.5. Let |Kn|,
∣∣Kn,1

∣∣, ∣∣Kn+1
∣∣ be given by (4.19) and let a ∈ [m,M ]

L
,

b, c ∈ M. Then, under the CFL constraint
(4.33)

max

{
σ̂
∣∣∣(∇ξ ·

[
A−1

K(t)

(
ω (t)

)])∣∣∣ |K (t)|+
3∑

ν=1

λn�F ν
Kref

: t ∈ [tn, tn+1]

}
�t

|Kn,1| ≤ σ̂

with λn given by (2.25c), it holds that

(4.34) m ≤ L
(
a,b, c,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≤ M.

Proof. First of all, we apply the Lax-Friedrichs flux (2.25) and rewrite the functions
(4.30c), (4.30d), and (4.30e) as follows:

H1 (b1,β , b2,β , c1,β , |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)−

�t

σ̂ |K1|
λn�F 1

Kref

)
b1,β

+
�t

σ̂ |K1|
(
ĝ+

(
ω1,β , b2,β , JK2

ñF 1
Kref

(t)
)

+ ĝ−
(
ω1,β , c1,β , JK2

ñF 1
Kref

(t)
))

�F 1
Kref

,

H2 (b1,β , b2,β , b3,β , c2,β , |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)

)
b2,β

− �t

σ̂ |K1|

3∑
ν=1

ĝ+

(
ων,β, b2,β , JK2

ñF ν
Kref

(t)
)
�F ν

Kref

+
�t

σ̂ |K1|
ĝ−

(
ω1,β , b1,β , JK2

ñF 1
Kref

(t)
)
�F 1

Kref

+
�t

σ̂ |K1|
ĝ−

(
ω2,β , c2,β , JK2

ñF 2
Kref

(t)
)
�F 2

Kref

+
�t

σ̂ |K1|
ĝ−

(
ω3,β , b3,β , JK2

ñF 3
Kref

(t)
)
�F 3

Kref

,
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H3 (b2,β , b3,β , c3,β , |K1| , |K2| , t)

=

(
1− 1

|K1|
(|K1| − |K2|)−

�t

σ̂ |K1|
λn�F 3

Kref

)
b3,β

+
�t

σ̂ |K1|
(
ĝ+

(
ω3,β , b2,β , JK2

ñF 3
Kref

(t)
)

+ ĝ−

(
ω3,β , c3,β , JK2

ñF 3
Kref

(t)
))

�F 3
Kref

,

where ñF ν
Kref

(t) := A−T
K(t)nF ν

Kref
, ν = 1, 2, 3.

Next, we observe that for all t ∈ [0, T ], ν = 1, 2, 3, and β = 1, . . . , k + 1∣∣∣∂b2,β ĝ+ (ων,β, b2,β , JK(t)ñF ν
Kref

(t)
)∣∣∣ ≤ λn,

where λn is given by (2.25c). Hence, by (4.19a) as well as the CFL constraint (4.33)
for β = 1, . . . , k + 1 we obtain

∂b2,βH2

(
b1,β , b2,β , b3,β , c2,β ,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≥1− �t

σ̂ |Kn,1|

(
σ̂
∣∣∣∇ξ ·

[
A−1

Kn

(
ωn

)]∣∣∣ |Kn|+
3∑

ν=1

λn�F ν
Kref

)
≥ 0,

(4.35)

and similarly we get

(4.36) ∂b1,βH1

(
b1,β , b2,β , c1,β ,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≥ 0,

(4.37) ∂b3,βH3

(
b2,β , b3,β , c3,β ,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≥ 0.

In the following, we highlight by the symbolic notation ↑ that a function is
increasing in the marked arguments. Likewise, we apply the notation ↑ to highlight
that a function with vector arguments increases in each vector component. Then,
it follows by (4.36), (4.35), and (4.37) that

H1

(
↑, ↑, ↑,

∣∣Kn,1
∣∣ , |Kn| , tn

)
, H2

(
↑, ↑, ↑, ↑,

∣∣Kn,1
∣∣ , |Kn| , tn

)
,

H3

(
↑, ↑, ↑,

∣∣Kn,1
∣∣ , |Kn| , tn

)
,

since ĝ±
(
ω, ↑, JK(t)ñ (t)

)
for all t ∈ [tn, tn+1] and all cells K (t) ∈ T(t). Therefore,

we obtain

(4.38) L
(
↑,↑,↑,

∣∣Kn,1
∣∣ , |Kn| , tn

)
,

since for all γ = 1, . . . , L, it follows by (4.19a) and the CFL constraint (4.33) that

∂aγ
L
(
a,b, c,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≥ σ̃γ

(
1− �t

|Kn,1|

∣∣∣∇ξ ·
[
A−1

Kn

(
ωn

)]∣∣∣ |Kn|
)

≥ 0.

Finally, equations (4.31) and (4.38) provide the inequality (4.34). �

Lemma 4.6. Let |Kn|,
∣∣Kn,1

∣∣, ∣∣Kn+1
∣∣ be given by (4.19) and let a, ã ∈ [m,M ]

L
,

b, b̃, c̃ ∈ M. Then, under the CFL constraint
(4.39)

max

{
σ̂
∣∣∣∇ξ ·

[
A−1

K(t)

(
ω (t)

)]∣∣∣ |K (t)|+
3∑

ν=1

λn�F ν
Kref

: t ∈ [tn, tn+1]

}
�t

|Kn+1| ≤ σ̂

with λn given by (2.25c), we have

(4.40) m ≤ 1

2
H
(
a,b,

∣∣Kn+1
∣∣ , |Kn|

)
+

1

2
L
(
ã, b̃, c̃,

∣∣Kn+1
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
≤ M.
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Proof. Equations (4.19a) and (4.19b) give
(4.41)∣∣Kn+1

∣∣− ∣∣Kn,1
∣∣ = �t

2

(
∇ξ ·

[
A−1

Kn+1

(
ωn+1

)] ∣∣Kn,1
∣∣−∇ξ ·

[
A−1

Kn

(
ωn

)]
|Kn|

)
.

Thus, the same procedure as in the proof of Lemma 4.6 gives

(4.42) L
(
↑,↑,↑,

∣∣Kn+1
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
by applying the identity (4.41) and the CFL constraint (4.39). Furthermore, by
(4.19a) and (4.19b) it follows that
(4.43)∣∣Kn+1

∣∣− |Kn| = �t

2

(
∇ξ ·

[
A−1

Kn

(
ωn

)]
|Kn|+∇ξ ·

[
A−1

Kn+1

(
ωn+1

)] ∣∣Kn,1
∣∣) .

Hence, we obtain for all γ = 1, . . . , L

∂aγ
H
(
a,b,

∣∣Kn+1
∣∣ , |Kn| , tn+1

)
≥ σ̃γ

(
1− �t

2 |Kn+1|
(
∇ξ ·

[
A−1

Kn

(
ωn

)]
|Kn|

+
∣∣∣∇ξ ·

[
A−1

Kn+1

(
ωn+1

)]∣∣∣ ∣∣Kn,1
∣∣ )) ≥ 0,

by identity (4.43) and the CFL constraint (4.39). In a similar way, it follows for all
ν = 1, 2, 3 as well as β = 1, . . . , k + 1 that

∂bν,βH
(
a, b,

∣∣Kn+1
∣∣ , |Kn| , tn+1

)
≥ 0.

This ensures

(4.44) H
(
↑,↑,

∣∣Kn+1
∣∣ , |Kn|

)
.

Therefore, equations (4.32), (4.42), and (4.44) give inequality (4.40). �
We note that assumption (A3) for the mesh parameter gives for all t ∈ [0, T ] and

all cells K (t) ∈ T(t)

|K (t)| ≥ πρ2K(t) ≥
π

κ2
h2
K(t) ≥

π

τ2κ2
h2,

since ρK(t) denotes the radius of the largest ball contained in the cell K (t). There-
fore, the CFL constraints (4.33) and (4.39) can be generalized as
(4.45)

max

{
σ̂
∣∣∣∇ξ ·

[
A−1

K(t)

(
ω (t)

)]∣∣∣ |K (t)|+
3∑

ν=1

λn�F ν
Kref

: t ∈ [tn, tn+1]

}
�t

h2
≤ πσ̂

τ2κ2
.

Now, we apply the generalized CFL constraint and the previous lemmas to prove
the maximum principle for the second-order fully-discrete ALE-DG method.

Theorem 4.7. Suppose ũn,∗,intKref ∈ [m,M ]
L
,un,∗,intKref ,un,∗,extKref ∈ M. Fur-

thermore, (A1)–(A3) and the CFL constraint (4.45) are satisfied. Then, the solution
un+1
h of the second-order fully-discrete ALE-DG method revised by Zhang, Xia, and

Shu’s bound-preserving limiter (4.18) belongs to the interval [m,M ].

Proof. Let Kn ∈ T(tn) be an arbitrary cell. The main part of the proof follows in
two steps.

Step 1. Since, ũn,∗,intKref ∈ [m,M ]L ,un,∗,intKref ,un,∗,extKref ∈ M, and the CFL

constraint (4.45) is satisfied, it follows that un,1
Kn,1 ∈ [m,M ] by inequality (4.34)
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in Lemma 4.5 and equation (4.29a). Hence, the bound-preserving limiter (4.18)

ensures un,1
h |Kn,1 ∈ [m,M ].

Step 2. In the first step, it has been shown that un,1
h |Kn,1 ∈ [m,M ] when

the bound-preserving limiter (4.18) was applied. Hence, ũn,1∗,intKref ∈ [m,M ]L,
un,1,∗,intKref ,un,1,∗,extKref ∈ M. Thus, inequality (4.40) in Lemma 4.6 and equation
(4.29b) give un+1

Kn+1 ∈ [m,M ], since the CFL constraint (4.45) is satisfied. Finally,

the bound-preserving limiter (4.18) ensures that un+1
h |Kn+1 ∈ [m,M ].

In a similar way, we proceed for any other cell in T(tn+1). Thus, it follows that

un+1
h ∈ [m,M ]. �

4.3.5. The maximum principle for the third-order fully-discrete ALE-DG method.
In this section, we show briefly how the result in Theorem 4.7 can be extended to
the third-order TVD-RK3 ALE-DG method. We apply the decomposition (4.27) of
the cell average values and the vector notation (4.28) to rewrite the scheme (4.22)
as

un,1
Kn,1 =L

(
ũn,∗,intKref ,un,∗,intKref ,un,∗,extKref ,

∣∣Kn,1
∣∣ , |Kn| , tn

)
,

un,2
Kn,2 =

3

4
H
(
ũn,∗,intKref ,un,∗,intKref ,

∣∣Kn,2
∣∣ , |Kn|

)
+

1

4
L
(
ũn,1,∗,intKref ,un,1,∗,intKref ,un,1,∗,extKref ,

∣∣Kn,2
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
,

un+1
Kn+1 =

1

3
H
(
ũn,∗,intKref ,un,∗,intKref ,

∣∣Kn+1
∣∣ , |Kn|

)
+

2

3
L
(
ũn,2,∗,intKref ,un,2,∗,intKref ,un,2,∗,extKref ,

∣∣Kn+1
∣∣ , ∣∣Kn,2

∣∣ , tn+ 1
2

)
.

By Theorem 4.3 we obtain the identities

L
(
c, c, c,

∣∣Kn,1
∣∣ , |Kn| , tn

)
= c,

3

4
H
(
c, c,

∣∣Kn,2
∣∣ , |Kn|

)
+

1

4
L
(
c, c, c,

∣∣Kn,2
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
= c,

1

3
H
(
c, c,

∣∣Kn+1
∣∣ , |Kn|

)
+

2

3
L
(
c, c, c,

∣∣Kn+1
∣∣ , ∣∣Kn,2

∣∣ , tn+ 1
2

)
= c,

where (c, c, c) ∈ [m,M ]L ∪ M with vector components given by the constant c ∈
[m,M ]. Moreover, like in the previous section, we apply the Lax-Friedrichs flux
(2.25). Then, by the same arguments as in the proofs of Lemmas 4.5 and 4.6, we
obtain the following lemma.

Lemma 4.8. Let |Kn|,
∣∣Kn,1

∣∣, ∣∣Kn,2
∣∣, ∣∣Kn+1

∣∣ be given by (4.21) and let a, ã ∈
[m,M ]

L
, b, c, b̃, c̃ ∈ M. Then, under the CFL constraint (4.45), it holds that

m ≤ L
(
a,b, c,

∣∣Kn,1
∣∣ , |Kn| , tn

)
≤ M,

m ≤ 3

4
H
(
a,b,

∣∣Kn,2
∣∣ , |Kn|

)
+

1

4
L
(
ã, b̃, c̃,

∣∣Kn,2
∣∣ , ∣∣Kn,1

∣∣ , tn+1

)
≤ M,

m ≤ 1

3
H
(
a,b,

∣∣Kn+1
∣∣ , |Kn|

)
+

2

3
L
(
ã, b̃, c̃,

∣∣Kn+1
∣∣ , ∣∣Kn,2

∣∣ , tn+ 1
2

)
≤ M.

This lemma provides the following analogue of Theorem 4.7 for the second-
order fully-discrete ALE-DG method. The proof follows similarly to the proof of
Theorem 4.7. Hence, it is skipped.
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Theorem 4.9. Suppose ũn,∗,intKref ∈ [m,M ]L, un,∗,intKref ,un,∗,extKref ∈ M. Fur-
thermore, (A1)–(A3) and the CFL constraint (4.45) are satisfied. Then, the solution
un+1
h of the third-order fully-discrete ALE-DG method revised by Zhang, Xia, and

Shu’s bound-preserving limiter (4.18) belongs to the interval [m,M ].

Remark 3. It is also possible to apply other TVD-RK methods like the five-stage
fourth-order method of Spiteri and Ruuth [33] as time integrator in a fully-discrete
ALE-DG method. Then, it can be proven by the techniques presented in this
section that these fully-discrete ALE-DG methods satisfy the maximum principle.

5. Numerical experiments

In this section, we demonstrate the performance of the ALE-DG method for
conservation laws in two dimensions. In our simulation, the criss-cross triangular
meshes are used. Furthermore, the third-order TVD Runge-Kutta method is used
in the first example (Example 5.1). In the other examples the five-stage fourth-
order TVD Runge-Kutta method of Spiteri and Ruuth [33] is used for the time
discretization. We observe that for this high-order approximation in time our the-
oretical results hold numerically, too. In order to avoid complications with the
stability of the explicit time integrator, we apply the suitable CFL condition de-
pendent on equation (4.45).

To verify our theoretical results, we present numerical simulations for a linear
advection equation and Burgers’ equation. Moreover, to highlight that the ALE-
DG method can also be used for systems of conservation laws, we present a plain
wave problem and a smooth vortex problem for the compressible Euler equations
with a polytropic gas.

In all the numerical simulations, we consider two moving mesh scenarios. First a
static uniform criss-cross triangular mesh with cell size h0 is used. Next, a moving
mesh with the grid point distribution

xj(tn) = xj(0) + 0.3 sin

(
2πxj(0)

xr − xl

)
sin

(
2πyj(0)

yr − yl

)
sin(2π(tn)/t0),

yj(tn) = yj(0) + 0.2 sin

(
2πxj(0)

xr − xl

)
sin

(
2πyj(0)

yr − yl

)
sin(4π(tn)/t0)

(5.1)

is used. In equation (5.1) the points (xj , yj) are the vertices of the triangular mesh

and t0 =
√
102 + 52. The vertices (xj(0), yj(0)) at initial time are given by the

same mesh as in the first moving mesh scenario. The grid point distribution (5.1)
has also been used by Klingenberg et al. [15] and Persson et al. [29]. As an example,
in Figure 5.1 we draw a typical mesh at t = 0 and the deformed one at t = 1.

Example 5.1 (Linear advection equation). Here, we test the linear equation

∂tu+ ∂xu+ ∂yu = 0, (x, y) ∈ [0, 2]× [0, 2],(5.2)

with the periodic boundary condition and the initial condition is taken to be
u0(x, y) = 1+ 0.5 sin(π(x+ y)). The exact solution is u(x, y, t) = u0(x− t, y− t) at
time t.

The numerical solution on the static uniform grid is uS
h and the moving mesh

solution is uM
h . In Table 5.1, we show the L2-errors and the rates of convergence

of the numerical solutions uS
h and uM

h for the advection equation at time t = 1. In
the computation, we used piecewise P k polynomial spaces with k = 1, 2, 3 on static
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Figure 5.1. The typical mesh at t = 0 (left) and deformation
mesh at t = 1 (right).

and moving triangular meshes with cell size h0. We observe that both uS
h and uM

h

have the optimal accuracy when P k polynomial spaces with k = 1, 2, 3 are applied,
but they do not satisfy the discrete maximum principle. This was expected, since
the bound-preserving limiter in Section 4.3.1 was not applied in the test case.

To verify the maximum principle, we run the same test case again, but this
time with the bound-preserving limiter. The results are given in Table 5.2, where
ũM
h is the ALE-DG solution on the moving mesh with bound-preserving limiter.

We observe that the L2-errors and the rates of convergence for the moving mesh
solution ũM

h are not effected by the use of the bound-preserving limiter and thus
the method still has optimal accuracy. Furthermore, we can see that the numerical
solution ũM

h is limited in the same range [0.5, 1.5] as the initial data.

Example 5.2 (Burgers’ equation). Next, we investigate the Burgers’ equation

∂tu+ ∂x

(
u2

2

)
+ ∂y

(
u2

2

)
= 0, (x, y) ∈ [0, 2]× [0, 2].(5.3)

In our simulation, the periodic boundary condition is used and the initial condition
is also taken to be u0(x, y) = 1+0.5 sin(π(x+ y)). We compute this example up to
time t = 0.1 before the shock front has been developed in the numerical solution.

In Table 5.3, the L2-errors and the rates of convergence for the numerical solu-
tions uS

h and uM
h , ũM

h are presented. These functions are computed by the ALE-DG
method with P k, k = 1, 2, 3, polynomial spaces. As in the previous example uS

h and
uM
h are the numerical solutions of the ALE-DG method on the static uniform mesh

and on the moving mesh. The solution ũM
h is the moving mesh ALE-DG solution

revised by the bound-preserving limiter. We observe that the optimal accuracy is
obtained for uM

h , ũM
h , and uS

h in both moving mesh scenarios. Furthermore, max-
imum and minimum values of ũM

h are limited in the same range [0.5, 1.5] as the
initial data when the bound-preserving limiter is applied in the ALE-DG method
on the moving grid.

To show that our proposed ALE-DG methods can handle the problem with
shocks, we show the numerical solutions uS

h and uM
h of Burgers’ equation at time
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Table 5.1. L2-errors and the rates of convergence for the linear
advection equation (5.2) at final time t = 1 on static (bottom)
and moving (top) triangular meshes with cell size h0. The bound-
preserving limiter is not applied.

u − uM
h

h0 L2-norm order min (1.5 − uM
h ) min (uM

h − 0.5)

P 1 1/2 1.30E-01 – 2.22E-02 6.11E-02
1/4 3.09E-02 2.07 −7.38E-02 −8.71E-03
1/8 6.77E-03 2.19 0.00E+00 9.60E-05
1/16 1.59E-03 2.09 −7.27E-03 −4.64E-04
1/32 3.88E-04 2.03 −1.85E-03 −1.10E-04

P 2 1/2 2.30E-02 – −1.01E-01 −2.77E-02
1/4 4.88E-03 2.24 −3.11E-02 −4.04E-03
1/8 7.64E-04 2.68 −4.24E-03 −1.10E-03
1/16 1.03E-04 2.88 −4.30E-04 −1.14E-04
1/32 1.31E-05 2.98 −6.00E-05 −2.80E-05

P 3 1/2 4.05E-03 – −2.60E-03 −9.28E-04
1/4 3.12E-04 3.70 −1.00E-05 −1.39E-04
1/8 1.93E-05 4.02 1.00E-05 −6.00E-06
1/16 1.22E-06 3.98 0.00E+00 −1.00E-06
1/32 7.71E-08 3.98 0.00E+00 0.00E+00

u − uS
h

h0 L2-norm order min (1.5 − uS
h) min (uS

h − 0.5)

P 1 1/2 1.11E-01 – 2.39E-02 2.49E-02
1/4 2.09E-02 2.41 −3.50E-02 −1.89E-02
1/8 4.43E-03 2.24 −1.29E-02 −1.11E-02
1/16 1.04E-03 2.09 −3.47E-03 −3.41E-03
1/32 2.54E-04 2.04 −9.40E-04 −9.27E-04

P 2 1/2 1.79E-02 – −7.32E-02 −4.33E-02
1/4 3.00E-03 2.57 −9.71E-03 −5.66E-03
1/8 4.09E-04 2.88 −8.10E-04 −1.06E-03
1/16 5.12E-05 3.00 −1.30E-04 −1.87E-04
1/32 6.28E-06 3.03 −2.00E-05 −2.50E-05

P 3 1/2 2.01E-03 – −5.50E-04 −2.20E-03
1/4 1.30E-04 3.95 −6.00E-05 −1.29E-04
1/8 7.85E-06 4.05 0.00E+00 −9.00E-06
1/16 4.79E-07 4.03 0.00E+00 0.00E+00
1/32 2.96E-08 4.02 0.00E+00 0.00E+00

t = 0.45 with piecewise P 1 polynomial approximation in Figure 5.2. Here, we use
the slope limiter developed by Cockburn et al. in [5]. From the results, it can
be seen that the ALE-DG methods can capture the shocks well for the Burgers’
equation on both static and moving meshes.

Example 5.3 (Compressible Euler equations). We consider the two-dimensional
compressible Euler equations of gas dynamics for a polytropic gas

∂tU+∇ · F(u) = 0, (x, y) ∈ [xl, xr]× [yl, yr] ⊂ R
2,(5.4)

with

U = (ρ, ρu, ρv, E)T , F(U) = [ρu, ρu⊗ u+ pI, (E + p)u]T .(5.5)

Here, ρ is the density, u = (u, v)T is the velocity field, and E is the total energy.
Moreover, the adiabatic constant of air γ = 1.4 is used, the pressure is given by

p = (γ − 1)
(
E − 1

2ρ |u|
2
)
, and I is the identity matrix. In our simulation, we test

a plain wave problem and a smooth vortex problem.
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Table 5.2. L2-errors and the rates of convergence for the moving
mesh ALE-DG solution ũM

h with the bound-preserving limiter at
final time t = 1 for the linear advection equation (5.2) on moving
triangular meshes with cell size h0.

h0

∥∥u− ũM
h

∥∥ order min (1.5− ũM
h ) min (ũM

h − 0.5)
P 1 1/2 1.36E-01 – 4.17E-02 7.82E-02

1/4 3.31E-02 2.04 0.00E+00 1.99E-03
1/8 7.94E-03 2.06 0.00E+00 5.05E-03
1/16 1.84E-03 2.11 0.00E+00 1.09E-03
1/32 4.41E-04 2.06 0.00E+00 2.72E-04

P 2 1/2 6.26E-02 – 0.00E+00 2.20E-02
1/4 1.07E-02 2.54 0.00E+00 8.60E-04
1/8 1.18E-03 3.19 0.00E+00 3.64E-05
1/16 1.23E-04 3.26 0.00E+00 4.52E-06
1/32 1.46E-05 3.08 0.00E+00 2.13E-08

P 3 1/2 5.96E-03 – 0.00E+00 1.63E-03
1/4 4.69E-04 3.67 2.43E-04 1.98E-04
1/8 3.02E-05 3.96 4.66E-05 9.56E-06
1/16 1.76E-06 4.10 1.47E-06 1.62E-06
1/32 1.01E-07 4.13 0.00E+00 0.00E+00

Table 5.3. L2-errors and rates of convergence for Burgers’ equa-
tion (5.3) at final time t = 0.1 on static (left) and moving (center)
triangular meshes with cell size h0. On the right are the L2-errors,
rates of convergence, and bounds for the ALE-DG solution revised
by the bound-preserving limiter.

h0

∥∥∥u − uS
h

∥∥∥ order
∥∥∥u − uM

h

∥∥∥ order
∥∥∥u − ũM

h

∥∥∥ order min (1.5 − ũM
h ) min (ũM

h − 0.5)

P 1 1/2 6.15E-02 – 6.21E-02 – 6.18E-02 – 0.00E+00 0.00E+00
1/4 1.78E-02 1.79 1.65E-02 1.91 1.58E-02 1.97 0.00E+00 0.00E+00
1/8 4.18E-03 2.09 3.89E-03 2.09 3.87E-03 2.03 0.00E+00 0.00E+00
1/16 1.02E-03 2.04 9.44E-04 2.04 9.82E-04 1.98 0.00E+00 0.00E+00
1/32 2.49E-04 2.03 2.31E-04 2.03 2.40E-04 2.03 0.00E+00 0.00E+00

P 2 1/2 2.54E-02 – 2.54E-02 – 4.71E-02 – 0.00E+00 0.00E+00
1/4 4.16E-03 2.61 4.10E-03 2.63 1.23E-02 1.93 0.00E+00 0.00E+00
1/8 7.02E-04 2.57 6.72E-04 2.61 8.18E-04 3.91 0.00E+00 0.00E+00
1/16 1.14E-04 2.62 1.08E-04 2.64 1.10E-04 2.90 0.00E+00 0.00E+00
1/32 1.66E-05 2.78 1.59E-05 2.77 1.59E-05 2.78 0.00E+00 0.00E+00

P 3 1/2 7.70E-03 – 7.70E-03 – 1.22E-02 – 0.00E+00 0.00E+00
1/4 8.82E-04 3.12 9.17E-04 3.07 1.07E-03 3.51 0.00E+00 0.00E+00
1/8 6.44E-05 3.78 6.15E-05 3.90 6.35E-05 4.08 0.00E+00 0.00E+00
1/16 4.18E-06 3.95 3.93E-06 3.97 4.02E-06 3.98 6.08E-07 9.90E-09
1/32 2.72E-07 3.94 2.55E-07 3.95 2.59E-07 3.96 6.36E-08 1.48E-08

First, we consider the plain wave problem and choose the domain related pa-
rameter in (5.4) as xl = yl = 0 and xr = yr = 2. The problem has the initial
data

(ρ, u, v, p)T = (1 + 0.5 sin(π(x+ y)), 1, 1, 1)T(5.6)

and is investigated with the periodic boundary condition. The results in Table 5.4
show the L2-errors and the rates of convergence of the density ρh given by the
ALE-DG method with P k, k = 1, 2, 3, polynomial spaces. The numerical solutions
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Figure 5.2. The ALE-DG solutions uS
h (left) and uM

h (right) at
time t = 0.45 with piecewise P 1 polynomial for Burgers’ equation.

of the ALE-DG method on the static uniform mesh and the moving mesh are ρSh
and ρMh . The numerical results show that we can obtain the optimal accuracy on
both meshes.

Table 5.4. L2-errors and rates of convergence at final time t = 1
for the Euler plain wave problem on static (right) and moving (left)
triangular meshes with cell size h0.

ρ− ρMh ρ− ρSh
h0 L2-norm order L2-norm order

P 1 1/2 1.35E-01 – 1.15E-01 –
1/4 3.04E-02 2.15 1.81E-02 2.67
1/8 6.06E-03 2.32 3.49E-03 2.37
1/16 1.40E-03 2.11 8.02E-04 2.12
1/32 3.41E-04 2.04 1.93E-04 2.05

P 2 1/2 2.64E-02 – 2.23E-02 –
1/4 6.35E-03 2.06 4.58E-03 2.28
1/8 1.08E-03 2.56 6.74E-04 2.76
1/16 1.55E-04 2.79 8.62E-05 2.97
1/32 2.04E-05 2.93 1.04E-05 3.05

P 3 1/2 4.75E-03 – 2.37E-03 –
1/4 3.44E-04 3.79 1.37E-04 4.11
1/8 2.02E-05 4.09 8.05E-06 4.09
1/16 1.34E-06 3.92 4.92E-07 4.03
1/32 8.78E-08 3.93 3.05E-08 4.01

Next, we consider the smooth vortex problem and choose the domain related
parameter in (5.4) as xl = yl = 0, xr = 20, and yr = 15. This problem was also
presented by Persson et al. [29] and the initial condition is

ρ = ρ0(1− αer)
1

γ−1 , p = p0(1− αer)
γ

γ−1 ,

u = (u, v)T = (u0 cos(θ), v0 sin(θ))
T +

ε

2πr0
e0.5r (−u0(y − y0), v0(x− x0))

T ,
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ALE-DG METHOD FOR CONSERVATION LAWS 31

where (ρ0, u0, v0, p0)
T = (1, 1, 1, 1)T , θ = arctan(0.5), (x0, y0) = (5, 5), ε = 0.3,

r0 = 1.5, r = (1− (x− x0)
2 − (y− y0)

2)/r20, and α = (γ−1)ε2

8γπ2 . We test the problem

up to time t =
√
102 + 52 with the Dirichlet boundary condition. The ALE-DG

method with P k, k = 1, 2, 3, approximation is used to solve the problem on static
uniform triangular meshes with cell size h0 and on moving meshes with the grid
point distribution (5.1) as before. The L2-errors and the rates of convergence for
the numerical solutions of the density ρSh , ρ

M
h and the pressure pMh , pSh are shown

in Table 5.5. We see that the numerical solutions are optimally accurate in both
moving mesh scenarios.

Table 5.5. L2-errors and the rates of convergence for the density
ρ and the pressure p at final time t =

√
102 + 52 for the Euler vor-

tex problem on static (right) and moving (left) triangular meshes
with cell size h0.

h0

∥∥ρ− ρMh
∥∥ order

∥∥p− pMh
∥∥ order

∥∥ρ− ρSh
∥∥ order

∥∥p− pSh
∥∥ order

P 1 l/2 1.35E-03 – 1.90E-03 – 1.29E-03 – 1.81E-03 –
l/4 2.84E-04 2.25 3.98E-04 2.25 2.64E-04 2.29 3.72E-04 2.28
l/8 5.60E-05 2.34 7.83E-05 2.35 5.19E-05 2.35 7.28E-05 2.35
l/16 1.22E-05 2.19 1.71E-05 2.19 1.16E-05 2.16 1.63E-05 2.16
l/32 2.81E-06 2.12 3.94E-06 2.12 2.71E-06 2.10 3.80E-06 2.10

P 2 l/2 4.75E-04 – 6.59E-04 – 4.32E-04 – 6.00E-04 –
l/4 6.49E-05 2.87 9.11E-05 2.85 6.34E-05 2.77 8.89E-05 2.75
l/8 1.16E-05 2.48 1.63E-05 2.48 9.43E-06 2.75 1.32E-05 2.75
l/16 1.85E-06 2.65 2.59E-06 2.65 1.27E-06 2.90 1.78E-06 2.90
l/32 2.92E-07 2.66 4.09E-07 2.66 1.77E-07 2.84 2.48E-07 2.84

P 3 l/2 1.26E-04 – 1.75E-04 – 1.16E-04 – 1.61E-04 –
l/4 6.72E-06 4.23 9.36E-06 4.23 5.50E-06 4.40 7.68E-06 4.39
l/8 3.24E-07 4.37 4.52E-07 4.37 2.20E-07 4.64 3.07E-07 4.64
l/16 1.54E-08 4.40 2.14E-08 4.40 1.09E-08 4.34 1.51E-08 4.35
l/32 8.28E-10 4.22 1.15E-09 4.22 5.63E-10 4.27 7.84E-10 4.27

Example 5.4 (Constant state preservation). The previous examples show that
the ALE-DG method on moving meshes maintains the high-order accuracy as the
DG method on static meshes. The ability of the ALE-DG method to preserve
constant states needs to be investigated, too. For this reason the linear advection
equation (5.2) and the Burgers’ equation (5.3) are considered with the constant
initial condition u0 = 1. We solve these initial value problems with the ALE-DG
method on moving triangular meshes with the grid point distribution (5.1). In
Table 5.6 the results of the computations are listed and it can be seen that the
ALE-DG method numerically satisfies the GCL. This result was expected, since we
used a time discretization with an order greater than two and in Section 4.2 it has
been proven that a time discretization of this type is enough to ensure that the
method preserves constant states.

To further show the D-GCL of ALE-DG methods, we adopted the meshes
T1 and T2 of 32 cells in Figure 5.3 with recursive refinement as the initial and
final meshes. For the linear advection equation with the constant initial condition
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Table 5.6. L2-errors for the advection equation and Burgers’
equation at time t = 1 with constant initial condition u0 = 1 on
moving triangular meshes with the grid point distribution (5.1)
and cell size h0.

Advection equation u − uM
h Burgers’ equation u − uM

h

h0 P 1 P 2 P 3 P 1 P 2 P 3

1/2 5.71E-16 3.72E-15 8.65E-15 3.03E-16 2.57E-15 7.35E-15
1/4 7.89E-16 7.42E-15 1.99E-14 5.20E-16 5.93E-15 1.56E-14
1/8 2.27E-15 1.24E-14 3.86E-14 1.13E-15 8.86E-15 2.89E-14
1/16 4.21E-15 2.47E-14 7.88E-14 2.44E-15 1.75E-14 5.86E-14
1/32 9.11E-15 5.39E-14 1.67E-13 5.06E-15 3.56E-14 1.19E-13

Figure 5.3. The meshes with 32 cells are used in test of D-GCL
for the linear advection equation. Left: T1; Right: T2.

u0(x, y) = 1, we show the D-GCL errors at time t = 1.0 in Table 5.7 by forward
Euler, TVD-RK2, and TVD-RK3 methods, respectively. Here, P 1 piecewise poly-
nomial space is used in the ALE-DG method. We take time step size �t = h0

max(|ω|)

with ω = ( (x1−x2)
t , (y1−y2)

t ) and (x1,y1), (x2,y2) are vertices of meshes T1 and T2.
The numerical results are consistent with the analysis on the D-GCL of ALE-DG
methods.

Table 5.7. L∞-errors and L2-errors for the advection equation at
t = 1.0 with constant initial condition u0 = 1 on moving triangular
meshes with the grid point distribution in Figure 5.3.

Forward Euler TVD-RK2 TVD-RK3
N L∞ L2 L∞ L2 L∞ L2

32 1.40E-02 8.79E-03 3.55E-15 1.74E-15 1.47E-14 8.21E-15
128 6.21E-03 3.09E-03 1.78E-15 7.29E-16 1.35E-14 9.11E-15
512 2.72E-03 1.30E-03 2.33E-15 4.65E-17 3.57E-12 1.26E-12
2048 1.34E-03 6.22E-04 1.03E-11 2.21E-12 2.39E-11 3.39E-12
8192 6.67E-04 3.07E-04 3.06E-11 1.00E-11 8.45E-11 1.77E-11
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6. Conclusions

In this paper, an ALE-DG method to solve conservation laws in several space
dimensions on moving simplex meshes has been developed and analyzed. We began
the paper with an analysis of the semidiscrete ALE-DG method and proved the L2-
stability. Moreover, we presented a suboptimal a priori error estimate with respect
to the L∞ (

0, T ; L2 (Ω)
)
-norm, where the suboptimality refers to the approximation

properties of the discrete space.
Afterward, the fully-discrete ALE-DG method was investigated. In the con-

text of total-variation-diminishing Runge-Kutta methods, a relationship between
the spatial dimension and the discrete geometric conservation law was elaborated.
Furthermore, in two dimensions, second- and third-order fully-discrete ALE-DG
methods were presented. We proved that these methods satisfy the maximum prin-
ciple when the bound-preserving limiter developed by Zhang, Xia, and Shu [42] is
applied. In a future work, it would be worthwhile to investigate if these methods
are positive preserving when they are applied to the compressible Euler equations.

Beside our theoretical investigations, several numerical test examples for two
moving mesh scenarios have been presented. These examples support our theoreti-
cal results and show that the ALE-DG method is numerically stable and uniformly
high-order accurate. In particular, the two test examples for the compressible Euler
equations support the expectation that the ALE-DG method can also be applied to
systems of conservation laws even when the development and analysis in this paper
has been focused on scalar conservation laws in several space dimensions.

It should be mentioned that we did not use a moving mesh methodology in the
numerical examples. The grid point distribution was specified for the calculations.
The development of a suitable moving mesh methodology for our ALE-DG method
is also a project for a future work.
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