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Abstract
In this paper, we develop and analyze a series of conservative and dissipative local discontin-
uous Galerkin (LDG) methods for the dispersive system of Korteweg–de Vries (KdV) type
equations. Based on a cardinal conservative quantity of this system, we design and discuss
two different types of numerical fluxes, including the conservative and dissipative ones for the
linear and nonlinear terms respectively. Thus, one conservative together with three dissipative
LDG schemes for the KdV-type system are developed in our paper. The invariant preserving
property for the conservative scheme and corresponding dissipative properties for the other
three dissipative schemes are all presented and proven in this paper. The error estimates for
two schemes are given, whose numerical fluxes for linear terms are chosen as the dissipative
type. Assuming that the discontinuous piecewise polynomials of degree less than or equal
to k are adopted, and conservative numerical fluxes are employed to discretize the nonlinear
terms, we obtain a suboptimal a priori bound of order k; yet in the case of dissipative fluxes,
we obtain a slightly better bound of order k + 1

2 . Numerical experiments for this system
in different circumstances are provided, including accuracy tests for two kinds of traveling
waves, long-time simulations for solitary waves and interactions of multi-solitary waves, to
illustrate the accuracy and capability of these schemes.
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1 Introduction

In this paper,we introduce and analyze local discontinuousGalerkinmethods (LDG)designed
to approximate solutions of the following system of Kortweg-de Vries (KdV) type equations,
which we call as the KdV-type system in short, taking the form{

ut + uxxx + R(u, v)x = 0,

vt + vxxx + S(u, v)x = 0,
(1.1)

The above two equations are coupled by the nonlinear terms R(u, v) and S(u, v), which are
taken to be homogeneous quadratic polynomials, namely

R = Au2 + Buv + Cv2, S = Du2 + Euv + Fv2, (1.2)

where A, B, . . . , F are given real coefficients and the variables u(x, t) and v(x, t) are time-
dependent real-valued functions.

Well-posedness and many important properties about the KdV-type system (1.1) are stud-
ied and presented in [1,4,6,11,12]. In [5], Bona et al. provide a thorough discussion of the
extant literature regarding the KdV-type system (1.1). We list several useful facts discussed
therein which are useful in the analysis to follow. Following the theories developed for the
single KdV equation, the KdV-type system (1.1) can be proven locally well-posed in the
Sobolev spaces Hs(R) × Hs(R) for any s > − 3

4 . For s ≥ 0, the following quantity

H(u, v) =
∫
R

(
au2 + buv + cv2

)
dx, (1.3)

is invariant in time, where the constants a, b, c are any nontrivial solutions of the system{
2Ba + (E − 2A)b − 4Dc = 0,

4Ca + (2F − B)b − 2Ec = 0.
(1.4)

Furthermore, when the quadratic form Υ (x, y) = ax2 +bxy+ cy2 is positive-definite, i.e.,

4ac − b2 > 0, (1.5)

the system (1.1) can be extended to be globally well-posed if s ≥ 0. Although the well
posedness in Hs(T) (T = R/Z is the one-dimensional torus) has not been dealt with, the
Bona–Smith argument in [6] with some a priori H1(T)-bound deduces global well posedness
for s ≥ 1 when 4ac− b2 > 0, and such a conclusion on the one-dimensional torus for s ≥ 1
is sufficient for our analysis in this paper. In addition, the system (1.1) admits some special
solitary-wave solutions, which are termed as the proportional solitary waves in [4], and we
will give detailed introductions about it in the future section of numerical experiments.

In our study, we will focus on the design and analysis of numerical schemes to solve the
system (1.1). Although methods of the KdV equation are abundant, the LDG framework in
this paper is mainly enlightened by the contributions towards (local) discontinuous Galerkin
(DG)methods, especially thework in [3,7,22,27,31]. TheLDGmethods for theKdVandother
equations with high order derivatives are initially introduced in [27] by Yan and Shu. And
the L2-error estimates for the semi-discrete LDG method to the KdV equation are presented
by Xu and Shu in [22], and one of our key error estimates in this paper is mainly guided
by their work. Then Cheng and Shu in [7] proposed a new DG method to time dependent
partial differential equations with higher order spatial derivatives. Besides, the conservative
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DG methods are presented in [3,31] to solve the generalized KdV (gKdV) equation

ut + (u p+1)x + εuxxx = 0,

where p is nonnegative integer and ε is a nonzero parameter, and their ideas of constructing
and analyzing the weak forms of nonlinear terms in the gKdV equation give us important
inspiration to design schemes for coupled nonlinear terms of system (1.1). And in [15,16], the
authors present some a posteriori error estimates for DG and LDGmethods to the generalized
KdV equation. More recently, Bona and collaborators in [5] start to embark on numerical
approximations to this KdV-type system (1.1): they construct a continuous Galerkin scheme
which can preserve the invariant H and provide the error estimates with a suboptimal k-th
order of accuracy (k is the degree of polynomial). Enlightened by their contributions, we
set about studying the LDG method applied to this KdV-type system, and some strategies
and skills used in [5] to handle such delicate system are also adopted in our work. Other
than the work on DG/LDG methods, we also introduce some useful tools and concepts for
the symmetric/symmetrizable systems of conservation laws, such as the “E-fluxes” in [14]
and corresponding important properties studied in [29,30]. This is because there exists some
“hidden” symmetrizable property of the system (1.1) and it will be in detail explained in this
paper. By these useful tools, we could provide some higher accuracy with (k+ 1

2 )th order for
two dissipative schemes, and these results are consistent with the accuracy order obtained in
[22] of the similar LDG scheme to the KdV equation.

The LDGmethod discussed in present paper is an extension of the discontinuous Galerkin
(DG) method to solve partial differential equations (PDEs) containing higher than first order
spatial derivatives, using discontinuous piecewise polynomials as numerical solutions and
test functions in the spacial variables. The LDG method was first constructed by Cockburn
and Shu [10] in solving nonlinear convection–diffusion equations, which was inspired by
the efficient numerical experiments of Bassi and Rebay [2] for simulating the compressible
Navier–Stokes equations. In the procedure of the LDG method, higher order derivatives are
rewritten into a first order system and applied with DG method subsequently. The cardinal
technique in the LDG method is the design of the so-called numerical fluxes. The literatures
on designing and analyzing the LDG schemes for different kinds of equations are quite plenty,
and we suggest that the readers consult [10,21,23–28,31] and the references therein. These
contributions about the LDG method could supply rich and efficient guidance for us when
encountering new equations or similar problems.

The extremely local, element baseddiscretization in theDGmethod is effectively favorable
for parallel computing and retaining high-precision on unstructuredmeshes. Particularly, DG
methods are well suited for hp-adaptation, which consists of local mesh refinement and the
adjustment of the polynomial order in individual elements. The LDG schemes for the KdV-
type system (1.1) in present paper keep all these good properties.

Our paper is organized as follows: in Sect. 2, notations and other preliminary materials,
such as the function spaces and their norms are first introduced.We also construct and analyze
a new kind of numerical fluxes with two variables, together with some operators and forms
for the linear and nonlinear terms for the KdV-type system. In Sect. 3, four different LDG
schemes are designed, including one conservative scheme and three dissipative ones. The
stability analysis with respect to the quantity H defined in (1.3) for these four schemes are
presented in Sect. 4. Section 5 comprises error estimates for two dissipative schemes with
different numerical fluxes chosen for the nonlinear terms. In Sect. 6, we implement these
numerical approaches to some examples for the KdV-type system to illustrate their accuracy
and capability. In particular, the long-time simulation of solitary-wave solutions and the
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interactions of multi-solitary waves are numerically validated. Concluding remarks are given
in Sect. 7.

2 Notations and Definitions

Based on the LDG method, we will design several different numerical schemes for the KdV-
type system (1.1). For the sake of concision,we present and list here somenecessary notations,
definitions and corresponding preliminary materials which will be used throughout the paper.

2.1 Notations, Function Spaces and Norms

2.1.1 The Meshes

Let I = [0, 1] denote the spatial domain for the methods and the system (1.1), and Th be the
partition of I with the cells I j = [x j− 1

2
, x j+ 1

2
] for j = 1, . . . , N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1.

The center of the cell is x j = 1
2 (x j− 1

2
+ x j+ 1

2
) and the mesh size is denoted by h j =

x j+ 1
2

− x j− 1
2
with h = max1≤ j≤N h j being the maximum cell size. The mesh is assumed

to be regular, which means the ratio between the maximum and minimum mesh sizes keeps
bounded in the mesh refinements.

2.1.2 Function Spaces and Norms

We introduce the Sobolev spaces Ws,p = Ws,p(I ) together with their usual norms, and
also use Hs = Hs(I ) to denote Ws,2. Besides, C(I ) will denote the spaces of functions
which are continuous on I . In particular, we also introduce function spaces Cper (I ) which
are continuous and periodic on [0, 1] with extra restrictions on x 1

2
and xN+ 1

2
, namely

Cper (I ) = {u(x) ∈ C(I ) : u(x 1
2
) = u(xN+ 1

2
)}.

In addition, we introduce the broken Sobolev spacesWs,p(Th), which are finite Cartesian
products of the standard Sobolev spacesWs,p(I j ) on all cells in Th . When p = 2, Hs(Th) is
always used to denote Ws,2(Th). In particular, norms of Ws,p(Th) with p = 2,∞ are given
by

‖u‖Ws,2(Th)
= ‖u‖Hs (Th) =

⎛
⎝ N∑

j=1

‖u‖2Hs (I j )

⎞
⎠

1
2

, ‖u‖Ws,∞(Th) = max
1≤ j≤N

‖u‖Ws,∞(I j ).

In the case s = 0 with the interval I being clear from context, we would like to use the norms
‖u‖ and ‖u‖∞ to connote ‖u‖L2(Th)

and ‖u‖L∞(Th) respectively. Furthermore, it is necessary
in our analysis to define the function space Hs

per (Th) = Cper (Th)
⋂

Hs(Th), whereCper (Th)
connotes the periodic and piecewise continuous functions with possible discontinuity on the
element interfaces.
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2.1.3 The Finite Element Spaces

Nowwe choose the following discontinuous piecewise polynomial space as the finite element
space

Vh =
{
v(x) : v(x) ∈ Pk(I j ), for x ∈ I j , j = 1, . . . , N

}
, (2.1)

where Pk(I j ) denotes the set of polynomials of the degree up to k in each cell I j . It transpires
that the functions belonging to Vh could be discontinuous on the element interfaces.

The solution of the numerical scheme is denoted by uh , which belongs to the finite element
space Vh . We denote the values of uh at x j+ 1

2
by (uh)

+
j+ 1

2
and (uh)

−
j+ 1

2
, from the right cell

I j+1 and the left cell I j , respectively. The usual notations

[uh] j+ 1
2

= (u+
h − u−

h )

∣∣∣
j+ 1

2

and

{uh} j+ 1
2

= 1

2
(u+

h + u−
h )

∣∣∣
j+ 1

2

are also introduced to connote the jump and mean of the function uh at x j+ 1
2
, respectively.

When the context is clear, the unadorned notations [uh] and {u} will be used.

2.2 Preliminary Materials and Definitions

In design of the weak formulation of LDG schemes for the KdV-type system (1.1), differ-
ent kinds of numerical fluxes for nonlinear and linear terms will be discussed, thus in this
subsection, we beforehand present some concise forms and operators according to different
numerical fluxes together with some important properties.

2.2.1 Properties of Nonlinear Terms

Denote f (u, v) = uv, then nonlinear terms in (1.1) can be written as

R(u, v) = A f (u, u) + B f (u, v) + C f (v, v), (2.2)

S(u, v) = Df (u, u) + E f (u, v) + F f (v, v). (2.3)

According to the above nonlinear terms, two kinds of preliminary materials are designed and
analyzed in this part.

• Conservative-type notations and definitions. Assuming u and v are functions defined
in I , we construct a kind of conservative numerical flux for f (u, v) as

f̂ (u, v) = 1

6

(
2u+v+ + u+v− + u−v+ + 2u−v−)

, (2.4)

herein the “hat” terms are the so-called numerical fluxes aforementioned. Then the numer-
ical fluxes for R and S can be described as

R̂c(u, v) = A f̂ (u, u) + B f̂ (u, v) + C f̂ (v, v), (2.5)

Ŝc(u, v) = D f̂ (u, u) + E f̂ (u, v) + F f̂ (v, v). (2.6)
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Lemma 2.1 (The properties of f̂ ) The numerical flux f̂ defined in (2.4) possesses the follow-
ing properties

1. For u, v ∈ Cper (I ), f̂ is consistent with f , i.e.,

f̂ (u, v) = uv. (2.7)

2. For u, v, w are functions defined in I , there holds an identity

[uvw] = f̂ (u, v)[w] + f̂ (v,w)[u] + f̂ (w, u)[v]. (2.8)

Proof 1. The consistence can be obviously obtained when u, v are both continuous and
periodic at each node of Th .

2. This equality is a direct result of the definition of f̂ and some basic algebraic manipula-
tions.

��
Remark 2.2 When taking w = u in (2.8), we immediately obtain an obvious but important
relation

[u2v] = 2 f̂ (u, v)[u] + f̂ (u, u)[v]. (2.9)

Remark 2.3 In a general sense, f̂ (u, v) is a two-component extension of the conservative
flux for f (u) = u2 presented in [3,31], namely

f̂ (u, u) = 1

3

(
(u+)2 + u+u− + (u−)2

) = [F(u)]
[u] , (2.10)

where F(u) = ∫ u
0 s2ds and assume [u] 	= 0. This is a direct result when we choose v = u

in (2.4).

The definition of the conservative numerical flux f̂ in (2.4) motivates the conservative
trilinear form Nc: for u, v, ρ ∈ H1(Th),

Nc(u, v; ρ) = −
N∑
j=1

(uv, ρx )I j −
N∑
j=1

(
f̂ (u, v)[ρ]

)
j− 1

2

, (2.11)

where (·, ·)I j denotes the L2-inner product over the interval I j . By virtue of the Riesz Rep-
resentation Theorem, we define the nonlinear operator Nc : H1(Th) × H1(Th) → Vh as
follows

(Nc(u, v), ρ) = −
N∑
j=1

(uv, ρx )I j −
N∑
j=1

(
f̂ (u, v)[ρ]

)
j− 1

2

, for ∀ρ ∈ Vh, (2.12)

where the unadorned notation (·, ·) denotes the L2-inner product over the domain [0, 1].
Lemma 2.4 (Theproperties ofNc)The trilinear formdefined in (2.11)possesses the following
properties

1. Nc is consistent in the sense that,

Nc(u, v; ρ) = ((uv)x , ρ), for u, v ∈ H1(I ) ∩ Cper (I ), ρ ∈ Vh . (2.13)

2. For u, v, w ∈ H1(Th),

Nc(u, v;w) + Nc(w, u; v) + Nc(v,w; u) = 0. (2.14)

123



Journal of Scientific Computing             (2021) 86:4 Page 7 of 43     4 

3. For u, v ∈ H1(Th),

Nc(u, v; u) = −1

2
Nc(u, u; v). (2.15)

4. For u ∈ H1(Th),

Nc(u, u; u) = 0. (2.16)

Proof 1. For u, v ∈ H1(I ) ∩ Cper (I ), the conclusion (2.13) is easy to be obtained by
integration by parts, periodicity and continuity at each node

Nc(u, v; ρ) = ((uv)x , ρ) +
N∑
j=1

(
(uv − f̂ (u, v))[ρ]

)
j− 1

2

= ((uv)x , ρ).

2. Since u, v, w ∈ H1(Th), integration by parts, applying periodic boundary conditions and
(2.8), the desired equality (2.14) comes out obviously.

3. Property (2.15) follows by taking w = u in (2.14) and the symmetry of the first two
components of Nc.

4. Take v = u in (2.15), we get that

Nc(u, u; u) = −1

2
Nc(u, u; u).

��
Remark 2.5 Whenwe further define the nonlinear operatorsRc andSc based on the definition
of operator Nc as

(Rc(u, v), ρ) := ANc(u, u; ρ) + BNc(u, v; ρ) + CNc(v, v; ρ),

(Sc(u, v), ρ) := DNc(u, u; ρ) + ENc(u, v; ρ) + FNc(v, v; ρ), (2.17)

for ∀ρ ∈ Vh . Furthermore, the consistency ofNc in (2.13) directly results in the consistency
of Rc and Sc: for u, v ∈ H1(I ) ∩ Cper (I ) and ∀ρ ∈ Vh , i.e.,

(Rc(u, v), ρ) = (R(u, v)x , ρ),

(Sc(u, v), ρ) = (S(u, v)x , ρ). (2.18)

• Dissipative-type notations and definitions.We also introduce a dissipative-type numer-
ical flux for the nonlinear terms R and S defined in (2.2) and (2.3) as follows

R̂d(u, v) = {R(u, v)} − ε

2
[u], (2.19)

Ŝd(u, v) = {S(u, v)} − ε

2
[v], (2.20)

herein the positive parameter ε satisfies

ε ≥ �0

(
∂(R, S)

∂(u, v)

)
, (2.21)

and �0(
∂(R,S)
∂(u,v)

) is the spectral radius of the Jacobian matrix of (R, S)T over all u and v.
Furthermore, some additional conditions for ε to ensure the stability of numerical scheme
will be discussed in subsequent study.
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We define the corresponding trilinear form Nd as follows: for u, v, ρ ∈ H1(Th),

Nd(u, v; ρ) = −
N∑
j=1

(uv, ρx )I j −
N∑
j=1

({uv}[ρ]) j− 1
2
. (2.22)

In addition to the corresponding nonlinear operator Nd : H1(Th) × H1(Th) → Vh in the
sense of L2[0, 1]-inner product: for ∀ρ ∈ Vh ,

(Nd(u, v), ρ) = −
N∑
j=1

(uv, ρx )I j −
N∑
j=1

({uv}[ρ]) j− 1
2
. (2.23)

We list here some essential facts about this operator Nd .

Lemma 2.6 (The properties of Nd ) The trilinear form as defined in (2.22) satisfies

1. Nd is consistent in the sense that,

Nd(u, v; ρ) = ((uv)x , ρ), for u, v ∈ H1(I ) ∩ Cper (I ), ρ ∈ Vh . (2.24)

2. For u, v ∈ H1(Th),

Nd(u, u; v) + 2Nd(u, v; u) = −1

2

N∑
j=1

([u][u][v]) j− 1
2
. (2.25)

3. For u ∈ H1(Th),

Nd(u, u; u) = −1

6

N∑
j=1

([u][u][u]) j− 1
2
. (2.26)

Proof 1. For u, v ∈ H1(I ) ∩ Cper (I ), the conclusion (2.24) is obtained by integration by
parts, periodicity and continuity at each node.

2. Apply the periodic boundary condition and integration by parts to the definition of (2.22),
then we get

Nd(u, u; v) + 2Nd(u, v; u)

= −
N∑
j=1

(
2 (uv, ux )I j + (uu, vx )I j

)
−

N∑
j=1

(
2 ({uv}[u]) j− 1

2
+ ({uu}[v]) j− 1

2

)

=
N∑
j=1

([uuv] − 2{uv}[u] − {uu}[v]) j− 1
2

=
N∑
j=1

(2[u]({u}{v} − {uv})) j− 1
2

= −1

2

N∑
j=1

([u][u][v]) j− 1
2
.

3. The result in (2.26) is a direct outcome when we replace v = u in (2.25) that

Nd(u, u; u) + 2Nd(u, u; u) = −1

2

N∑
j=1

([u][u][u]) j− 1
2
.

��
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Remark 2.7 By some similar analysis, the consistency ofNd directly deduces the consistency
of the nonlinear terms: for u, v ∈ H1(I ) ∩ Cper (I ) and ∀ρ ∈ Vh

(Rd(u, v), ρ) = (R(u, v)x , ρ),

(Sd(u, v), ρ) = (S(u, v)x , ρ), (2.27)

here the bilinear operator Rd and Sd are defined as

(Rd(u, v), ρ) = ANd(u, u; ρ) + BNd(u, v; ρ) + CNd(v, v; ρ) + ε

2

N∑
j=1

([u][ρ]) j− 1
2
,

(Sd(u, v), ρ)) = DNd(u, u; ρ) + ENd(u, v; ρ) + FNd(v, v; ρ) + ε

2

N∑
j=1

([v][ρ]) j− 1
2
.

(2.28)

The extra jumps [u] and [v] will vanish when u, v are periodic and continuous.

2.2.2 Properties to Linear Terms

Other than the notations and definitions for the nonlinear terms in the KdV-type system, in
the future LDG schemes, we would like to define the useful bilinear forms D : H1(Th) ×
H1(Th) → R for linear terms: for w, ρ ∈ H1(Th),

D(w, ρ) = −
N∑
j=1

(w, ρx )I j −
N∑
j=1

(ŵ[ρ]) j− 1
2
. (2.29)

By the Riesz Representation Theorem, this bilinear form can be used to define the linear
operator D : H1(Th) → Vh with the following L2[0, 1]-inner product: for ∀ρ ∈ Vh ,

(D(w), ρ) = −
N∑
j=1

(w, ρx )I j −
N∑
j=1

(ŵ[ρ]) j− 1
2
. (2.30)

Furthermore, for different choices of the numerical flux of w, we use the specific notations
D−, D+ and D� with ŵ taking w−, w+ and {w}, respectively. Some properties of D are
displayed in the following Lemma.

Lemma 2.8 (The properties of D) The bilinear form D defined in (2.30) satisfies

1. D is consistent in the sense that,

D(u, ξ) = (ux , ξ), for u ∈ H1(I ) ∩ Cper (I ), ξ ∈ Vh . (2.31)

2. For ξ, ζ ∈ H1(Th),

D+(ξ, ζ ) + D−(ζ, ξ) = 0, (2.32)

D�(ξ, ζ ) + D�(ζ, ξ) = 0. (2.33)

3. For ξ ∈ H1(Th),

D�(ξ, ξ) = 0, (2.34)

D+(ξ, ξ) = −
N∑
j=1

(
1

2
[ξ ]2

)
j− 1

2

, (2.35)
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D−(ξ, ξ) =
N∑
j=1

(
1

2
[ξ ]2

)
j− 1

2

. (2.36)

Proof 1. For u, v ∈ H1(I ) ∩ Cper (I ), the consistency of D can be obtained by integration
by parts, periodicity and continuity at each node.

2. Apply integration by parts and periodicity to the definition of the linear form D, then
manipulate it as follows

D+(ξ, ζ ) + D−(ζ, ξ)

= −
N∑
j=1

(ξ, ζx )I j −
N∑
j=1

(
ξ+[ζ ]) j− 1

2
−

N∑
j=1

(ζ, ξx )I j −
N∑
j=1

(
ζ−[ξ ]) j− 1

2

=
N∑
j=1

([ξζ ]) j− 1
2

−
N∑
j=1

(
ξ+[ζ ] + ζ−[ξ ]) j− 1

2

= 0.

The proof of the other equality is similar.
3. The result for D�(ξ, ξ) can be easily obtained by (2.33). And for ξ ∈ H1(Th), via

integration by parts and periodicity, we have

D+(ξ, ξ) = −
N∑
j=1

(ξ, ξx )I j −
N∑
j=1

(
ξ+[ξ ]) j− 1

2

=
N∑
j=1

({ξ}[ξ ] − ξ+[ξ ]) j− 1
2

= −
N∑
j=1

(
1

2
[ξ ]2

)
j− 1

2

.

Then equality (2.36) can be directly deduced by (2.32) and the above result.
��

3 LDG Schemes for the KdV-Type System

We devote this section to the design of different LDG schemes for the KdV-type system (1.1)
via choosing different numerical fluxes.

Rewrite the two equations in (1.1) into the following first-order systems

ut + (p(u))x + R(u, v)x = 0,

p(u) − (q(u))x = 0,

q(u) − ux = 0, (3.1)

and

vt + (p(v))x + S(u, v)x = 0,

p(v) − (q(v))x = 0,

q(v) − vx = 0. (3.2)
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3.1 TheWeak Formulation

We use the LDG method to approximate (3.1) and (3.2) as follow: For each j , find uh , p
(u)
h ,

q(u)
h , vh , p

(v)
h , q(v)

h ∈ Vh such that for all test functions ρ1, ξ1, ζ1, ρ2, ξ2, ζ2 ∈ Vh ,

((uh)t , ρ1)I j −
(
p(u)
h , (ρ1)x

)
I j

+
(
p̂(u)
h ρ1

−)
j+ 1

2

−
(
p̂(u)
h ρ1

+)
j− 1

2

− (R, (ρ1)x )I j + (
R̂ρ1

−)
j+ 1

2
− (

R̂ρ1
+)

j− 1
2

= 0, (3.3)(
p(u)
h , ξ1

)
I j

+
(
q(u)
h , (ξ1)x

)
I j

−
(
q̂(u)
h ξ1

−)
j+ 1

2

+
(
q̂(u)
h ξ1

+)
j− 1

2

= 0, (3.4)(
q(u)
h , ζ1

)
I j

+ (uh, (ζ1)x )I j − (̂
uhζ1

−)
j+ 1

2
+ (̂

uhζ1
+)

j− 1
2

= 0, (3.5)

and

((vh)t , ρ2)I j −
(
p(v)
h , (ρ2)x

)
I j

+
(
p̂(v)
h ρ2

−)
j+ 1

2

−
(
p̂(v)
h ρ2

+)
j− 1

2

− (S, (ρ2)x )I j + (
Ŝρ2

−)
j+ 1

2
− (

Ŝρ2
+)

j− 1
2

= 0, (3.6)(
p(v)
h , ξ2

)
I j

+
(
q(v)
h , (ξ2)x

)
I j

−
(
q̂(v)
h ξ2

−)
j+ 1

2

+
(
q̂(v)
h ξ2

+)
j− 1

2

= 0, (3.7)(
q(v)
h , ζ2

)
I j

+ (vh, (ζ2)x )I j − (̂
vhζ2

−)
j+ 1

2
+ (̂

vhζ2
+)

j− 1
2

= 0. (3.8)

Here, the “hat” terms are numerical fluxes as described before, and(·, ·)I j denotes the L2

inner product over the cell I j .

3.2 The Numerical Fluxes

We remark that different choices of the numerical fluxes R̂, Ŝ, p̂(χ)
h , q̂(χ)

h and χ̂h (here χ can
be u or v) would result in different numerical LDG schemes for the KdV-type system (1.1).
Herein, we list the choices of the numerical fluxes as follows:

1. The conservative fluxes for p(χ)
h , q(χ)

h and χh

p̂(χ)
h = {p(χ)}, q̂(χ)

h = {q(χ)
h }, χ̂h = {χh}. (3.9)

2. The dissipative fluxes for p(χ)
h , q(χ)

h and χh

p̂(χ)
h = (p(χ)

h )+, q̂(χ)
h = (q(χ)

h )+, χ̂h = χ−
h . (3.10)

3. The conservative fluxes for R and S as described in (2.5) and (2.6)

R̂c(uh, vh) = A f̂ (uh, uh) + B f̂ (uh, vh) + C f̂ (vh, vh),

Ŝc(uh, vh) = D f̂ (uh, uh) + E f̂ (uh, vh) + F f̂ (vh, vh). (3.11)

4. The dissipative fluxes for R and S as defined in (2.19) and (2.20)

R̂d(uh, vh) = {R(uh, vh)} − ε

2
[uh],

Ŝd(uh, vh) = {S(uh, vh)} − ε

2
[vh]. (3.12)
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Table 1 Four LDG schemes for KdV-type system

Conservative (Ŝc, R̂c) in (3.11) Dissipative (Ŝd , R̂d ) in (3.12)

Conservative ( p̂(χ)
h , q̂(χ)

h , χ̂h) in (3.9) Cl–Cn scheme Cl–Dn scheme

Dissipative ( p̂(χ)
h , q̂(χ)

h , χ̂h) in (3.10) Dl–Cn scheme Dl–Dn scheme

The so-called “conservative” and “dissipative” labels in above statements will be specified
in the next section. These four choices lead to one conservative LDG scheme with numerical
fluxes (3.9) and (3.11), as well as three dissipative schemes for the KdV-type system. We
display all four schemes in Table 1.

Remark 3.1 We remark that the choices of numerical fluxes of p̂(χ)
h and χ̂h in (3.9) and (3.10)

are not unique for they just need to follow some cardinal rule: p̂(χ)
h and χ̂h must be taken

from opposite sides. And here we list a sequence of possible choices of the numerical fluxes

p̂(χ)
h = {p(χ)

h } + θ [p(χ)
h ],

χ̂h = {χh} − θ [χh],
where θ is a constant in [− 1

2 ,
1
2 ]. Particularly, θ taking ± 1

2 leads to the alternating fluxes and
θ = 0 to the central fluxes. In this paper, we will only focus our work on the fluxes presented
in (3.9) and (3.10) and the analogous analysis about the other fluxes can be easy obtained by
results of these two particular cases.

4 Conservative Properties and Stability Analysis

In this section, we turn to discuss and analyze the stability of the LDG schemes presented in
previous section. According to the discrete version of energyH defined in (1.3), we say that
the H-stability holds when

H(uh, vh) =
∫
I
(au2h + buhvh + cv2h)dx ≤ 0, for uh, vh ∈ Vh,

in particular, if the equality holds, we called it asH-conservation. Besides, the corresponding
adjective expressions, such as “H-dissipative” and “H-conservative ”, are also used in this
paper. We will see in next subsection that when the conservative numerical fluxes (3.9) and
(3.11) are both taking, theH-conservation will hold; or else only theH-dissipative property
can be obtained.

4.1 Main Results About the Stability Analysis

Theorem 4.1 Assume that a, b, c are solutions of the system (1.4) and satisfy condition (1.5).
Let uh, vh ∈ Vh be the numerical solutions of the LDG schemes (3.3)–(3.8) equipped with
numerical fluxes aforementioned in Table 1, then we have the following results.

• (Cl –Cn scheme) The Cl–Cn scheme is H-conservative,

d

dt
H(uh, vh) = 0. (4.1)
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• (Cl –Dn scheme) The Cl –Dn scheme possesses the H-stability,

d

dt
H(uh, vh) ≤ 0. (4.2)

• (Dl–Cn, Dl–Dn schemes) Further assume that the parameters in condition (1.5) are
nonnegative, i.e., a, b, c ≥ 0, then the other two dissipative schemes,Dl –Cn andDl–Dn,
admit the H-stability

d

dt
H(uh, vh) ≤ 0, (4.3)

if the positive constant ε in R̂d and Ŝd satisfies

ε ≥ max

(
1

α
|Λ1|, 1

α
|Λ2|, �0

(
∂(R, S)

∂(u, v)

))
, (4.4)

where α is some positive number generated by condition (1.5) such that

α(‖u‖2 + ‖v‖2) ≤ H(u, v) = au2 + buv + cv2

and Λ1,Λ2 denote

Λ1 = 1

3
(2aA + bD)‖u‖∞ + (2cD + bA)‖v‖∞,

Λ2 = 1

3
(bC + 2cF)‖v‖∞ + (2aC + bF)‖u‖∞. (4.5)

Remark 4.2 We remark that the H-stability of the Dl–Cn scheme and Dl–Dn scheme are
restricted by the values of a, b and c, since the stability analysis for linear terms hold with
a, b, c ≥ 0. Such extra assumption indicates that only a part of H quantities are proven
stable by our method, yet it is not to say that the remaining quantities perform badly in these
LDG schemes. In the future section of numerical experiments, we choose some examples
which are not satisfied with condition a, b, c ≥ 0, but the numerical results still perform well
therein.

Remark 4.3 Taking into consideration of the condition (1.5), there exists a positive constant
α such that

α

∫ 1

0
(u2h + v2h)dx ≤ H(uh, vh), (4.6)

and this indicates the global boundary for ‖uh‖ and ‖vh‖.

4.2 Proof of theMain Results

Wefirst consider Eqs. (3.3) and (3.6) in two systems. Sumover all cells and notice the periodic
condition, then (3.3) and (3.6) become

N∑
j=1

((uh)t , ρ1)I j −
N∑
j=1

((
p(u)
h (ρ1)x

)
I j

+
(
p̂(u)
h [ρ1]

)
j− 1

2

)

−
N∑
j=1

(
(R, (ρ1)x )I j + (

R̂[ρ1]
)
j− 1

2

)
= 0, (4.7)
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N∑
j=1

((vh)t , ρ2)I j −
N∑
j=1

((
p(v)
h (ρ2)x

)
I j

+
(
p̂(v)
h [ρ2]

)
j− 1

2

)

−
N∑
j=1

(
(S, (ρ2)x )I j + (

Ŝ[ρ2]
)
j− 1

2

)
= 0, (4.8)

here p̂(u)
h , p̂(v)

h , R̂ and Ŝ are generalized notations with different choices in different schemes
aforementioned. By virtue of the linear operator D and nonlinear operators R and S , we
can concisely rewrite (4.7) and (4.8) as follows

(uh)t + D(p(u)
h ) + R(uh, vh) = 0, (4.9)

(vh)t + D(p(v)
h ) + S (uh, vh) = 0. (4.10)

Multiplying (4.9) and (4.10) by 2auh + bvh and buh + 2cvh respectively, then integrating
and summing up, we get the following important equation

d

dt
H(uh, vh) + J (uh, vh; p(u)

h , p(v)
h ) + I(uh, vh) = 0, (4.11)

where J (uh, vh; p(u)
h , p(v)

h ) denotes

J (uh, vh; p(u)
h , p(v)

h ) = 2aD(p(u)
h , uh) + b(D(p(u)

h , vh)

+D(p(v)
h , uh)) + 2cD(p(v)

h , vh), (4.12)

and I(uh, vh) is defined as

I(uh, vh) = (R(uh, vh), 2auh + bvh) + (S (uh, vh), buh + 2cvh) . (4.13)

In the following discussion, for different schemes, wewill further denoteJc andJd according
to D in (4.12) being D� and D+, respectively,

Jc(uh, vh; p(u)
h , p(v)

h ) = 2aD�(p(u)
h , uh) + b(D�(p(u)

h , vh)

+ D�(p(v)
h , uh)) + 2cD�(p(v)

h , vh),

Jd(uh, vh; p(u)
h , p(v)

h ) = 2aD+(p(u)
h , uh) + b(D+(p(u)

h , vh)

+ D+(p(v)
h , uh)) + 2cD+(p(v)

h , vh).

Similarly, we use Ic and Id to denote the different cases of (4.13) according to the nonlin-
ear fluxes pair (R̂, Ŝ) respectively taking the conservative case (R̂c, Ŝc) in (3.11) and the
dissipative one (R̂d , Ŝd) in (3.12), namely

Ic(uh, vh) = (Rc(uh, vh), 2auh + bvh) + (Sc(vh, vh), buh + 2cvh) ,

Id(uh, vh) = (Rd(uh, vh), 2auh + bvh) + (Sd(uh, vh), buh + 2cvh) .

We first give the following lemma for nonlinear quantity I.

Lemma 4.4 (The properties of I) Let a, b, c be solutions of the system (1.4) and satisfy (1.5).
Then for uh, vh ∈ Vh, there hold the following facts for quantities Ic and Id
• Take R̂ = R̂c, Ŝ = Ŝc, then the following equality holds

Ic(uh, vh) = 0. (4.14)
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• Take R̂ = R̂d , Ŝ = Ŝd , and further suppose the parameter ε in R̂d and Ŝd satisfies the
condition mentioned in (4.4), then there holds

Id(uh, vh) ≥ 0. (4.15)

Proof The detailed proofs are given in Appendix A. ��
Now we turn to analyze the quantities Jc and Jd in the following lemma.

Lemma 4.5 (The properties of J ) Let a, b, c be solutions of the system (1.4) and satisfy
condition (1.5). For the quantities Jc and Jd generated by the linear terms in the system, we
have the following (in)equalities

• Take the numerical fluxes of the linear terms as in (3.9), then there holds the following
equality for Jc

Jc(uh, vh; p(u)
h , p(v)

h ) = 0. (4.16)

• Take the numerical fluxes of the linear terms as in (3.10) and further assume the parameter
b ≥ 0, then there holds the following inequality for Jd

Jd(uh, vh; p(u)
h , p(v)

h ) ≥ 0. (4.17)

Proof The detailed proofs are given in Appendix B. ��
We further apply the results of Lemmas 4.4 and 4.5 and finally obtain the desired results

as follows

• (Cl–Cn scheme)

0 = d

dt
H(uh, vh) + Jc(uh, vh; p(u)

h , p(v)
h ) + Ic(uh, vh) = d

dt
H(uh, vh). (4.18)

• (Dl–Cn scheme)

0 = d

dt
H(uh, vh) + Jd(uh, vh; p(u)

h , p(v)
h ) + Ic(uh, vh) ≥ d

dt
H(uh, vh). (4.19)

• (Cl–Dn scheme)

0 = d

dt
H(uh, vh) + Jc(uh, vh; p(u)

h , p(v)
h ) + Id(uh, vh) ≥ d

dt
H(uh, vh). (4.20)

• (Dl–Dn scheme)

0 = d

dt
H(uh, vh) + Jd(uh, vh; p(u)

h , p(v)
h ) + Id(uh, vh) ≥ d

dt
H(uh, vh). (4.21)

Now we have completed the proofs of the main results about the conservative and dissipative
properties for our designed schemes.

5 Error Estimates

In what follows, we derive error estimates for the Dl–Cn scheme and Dl–Dn scheme with
both taking the dissipative numerical fluxes for the linear terms in the KdV-type system (1.1).
For the LDGmethods to nonlinear KdV equations, we know that there exists some obstacles
in handling the error estimates for the linear terms choosing q̂(χ)

h = {q(χ)
h }. For example,
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authors in [16] say that they only obtain the best (k− 1
2 ) order of accuracy after trying various

different approaches to derive a priori error estimates for the conservative LDG method to
the gKdV equation. For this reason, we just choose the dissipative flux q̂(χ)

h = (q(χ)
h )+ in

this section and focus our attention on the performance of two different nonlinear numerical
fluxes, (3.11) and (3.12).

Our ideas of handling the error estimates for linear terms of the KdV system are guided
by the LDG method to nonlinear KdV equation in [22]; the strategies for nonlinear terms
are inspired by the continuous Galerkin method to the KdV-type system in [5] and the DG
method to symmetrizable systems of conservation laws in [30].

The framework of this section is designed as follows:we supplement some useful notations
and auxiliary tools for the following error estimates in Sect. 5.1; then we put forward the
main error estimate results for both two schemes in Sect. 5.2 in advance; after that we give
the analysis for the main results by separating the proof into 2 parts: Sect. 5.3 for generating
the error equation, and Sect. 5.4 about error estimate for each term of the error equation.

5.1 Notations and Auxiliary Results

In this part, we introduce some notations and assumptions to be used and some auxiliary
results to be cited later in this paper. Some projections are introduced and the corresponding
interpolation and inverse properties for the finite element spaces are presented.

5.1.1 Notations and Assumptions

We will denote by C and C� positive constants independent of h and N , which may depend
on the solutions of the KdV-type system considered in this paper. Especially, C� used to
emphasize the nonlinearity of fluxes F(u, v) andG(u, v) depends on themaximumof second
derivatives of F and/or G. These constants may have a different value in each occurrence for
the sake of facility. In this part, the exact solutions of the problem to be considered are assumed
to be smooth equipped with the periodic or compactly supported boundary conditions. The
time evolution about the problem is also bounded as 0 ≤ t ≤ T for a fixed T. As a result, the
exact solutions are bounded too.

5.1.2 E-flux and an Important Matrix Related to the Numerical Flux

• The E-flux. Let p = (u, v)T . We say that a system with the nonlinear terms P(u, v) and
Q(u, v) is symmetric if B := (P, Q)T satisfies that the Jacobian matrix JB = ∂(P,Q)

∂(u,v)

is a symmetric matrix. For a symmetric system of conservation laws, the numerical flux
B̂ := B̂(p−,p+) has been considered as an E-flux in [14] and [30] (therein they called
it a generalized E-flux on account of handling their targeted symmetrizable system) if it
is Lipschitz continuous and the following inequality holds

(B(r i ) − B̂(p−,p+))(p+ − p−)T ≥ 0, i = 1, 2, 3, (5.1)

where r i = p−, {p} and p+.

Many numerical fluxes can be verified easily to be (generalized) E-fluxes: for example, the
Roe linearization flux function [19], with or without Harten’s entropy fix [13], and the global
(local) Lax–Friedrichs flux which has been shown to be in [14] and detailedly discussed in
[18].
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Last but not least, we must remark that our KdV-type system (1.1) with K = (R, S)T is
not a symmetric system since JK being not symmetric, yet we can use some extra conditions
to generate some symmetric form B = (P, Q)T . Such discussion will be put in Sect. 5.4.

• An important matrix related to the numerical flux. The symmetric system along with
the E-flux property guides us to introduce an important matrix in measuring the amount
of numerical viscosity presented in [30]. Comparing to the original description about the
symmetrizable system in [30], we only list herein the simplified version for the symmetric
system in the following proposition.

Proposition 5.1 Assume that the numerical flux B̂ = B̂(p−, p+) satisfies the generalized
E-flux property (5.1) and consistent with the flux B(p). Define the matrix on each element
interface

A(B̂; p) ≡ A(B̂; p−, p+) :=
{ 1

6A1 + 2
3A2 + 1

6A3, i f [p] 	= 0,
|JB({p})|, i f [p] = 0,

(5.2)

where

Ai = (B(r i ) − B̂(p))[p]T
[p]T [p] , i = 1, 2, 3, (5.3)

with r i = p−, {p}, p+ as defined in (5.1). Then for any p ∈ R
2, the spectrum of A(B̂; p) is

bounded and [p]TA(B̂; p)[p] ≥ 0; what’s more

1

3
[p]T |JB({p})|[p] ≤ [p]TA(B̂; p)[p] + C�‖[p]‖3, (5.4)

where the positive constant C� depends only on the nonlinearity of the flux B, and ‖[p]‖ is
the length of the vector [p].
In our following discussion, some convenient notations for A(B̂;p) will be adopted when
the intent is clear from the context, i.e.

A(p) =
N∑
j=1

[p]T
j− 1

2
A(B̂;p) j− 1

2
[p] j− 1

2
.

5.1.3 Projections and Interpolation Properties

In the following, we will introduce the standard L2-projection of a continuous function ω

with k + 1 order bounded derivatives into the finite element space Vh , denoted by P; i.e., for
each j , ∫

I j
(Pω(x) − ω(x))v(x)dx = 0, for ∀v ∈ Pk(I j ), (5.5)

and the special projection P± into Vh , satisfying that: for each j and ∀v ∈ Pk−1(I j ),∫
I j

(P+ω(x) − ω(x))v(x)dx = 0, and P+ω(x+
j− 1

2
) = ω(x j− 1

2
), (5.6)

∫
I j

(P−ω(x) − ω(x))v(x)dx = 0, and P−ω(x−
j+ 1

2
) = ω(x j+ 1

2
). (5.7)
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For both projections mentioned above, authors in [29] generalized the following results
from [9] as follows

‖ωe‖ + h‖ωe‖∞ + h
1
2 ‖ωe‖�h ≤ Chk+1, (5.8)

where ωe = Pω − ω, ωe = P+ω − ω or ωe = P−ω − ω. The positive constant C depends
only on ω, namely it is independent of h. �h denotes the set of boundary points of all cells
I j belonging to the mesh grid, and the norm

‖u‖�h =
√√√√ 1

N

N∑
j=1

‖u‖2
L2(∂ I j )

.

5.1.4 Inverse Properties

We show several inverse properties of space Vh which will be utilized in the following error
estimates. For any ωh ∈ Vh , there exists a positive constant C independent of ωh and h, such
that

(i) ‖∇ωh‖ ≤ Ch−1‖ωh‖, (i i) ‖ωh‖�h ≤ Ch− 1
2 ‖ωh‖, (i i i) ‖ωh‖∞ ≤ Ch− 1

2 ‖ωh‖.
(5.9)

5.2 TheMain Error Estimate Results

Theorem 5.2 Assume that a, b, c are solutions of the system (1.4) satisfying condition (1.5).
Let u and v be the exact solutions of the KdV-type system (1.1)which are periodic and smooth
enough with bounded derivatives. Let uh, vh ∈ Vh be the numerical solutions of the semi-
discrete LDG schemes (3.3)–(3.8) equipped with numerical fluxes (3.10) for the linear terms
and (3.11) or (3.12) for the nonlinear terms. Denote the corresponding numerical errors by
eu = u−uh and ev = v−vh. For a regular partition of I = [0, 1]with N cells, we assume the
finite element spaces Vh defined in (2.1)with discontinuous, piecewise polynomials of degree
less than or equal to k. For sufficiently small h and assuming that ‖uh(0)−u(0)‖ = O(hk+1)

and ‖vh(0) − v(0)‖ = O(hk+1), the following error estimates hold

• The numerical solutions uh and vh of the Dl –Cn scheme equipped with the numerical
fluxes (3.10) and (3.11) satisfy

‖u − uh‖2 + ‖v − vh‖2 ≤ Ch2k . (5.10)

• The numerical solutions uh and vh of the Dl –Dn scheme equipped with the numerical
fluxes (3.10) and (3.12) satisfy

‖u − uh‖2 + ‖v − vh‖2 ≤ Ch2k+1. (5.11)

Here the constant C depends on the terminal time T , k, ‖u‖∞, ‖v‖∞, ‖u‖k+1 and ‖v‖k+1.
The notation ‖·‖k+1 is the maximum over 0 ≤ t ≤ T of the broken Sobolev (k + 1) norm in
space.

5.3 The Error Equations and Energy Equality

We choose the projections as follows

s(χ) = χh − P−χ, η(χ) = χ − P−χ,
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w(χ) = p(χ)
h − P p(χ), θ (χ) = p(χ) − P p(χ),

y(χ) = q(χ)
h − Pq(χ), γ (χ) = q(χ) − Pq(χ), (5.12)

where χ can be u or v. Let u, v, p(u), p(v), q(u) and q(v) be periodic and sufficiently smooth
solutions of the systems (3.1) and (3.2), and take account of the consistency of R, S , D in
(2.18), (2.27) and (2.31), then these exact solutions also satisfy the LDG schemes (3.3)–(3.5)
and (3.6)–(3.8). We obtain the error equations in the distributional sense

s(u)
t + D+(w(u)) + R(uh, vh) = η

(u)
t + D+(θ(u)) + R(u, v), (5.13)

w(u) − D+(y(u)) = θ(u) − D+(γ (u)), (5.14)

y(u) − D−(s(u)) = γ (u) − D−(η(u)), (5.15)

and

s(v)
t + D+(w(v)) + S (uh, vh) = η

(v)
t + D+(θ(v)) + S (u, v), (5.16)

w(v) − D+(y(v)) = θ(v) − D+(γ (v)), (5.17)

y(v) − D−(s(v)) = γ (v) − D−(η(v)), (5.18)

here R can be Rc or Rd and S can be Sc or Sd .
The general L2-projection P have the property such that θ(χ) and γ (χ) are orthogonal to

Vh , and the special projectionP− makes η(χ) locally orthogonal to all polynomials of degree
up to k − 1. We list such useful facts as follows

• For ∀φ ∈ Vh ,

N∑
j=1

(
(θ(χ)), φ

)
I j

= 0,
N∑
j=1

(
(γ (χ)), φ

)
I j

= 0. (5.19)

• For the bilinear form D and ∀φ ∈ Vh ,

D−(η(χ), φ) = −
N∑
j=1

(
η(χ), φx

)
I j

−
N∑
j=1

(
(η(χ))−[φ]

)
j− 1

2

= 0, (5.20)

D+(θ(χ), φ) = −
N∑
j=1

(
θ(χ), φx

)
I j

−
N∑
j=1

(
(θ(χ))+[φ]

)
j− 1

2

= −
N∑
j=1

(
(θ(χ))+[φ]

)
j− 1

2

,

(5.21)

D+(γ (χ), φ) = −
N∑
j=1

(
γ (χ), φx

)
I j

−
N∑
j=1

(
(γ (χ))+[φ]

)
j− 1

2

= −
N∑
j=1

(
(γ (χ))+[φ]

)
j− 1

2

.

(5.22)

Now multiplying (5.13) by 2as(u) + bs(v) and integrating, similarly (5.16) with bs(u) +
2cs(v), then summing up, we obtain

d

dt
H(s(u), s(v)) +

(
2aD+(w(u), s(u)) + bD+(w(u), s(v)) + bD+(w(v), s(u)) + 2cD+(w(v), s(v))

)

=
N∑
j=1

(
2a

(
η

(u)
t , s(u)

)
I j

+ b
(
η

(u)
t , s(v)

)
I j

+ b
(
η

(v)
t , s(u)

)
I j

+ 2c
(
η

(v)
t , s(v)

)
I j

)
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−
(
2aD+(θ(u), s(u)) + bD+(θ(u), s(v)) + bD+(θ(v), s(u)) + 2cD+(θ(v), s(v))

)
+

(
(R(u, v) − R(uh , vh), 2as

(u) + bs(v)) + (S (u, v) − S (uh, vh), bs
(u) + 2cs(v))

)
. (5.23)

It is easy to see that the second term in RHS of above equality can be simplified by (5.21).
Next we handle the second term in LHS of (5.23). Multiply (5.14) and (5.15) with test

functions y(u) and −w(u) respectively and integrate

N∑
j=1

(
w(u), y(u)

)
I j

− D+(y(u), y(u)) =
N∑
j=1

(
θ(u), y(u)

)
I j

− D+(γ (u), y(u)), (5.24)

−
N∑
j=1

(
y(u), w(u)

)
I j

+ D−(s(u), w(u)) = −
N∑
j=1

(
γ (u), w(u)

)
I j

+ D−(η(u), w(u)). (5.25)

After applying the equalities in (2.35), (5.19), (5.20) and (5.21), adding (5.24) and (5.25)
together, then we have

D−(s(u), w(u)) = −
N∑
j=1

(
1

2
[y(u)]2

)
j− 1

2

+
N∑
j=1

(
(γ (u))+[y(u)]

)
j− 1

2

. (5.26)

The analogous result for the Eq. (5.17) and (5.18) with test functions y(v) and −w(v) is as
follow

D−(s(v), w(v)) = −
N∑
j=1

(
1

2
[y(v)]2

)
j− 1

2

+
N∑
j=1

(
(γ (v))+[y(v)]

)
j− 1

2

. (5.27)

Taking the test functions in four Eqs. (5.14), (5.15), (5.17) and (5.18) as y(v), −w(v), y(u)

and −w(u), respectively, and performing similar operations yields

D−(s(u), w(v)) + D−(s(v), w(u))

= −
N∑
j=1

(
[y(u)][y(v)]

)
j− 1

2

+
N∑
j=1

(
(γ (u))+[y(v)]

)
j− 1

2

+
N∑
j=1

(
(γ (v))+[y(u)]

)
j− 1

2

.

(5.28)

By virtue of the results in (5.26), (5.27) and (5.28), we add

2aD−(s(u), w(u)) + b(D−(s(u), w(v)) + D−(s(v), w(u))) + 2cD−(s(v), w(v))

to the second term in the LHS of (5.23) and then get the following important energy equality

d

dt
H(s(u), s(v)) +

N∑
j=1

(
a

(
[y(u)]2

)
j− 1

2

+ b
(
[y(u)][y(v)]

)
j− 1

2

+ c
(
[y(v)]2

)
j− 1

2

)

−
N∑
j=1

(
2a

(
(γ (u))+[y(u)]

)
j− 1

2

+ b
(
(γ (u))+[y(v)] + (γ (v))+[y(u)]

)
j− 1

2

+2c
(
(γ (v))+[y(v)]

)
j− 1

2

)

=
N∑
j=1

(
2a

(
η

(u)
t , s(u)

)
I j

+ b
(
η

(u)
t , s(v)

)
I j

+ b
(
η

(v)
t , s(u)

)
I j

+ 2c
(
η

(v)
t , s(v)

)
I j

)
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−
N∑
j=1

(
2a

(
(θ(u))+[s(u)]

)
j− 1

2

+ b
(
(θ(u))+[s(v)] + (θ(v))+[s(u)]

)
j− 1

2

+2c
(
(θ(v))+[s(v)]

)
j− 1

2

)

+
(
(R(u, v) − R(uh, vh), 2as

(u) + bs(v)) + (S (u, v) − S (uh, vh), bs
(u)

+2cs(v))
)

, (5.29)

and we write the above equality as follow for convenience

Ht + O0 + O1 = O2 + O3 + On, (5.30)

where

O0 =
N∑
j=1

(
a

(
[y(u)]2

)
j− 1

2

+ b
(
[y(u)][y(v)]

)
j− 1

2

+ c
(
[y(v)]2

)
j− 1

2

)
, (5.31)

O1 = −
N∑
j=1

(
2a

(
(γ (u))+[y(u)]

)
j− 1

2

+ b
(
(γ (u))+[y(v)] + (γ (v))+[y(u)]

)
j− 1

2

+2c
(
(γ (v))+[y(v)]

)
j− 1

2

)
, (5.32)

O2 =
N∑
j=1

(
2a

(
η

(u)
t , s(u)

)
I j

+ b
(
η

(u)
t , s(v)

)
I j

+ b
(
η

(v)
t , s(u)

)
I j

+ 2c
(
η

(v)
t , s(v)

)
I j

)
,

(5.33)

O3 = −
N∑
j=1

(
2a

(
(θ(u))+[s(u)]

)
j− 1

2

+ b
(
(θ(u))+[s(v)] + (θ(v))+[s(u)]

)
j− 1

2

+2c
(
(θ(v))+[s(v)]

)
j− 1

2

)
, (5.34)

On = (R(u, v) − R(uh, vh), 2as
(u) + bs(v)) + (S (u, v) − S (uh, vh), bs

(u) + 2cs(v)).

(5.35)

5.4 Proof of theMain Results

We now turn to give the proof of the conclusions presented in previous subsection by virtue
of analyzing every term appeared in the energy equality (5.29).

• Proof of error estimates for the linear partsO0,O1,O2 andO3. In the energy equality,
both Dl–Cn and Dl–Dn schemes share the same linear terms O0, O1, O2 and O3, thus
we in advance give the error estimates for these terms.

Firstly, we consider the terms O0 and O1. Referring to statement in Remark 4.3, condition
(1.5) allows a positive real number α such that

O0 ≥ α

N∑
j=1

((
[y(u)]2

)
j− 1

2

+
(
[y(v)]2

)
j− 1

2

)
. (5.36)
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Applying the Young’s inequality ξζ ≤ εξ2 + 1
4ε ζ 2 with the positive parameter

ε = α

2max(|2a + b|, |b + 2c|)
and interpolation properties to O1, we have

O1 ≥ −α

2

N∑
j=1

((
[y(u)]2

)
j− 1

2

+
(
[y(v)]2

)
j− 1

2

)
− Ch2k+1. (5.37)

As a consequence,

O0 + O1 ≥ α

2

N∑
j=1

((
[y(u)]2

)
j− 1

2

+
(
[y(v)]2

)
j− 1

2

)
− Ch2k+1. (5.38)

Thus we get the following inequality

Ht − Ch2k+1 ≤ Ht + α

2

N∑
j=1

((
[y(u)]2

)
j− 1

2

+
(
[y(v)]2

)
j− 1

2

)
− Ch2k+1

≤ Ht + O0 + O1. (5.39)

Nowwe turn to the RHS of the energy equality (5.29). Since the time derivative commutes
with the projection P−, we have the following estimate for O2

|O2| ≤ Ch2k+2 + C(‖s(u)‖2 + ‖s(v)‖2). (5.40)

Moreover, O3 can be estimated by the inverse inequalities (5.9) and interpolation properties
(5.8) as

|O3| ≤ C(‖s(u)‖2 + ‖s(v)‖2) + Ch2k, (5.41)

or additively by the Young’s inequality

|O3| ≤ ε

N∑
j=1

(
[s(u)]2 + [s(v)]2

)
j− 1

2

+ Ch2k+1, (5.42)

here the positive parameter ε can be chosen small enough according to our need. We remark
that these two different versions listed here will be used in two different schemes.

• Proof of error estimates for Dl–Cn scheme. In this part, inspired by the work in [5],
we analyze the nonlinear term On with conservative numerical fluxes (3.11) and then
complete the error estimates for the Dl–Cn scheme.

Denote

π(u) = P−u, π(v) = P−v (5.43)

for concision and rewrite On into

On = −
(
(Rc(uh, vh) − Rc(π

(u), π(v)), 2as(u) + bs(v))

+ (Sc(uh, vh) − Sc(π
(u), π(v)), bs(u) + 2cs(v))

)
+

(
(Rc(u, v) − Rc(π

(u), π(v)), 2as(u) + bs(v))
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+ (Sc(u, v) − Sc(π
(u), π(v)), bs(u) + 2cs(v))

)
:=O4 + O5, (5.44)

here we have chosen R = Rc and S = Sc in On in the Dl–Cn scheme.
Recall the form Rc and Sc, namely,

Rc(uh, vh) − Rc(π
(u), π(v)) = A(Nc(uh, uh) − Nc(π

(u), π(u)))

+ B(Nc(uh, vh) − Nc(π
(u), π(v)))

+ C(Nc(vh, vh) − Nc(π
(v), π(v))) (5.45)

Sc(uh, vh) − Sc(π
(u), π(v)) = D(Nc(uh, uh) − Nc(π

(u), π(u)))

+ E(Nc(uh, vh) − Nc(π
(u), π(v)))

+ F(Nc(vh, vh) − Nc(π
(v), π(v))). (5.46)

Apply uh = s(u) + π(u) and vh = s(v) + π(v) in the bilinear operator Nc, then we have
following relations

Nc(uh, uh) − Nc(π
(u), π(u)) = Nc(s

(u), s(u)) + 2Nc(s
(u), π(u)),

Nc(vh, vh) − Nc(π
(v), π(v)) = Nc(s

(v), s(v)) + 2Nc(s
(v), π(v)),

Nc(uh, vh) − Nc(π
(u), π(v)) = Nc(s

(u), s(v)) + Nc(s
(u), π(v)) + Nc(s

(v), π(u)). (5.47)

Substituting the above transformations into (5.45) and (5.46), we obtain

O4 = − Ic(s(u), s(v))

−
(
(4Aa + 2Db)Nc(π

(u), s(u); s(u)) + (2Bb + Eb)Nc(π
(v), s(u); s(u))

+ (Bb + 2Ec)Nc(π
(u), s(v); s(v)) + (2Cb + 4Fc)Nc(π

(v), s(v); s(v))
)

−
(
(2Ba + Eb)Nc(π

(u), s(v); s(u)) + (2Ab + 4Dc)Nc(π
(u), s(u); s(v))

+ (4Ca + 2Fb)Nc(π
(v), s(v); s(u)) + (Bb + 2Ec)Nc(π

(v), s(u); s(v))
)

:= − Ic(s(u), s(v)) + O4,1 + O4,2. (5.48)

According to Lemma 4.4, we know Ic(s(u), s(v)) = 0. Then applying the property of Nc in
(2.15), the general form Nc(π

(ς), s(χ); s(χ)) of the nonlinear terms in O4,1, where ς and χ

can be u or v, is bounded by

|Nc(π
(ς), s(χ); s(χ))| = 1

2
|Nc(s

(χ), s(χ);π(ς))|

≤ 1

2

⎛
⎝∣∣∣ N∑

j=1

(
(s(χ))2, π(ς)

x

)
I j

∣∣∣ +
∣∣∣ N∑
j=1

(
f̂ (s(χ), s(χ))[π(ς)]

)
j− 1

2

∣∣∣
⎞
⎠

≤ C(‖π(ς)
x ‖∞ + h−1‖η(ς)‖∞)‖s(χ)‖2, (5.49)

here the last inequality is deduced from the fact [π(ς)] = [ς − π(ς)] = [η(ς)]. Applying
the interpolation property of the projection P− and the smoothness of u and v, we can get a
constant boundary for ‖π(ς)

x ‖∞ + h−1‖η(ς)‖∞. Thus we get the estimate for O4,1

|O4,1| ≤ C(‖s(u)‖2 + ‖s(v)‖2). (5.50)
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Next we turn to O4,2. Regarding to condition (1.4), i.e.,

2Ea + Eb = 2Ab + 4Dc,

4Ca + 2Fb = Bb + 2Ec,

symmetry of Nc(·, ·; ζ ) and (2.14), O4,2 can be simplified as follow

O4,2 = −(2Ba + Eb)(Nc(π
(u), s(v); s(u)) + Nc(π

(u), s(u); s(v)))

− (4Ca + 2Fb)(Nc(π
(v), s(v); s(u)) + Nc(π

(v), s(u); s(v)))

= −(2Ba + Eb)(Nc(π
(u), s(v); s(u)) + Nc(s

(u), π(u); s(v)))

− (4Ca + 2Fb)(Nc(π
(v), s(v); s(u)) + Nc(s

(u), π(v); s(v)))

= (2Ba + Eb)Nc(s
(v), s(u);π(u)) + (4Ca + 2Fb)Nc(s

(v), s(u);π(v)).

We can reuse the similar technical skills in (5.49) and then obtain the estimate for O4,2

|O4,2| ≤ C(‖s(u)‖2 + ‖s(v)‖2). (5.51)

Combining (5.50) and (5.51), we then get

|O4| ≤ C(‖s(u)‖2 + ‖s(v)‖2). (5.52)

It remains to show the estimate for the last term O5. Apply π(u) = u − η(u) and π(v) =
v − η(v) to Nc in O5, we get

Nc(u, u) − Nc(π
(u), π(u)) = 2Nc(η

(u), π(u)) − Nc(η
(u), η(u)),

Nc(v, v) − Nc(π
(v), π(v)) = 2Nc(η

(v), π(v)) − Nc(η
(v), η(v)),

Nc(u, v) − Nc(π
(u), π(v)) = Nc(η

(u), π(v)) + Nc(η
(v), π(u)) − Nc(η

(u), η(v)). (5.53)

Substituting the above relations into O5, then O5 becomes a sum of two types of nonlinear
forms,Nc(η

(χ), η(ς); s(κ)) andNc(χ, η(ς); s(κ)), here the constants are ignored before them
and χ, ς, κ can be u or v. For these two forms, we use the inverse inequalities (5.9) and the
interpolation properties (5.8) aforementioned and get

|Nc(η
(χ), η(ς); s(κ))| ≤

N∑
j=1

|
(
η(χ)η(ς), s(κ)

x

)
I j

| +
N∑
j=1

|
(
f̂ (η(χ), η(ς))[s(κ)]

)
j− 1

2

|

≤ C‖η(χ)‖∞‖η(ς)‖‖s(κ)
x ‖ + C‖η(χ)‖∞‖η(ς)‖L2(Th)

‖s(κ)‖L2(Th)

≤ Ch2k+1‖s(κ)‖. (5.54)

The fact that ‖χ‖∞ is bounded for smooth solution χ leads to

|Nc(χ, η(ς); s(κ)| ≤
N∑
j=1

|
(
χη(ς), s(κ)

x

)
I j

| +
N∑
j=1

|
(
f̂ (χ, η(ς))[s(κ)]

)
j− 1

2

|

≤ C‖η(ς)‖‖s(κ)
x ‖ + C‖η(ς)‖L2(Th)

‖s(κ)‖L2(Th)

≤ Chk‖s(κ)‖. (5.55)

Applying (5.54) and (5.55) in O5, we get the estimate for it

|O5| ≤ Chk(‖s(u)‖ + ‖s(v)‖). (5.56)
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Finally, combining the estimates for all terms (5.39), (5.40), (5.41), (5.52) and (5.56)
together

d

dt
H(s(u), s(v)) ≤ C(‖s(u)‖2 + ‖s(v)‖2) + Ch2k . (5.57)

Recalling condition (1.5), there exists a positive number α such that α(‖s(u)‖2 + ‖s(v)‖2) ≤
H(s(u), s(v)),

Ht ≤ CH + Ch2k . (5.58)

Then the Gronwall’s inequality implies

H(s(u), s(v)) ≤ Ch2k . (5.59)

Finally, the desired error estimate (5.10) follows the similar discussion in (4.6).

Proof of error estimates for Dl–Dn scheme. In this part, we turn to complete the error
estimates for the Dl–Dn scheme for the KdV-type system.

DenoteK = (S, R)T , then we rewrite the dissipative numerical fluxes defined in (3.12) into
following vector form

K̂(p−,p+) = {K} − ε

2
[p] = K(p+) − εp+

2
+ K(p−) + εp−

2
:= K+(p+) + K−(p−), (5.60)

with the parameter ε satisfying

ε ≥ �0(JK), (5.61)

where �0(JK) is the maximum spectral radius of the Jacobian matrix ∂(R,S)
∂(u,v)

. The split two
parts K+(p) and K−(p) satisfy that

∂K+(p)

∂p
≤ 0,

∂K−(p)

∂p
≥ 0. (5.62)

Here ≥ 0 (≤ 0) means each eigenvalue is larger (or less) or equal to 0.

Recall the matrixM =
(
2a b
b 2c

)
, then further define the fluxes

B =
(
P(u, v)

Q(u, v)

)
=

(
2a b
b 2c

) (
R(u, v)

S(u, v)

)
, (5.63)

with the corresponding numerical fluxes

B̂ =
(
P̂(u, v)

Q̂(u, v)

)
=

(
2a b
b 2c

) (
R̂(u, v)

Ŝ(u, v)

)
. (5.64)

Condition (1.5) guarantees that property (5.62) for B̂ still holds, i.e.,

∂B+(p)

∂p
≤ 0,

∂B−(p)

∂p
≥ 0, (5.65)

sinceB = MK and the Jacobian matrix ∂B−(p)
∂p (or ∂B+(p)

∂p ) keeps its eigenvalues being non-
negative (or non-positive) when multiplied by a positive definitive matrix M. Furthermore,
the transformation in (5.63) leads to some desired symmetric property of B, i.e.,

∂B
∂p

=
(

∂u P ∂vP
∂uQ ∂vQ

)
=

(
2a b
b 2c

) (
2Au + Bv Bu + 2Cv

2Du + Ev Eu + 2Fv

)
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=
(

(4aA + 2bD)u + (2aB + bE)v (2aB + bE)u + (2bF + 4aC)v

(2bA + 4cD)u + (bB + 2cE)v (bB + 2cE)u + (2bC + 4cF)v

)
. (5.66)

On account of the fact that a, b and c satisfy condition (1.4), we have

(2bA + 4cD)u + (bB + 2cE)v = (2aB + bE)u + (2bF + 4aC)v, (5.67)

which means that the Jacobian matrix JB is symmetric. Therefore B̂ is an E-flux since B is
symmetric and the property (5.65) holds.

In addition, wewould like to use the a priori technique below. To deal with the nonlinearity
of B, we assume a priori that for h sufficiently small then there holds

‖p − ph‖ ≤ h. (5.68)

This is obviously true for t = 0 by ph(x, 0) = Pp0(x), whereP is the standard L2-projection
to Vh as defined before. We will verify the correctness of this assumption later. Furthermore,
the inverse inequalities (5.9) and the approximation properties (5.8), imply that

‖e‖∞ ≤ Ch
1
2 and ‖Qp − ph‖∞ ≤ Ch

1
2 , (5.69)

where e = p − ph and Q = P or Q = P± is the projection operator.
Referring to the strategies in handling the E-flux in [30], it is time for us to estimate the

nonlinear terms On in the energy equality (5.29) by taking R = Rd and S = Sd

(Rd (u, v) − Rd (uh , vh), 2as(u) + bs(v)) + (Sd (u, v) − Sd (uh , vh), bs(u) + 2cs(v))

=
N∑
j=1

∫
I j

(
s(u)
x

s(v)
x

)T (
2a b
b 2c

)(
R(u, v) − R(uh , vh)

S(u, v) − S(uh, vh)

)
dx

+
N∑
j=1

([s(u)]
[s(v)]

)T

j− 1
2

(
2a b
b 2c

) (
R(u, v) − R̂(uh, vh)

S(u, v) − Ŝ(uh , vh)

)
j− 1

2

=
N∑
j=1

∫
I j

(
s(u)
x

s(v)
x

)T (
P(u, v) − P(uh , vh)

Q(u, v) − Q(uh, vh)

)
dx +

N∑
j=1

([s(u)]
[s(v)]

)T

j− 1
2

(
P(u, v) − Pre f
Q(u, v) − Qref

)
j− 1

2

+
N∑
j=1

([s(u)]
[s(v)]

)T

j− 1
2

(
Pre f − P̂(uh , vh)

Qref − Q̂(uh, vh)

)
j− 1

2

=
N∑
j=1

∫
I j
sTx (B(p) − B(ph))dx +

N∑
j=1

(
[s]T (B(p) − Bre f )

)
j− 1

2

+
N∑
j=1

(
[s]T (Bre f − B̂(ph))

)
j− 1

2

:= �1 + �2 + �3, (5.70)

where we denote s = (s(u), s(v))T and Bre f = (Pref , Qref )
T := 1

6B(p−) + 2
3B({p}) +

1
6B(p+) is a reference vector defined on the element interfaces. Referring to the work in
[30], denoting e = p − ph = (e(u), e(v))T and η = (η(u), η(v))T , we give estimates for the
three terms in (5.70) as follows

�1 + �2 ≤ C(‖s(u)‖2 + ‖s(v)‖2) + (C + C�‖e‖∞)h2k+1, (5.71)
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�3 ≤ −1

2
A(p) + C�h

−1‖e‖2∞(‖s(u)‖2 + ‖s(v)‖2) + Ch2k+1, (5.72)

here the notation A(p) = ∑N
j=1[p]T

j− 1
2
A(B̂;p) j− 1

2
[p] j− 1

2
≥ 0. Take the parameter ε in

(5.42) small enough such that the term ε([s(u)]2 + [s(v)]2) can be eliminated by 1
4A(p),

combine the above results with the estimates (5.39), (5.40) and (5.42), then we have

d

dt
H(s(u), s(v)) ≤ −1

4
A(p) + (C + C�h

−1‖e‖2∞)(‖s(u)‖2 + ‖s(v)‖2) + (C + C�‖e‖∞)h2k+1.

(5.73)

Applying the property A(p) ≥ 0 and the a priori assumption (5.69), we finally obtain

d

dt
H(s(u), s(v)) ≤ C(‖s(u)‖2 + ‖s(v)‖2) + Ch2k+1. (5.74)

The desired error estimate (5.11) for the Dl–Dn scheme of the KdV-type system eventually
comes out by applying the positive definite condition (1.5) along with the same strategy used
in last part for the Dl–Cn scheme.

Remark 5.3 To complete the proof,we turn to justify the verification of the a priori assumption
(5.68). For k ≥ 1, we can assume h sufficiently small such that Chk < 1

2h with constant C
determined by the final time T . Then, denote t∗ = sup{t : ‖p(t) − ph(t)‖ ≤ h}, we would
have ‖p(t∗) − ph(t

∗)‖ = h for continuity if t∗ is finite. On the other hand, the proof tells us

that (5.11) holds for t ≤ t∗ and then ‖p(t∗)−ph(t
∗)‖ ≤ Chk+ 1

2 < 1
2h. This is a contradiction

if t∗ < T . Therefore t∗ ≥ T and the a priori assumption (5.68) is verified.

6 Numerical Experiments

In what follows, referring to the exhaustive work in [5], we apply the LDG schemes proposed
in our paper to several numerical examples of the KdV-type system. Accuracy tests for two
kinds of traveling waves, long-time simulations for solitary wave solutions, and interactions
of multi-solitary waves are successively presented and compared for different numerical
schemes.

The well-known additive Runge–Kutta (ARK) method in [8,20] are used as the temporal
discretization in following experiments. In [8], the implicit-explicit additive Runge–Kutta
(ARK) methods from third- to fifth-order are presented in which the stiff terms are integrated
by an L-stable, stiffly-accurate, singly diagonally implicit Runge–Kutta method while the
non-stiff terms are integrated with a traditional explicit Runge–Kutta method. And in [20],
we can see the very good qualification of theARKmethodswhen applied to the LDGmethods
in simulating (non)linear KdV equations. Therefore, the ARK methods are introduced into
our experiments as the temporal discretization of the LDG methods to system (1.1), and
it will be numerically verified qualified and efficient in the accuracy tests and long-time
interactions simulation of multi-solitary waves. In addition, the time step size will be taken
as �t = 0.1�x in this paper.

We remark that in following experiments, the linear terms with third order derivatives
in (1.1) are multiplied by a small parameter ε to adapt the KdV-type system to the interval
I = [0, 1], and such change does not affect the conclusions proposed in our paper. The
parameters A, B, . . . , F are chosen as same as in [5]

A = 1

8
, B = 1

8
, C = 1

32
, D = 1

8
, E = 1, F = − 9

32
,
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and these choices result in the following settings

a = 118

17
, b = −28

17
, c = 1,

which solve the system (1.4) and satisfy that 4ac − b2 = 7240
289 > 0. We remark that the

parameter b is especially chosen negative to verify the capacity of Cl–Dn or Dl–Dn scheme,
and the discussion about a, b, c is declared in Remark 4.2 detailedly.

Example 6.1 Accuracy tests for proportional traveling wave solutions.

The authors in [4] have introduced and analyzed a kind of so-called proportional solitary
waves of the form (u, v) = (u, 2u) for the KdV-type system (1.1). In some sense, this special
setting simplifies the system with the coupled nonlinear terms into the classical nonlinear
KdV equation. Thus we will always display the numerical results for the variable u yet omit
the other one for v = 2u. Herein, we introduce two kinds of periodic exact solutions with
period 1 to the system and give the accuracy tests for our numerical schemes.

• The cnoidal-wave solution. We first take the well known cnoidal-wave solution of the
KdV equation

u(x, t) = λcn2((4K (m)(x − ωt − x0) : m), (6.1)

where cn(z : m) is the Jacobi elliptic function with modulus m ∈ (0, 1) and the function
K = K (m) is the complete elliptic integral of the first kind.
The parameters are set as

ε = 1

576
, m = 0.9, λ = 192εmK (m)2, ω = 64ε(2m − 1)K (m)2, x0 = 0.5.

(6.2)

• The solitary-wave solution. We also introduce the proportional solitary-wave solution
with

u(x, t) = �sech2(K (x − ωt − x0)), (6.3)

where

� = 1, ω = �

3
, ε = 1

5760
, K = 1

2

√
�

3ε
, x0 = 0.5. (6.4)

Referring to the discussion in [5], the above solitary-wave solution can be regarded as an
exact solution of the system owing to the symmetry of the initial profile about its crest
(x = x0) and the exponential decay away from its crest.

For these two kinds of traveling wave solutions, we test the accuracy of four semi-discrete
LDG schemes presented in this paper equipped with the ARK temporal discretization. The
L2 errors ‖u − uh‖ and relevant orders of accuracy for all schemes simulating the cnoidal-
wave solution (6.1) and the solitary-wave solution (6.3) at time t = 1 are showed in Table 2
and Table 3, respectively. The periodic boundary conditions and piecewise polynomials of
degree less than or equal to k on uniform meshes with N cells are used our methods.

The numerical results show optimal convergence rates for even k and sub-optimal con-
vergence rates for odd k in the Cl–Cn and Cl–Dn schemes. This kind of phenomenon also
appeared in [16,31] when the LDG method is used to solve the generalized KdV equation
equipped with the same numerical fluxes as (3.9) for linear terms. Yet convergence rates for
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k being odd are optimal in Dl–Cn and Dl–Dn schemes when the numerical fluxes (3.11)
for linear terms are chosen. Therefore, the principal difference among the four schemes is
affected mainly by the choice of numerical fluxes for linear terms D.

Besides, the computational efficiency study of the four different schemes is applied to
the cnoidal-wave solution by taking the evolution time t = 10, and the settings of the other
parameters are the same as (6.2). The information of the device used in this experiment is as
follow

• processor : 2.3 GHz Quad-Core Intel Core i5,
• memory: 8 GB 2133 MHz LPDDR3.

As shown in Table 4, the time-consuming of the four schemes are almost the same. And
compared with the degree of polynomials, the scale of the mesh grid playes a dominant role
in the computational efficiency of all four LDG schemes.

Example 6.2 Long-time simulations of the solitary-wave solution.

In this experiment, we study the long-time behaviors of our proposed LDG schemes in
simulating the proportional solitary-wave solutions (u, v) = (u, 2u). The parameters are set
the same as in (6.4). Example 6.1 seems to suggest that the choice of numerical fluxes for
linear terms D plays an essential role in the performance of all four schemes, therefore we
just center on two representative schemes, the Cl–Cn and Dl–Dn schemes, in current and
future examples.

We use three experiments, in Figs. 1, 2 and 3, to study the performance and comparison
about the Cl–Cn and Dl–Dn schemes in long-time simulations with varying the values of k
and N . The profiles of the solitary-wave solutions of u and uh (data for v = 2u are ignored for
concision) at t = 250, 500, 750, 1000 (especially in Fig. 3, at t = 500, 1000, 3000, 5000)
in addition to the quantities |H(uh, vh) − H(u, v)| and the phase errors for the numerical
traveling wave solutions are depicted in three figures. And we remark that the phase error of
the numerical scheme is a quantity which manifests the lag between locations of the crest of
the exact solution u and its approximation uh . For more detailed discussion about the phase
error, we refer readers to [5].

The P2 polynomial element, an uniformmesh with N = 80 cells and the third-order ARK
method are used in the first test with results in Fig. 1. In the long-time evolution, we find
that the conservative scheme performs better than the dissipative one for it simulating the
exact solution more accurate, preserving the invariantH with less dissipation and generating
smaller phase errors. Furthermore, the dissipative method suffers a loss of amplitude of the
solitary wave in a long time. In Fig. 2, we double the number of cells N = 160 and remain
other settings to study the improvement leaded by mesh refinement. It is clear to see that the
behaviors of both schemes get some progress especially in the Dl–Dn scheme overcoming
the loss of amplitude and reducing the phase errors tremendously. As a consequence, the
invariantH is preserved better here than the coarse mesh. In Fig. 3, we alternatively keep the
mesh with N = 80 whereas improve the accuracy of schemes by utilizing P4 polynomial and
corresponding fifth-order ARKmethod and enlarge the end time to T = 5000. In the first four
profiles, the differences between the numerical solutions and the exact solution are invisible to
the naked eyes. And the last two subfigures show that |H(uh, vh)− H(u, v)| of two schemes
are restricted in 10−7

∼ 10−5 and the phase errors are nearly eliminated. This choice of
mesh and polynomials resolves the solitary-wave solution well in the sufficiently long-time
simulation. We conclude that the mesh refinement and high accuracy both play important
roles in Cl–Cn and Dl–Dn schemes applied to long-time simulations of the solitary-wave
solution.
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Table 4 Computational efficiency test

Cl–Cn scheme Cl–Dn scheme Dl–Cn scheme Dl–Dn scheme

k = 2 N = 80 3min 5s 2min 58s 2min 57s 2min 52s

k = 3 N = 80 5min 6s 5min 9s 4min 46s 4min 40s

k = 3 N = 160 18min 36s 18min 18s 17min 16s 16min 54s

Fig. 1 The solitary-wave solution (6.3) of (x, t) ∈ [0, 1] × [0, 1000]. P2 elements and uniform mesh with
N = 80 cells. Third-order ARK method
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Fig. 2 The solitary-wave solution (6.3) of (x, t) ∈ [0, 1] × [0, 1000]. P2 elements and uniform mesh with
N = 160 cells. Third-order ARK method

In [17], the authors designed an experiment to investigate the phase error about conserva-
tive and dissipative LDG methods to the Benjamin–Bona–Mahony (BBM) equation, and we
follow their idea to revisit this issue in theKdV-type system. Comparing to the results in Fig. 1
at t = 250, 500, 750, which are placed in the left column of Fig. 4, the right column of Fig. 4
provide the numerical results with a half time step size while keeping all the other parameters.
After reducing �t , the phase error about the Cl–Cn scheme decreases more significiently
than the Dl–Dn scheme. As a consequence, the large phase error of the conservative scheme
is mainly caused by the temporal discretization error.

Example 6.3 Interactions of multi-solitary waves.
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Fig. 3 The solitary-wave solution (6.3) of (x, t) ∈ [0, 1] × [0, 5000]. P4 elements and uniform mesh with
N = 80 cells. Fifth-order ARK method

In this experiment, we turn to study the interactions of multi-solitary waves, which are the
well known phenomena of KdV-type equations. According to the proportional solitary-wave
solution (6.3), we enlarge the periodic domain [0, 1] to [0, 10] to capture the delicate details
and put M (2 or 3) solitary waves (still the proportional type solution (u, v) = (u, 2u) for
each solitary wave) with different transport speeds and locations

u(x, t) =
M∑
i=1

�i sech
2(Ki (x − ωi t − xi )). (6.5)
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Fig. 4 The comparison of the solitary-wave of Cl–Cn and Dl–Dn schemes at different times t = 250 (top),
t = 500 (middle), t = 750 (bottom) with time step �t = 1/800 (left column) and �t = 1/1600 (right
column). P2 elements and uniform mesh with N = 80 cells. Third-order ARK method

Take ε = 1/576 and set the other parameters for two-solitary wave (M = 2) as

�1 = 2, ω1 = �1

3
, K1 = 1

2

√
�1

3ε
, x1 = 1,

�2 = 1, ω2 = �2

3
, K2 = 1

2

√
�2

3ε
, x2 = 3, (6.6)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 The interactions of two-solitarywave (6.5)with parameters (6.6), (x, t) ∈ [0, 10]×[0, 40]. P4 elements
and uniform mesh with N = 400 cells. Fifth-order ARK method. a–e depict the first interaction; f–h depict
the second interaction; i shows the H-energy evolution in the semilog coordinate

and for three-solitary wave (M = 3) as

�1 = 3, ω1 = �1

3
, K1 = 1

2

√
�1

3ε
, x1 = 1,

�2 = 2, ω2 = �2

3
, K2 = 1

2

√
�2

3ε
, x2 = 3,

�3 = 1, ω3 = �3

3
, K3 = 1

2

√
�3

3ε
, x3 = 4. (6.7)

In the two experiments, the P4 piecewise polynomials equipped with the corresponding
fifth-order ARK temporal discretization methods are applied. Besides, we utilize the meshes
with N = 400 (cell size h = 1/40) for the two- and three-solitary waves. In Figs. 5 and 6,
we show the movements and interactions for these multi-solitary waves in t ∈ [0, 40]. The
first and second interactions of the two solitons, on account of its periodicity, are depicted in
Fig. 5. Analogously in Fig. 6, we show the interactions about three solitons at t = 0 and depict
the subsequent behaviors in a relatively long time. It transpires that the solitons simulated
by our numerical schemes can efficiently separate from each other after the interactions, and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 The interactions of three-solitary wave (6.5) with parameters (6.7), (x, t) ∈ [0, 10] × [0, 40]. P4

elements and uniform mesh with N = 400 cells. Fifth-order ARK method. a–d depict the first series of
interactions; e–h depict interactions in a long time; i shows theH-energy evolution in the semilog coordinate

this is an important property of interaction of multi-solitary waves which is consistent with
the KdV equations. The information, such as amplitudes and shapes, about the separated
solitons can be maintained well after each interaction in our methods, and this indicates the
capability of schemes toward computing approximations of such solutions.

7 Conclusion

In this paper, we have developed several conservative and dissipative schemes for the KdV-
type system (1.1). The stability analysis for theH-conservative scheme andH-stable schemes
have been analyzed and the error estimates for two dissipative schemes with nonlinear terms
taking different numerical fluxes are also given. Several numerical examples exhibiting vari-
ous circumstanceswere shown to illustrate the accuracy and capability of theseLDGschemes.
Besides, these LDG schemes inherit the nice properties of DG methods on the flexibility for
general geometry meshes, the hp-adaptivity and excellent parallel efficiency. Indeed, the the-
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ory and supporting experiments presented herein strongly highlight the suitability of LDG
techniques for approximating solutions of dispersive equations.

Appendices

A Proof of Lemma 4.4

Proof We separate the following proof into two parts according to the conservative and
dissipative cases for I.
• (The conservative case for Ic)

Ic(uh, vh)
= (2aANc(uh, uh; uh) + bDNc(uh, uh; uh) + bCNc(vh, vh; vh) + 2cFNc(vh, vh; vh))

+ (bANc(uh, uh; vh) + 2cDNc(uh, uh; vh) + 2aBNc(uh, vh; uh) + bENc(uh, vh; uh))
+ (2aCNc(vh, vh; uh) + bFNc(vh, vh; uh) + bBNc(uh, vh; vh) + 2cENc(uh, vh; vh))

:= (Ic,1) + (Ic,2) + (Ic,3). (A.1)

With the conservative propertyNc(u, u; u) = 0 given in (2.16), the first term (Ic,1) = 0.
By virtue of relations (2.14) and (2.15), and the conditions in (1.4), i.e.

2Ba + (E − 2A)b − 4Dc = 0,

4Ca + (2F − B)b − 2Ec = 0,

the left two terms, (Ic,2) and (Ic,3), satisfy

(Ic,2) = 1

2
(2bA + 4cD − 2aB − bE)Nc(uh, uh; vh) = 0,

(Ic,3) = 1

2
(4aC + 2bF − bB − 2cE)Nc(vh, vh; uh) = 0.

• (The dissipative case for Id )

Id (uh, vh)
= (2aANd (uh, uh; uh) + bDNd (uh, uh; uh) + bCNd (vh, vh; vh) + 2cFNd (vh, vh; vh))

+ (bANd (uh, uh; vh) + 2cDNd (uh, uh; vh) + 2aBNd (uh, vh; uh) + bENd (uh, vh; uh))
+ (2aCNd (vh, vh; uh) + bFNd (vh, vh; uh) + bBNd (uh, vh; vh) + 2cENd (uh, vh; vh))

+ ε

2

N∑
j=1

(
2a[uh]2 + 2b[uh][vh] + 2c[vh]2

)
j− 1

2

:= (Id,1) + (Id,2) + (Id,3) + (Id,4). (A.2)

Applying the properties of Nd in (2.25) and (2.26) and the conditions of a, b, c in (1.4),

2Ba + (E − 2A)b − 4Dc = 0,

4Ca + (2F − B)b − 2Ec = 0,

hence (Id1), (Id2) and (Id3) become

(Id,1) = −1

6
(2aA + bD)

N∑
j=1

([u]2[u]) j− 1
2

− 1

6
(bC + 2cF)

N∑
j=1

([v]2[v]) j− 1
2
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≥ −1

3
(2aA + bD)‖u‖∞

N∑
j=1

([u]2) j− 1
2

− 1

3
(bC + 2cF)‖v‖∞

N∑
j=1

([v]2) j− 1
2
,

(A.3)

(Id,2) = −1

2
(2cD + bA)

N∑
j=1

([u]2[v]) j− 1
2

≥ −(2cD + bA)‖v‖∞
N∑
j=1

([u]2) j− 1
2
,

(A.4)

and

(Id,3) = −1

2
(2aC + bF)

N∑
j=1

([v]2[u]) j− 1
2

≥ −(2aC + bF)‖u‖∞
N∑
j=1

([v]2) j− 1
2
.

(A.5)

Combining the above three inequalities together, we have

(Id,1) + (Id,2) + (Id,3)

≥ −
(
1

3
(2aA + bD)‖u‖∞ + (2cD + bA)‖v‖∞

) N∑
j=1

([u]2) j− 1
2

−
(
1

3
(bC + 2cF)‖v‖∞ + (2aC + bF)‖u‖∞

) N∑
j=1

([v]2) j− 1
2

= −Λ1

N∑
j=1

([u]2) j− 1
2

− Λ2

N∑
j=1

([v]2) j− 1
2
. (A.6)

Now we take into consideration of (I4) with the positive definite condition (1.5) which
means there is a positive number α such that α(ξ2 + ζ 2) ≤ aξ2 + bξζ + cζ 2, in detail

(Id,4) = ε

N∑
j=1

(
a[u]2 + b[u][v] + c[v]2) j− 1

2
≥ εα

N∑
j=1

([u]2 + [v]2) j− 1
2
. (A.7)

Comparing (A.6) with (A.7), applying the additional conditions for the parameter ε that

ε ≥ 1

α
max (|Λ1|, |Λ2|) , (A.8)

then we obtain the following inequality

Id(uh, vh) ≥ −Λ1

N∑
j=1

([u]2) j− 1
2

− Λ2

N∑
j=1

([v]2) j− 1
2

+ εα

N∑
j=1

([u]2 + [v]2) j− 1
2

≥ 0.

��

B Proof of Lemma 4.5

Proof We separate the following proofs into two parts according to the conservative and
dissipative cases for J .
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• (The conservative case for Jc). Take account of the Eqs. (3.4), (3.5) by choosing the test
functions as follows

ξ1 = q(u)
h , ζ1 = −p(u)

h . (B.1)

Combine (3.4) and (3.5) together, sum up over j and take into consideration of the
periodic condition, then we have

N∑
j=1

(
p(u)
h , q(u)

h

)
I j

+
N∑
j=1

(
q(u)
h , (q(u)

h )x

)
I j

+
N∑
j=1

(
q̂(u)
h [q(u)

h ]
)
j− 1

2

+
N∑
j=1

(
q(u)
h ,−p(u)

h

)
I j

+
N∑
j=1

(
uh, (−p(u)

h )x

)
I j

+
N∑
j=1

(
ûh[−p(u)

h ]
)
j− 1

2

= 0. (B.2)

Noticing that the first term can eliminate the forth term, and recalling the choice of the
numerical flux q̂(u)

h = {q(u)
h } with the property D�(q(u)

h , q(u)
h ) = 0 in (2.34), namely

N∑
j=1

((
q(u)
h , (q(u)

h )x

)
I j

+
(
{q(u)

h }[q(u)
h ]

)
j− 1

2

)
= 0, (B.3)

then we can simplify the Eq. (B.2) into

D�(uh, p
(u)
h ) = −

N∑
j=1

(
uh, (p

(u)
h )x

)
I j

−
N∑
j=1

(
{uh}[p(u)

h ]
)
j− 1

2

= 0. (B.4)

Herein we use the form D� defined in (2.29) introduced for the reason of concision. The
same procedure can also be applied in (3.7) and (3.8) with taking test functions as

ξ2 = q(v)
h , ζ2 = −p(v)

h , (B.5)

then we get

D�(vh, p
(v)
h ) = −

N∑
j=1

(
vh, (p

(v)
h )x

)
I j

−
N∑
j=1

(
{vh}[p(v)

h ]
)
j− 1

2

= 0. (B.6)

Next we retake the test functions in (3.4), (3.5), (3.7) and (3.8) as

ξ1 = q(v)
h , ζ1 = −p(v)

h , ξ2 = q(u)
h , ζ2 = −p(u)

h , (B.7)

then combine four equations together

N∑
j=1

(
p(u)
h , q(v)

h

)
I j

+
N∑
j=1

(
q(u)
h ,−p(v)

h

)
I j

+
N∑
j=1

(
p(v)
h , q(u)

h

)
I j

+
N∑
j=1

(
q(v)
h ,−p(u)

h

)
I j

+
N∑
j=1

(
q(u)
h , (q(v)

h )x

)
I j

+
N∑
j=1

(
q(v)
h , (q(u)

h )x

)
I j

+
N∑
j=1

(
q̂(u)
h [q(v)

h ]
)
j− 1

2

+
N∑
j=1

(
q̂(v)
h [q(u)

h ]
)
j− 1

2
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−
N∑
j=1

(
uh, (p

(v)
h )x

)
I j

−
N∑
j=1

(
ûh[p(v)

h ]
)
j− 1

2

−
N∑
j=1

(
vh, (p

(u)
h )x

)
I j

−
N∑
j=1

(
v̂h[p(u)

h ]
)
j− 1

2

= 0. (B.8)

Obviously, the first four terms cancel out immediately. With definitions of q̂(u)
h and q̂(v)

h

and the equality D�(q(u)
h , q(v)

h ) + D�(q(v)
h , q(u)

h ) = 0, the second four terms also vanish,
i.e.

N∑
j=1

(
q(u)
h , (q(v)

h )x

)
I j

+
N∑
j=1

(
q̂(u)
h [q(v)

h ]
)
j− 1

2

+
N∑
j=1

(
q(v)
h , (q(u)

h )x

)
I j

+
N∑
j=1

(
q̂(v)
h [q(u)

h ]
)
j− 1

2

= 0. (B.9)

Thus it leads to another identity

D�(uh, p
(v)
h ) + D�(vh, p

(u)
h )

= −
N∑
j=1

(
uh, (p

(v)
h )x

)
I j

−
N∑
j=1

(
vh, (p

(u)
h )x

)
I j

−
N∑
j=1

(
{uh}[p(v)

h ]
)
j− 1

2

−
N∑
j=1

(
{vh}[p(u)

h ]
)
j− 1

2

= 0. (B.10)

In summary, by virtue of the definition of D�, equalities in (B.4), (B.6) and (B.10) can
be rewritten into the following concise forms

D�(uh, p
(u)
h ) = 0,

D�(vh, p
(v)
h ) = 0,

D�(uh, p
(v)
h ) + D�(vh, p

(u)
h ) = 0, (B.11)

Now, on account of the property of D�(ξ, ζ ), namely

D�(ξ, ζ ) + D�(ζ, ξ) = 0,

and adding 2aD�(uh, p
(u)
h ) + b(D�(uh, p

(v)
h ) + D�(vh, p

(u)
h )) + 2cD�(vh, p

(v)
h ) = 0 to

Jc, then we have

Jc(uh, vh; p(u)
h , p(v)

h ) = 0.

• (The dissipative case for Jd ) Using the similar strategies as in the last conservative case,
the different choices of numerical fluxes

p̂(χ)
h = (p(χ)

h )+, q̂(χ)
h = (q(χ)

h )+, χ̂h = χ−
h ,

directly result in some inequalities comparing to the equalities in (B.11)

D−(uh, p
(u)
h ) ≤ 0,
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D−(vh, p
(v)
h ) ≤ 0,

D−(uh, p
(v)
h ) + D−(vh, p

(u)
h ) ≤ 0. (B.12)

On account of the property, D−(ξ, ζ ) + D+(ζ, ξ) = 0, and the conditions a, c > 0
together with the extra assumption b ≥ 0, then we have

Jd(uh, vh; p(u)
h , p(v)

h )

= 2aD+(p(u)
h , uh) + b(D+(p(u)

h , vh) + D+(p(v)
h , uh)) + 2cD+(p(v)

h , vh)

= −(2aD−(uh, p
(u)
h ) + b(D−(uh, p

(v)
h ) + D−(vh, p

(u)
h )) + 2cD−(vh, p

(v)
h )) ≥ 0.

��
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