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Abstract
In this paper, we present and analyze an arbitrary Lagrangian–Eulerian local discontinuous
Galerkin (ALE-LDG) method for one-dimensional linear convection–diffusion problems.
The semi-discrete ALE-LDG method is shown to preserve L2-stability and sub-optimal
(k + 1

2 ) convergence rate, when piecewise polynomials of degree k on the reference cell are
used and Lax–Friedrichs flux is taken for the convection term. In addition, we also discuss
three specific fully discrete ALE-LDG schemes, in which implicit–explicit Runge–Kutta
(IMEX) time-marching is applied. With the aid of scaling arguments and the standard energy
analysis, we prove that the corresponding fully discrete schemes are stable provided the time
step τ ≤ τ0, where the positive constant τ0 is independent of the mesh size h but depends
on the convection and diffusion coefficients, the polynomial degree, and the moving grid
function. Under the time step restriction, we obtain quasi-optimal error estimate in space and
optimal convergence rate in time for the fully discrete schemes. Numerical examples are also
given to illustrate our theoretical results.
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1 Introduction

In this paper, we consider the arbitrary Lagrangian–Eulerian local discontinuous Galerkin
(ALE-LDG) method for one-dimensional linear convection–diffusion equations

∂t u + c∂xu − d∂xxu = 0, (x, t) ∈ [a, b] × (0, T ],
u(x, 0) = u0(x), x ∈ [a, b],
u(a, t) = u(b, t), t ∈ [0, T ].

(1.1)

Here d > 0 is the diffusion coefficient and we assume the velocity c > 0. We pay attention
to the smooth solution of (1.1). For simplicity of presentation, we will give detailed analysis
only for the Eq. (1.1). We remark that there is no essential difficulty to extend the analysis
and results to the problem with a source term.

The discontinuous Galerkin (DG)method is a finite element method employing discontin-
uous basis functions. It was first introduced to solve the neutron transport equation by Reed
and Hill [32]. The first a priori error estimate for DG method has been proven by Lesaint
and Raviart [28]. Later, Cockburn, Shu et al. carried out a major development of the method,
in which they constructed a framework of Runge–Kutta DG (RKDG) method for nonlinear
conservation laws [8,10–12]. The local discontinuous Galerkin (LDG) method is developed
to solve partial differential equations (PDEs) with higher order derivatives. Motivated by the
successful work of Bassi and Rebay [4], Cockburn and Shu constructed the first LDGmethod
for convection–diffusion equations [13]. The main idea of LDG methods is to rewrite the
equations as a first order system, then apply the DG method with carefully selecting numer-
ical fluxes in the system. Optimal a priori error estimates of the semi-discrete LDG method
for convection–diffusion problems were obtained in [6]. DG methods became very popular
due to the strong stability, high-order accuracy, parallelization capability and conservation
properties. For more details of DG methods, we refer to [9,14–16,34,41] and the references
therein.

In many applications, such as aeroelastic computations of wings (c.f. [33]) and star-
formations and galaxies in astrophysics (c.f. [26]), grid deformation methods maintaining
accuracy are usually desirable. One popular technique is the arbitrary Lagrangian–Eulerian
(ALE) method, which combines the advantages of the traditional Lagrangian and Eulerian
descriptions (see [17]). In the literatures, there have been a number of works about the imple-
mentation and applications of DGmethods in the ALE framework, e.g. [18,27,29,30,35]. For
the ALE method, the geometric conservation law (GCL) is of particular importance, which
has been analyzed by Guillard and Farhat in [20]. Recently, Klingenberg et al. carried out an
arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) method for conservation
laws [24], in which they defined local affine linear mappings to connect the current and next
time level cells. Thus the ALE-DG method has the local structure as traditional DG methods
on static grids. Moreover, it was shown that the ALE-DGmethod satisfies the GCL condition
for any Runge–Kutta method and maintains almost all good features of the RKDG methods
on static grids, such as the L2 stability, high order accuracy, the local maximum princi-
ple, and so on. The ALE-DG method has also been extended to Hamilton–Jacobi equations
[25], conservation laws on moving simplex meshes [19] and hyperbolic equations involving
δ-singularities [22]. Superconvergence of theALE-DGmethod for linear hyperbolic equation
was analyzed in [36].

In this paper, we carry on developing the ALE-LDGmethod to solve convection–diffusion
equations, which combines LDG methods with the ALE framework suggested in [24]. The
piecewise linear mesh velocity is used and only mild Lipschitz continuity of the mesh
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movement function is required. For convection–diffusion equationswhich are not convection-
dominated, implicit or semi-implicit time discretization is a natural consideration to overcome
the small time step caused by stability restrictions. Balázsová and collaborators studied the
stability of theALE space-timeDGmethod [3] andKirk et al. presented an analysis of a space-
time hybridizable DGmethod [23]. It is well-known that the space-timeDGmethod results in
more degrees-of-freedom than traditional time-stepping approaches. In this paper, we would
like to consider the implicit–explicit (IMEX) schemes, which handles the convection term
explicitly and could be more efficient for problems with a nonlinear convection term. The
IMEX time discretizations are usually applied on the differential system including both stiff
(often higher order spatial derivatives but linear) and non-stiff (low order derivatives but non-
linear) terms. The IMEX methods are easier to implement than fully implicit schemes when
the convection term is nonlinear and allowmuch larger time step for stability-preserving than
explicit approaches. For different purposes, there are different IMEX methods. We refer the
reader to [1,2,7,21,31,37], in which [37] is an extrapolated space-time DG method, [2,21]
are multistep methods and the rest are Runge–Kutta (RK) type IMEX schemes. In [37],
Vlasák and collaborators analyzed the extrapolated space-time DG method for nonlinear
convection–diffusion problems and derived a priori error estimates. Calvo, Frutos and Novo
used a Fourier analysis to study the stability of the IMEX RK method for linear convection–
diffusion equations in [7]. The time step restriction τ ≤ τ0 was given to ensure stability,
where τ0 depends on the values of c and d . Besides, Xia, Xu and Shu explored the semi-
implicit spectral deferred correction (SDC) time discretization coupled with LDG schemes
[43], which are efficient for solving PDEswith higher order spatial derivatives. Here, we con-
sider the ALE-LDG method coupled with three specific RK type IMEX schemes displayed
in [1,7].

For fully discretizedDGmethodson static grids, there are already some theoretical analysis
in the literature. Zhang and Shu have analyzed the second and third order RKDG methods
for conservation laws [44–46]. They obtained stability and optimal (or suboptimal) error
estimate in the L2-norm, when solutions are sufficiently smooth. Very recently, a unified
framework to investigate the L2-norm stability of RKDG methods for the linear hyperbolic
equations is proposed in [42]. Performances of many popular RKDG schemes are carefully
explored. In addition, in [48] the stability and error estimates of the ALE-DG methods for
linear conservation laws with RK time-marching schemes was established, where the energy
technique and scaling arguments play an important role in the analysis. When comes to the
fully discretized LDG methods on static grids, we refer the reader to [38–40,47]. For linear
convection–diffusion problems [38,47], the stability and optimal error estimates of IMEX
schemes coupled with LDG methods for advection–diffusion problems are obtained under
the condition τ ≤ τ0, where τ0 is independent of the spacial mesh size h and proportional to
d/c2. In this paper, we will explore similar stability results for the ALE-LDG method with
IMEX schemes for solving convection–diffusion problems, especially the relation with the
grid movement.

The first purpose of our work is to construct the ALE-LDG method for convection–
diffusion equations and present a concrete analysis of stability as well as a priori error
estimate for the semi-discrete ALE-LDG scheme. Our analysis indicates that the proposed
ALE-LDG method is L2 stable for the piecewise polynomials space with any degree k.
Additionally, we obtain sub-optimal (k + 1

2 ) convergence order with Lax–Friedrichs fluxes
used for the convection term. The second contribution of our work is to study the stability
and error estimates for the fully discretized ALE-LDG method, where three specific RK
type IMEX time-marching schemes are applied. Compared with the work on static grids
[38], the line of our analysis is similar but the process is complicated. It is more technical
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for the moving grids since each local cell varies with time. The energy analysis and scaling
arguments are still the main strategies in our work. We prove that the corresponding fully
discretized ALE-LDG schemes are stable with the time step restriction τ ≤ τ0, where τ0
is a positive constant independent of the spacial mesh size h but involved with the moving
grid function, the polynomial degree, coefficients of the convection and diffusion terms. To
clearly show the main ideas of the error estimate, we only present the detailed proof for
the first order in time fully discrete scheme. The quasi-optimal error estimate in space and
optimal convergence order in time are established under the condition τ ≤ τ0. The proof and
conclusion can be extended to the second and third order fully discrete schemes.

The rest of the paper is organized as follows. In Sect. 2, we present the semi-discrete
ALE-LDG scheme for the linear convection–diffusion problems. Information about the ALE
framework and some properties of the semi-discrete ALE-LDG scheme are also given. Sec-
tion3 shows three specific fully discrete ALE-LDG schemes aswell as the stability. In Sect. 4,
error estimates of fully discrete schemes are established. We show some numerical examples
to verify our findings in Sect. 5. Section6 is devoted to the concluding remarks.

2 Semi-discrete ALE-LDGMethod

In this section, we shall present and analyze the semi-discrete ALE-LDG method.

2.1 The ALE Framework

To derive the semi-discrete ALE-LDG method, we start with introducing some notations
about the ALE framework. Assume that the distribution of the mesh has been known at any
time level tn , n = 0, 1,. . ., M , i.e.,

[a, b] =
N⋃

j=1

[
xn
j− 1

2
, xn

j+ 1
2

]
.

Then a local time-dependent straight line connecting the current and next time level points
can be defined,

x j− 1
2
(t) = xn

j− 1
2

+ ω j− 1
2
(t − tn), ∀t ∈ [tn, tn+1], (2.1)

where

ω j− 1
2

=
xn+1
j− 1

2
− xn

j− 1
2

tn+1 − tn
. (2.2)

Let K j (t) = [x j− 1
2
(t), x j+ 1

2
(t)] denote the time-dependent cells and h j (t) = x j+ 1

2
(t) −

x j− 1
2
(t). In addition, we use the notation h to stand for the global length,

h = max
t∈[0,T ] max

1≤ j≤N
h j (t).

Suppose the mesh is quasi-uniform in the sense that

h ≤ Cmh j (t), ∀ j = 1, 2, . . . , N , t ∈ [0, T ], (2.3)
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whereCm is a positive constant and independent of h and t . Obviously, we have the following
property,

h j (t) =
(
ω j+ 1

2
− ω j− 1

2

)
(t − tn) + h j (tn) > 0, t ∈ [tn, tn+1]. (2.4)

Now we introduce the grid velocity field for all t ∈ [tn, tn+1],

ω(x, t) = ω j+ 1
2

x − x j− 1
2
(t)

h j (t)
+ ω j− 1

2

x j+ 1
2
(t) − x

h j (t)
, ∀x ∈ K j (t). (2.5)

Note that

∂x (ω(x, t)) =
ω j+ 1

2
− ω j− 1

2

h j (t)
= h′

j (t)

h j (t)
, (2.6)

which solely dependents on t . For simplicity, we denote (∂xω)(t) = ∂x (ω(x, t)). Moreover,
ω(x, t) satisfies the following assumptions as that in [48].

• There exists a positive constant Cw, independent of h, such that

max
(x,t)∈[a,b]×[0,T ] |ω(x, t)| ≤ Cw;

• There exists a positive constant Cwx , independent of h, such that

max
(x,t)∈[a,b]×[0,T ] |∂x (ω(x, t))| ≤ Cwx . (2.7)

For any K j (t), t ∈ [tn, tn+1], a time-dependent linear mapping will be defined,

χ j : [−1, 1] −→ K j (t), ξ �→ χ j (ξ, t) := h j (t)

2
(ξ + 1) + x j− 1

2
(t). (2.8)

Particularly, we have

∂t (χ j (ξ, t)) = ω(χ j (ξ, t), t), ∀(ξ, t) ∈ [−1, 1] × [tn, tn+1],
and

ω(χ j (ξ, t), t) = ω j+ 1
2

ξ + 1

2
+ ω j− 1

2

1 − ξ

2
, (2.9)

which means that the grid velocity function solely dependents on the space variable ξ on the
reference cell. With the aid of mapping (2.8), the approximation space for any t ∈ [tn, tn+1]
is defined by

Vh(t) = {v ∈ L2([a, b]) : v(χ j (·, t)) ∈ Pk([−1, 1]), j = 1, 2, . . . , N },
where Pk([−1, 1]) is the space of polynomials of degree at most k on [−1, 1]. Denote the
broken Sobolev space

Hs
h (t) = {v : v(χ j (·, t)) ∈ Hs([−1, 1]), j = 1, 2, . . . , N },

where Hs([−1, 1]) is the usual Sobolev space for any integer s ≥ 0. As in general, we set

(v, r)K j (t) =
∫

K j (t)
vrdx, ‖v‖K j (t) =

√
(v, v)K j (t),

and

{{v}} j− 1
2

= 1

2

(
v+
j− 1

2
+ v−

j− 1
2

)
, [[v]] j− 1

2
= v+

j− 1
2

− v−
j− 1

2
.
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Here v−
j− 1

2
and v+

j− 1
2
stand for the left and right limits of v at the point x j− 1

2
(t), respectively.

Summing over all the elements, we denote

(v, r) =
N∑

j=1

(v, r)K j (t), ‖v‖2 =
N∑

j=1

‖v‖2K j (t), [[v]]2 =
N∑

j=1

[[v]]2
j− 1

2
.

Suppose �h(t) is the union of all element interface points, then we can define the L2-norm
on �h(t) by

‖v‖�h(t) =
⎡

⎣
N∑

j=1

(∣∣∣∣v
+
j− 1

2

∣∣∣∣
2

+
∣∣∣∣v

−
j+ 1

2

∣∣∣∣
2)

⎤

⎦
1/2

.

In what follows, the inverse inequalities will be used in the analysis,

h‖∂xv‖ ≤ μ1‖v‖, h
1
2 ‖v‖�h(t) ≤ μ2‖v‖, (2.10)

for v ∈ Vh(t), where μ1 and μ2 are positive constants and independent of v and h. Denote
μ = max{μ1, μ

2
2}, which increases with the degree of polynomials. For more details of the

inverse property, we refer the reader to [5].
Based on the definition of the finite element space, the transport equation is satisfied,

which has been proven in [24] and plays an important role to obtain the ALE-LDG scheme.

Lemma 2.1 Suppose u is a sufficiently smooth function, then for all v ∈ Vh(t), the transport
equation holds

d

dt
(u, v)K j (t) = (∂t u, v)K j (t) + (∂x (ωu), v)K j (t), ∀ j = 1, . . . , N . (2.11)

2.2 The Semi-discrete ALE-LDG Scheme

Following the standard procedure of constructing LDG method, we obtain an equivalent
first-order system of Eq. (1.1)

∂t u + ∂x
(
cu − √

dq
) = 0, q − √

d∂xu = 0. (2.12)

Then, multiply the above equations by test functions v, r ∈ Vh(t), respectively. For the first
equation in (2.12), we apply the transport Eq. (2.11) to obtain

d

dt
(u, v)K j (t) +

(
∂x (g(ω, u)) , v

)

K j (t)
− √

d(∂xq, v)K j (t) = 0,

where g(ω, u) = (c − ω)u. After integrating by parts with respect to x , we obtain the semi-
discrete ALE-LDG scheme: find uh , qh ∈ Vh(t) such that for all test functions v, r ∈ Vh(t),
there hold

d

dt
(uh, v)K j (t) =A j (ω, uh, v) − √

dL+
j (qh, v), (2.13)

(qh, r)K j (t) = − √
dL−

j (uh, r), (2.14)
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where

A j (ω, v, r) = (g(ω, v), ∂xr)K j (t) − ĝ(ω, v) j+ 1
2
r−
j+ 1

2
+ ĝ(ω, v) j− 1

2
r+
j− 1

2
, (2.15)

L±
j (v, r) = (v, ∂xr)K j (t) − v±

j+ 1
2
r−
j+ 1

2
+ v±

j− 1
2
r+
j− 1

2
, (2.16)

and ĝ(ω, v) j− 1
2
is chosen as the Lax–Friedrichs flux,

ĝ(ω, v) j− 1
2

= (
c − ω j− 1

2

){{v}} j− 1
2

− α

2
[[v]] j− 1

2
, α = max[a,b]×[tn ,tn+1]

|c − ω|.

When ω(x, t) = 0, the numerical flux reduces to the Lax–Friedrichs flux on fixed grids. For
the initial discretization, a natural way is to choose uh(x, 0) = P−

h u0(x), where P−
h u0(x) is

the Gauss–Radau projection of u0(x) and will be defined in Sect. 2.3. Applying the transport
Eq. (2.11) again, we arrive at the equivalent form of the equality (2.13),

(∂t uh, v)K j (t) + B j (ω, uh, v) + √
dL+

j (qh, v) = 0, (2.17)

with

B j (ω, v, r) =(∂x (ωvr), 1)K j (t) − c(v, ∂xr)K j (t) + ĝ(ω, v) j+ 1
2
r−
j+ 1

2
− ĝ(ω, v) j− 1

2
r+
j− 1

2
.

(2.18)

To satisfy the stability analysis, we also need the following equality

N∑

j=1

A j (ω, v, r) =
N∑

j=1

(∂xω)(t)(v, r)K j (t) − D(ω, v, r), (2.19)

where

D(ω, v, r) = ((c − ω)∂xv, r) +
N∑

j=1

(
c − ω j+ 1

2

)[[v]] j+ 1
2
{{r}} j+ 1

2
+

N∑

j=1

α

2
[[v]] j+ 1

2
[[r ]] j+ 1

2
.

This can be obtained by integrating (2.15) by parts. In the end, we introduce some notations
for simplicity. Summing up the operators (2.15)–(2.16) and (2.18) over j = 1, . . ., N , we
define L±(v, r) = ∑N

j=1 L±
j (v, r) and

A(ω, v, r) =
N∑

j=1

A j (ω, v, r), B(ω, v, r) =
N∑

j=1

B j (ω, v, r). (2.20)

2.3 Properties of the Semi-discrete ALE-LDG Scheme

In this subsection, some properties of the operators (2.20) will be listed first. The detail of
the proof is omitted to save space, and similar analysis can be found in [38,48].

Lemma 2.2 Suppose A and D are defined by (2.20) and (2.19), respectively, then for any v,
r ∈ Vh(t) and t ∈ [tn, tn+1], there hold

|A(ω, v, r)| ≤ α
(
‖∂xr‖ +

√
2μh−1[[r ]]

)
‖v‖, (2.21)

|D(ω, v, r)| ≤ α
(
‖∂xv‖ +

√
2μh−1[[v]]

)
‖r‖. (2.22)
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Moreover, we have the following property,

A(ω, v, v) = −
N∑

j=1

α

2
[[v]]2

j+ 1
2

+
N∑

j=1

(∂xω)(t)

2
‖v‖2K j (t). (2.23)

Lemma 2.3 Suppose B is defined by (2.18), then for any v ∈ Vh(t) and t ∈ [tn, tn+1], there
hold

B(ω, v, v) = α

2
[[v]]2 −

N∑

j=1

ω j+ 1
2

2
[[v2]] j+ 1

2
. (2.24)

Lemma 2.4 Suppose L± are defined by (2.20), then for any v, r ∈ H1
h (t),

L−(v, v) = −1

2
[[v]]2, (2.25)

L−(v, r) = −L+(r , v). (2.26)

Lemma 2.5 Suppose uh, qh ∈ Vh(t) are the numerical solutions of the scheme (2.13)–(2.14),
then

‖∂xuh‖ +
√
2μh−1[[uh]] ≤ Cμ√

d
‖qh‖, (2.27)

where Cμ is a positive constant, which is independent of h but may depend on the inverse
constant μ.

Next, we will show the L2 stability of the semi-discrete scheme (2.13)–(2.14). The proof
has a character similar in spirit to the stability analysis in [24].

Theorem 2.6 Let (uh, qh) be the numerical solution of the semi-discrete scheme (2.13)–
(2.14), then we have for any t ∈ [0, T ],

‖uh(·, t)‖2 + 2
∫ t

0
‖qh(·, τ )‖2dτ ≤ ‖uh(·, 0)‖2.

Proof Take v = uh in the scheme (2.17) to obtain

(∂t uh, uh)K j (t) + B j (ω, uh, uh) + √
dL+

j (qh, uh) = 0. (2.28)

For the first term, the transport Eq. (2.11) with u = u2h and v = 1 yields

(∂t uh, uh)K j (t) = 1

2

d

dt
(uh, uh)K j (t) − 1

2

(
∂x (ω(uh)

2), 1
)
K j (t)

.

Then by the definition (2.16) and (2.14), we have
√
dL+

j (qh, uh) = √
d

(
−L−

j (uh, qh) − q+
h u

−
h

∣∣
j+ 1

2
+ q+

h u
−
h

∣∣
j− 1

2

)

= (qh, qh)K j (t) − √
d

(
q+
h u

−
h

∣∣
j+ 1

2
− q+

h u
−
h

∣∣
j− 1

2

)
.

Collecting the above equalities together and summing up the formulation over j = 1, . . .,
N , we arrive at

1

2

d

dt

∫ b

a
(uh)

2dx +
∫ b

a
(qh)

2dx +
N∑

j=1

F j = 0,
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where

F j = B j (ω, uh, uh) − 1

2

(
∂x (ω(uh)

2), 1
)
K j (t)

− √
d

(
q+
h u

−
h

∣∣
j+ 1

2
− q+

h u
−
h

∣∣
j− 1

2

)
.

It follows by using the periodic boundary condition and property (2.24)

N∑

j=1

F j = α

2
[[uh]]2 ≥ 0.

Thus the proof is completed. ��
In the following, we will present error estimates for the semi-discrete ALE-LDG scheme

(2.13)–(2.14). As usual, we introduce two projections first. The L2 projection Phu of u is
defined by

(Phu, v)K j (t) = (u, v)K j (t), ∀v ∈ Vh(t). (2.29)

For v(χ(·, t)) ∈ Pk−1([−1, 1]) and k ≥ 1, define the Gauss-Radau projection

(
P−
h u, v

)
K j (t)

= (u, v)K j (t), P−
h u

(
x−
j+ 1

2
(t)

)
= u

(
x−
j+ 1

2
(t)

)
, (2.30)

(
P+
h u, v

)
K j (t)

= (u, v)K j (t), P+
h u

(
x+
j− 1

2
(t)

)
= u

(
x+
j− 1

2
(t)

)
. (2.31)

Let Qhu be either Phu or P±
h u. Similar to the well known results in [5], the projections

satisfy

‖η‖ + h1/2‖η‖�h(t) + h‖∂xη‖ ≤ Chk+1, ∀u ∈ Hk+1([a, b]), (2.32)

where η = u − Qhu. The positive constant C depends on u and its derivatives, but it is
independent of h. In addition, the following properties are also satisfied,

L+
j

(
v − P+

h v, r
) = 0, L−

j (v − P−
h v, r) = 0, ∀v ∈ H1

h (t), ∀r ∈ Vh(t), (2.33)

∂t (Qhu) + ω · ∂x (Qhu) = Qh(∂t u) + Qh(ω · ∂xu), (2.34)

where L±
j is defined by (2.16) and the second equality is proven in [24]. Now we are ready

to provide the suboptimal error estimate by using the Lax–Friedrichs flux for the convection
term.

Theorem 2.7 Let (uh, qh) be the numerical solution of the scheme (2.13)–(2.14), and (u, q)

be the exact solution of Eq. (2.12). Suppose u is sufficiently smooth with bounded derivatives,
then there exists a constant C, which is independent of h and uh, such that

max
t∈[0,T ] ‖u(·, t) − uh(·, t)‖ + max

t∈[0,T ] ‖q(·, t) − qh(·, t)‖ ≤ Chk+
1
2 .

Proof Define

ηu = u − P−
h u, ηq = q − P+

h q,

ζu = uh − P−
h u, ζq = qh − P+

h q.

Thus we have

eu = u − uh = ηu − ζu, eq = q − qh = ηq − ζq .
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Noticing that the exact solution also satisfies the scheme (2.17), we obtain the error equation,
for v, r ∈ Vh(t),

(∂t eu, v)K j (t) + B j (ω, eu, v) + √
dL+

j (eq , v) = 0, (2.35)

(eq , r)K j (t) + √
dL−

j (eu, r) = 0. (2.36)

Choosing the test function v = ζu in (2.35), using the transport Eq. (2.11) and the property
(2.33) lead to

1

2

d

dt
(ζu, ζu)K j (t) − 1

2

(
∂x (ωζ 2

u ), 1
)
K j (t)

+ B j (ω, ζu, ζu)

= (∂tηu, ζu)K j (t) + B j (ω, ηu, ζu) − √
dL+

j (ζq , ζu). (2.37)

In what follows, we will analyze the above equation. The property (2.24) yields

N∑

j=1

−1

2

(
∂x (ωζ 2

u ), 1
)
K j (t)

+ B(ω, ζu, ζu) = α

2
[[ζu]]2. (2.38)

Letting r = ζq in (2.36) and by (2.26) and (2.33), we have
√
dL+(ζq , ζu) = −√

dL−(ζu, ζq) = (ζq , ζq) − (ηq , ζq). (2.39)

Now we can obtain the important energy equality by adding (2.37)–(2.39) together

1

2

d

dt
‖ζu‖2 + ‖ζq‖2 + α

2
[[ζu]]2 = a(ω, ηu, ζq), (2.40)

where

a(ω, ηu, ζq) = (ηq , ζq) + (∂tηu, ζu) + B(ω, ηu, ζu).

By Young’s inequality and (2.32), we get

(ηq , ζq) ≤ 1

2
‖ηq‖2 + 1

2
‖ζq‖2 ≤ Ch2k+2 + 1

2
‖ζq‖2.

In addition, the properties (2.33)–(2.34) of projections yield

(∂tηu, ζu) + B(ω, ηu, ζu) = (
∂t u − P−

h ∂t u, ζu
) +

N∑

j=1

∂xω(ηu, ζu)K j (t) +
N∑

j=1

(ωηu, ∂xζu)K j (t)

+
N∑

j=1

(
ω∂xu − P−

h (ω∂xu), ζu
)
K j (t)

−
N∑

j=1

ĝ(ω, ηu) j+ 1
2
[[ζu]] j+ 1

2

≤ Chk+1‖ζu‖ + √
2α‖ηu‖�h (t)[[ζu]]

≤ C
(
h2k+1 + ‖ζu‖2

) + α

2
[[ζu]]2.

Here we use the similar analysis as in the proof of Theorem 2.8 in [24]. Combining the
estimates above with the energy equality (2.40) leads to

1

2

d

dt
‖ζu‖2 + 1

2
‖ζq‖2 ≤ C

(
h2k+1 + ‖ζu‖2

)
.

By Gronwall’s inequality and uh(x, 0) = P−
h u(x, 0), we obtain, for all t ∈ [0, T ],

‖ζu‖2 + max
t∈[0,T ] ‖ζq‖

2 ≤ Ch2k+1,
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where C is independent uh and h. Finally, the triangle inequality is used to complete the
proof. ��

3 Fully Discrete Schemes

In this section, the IMEX RK methods coupled with the ALE-LDG schemes as well as
the stability analysis of the fully discrete schemes will be presented. The convection part is
treated explicitly and the diffusion part is treated implicitly.Wewould like to achieve stability
under the time step restriction τ ≤ τ0, where the positive constant τ0 is independent of h. This
expectation is analogous to that in [38], which is considered on fixed grids. For simplicity, we
only consider the uniform partition of the time interval [0, T ], namely,Mτ = T . The stability
analysis is studied on the interval [tn, tn+1]. In addition, denote Kn

j = K j (tn), hnj = h j (tn),
ωn = ω(x, tn) and the approximation of (uh(tn), qh(tn)) by (unh, q

n
h ). For the initial value,

we take u0h = P−
h u0(x).

3.1 First Order Fully Discrete Scheme

For the first order IMEX methods, we take the forward and backward Euler discretization
for the explicit and implicit part, respectively. With the semi-discrete ALE-LDG scheme
(2.13)–(2.14), we obtain the first order fully discrete scheme: find un+1

h , qn+1
h ∈ Vh(tn+1),

such that for any vn , rn ∈ Vh(tn), there hold
(
un+1
h , v̂n

)
Kn+1

j
= (

unh, v
n)

Kn
j
+ τA j

(
ωn, unh, v

n) − √
dτL+

j

(
qn+1
h , v̂n

)
, (3.1)

(
qn+1
h , r̂ n

)
Kn+1

j
= −√

dL−
j

(
un+1
h , r̂ n

)
. (3.2)

In what follows,

v̂n(χ j (·, tn+1)) = vn(χ j (·, tn)), (3.3)

which stands for the function mapped from Kn
j to Kn+1

j . Here χ j (·, t) is defined by (2.8).

Theorem 3.1 Let un+1
h be the numerical solution of the fully discrete scheme (3.1)–(3.2),

then we have

‖un+1
h ‖ ≤ ‖unh‖

under the condition τ ≤ τ0, and τ0 is a positive constant, which is independent of h.

Proof For the first time, we obtain the energy equality. Taking v̂n = un+1
h in (3.1) leads to

(
un+1
h , un+1

h

)
Kn+1

j
− (

unh,
˜un+1
h

)
Kn

j
= τA j

(
ωn, unh,

˜un+1
h

) − √
dτL+

j

(
qn+1
h , un+1

h

)
, (3.4)

where

˜un+1
h (χ j (·, tn)) = un+1

h (χ j (·, tn+1)).

Note that

(
unh,

˜un+1
h

)
Kn

j
= 1

2

∥∥unh
∥∥2
Kn

j
+ 1

2

∥∥˜un+1
h

∥∥2
Kn

j
− 1

2

∥∥unh − ˜un+1
h

∥∥2
Kn

j
.
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By the scaling argument with (2.4) and (2.6), we have

∥∥˜un+1
h

∥∥2
Kn

j
= hnj

hn+1
j

∥∥un+1
h

∥∥2
Kn+1

j
= (1 − s2)

∥∥un+1
h

∥∥2
Kn+1

j
. (3.5)

Here and in what follows,

s2 = τ(∂xω)(tn+1).

Then summing up (3.4) over all j yields

1

2

∥∥un+1
h

∥∥2 − 1

2

∥∥unh
∥∥2 + 1

2

∥∥˜un+1
h − unh

∥∥2 = −
N∑

j=1

s2
2

∥∥un+1
h

∥∥2
Kn+1

j
+ τA(

ωn, unh,
˜un+1
h

)

− √
dτL+(

qn+1
h , un+1

h

)
.

By (2.15), (2.9) and the scaling argument, we obtain

A(
ωn, unh,

˜un+1
h

) = A(
ωn+1, ûnh, u

n+1
h

)
. (3.6)

Employ the property (2.23) to get

τA(
ωn+1, ûnh, u

n+1
h

) = τA(
ωn+1, ûnh − un+1

h , un+1
h

) + τA(
ωn+1, un+1

h , un+1
h

)

= τA(
ωn+1, ûnh − un+1

h , un+1
h

) +
N∑

j=1

s2
2

‖un+1
h ‖2

Kn+1
j

− α

2
τ [[un+1

h ]]2.

It follows that

1

2

∥∥un+1
h

∥∥2 − 1

2

∥∥unh
∥∥2 + 1

2

∥∥˜un+1
h − unh

∥∥2 = − α

2
τ [[un+1

h ]]2 − τ
∥∥qn+1

h

∥∥2

+ τA(
ωn+1, ûnh − un+1

h , un+1
h

)
,

where the property

−√
dτL+(

qn+1
h , un+1

h

) = √
dτL−(

un+1
h , qn+1

h

) = −τ
∥∥qn+1

h

∥∥2

has been used due to (2.26) and (3.2). Next, by properties (2.21) and (2.27), we derive

τA(
ωn+1, ûnh − un+1

h , un+1
h

) ≤ ατ

(∥∥∂x
(
un+1
h

)∥∥ +
√
2μh−1[[un+1

h ]]
)∥∥ûnh − un+1

h

∥∥

≤ Cμ√
d

ατ
∥∥qn+1

h

∥∥∥∥ûnh − un+1
h

∥∥.

Nevertheless, the scaling argument and the quasi-uniform of the mesh (2.3) provide

∥∥ûnh − un+1
h

∥∥2 =
N∑

j=1

hn+1
j

hnj

∥∥unh − ˜un+1
h

∥∥2
Kn

j
≤ Cm

∥∥unh − ˜un+1
h

∥∥2, (3.7)

where Cm is defined by (2.3). Thus

τA(
ωn+1, ûnh − un+1

h , un+1
h

) ≤ 1

2

∥∥unh − ˜un+1
h

∥∥2 + C2
μα2τ 2

2d
Cm

∥∥qn+1
h

∥∥2.
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Hence, adding the estimate to the energy equality leads to

1

2

∥∥un+1
h

∥∥2 − 1

2

∥∥unh
∥∥2 ≤

(
−τ + C2

μα2τ 2

2d
Cm

)
∥∥qn+1

h

∥∥2.

In the end, if
C2

μα2τ 2

2d Cm ≤ τ , i.e., τ ≤ τ0 = 2d
C2

μCmα2 , we have

∥∥un+1
h

∥∥ ≤ ∥∥unh
∥∥.

The proof is completed. ��
Remark 3.2 From the analysis of the proof, we find that τ0 is proportional to d

α2C2
μCm

, which

means that time step restriction is influenced by the grid velocity function, the polynomial
degree, the diffusion and convection coefficients. Moreover, for fixed grids, we have Cm = 1
in (3.7) and ω(x, t) = 0, then the time step restriction is the same as that in [38].

3.2 Second Order Fully Discrete Scheme

For the second order IMEX methods, we take the L-stable, two stages scheme given in [1].
With the semi-discrete ALE-LDG scheme (2.13)–(2.14), we obtain the second order fully
discrete scheme: find un+1

h , qn+1
h ∈ Vh(tn+1), such that for any vn , rn ∈ Vh(tn), there hold

(
un,1
h , vn

)
Kn+γ

j
= (

unh, v
n)

Kn
j
+ γ τA j

(
ωn, unh, v

n) − γ
√
dτL+

j

(
qn,1
h , vn

)
,

(
un+1
h , v̂n

)
Kn+1

j
= (

unh, v
n)

Kn
j
+ δτA j

(
ωn, unh, v

n) + (1 − δ)τA j
(
ωn+γ , un,1

h , vn
)

(3.8)

− (1 − γ )
√
dτL+

j

(
qn,1
h , vn

) − γ
√
dτL+

j

(
qn+1
h , v̂n

)
, (3.9)

(
qn,1
h , rn

)
Kn+γ

j
= − √

dL−
j

(
un,1
h , rn

)
, (3.10)

(
qn+1
h , r̂ n

)
Kn+1

j
= − √

dL−
j

(
un+1
h , r̂ n

)
, (3.11)

where tn+γ = tn + γ τ , vn(χ j (·, tn+γ )) = vn(χ j (·, tn)) and v̂n(χ j (·, tn+1)) = vn(χ j (·, tn)).
In addition, γ = 1 −

√
2
2 and δ = 1 − 1

2γ .

Theorem 3.3 Let un+1
h be the numerical solution of the fully discrete scheme (3.8)–(3.11),

then we have
∥∥un+1

h

∥∥ ≤ ∥∥unh
∥∥

under the condition τ ≤ τ0, and τ0 is a positive constant, which is independent of h.

Proof A direct calculation from (3.8) and (3.9) yields

(
un+1
h , v̂n

)
Kn+1

j
− (

un,1
h , vn

)
Kn+γ

j
= (δ − γ )τA j

(
ωn, unh, v

n) + (1 − δ)τA j
(
ωn+γ , un,1

h , vn
)

− (1 − 2γ )
√
dτL+

j

(
qn,1
h , vn

) − γ
√
dτL+

j

(
qn+1
h , v̂n

)
.

(3.12)

Define

˜un,1
h (χ j (·, tn)) = un,1

h (χ j (·, tn+γ )), un+1
h (χ j (·, tn+γ )) = un+1

h (χ j (·, tn+1)).
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Let vn = un,1
h in (3.8) and v̂n = un+1

h in (3.12), then adding them together, we have

1

2

∥∥un+1
h

∥∥2 − 1

2

∥∥unh
∥∥2 + 1

2

∥∥un,1
h − un+1

h

∥∥2 + 1

2

∥∥˜un,1
h − unh

∥∥2 = Rc + Rd , (3.13)

where

Rc =γ τA(
ωn, unh,

˜un,1
h

) + (δ − γ )τA(
ωn, unh,

˜un+1
h

) + (1 − δ)τA(
ωn+γ , un,1

h , un+1
h

)

−
N∑

j=1

(∂xω)(tn+γ )

2
γ τ‖un,1

h ‖2
Kn+γ

j
−

N∑

j=1

(∂xω)(tn+1)

2
(1 − γ )τ‖un+1

h ‖2
Kn+1

j
,

Rd = − γ
√
dτL+(

qn,1
h , un,1

h

) − (1 − 2γ )
√
dτL+(

qn,1
h , un+1

h

) − γ
√
dτL+(

qn+1
h , un+1

h

)
.

Here we use the similar property

∥∥˜un,1
h

∥∥2
Kn

j
= hnj

hn+γ

j

∥∥un,1
h

∥∥2
Kn+γ

j
=

(
1 − γ τ(∂xω)(tn+γ )

)∥∥un,1
h

∥∥2
Kn+γ

j
,

∥∥un+1
h

∥∥2
Kn+γ

j
= hn+γ

j

hn+1
j

∥∥un+1
h

∥∥2
Kn+1

j
=

(
1 − (1 − γ )τ(∂xω)(tn+1)

)∥∥un+1
h

∥∥2
Kn+1

j
,

owing to (2.4) and (2.6). Next, we will analyze Rc and Rd separately. By (2.26) and the
scheme (3.10)–(3.11), we obtain

√
dL+(

qn,1
h , un,1

h

) = − √
dL−(

un,1
h , qn,1

h

) = ∥∥qn,1
h

∥∥2,
√
dL+(

qn,1
h , un+1

h

) = − √
dL−(

un+1
h , qn,1

h

) = −√
dL−(

un+1
h ,

̂qn,1
h

) = (
qn+1
h ,

̂qn,1
h

)
,

where the scaling argument has been used for the second equality and̂qn,1
h (χ j (·, tn+1)) =

qn,1
h (χ j (·, tn+γ )). Similarly, we have

√
dL+(

qn+1
h , un+1

h

) = ∥∥qn+1
h

∥∥2.

It follows that

Rd = −γ τ
∥∥qn,1

h

∥∥2 − γ τ
∥∥qn+1

h

∥∥2 − (1 − 2γ )τ
(
qn+1
h ,

̂qn,1
h

)

≤ − (4γ − 1)τ

2

∥∥qn+1
h

∥∥2 − γ τ
∥∥qn,1

h

∥∥2 + (1 − 2γ )τ

2

∥∥̂qn,1
h

∥∥2. (3.14)

Noting that δ − γ = −1 and following the same line as in (3.6), we rewrite Rc as

Rc = γ τA(
ωn+γ , unh−un,1

h , un,1
h

)−τA(
ωn+1, ûnh −̂un,1

h , un+1
h

) + γ τA(
ωn+γ , un,1

h , un,1
h

)

+ (1 − γ )τA(
ωn+1,

̂un,1
h − un+1

h , un+1
h

) + (1 − γ )τA(
ωn+1, un+1

h , un+1
h

)

−
N∑

j=1

(∂xω)(tn+γ )

2
γ τ

∥∥un,1
h

∥∥2
Kn+γ

j
−

N∑

j=1

(∂xω)(tn+1)

2
(1 − γ )τ

∥∥un+1
h

∥∥2
Kn+1

j
,

where

unh
(
χ j (·, tn+γ )

) = unh(χ j (·, tn)) = ûnh(χ j (·, tn+1)),
̂un,1
h (χ j (·, tn+1)) = un,1

h (χ j (·, tn+γ )).
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The property (2.23) gives

Rc =γ τA(
ωn+γ , unh − un,1

h , un,1
h

) − τA(
ωn+1, ûnh −̂un,1

h , un+1
h

)

+ (1 − γ )τA(
ωn+1,

̂un,1
h − un+1

h , un+1
h

) − α

2
γ τ [[un,1

h ]]2 − α

2
(1 − γ )τ [[un+1

h ]]2.

In addition, from (2.21) and (2.27), we have

Rc ≤C1γ τ
∥∥qn,1

h

∥∥∥∥unh − un,1
h

∥∥ + C1τ
∥∥qn+1

h

∥∥∥∥ûnh −̂un,1
h

∥∥ + C1(1 − γ )τ
∥∥qn+1

h

∥∥∥∥̂un,1
h − un+1

h

∥∥

≤1

2

(∥∥unh −˜un,1
h

∥∥2 + ∥∥un,1
h − un+1

h

∥∥2) + (C1γ τ)2Cm
∥∥qn,1

h

∥∥2 + (C1τ)2Cm
∥∥qn+1

h

∥∥2

+ 1

2
(C1(1 − γ )τ)2Cm

∥∥qn+1
h

∥∥2, (3.15)

where C1 = αCμ√
d

and similar arguments to prove (3.7) are used. Consequently, adding the

estimates (3.14)–(3.15) to the energy equality (3.13), we obtain

1

2

∥∥un+1
h

∥∥2 − 1

2

∥∥unh
∥∥2 ≤ ((1 − γ )2 + 2)

2
(C1τ)2Cm

∥∥qn+1
h

∥∥2 − (4γ − 1)τ

2

∥∥qn+1
h

∥∥2

+ (C1γ τ)2Cm
∥∥qn,1

h

∥∥2 + (1 − 2γ )τ

2
Cm

∥∥qn,1
h

∥∥2 − γ τ
∥∥qn,1

h

∥∥2,
(3.16)

Here we use the fact that

∥∥̂qn,1
h

∥∥2
Kn+1

j
= hn+1

j

hn+γ

h

∥∥qn,1
h

∥∥2
Kn+γ

j
≤ Cm

∥∥qn,1
h

∥∥2
Kn+γ

j
.

Denote each line of the right hand side in (3.16) by D1, D2, respectively.We find that D1 ≤ 0,
if

τ ≤ 4γ − 1

(1 − γ )2 + 2
· 1

C2
1Cm

≈ 0.0686
1

C2
1Cm

.

Similarly, we have D2 ≤ 0, if

τ ≤ γ − 1−2γ
2 Cm

γ 2C2
1Cm

, and Cm <
2γ

1 − 2γ
≈ 1.41.

Hence, there exists a positive constant τ0 independent of h, such that, if τ ≤ τ0, there hold
∥∥un+1

h

∥∥ ≤ ∥∥unh
∥∥.

��

3.3 Third Order Fully Discrete Scheme

For the third order IMEXmethod, we take the scheme presented in [7].With the semi-discrete
ALE-LDG scheme (2.13)–(2.14), we obtain the third order fully discrete scheme: find un+1

h ,
qn+1
h ∈ Vh(tn+1), such that for any vn ∈ Vh(tn), there hold
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(
un,1
h , vn,1)

Kn,1
j

= (
unh, v

n)
Kn

j
+ γ τA j

(
ωn, unh, v

n) − γ
√
dτL+

j

(
qn,1
h , vn,1),

(
un,2
h , vn,2)

Kn,2
j

= (
unh, v

n)
Kn

j
+

(
1 + γ

2
− α1

)
τA j

(
ωn, unh, v

n) + α1τA j
(
ωn,1, un,1

h , vn,1)

− 1 − γ

2

√
dτL+

j

(
qn,1
h , vn,1) − γ

√
dτL+

j

(
qn,2
h , vn,2),

(
un,3
h , vn,3)

Kn,3
j

= (
unh, v

n)
Kn

j
+ (1 − α2)τA j

(
ωn,1, un,1

h , vn,1) + α2τA j
(
ωn,2, un,2

h , vn,2)

− β1
√
dτL+

j

(
qn,1
h , vn,1) − β2

√
dτL+

j

(
qn,2
h , vn,2) − γ

√
dτL+

j

(
qn,3
h , vn,3),

(
un,4
h , vn,4)

Kn,4
j

= (
unh, v

n)
Kn

j
+ β1τA j

(
ωn,1, un,1

h , vn,1) + β2τA j
(
ωn,2, un,2

h , vn,2)

+ γ τA j
(
ωn,3, un,3

h , vn,3) − β1
√
dτL+

j

(
qn,1
h , vn,1) − β2

√
dτL+

j

(
qn,2
h , vn,2)

− γ
√
dτL+

j

(
qn,3
h , vn,3),

(
qn,∗
h , rn,∗)

Kn,∗
j

= −√
dL−

j

(
un,∗
h , rn,∗), ∀rn,∗ ∈ Vh(tn,∗), ∗ = 1, 2, 3, 4. (3.17)

where

tn,1 = tn + γ τ, tn,2 = tn + 1 + γ

2
τ, tn,3 = tn,4 = tn + τ, Kn,∗

j = K j (tn,∗)

and

vn,∗(χ j (·, tn,∗)) = vn(χ j (·, tn)), ωn,∗(χ j (·, tn,∗)) = ωn(χ j (·, tn)).
In addition, γ is the middle root of 6x3 − 18x2 + 9x − 1 = 0, β1 = − 3

2γ
2 + 4γ − 1

4 ,

β2 = 3
2γ

2 − 5γ + 5
4 , α1 = 0.35 and α2 = 1

3−2γ 2−2β2α1γ
γ (1−γ )

. Finally, we have un+1
h = un,4

h and

qn+1
h = qn,4

h .
In order to obtain the stability of the scheme (3.17), we first rewrite it as the following

form, such that all of terms are in the same time stage.

(̂
un,1
h , vn,4)

Kn+1
j

= (
ûnh, v

n,4)
Kn+1

j
+ γ τA j

(
ωn,4, ûnh, v

n,4) − γ
√
dτL+

j

(̂
qn,1
h , vn,4)

+(1 − γ )s2
(̂
un,1
h , vn,4)

Kn+1
j

− s2
(
ûnh, v

n,4)
Kn+1

j
,

(̂
un,2
h , vn,4)

Kn+1
j

= (
ûnh, v

n,4)
Kn+1

j
+

(
1 + γ

2
− α1

)
τA j

(
ωn,4, ûnh, v

n,4) + α1τA j
(
ωn,4,

̂un,1
h , vn,4)

−1 − γ

2

√
dτL+

j

(̂
qn,1
h , vn,4) − γ

√
dτL+

j

(̂
qn,2
h , vn,4)

+1 − γ

2
s2

(̂
un,2
h , vn,4)

Kn+1
j

− s2
(
ûnh, v

n,4)
Kn+1

j
,

(
un,3
h , vn,4)

Kn+1
j

= (
ûnh, v

n,4)
Kn+1

j
+ (

1 − α2
)
τA j

(
ωn,4,

̂un,1
h , vn,4) + α2τA j

(
ωn,4,

̂un,2
h , vn,4)

−β1
√
dτL+

j

(̂
qn,1
h , vn,4) − β2

√
dτL+

j

(̂
qn,2
h , vn,4) − γ

√
dτL+

j

(
qn,3
h , vn,4)

−s2
(
ûnh, v

n,4)
Kn+1

j
,

(
un,4
h , vn,4)

Kn+1
j

= (
ûnh, v

n,4)
Kn+1

j
+ β1τA j

(
ωn,4,

̂un,1
h , vn,4) + β2τA j

(
ωn,4,

̂un,2
h , vn,4)

+γ τA j
(
ωn,4, un,3

h , vn,4) − β1
√
dτL+

j

(̂
qn,1
h , vn,4) − β2

√
dτL+

j

(̂
qn,2
h , vn,4)

−γ
√
dτL+

j

(
qn,3
h , vn,4) − s2

(
ûnh, v

n,4)
Kn,4

j
,
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wherêun,∗
h (χ j (·, tn+1)) = un,∗

h (χ j (·, tn,∗)) and s2 = (∂xω)(tn+1)τ . Moreover, the scaling
arguments with (2.4) and (2.6) are used, e.g.,

(
un,1
h , vn,1)

Kn,1
j

= h j (tn,1)

h j (tn+1)

(̂
un,1
h , vn,4)

Kn+1
j

= 1 − (1 − γ )s2
(̂
un,1
h , vn,4)

Kn+1
j

.

Following the same line as in [38], we introduce some notations

E1uh = ̂un,1
h − ûnh, E2uh = ̂un,2

h − 2̂un,1
h + ûnh,

E3uh = 2un,3
h +̂un,2

h − 3̂un,1
h , E4uh = un,4

h − un,3
h ,

E31uh = un,3
h +̂un,2

h − 2̂un,1
h , E32uh = un,3

h −̂un,1
h .

Then some algebraic manipulations give
(
Eluh, v

n,4) = Fl
(
uh, v

n,4) + Gl
(
qh, v

n,4) + Rl
(
uh, v

n,4), l = 1, 2, 3, 4, (3.18)

where

F1
(
uh, v

n,4) = γ τA(
ωn,4, ûnh, v

n,4),

F2
(
uh, v

n,4) =
(
1 − 3γ

2
− α1

)
τA(

ωn,4, ûnh, v
n,4) + α1τA

(
ωn,4,

̂un,1
h , vn,4),

F3
(
uh, v

n,4) =
(
1 − 5γ

2
− α1

)
τA(

ωn,4, ûnh, v
n,4) + (

2 − 2α2 + α1
)
τA(

ωn,4,
̂un,1
h , vn,4)

+ 2α2τA
(
ωn,4,

̂un,2
h , vn,4),

F4
(
uh, v

n,4) = (
α2 − β2 − γ

)
τA(

ωn,4,
̂un,1
h , vn,4) + (

β2 − α2
)
τA(

ωn,4,
̂un,2
h , vn,4)

+ γ τA(
ωn,4, un,3

h , vn,4)

and

G1
(
qh, v

n,4) = − γ
√
dτL+(̂

qn,1
h , vn,4),

G2
(
qh, v

n,4) = − γ
√
dτL+(̂

qn,2
h − 2̂qn,1

h , vn,4) − 1 − γ

2

√
dτL+(̂

qn,1
h , vn,4),

G3
(
qh, v

n,4) = − 2γ
√
dτL+(

qn,3
h , vn,4) − 2

(
1 − β1 − γ

2

)√
dτL+(̂

qn,2
h − 2̂qn,1

h , vn,4)

− 2

(
9

4
− 11

4
γ − β1

) √
dτL+(̂

qn,1
h , vn,4),

G4
(
qh, v

n,4) =0.

Besides, we have the extra terms involved with ωx (tn+1),

R1
(
uh, v

n,4) =
N∑

j=1

s2

[
(1 − γ )

(̂
un,1
h , vn,4)

Kn+1
j

− (
ûnh, v

n,4)
Kn+1

j

]
,

R2
(
uh, v

n,4) =
N∑

j=1

s2

[
1 − γ

2

(̂
un,2
h , vn,4)

Kn+1
j

−2(1−γ )
(̂
un,1
h , vn,4)

Kn+1
j

+(
ûnh, v

n,4)
Kn+1

j

]
,
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R3
(
uh, v

n,4) =
N∑

j=1

s2

[
(1 − γ )

2

(̂
un,2
h , vn,4)

Kn+1
j

− 3(1 − γ )
(̂
un,1
h , vn,4)

Kn+1
j

]
,

R4
(
uh, v

n,4) = 0,

owing to the moving grid.

3.3.1 Energy Equations for the Third Order Scheme

Similar to the fixed grids case [38], we take the test functions vn,4 = ̂un,1
h ,̂un,2

h − 2̂un,1
h , un,3

h

and 2un,4
h in (3.18) for l = 1, 2, 3, 4, respectively. Add them together to obtain the following

energy equality
∥∥un,4

h

∥∥2 − ∥∥ûnh
∥∥2 + � = �c + �d + ϒω, (3.19)

where

� = ∥∥
E4uh

∥∥2 + 1

2

∥∥
E31uh

∥∥2 + 1

2

∥∥
E32uh

∥∥2 + 1

2

∥∥
E2uh

∥∥2 + 1

2

∥∥
E1uh

∥∥2,

�c = F1
(
uh,

̂un,1
h

) + F2
(
uh,

̂un,2
h − 2̂un,1

h

) + F3
(
uh, u

n,3
h

) + F4
(
uh, 2u

n,4
h

)
,

�d = G1
(
qh,

̂un,1
h

) + G2
(
qh,

̂un,2
h − 2̂un,1

h

) + G3
(
qh, u

n,3
h

) + G4
(
qh, 2u

n,4
h

)
,

ϒω = R1
(
uh,

̂un,1
h

) + R2
(
uh,

̂un,2
h − 2̂un,1

h

) + R3
(
uh, u

n,3
h

) + R4
(
uh, 2u

n,4
h

)
.

Note that one part of the stability is provided by�. Next we will analyze the remaining terms
one by one.

3.3.2 Analysis of the Diffusion Part9d

We first analyze �d , which is related to the diffusion part. For simplicity, introduce the
notation

W� = (̂
qn,1
h ,

̂qn,2
h − 2̂qn,1

h , qn,3
h

)
.

With the property (2.26), the scaling argument and the scheme (3.17), we have

√
dL+(̂

qn,1
h ,

̂un,1
h

) = −√
dL−(̂

un,1,
̂qn,1
h

) = −√
dL−(

un,1, qn,1
h

)

= (
qn,1
h , qn,1

h

) =
N∑

j=1

hn,1
j

hn+1
j

(̂
qn,1
h ,

̂qn,1
h

)
Kn+1

j
.

Similarly, we can obtain

√
dL+(

q̂n,l
h ,̂un,∗

h

) = −√
dL−(̂

un,∗, q̂n,l
h

) =
N∑

j=1

hn,∗
j

hn+1
j

(̂
qn,∗
h , q̂n,l

h

)
Kn+1

j
, (3.20)

for any l, ∗ = 1, 2, 3 and 4. Here hn,∗
j = h j (tn,∗). In addition, the definitions (2.4) and (2.6)

give

hn,∗
j

hn+1
j

= 1 − tn+1 − tn,∗
τ

s2, ∗ = 1, 2, 3, 4.
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Here s2 = (∂xω)(tn+1)τ . Thus �d turns out to be

�d = −τ

∫ b

a
W�

FWdx +
N∑

j=1

s2�d,1,

where

F =
⎛

⎜⎝
γ

1−γ
4

9−11γ
4 − β1

1−γ
4 γ 1 − β1 − γ

2
9−11γ

4 − β1 1 − β1 − γ
2 2γ

⎞

⎟⎠ ,

and

�d,1 = (3γ − 1)(1 − γ )

2
τ
∥∥̂qn,1

h

∥∥2
Kn+1

j
+ γ (1 − γ )

2
τ
∥∥̂qn,2

h − 2̂qn,1
h

∥∥2
Kn+1

j

+ (1 − γ )(1 − 5γ )

4
τ
(̂
qn,2
h − 2̂qn,1

h ,
̂qn,1
h

)
Kn+1

j
.

Apply Young’s inequality and the bound (2.7) to obtain

N∑

j=1

s2�d,1≤ (17γ − 5)(1 − γ )

8
Cwxτ

2
∥∥̂qn,1

h

∥∥2 + (9γ − 1)(1 − γ )

8
Cwxτ

2
∥∥̂qn,2

h − 2̂qn,1
h

∥∥2.

If

(17γ − 5)(1 − γ )

8
Cwxτ

2 ≤ γ

10
τ,

(9γ − 1)(1 − γ )

8
Cwxτ

2 ≤ γ

10
τ, (3.21)

then we have

�d ≤ −τ

∫ b

a
W� (

F − γ

10
I

)
Wdx, (3.22)

where I is the identity matrix.

Remark 3.4 We remark that compared with the analysis on fixed grids, the main difference
lies in the equality (3.20), which makes the process more complicated. Furthermore, there is
no restriction (3.21) on the fixed grid.

3.3.3 Analysis of the Convection Part8c

The proceeding for the analysis of�c is similar to the case on fixed grids in [38]. However, it
is more technical for the moving grids due to the different sizes of the spatial step in different
time levels. In the following, define C to represent a positive constant, which is independent
of h, τ and unh , but may depends on Cwx and γ . Each occurrence may have a different value.

Lemma 3.5 There exists a positive constant C∗, independent of h and τ , such that

�c + ϒω ≤ Cτ

3∑

l=0

∥∥̂un,l
h

∥∥2 + C∗τ� + γ

4
τ

∫ b

a
W�Wdx,

wherêun,0
h = ûnh .
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Proof With analogous arguments in [38], we can rewrite �c as �c = ∑4
i=1 �c,i , where

�c,1 = γ τA(
ωn,4,

̂un,1
h ,

̂un,1
h

) + 3γ − 1

2
τA(

ωn,4,
̂un,2
h − 2̂un,1

h ,
̂un,2
h − 2̂un,1

h

)

+ 5(1 − γ )

2
τA(

ωn,4, un,3
h , un,3

h

)
,

�c,2 = 2
(
β2 − α2 − γ

)
τA(

ωn,4,
̂un,1
h , un,4

h − un,3
h

) − γ τA(
ωn,4,

̂un,1
h − ûnh,

̂un,1
h

)
,

�c,3 = 2
(
β2 − α2

)
τA(

ωn,4,
̂un,2
h − 2̂un,1

h , un,4
h − un,3

h

) + α1τA
(
ωn,4,

̂un,1
h − ûnh,

̂un,2
h − 2̂un,1

h

)

+ 1 − 3γ

2
τA(

ωn,4,
̂un,2
h − 2̂un,1

h + ûnh,
̂un,2
h − 2̂un,1

h

)
,

�c,4 = 2γ τA(
ωn,4, un,3

h , un,4
h − un,3

h

) + 2β2τA
(
ωn,4,

̂un,2
h − 2̂un,1

h + ûnh, u
n,3
h

)

+ (
α1 + 2β2 − 1 − 5γ

2

)
τA(

ωn,4,
̂un,1
h − ûnh, u

n,3
h

) − 5 − 9γ

2
τA(

ωn,4, un,3
h −̂un,1

h , un,3
h

)
.

By the property (2.23), we have

�c,1 = − γ

2
ατ [[̂un,1

h ]]2 − 3γ − 1

4
ατ [[̂un,2

h −̂un,1
h ]]2 − 5(1 − γ )

4
ατ [[un,3

h ]]2

+
N∑

j=1

s2

[
γ

2

∥∥̂un,1
h

∥∥2
Kn+1

j
+ 3γ − 1

4

∥∥̂un,2
h − 2̂un,1

h

∥∥2
Kn+1

j
+ 5(1 − γ )

4

∥∥un,3
h

∥∥2
Kn+1

j

]
.

On the other hand, some direct calculations give

ϒω = −
N∑

j=1

s2

[
γ

2

∥∥̂un,1
h

∥∥2
Kn+1

j
+ 3γ − 1

4

∥∥̂un,2
h − 2̂un,1

h

∥∥2
Kn+1

j
+ 5(1 − γ )

4

∥∥un,3
h

∥∥2
Kn+1

j

]

+
N∑

j=1

s2

[
1

2

∥∥
E1uh

∥∥2
Kn+1

j
+ 1

2

∥∥
E2uh

∥∥2
Kn+1

j
+ 1 − γ

4

∥∥
E31uh

∥∥2
Kn+1

j

]

+
N∑

j=1

s2

[
(1 − γ )

∥∥
E32uh

∥∥2
Kn+1

j
− 1 − γ

2

∥∥̂un,2
h −̂un,1

h

∥∥2
Kn+1

j
− ∥∥ûnh

∥∥2
Kn+1

j

]
.

Thus we can obtain

�c,1 + ϒω ≤ Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2.

Here we use the fact that s2 = (∂xω)(tn+1)τ and the bound (2.7). For �c,i , i = 2, 3, 4,
denote the maximum of the absolute value of all coefficients in �c,i by Cγ . Then apply
the equivalent form (2.19), the estimate (2.21)–(2.22), the property (2.27) and the scaling
argument to yield

�c,2 = �2 − 2
(
β2 − α2 − γ

)
τD(

ωn,4,
̂un,1
h , E4uh

) − γ τA(
ωn,4, E1uh,

̂un,1
h

)

≤ �2 + 2CγC1Cmτ
∥∥̂qn,1

h

∥∥(2�)
1
2 ,
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where C1 = αCμ√
d

and

�2 = 2
(
β2 − α2 − γ

) N∑

j=1

s2
(̂
un,1
h , E4uh

)
Kn+1

j
.

Similarly,

�c,3 ≤ �3 + 2CγC1Cmτ
∥∥̂qn,2

h − 2̂qn,1
h

∥∥(2�)
1
2 ,

�c,4 ≤ �4 + 2CγC1Cmτ
∥∥qn,3

h

∥∥(2�)
1
2 ,

and

�3 = 2(β2 − α2)

N∑

j=1

s2
(̂
un,2
h − 2̂un,1

h , E4uh
)
Kn+1

j
,

�4 = 2γ
N∑

j=1

s2
(
un,3
h , E4uh

)
Kn+1

j
.

Moreover, we find that

4∑

i=2

�i =
N∑

j=1

s2

[
2
(
β2 − α2

)(
E1uh + E2uh, E4uh

)
Kn+1

j
+ 2γ

(
E32uh, E4uh

)
Kn+1
j

]

≤ 2CwxτCγ �.

Here the second step use (2.7). Consequently, combine the estimates together to derive

�c + ϒω ≤Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2 + 2CwxCγ τ�

+ 2CγC1Cmτ
(∥∥̂qn,1

h

∥∥ + ∥∥̂qn,2
h − 2̂qn,1

h

∥∥ + ∥∥qn,3
h

∥∥)
(2�)

1
2

≤Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2 +
(
2CwxCγ + 6

(
2C1CγCm

)2

γ

)
τ� + γ

4
τ

∫ b

a
W�Wdx .

(3.23)

Define C∗ = 2CwxCγ + 24
(
C1Cγ Cm

)2
γ

, then the proof is finished. ��

3.3.4 Stability of the Third Order Fully Discrete Scheme

In light of the estimates (3.22)–(3.23), the energy equality (3.19) turns out to be

∥∥un,4
h

∥∥2 − ∥∥ûnh
∥∥2 + � ≤ Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2 + C∗τ� − τ

∫ b

a
W�(

F − γ

10
I − γ

4
I

)
Wdx

≤ Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2 + C∗τ�,
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since the principal minor determinants of F− γ
10 I− γ

4 I are all positive. Under the restriction
(3.21) and if

C∗τ ≤ 1,

we have

∥∥un,4
h

∥∥2 − ∥∥ûnh
∥∥2 ≤ Cτ

3∑

l=0

∥∥ûn,l
h

∥∥2.

Along the similar arguments, we can prove

∥∥ûn,l
h

∥∥ ≤ C
∥∥ûnh

∥∥ ≤ C
∥∥unh

∥∥, l = 1, 2, 3,

which is provided by τ ≤ τ0, and the positive constant τ0 is independent of h. Here the
similar property (3.7) is used. In the end, we conclude the stability results in the following
theorem.

Theorem 3.6 Let un+1
h be the numerical solution of the third order fully discrete scheme

(3.17), then we have
∥∥un+1

h

∥∥2 ≤ (1 + Cτ)
∥∥unh

∥∥2

under the condition τ ≤ τ0, and τ0 is a positive constant, which is independent of h.

Remark 3.7 From the proof of Theorem 3.6, we know that C depends on Cwx and γ , where
Cwx is the upper bound of |∂x (ω(x, t))| and γ comes from the coefficients of the third order
IMEX scheme. The results indicate the relations of the stability and error estimates with the
grid functions. It is consistent with the results on static grids where ∂x (ω(x, t)) = 0 and
‖un+1

h ‖ ≤ ‖unh‖. We can reduce the impact of C on stability by manipulating the suitable
grid movement function.

4 Error Estimates for the Fully Discrete Scheme

In this section, error estimates for the fully discrete schemes will be shown by the aid of
stability analysis. To construct the error equation conveniently, we first rescale the system
(2.12) by a time-dependent coordinate transformation χ = χ(ξ, t) in (2.8). For simplicity,
define v∗(ξ, t) = v(χ(ξ, t), t) for any function v(x, t). Thus by the chain rule, we have

∂t u
∗ = ∂t u + ∂xu∂t x, ∂ξu

∗ = ∂xu∂ξ x, ∂ξξu
∗ = (∂ξ x)

2∂xxu,

where ∂ξ x = h j (t)
2 and ∂t x = ω∗(ξ, t). The Eq. (1.1) in K j (t), t ∈ [tn, tn+1] turns out to be

∂t u
∗ + 2

h j (t)
(c − ω∗)∂ξu

∗ − d

(
2

h j (t)

)2

∂ξξu
∗ = 0, (ξ, t) ∈ [−1, 1] × [tn, tn+1].

(4.1)

In addition, by (2.5), (2.8) and (2.4), we obtain

∂ξω
∗ = 1

2

(
ω j+ 1

2
− ω j− 1

2

) = h
′
j (t)

2
. (4.2)
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It follows from (4.1) and (4.2) that,

∂t

(
u∗h j (t)

)
+ ∂ξ

(
2(c − ω∗)u∗

)
− 4d

h j (t)
∂ξξu

∗ = 0.

Now we derive the equivalent form of (2.12) on the reference cell,

∂tU + ∂ξ (aU ) − 2
√
d

h j (t)
∂ξ Q = 0, Q = 2

√
d

h j (t)
∂ξU , (4.3)

where

U (ξ, t) = u∗h j (t), a(ξ, t) = 2(c − ω∗)
h j (t)

.

4.1 Error Equation for the First Order Fully Discrete Scheme

Denote un = u(x, tn) and qn = q(x, tn) for any time level n. We present the following
lemma to describe the local truncation error in time.

Lemma 4.1 Let (u, q) be the exact solution of Eq. (2.12). Suppose u is sufficiently smooth
with bounded derivatives, then for any vn ∈ Vh(tn) and 1 ≤ j ≤ N, there holds,

(
un+1, v̂n

)
Kn+1

j
= (

un, vn
)
Kn

j
+ τA j

(
ωn, un, vn

) − √
dτL+

j

(
qn+1, v̂n

) + (
εn1 , v

n)
Kn

j
,

(4.4)

where v̂nh is defined by (3.3), εn1 is the local truncation error in time and ‖εn1‖Kn
j

= O(τ 2)

for any j and n.

Proof By the Taylor expansion with Lagrange form of the remainder, we obviously have

U (ξ, t + τ) = U (ξ, t) + τ∂tU (ξ, t) + τ 2

2
∂t tU (ξ, t1)

= U (ξ, t) − τ∂ξ (aU )(ξ, t) + 2
√
dτ

∂ξ Q(ξ, t)

h j (t)
+ τ 2

2
∂t tU (ξ, t1), (4.5)

where we use the relation (4.3) and t1 ∈ (t, t +τ). Denote b(ξ, t) = ∂ξξU (ξ,t)
h2j (t)

, then by Taylor

expansion again, we get

b(ξ, t + τ) = b(ξ, t) + τ∂t b(ξ, t2), t2 ∈ (t, t + τ),

which yields that

∂ξ Q(ξ, t + τ)

h j (t + τ)
= ∂ξ Q(ξ, t)

h j (t)
+ 2

√
dτ∂t b(ξ, t2).

Substituting into (4.5) leads to

U (ξ, t + τ) = U (ξ, t) − τ∂ξ (aU )(ξ, t) + 2
√
dτ

∂ξ Q(ξ, t + τ)

h j (t + τ)

+ τ 2

2
∂t tU (ξ, t1) − 4dτ 2∂t b(ξ, t2).
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Here

∂t tU = ∂t t u
∗h j + 2∂t u

∗h ′
j , ∂t b = ∂ξξ t u∗h j − ∂ξξu∗h ′

j

(h j )2
.

Let t = tn . Along the same arguments in [24], we obtain
(
un+1, v̂n

)
Kn+1

j
= (

un, vn
)
Kn

j
+ τA j

(
ωn, un, vn

) − √
dτL+

j

(
qn+1, v̂n

) + (
εn1 , v

n
h

)
Kn

j
,

where ‖εn1‖Kn
j

= O(τ 2) for any j and n. ��

Denote the error between the exact and numerical solution of the first scheme (3.1)–(3.2)
by enu = u(x, tn) − unh and enq = q(x, tn) − qnh for any stage n. Subtract (3.1) from (4.4) to
obtain the first error equation

(
en+1
u , v̂n

)
Kn+1

j
= (

enu , v
n)

Kn
j
+ τA j

(
ωn, enu , v

n) − √
dτL+

j

(
en+1
q , v̂n

) + (
εn1 , v

n)
Kn

j
.

Noting the fact that the exact solution also satisfies the scheme (3.2), we get the second error
equation

(
en+1
q , r̂ n

)
Kn+1

j
= −√

dL−
j

(
en+1
u , r̂ n

)
, ∀r̂ n ∈ Vh(tn+1).

By convention, let

ζ n
u = unh − P−

h un, ηnu = un − P−
h un, ζ n

q = qnh − P+
h qn, ηnq = qn − P+

h qn,

where P−
h un and P+

h qn are projections defined by (2.30)–(2.31). Thus the errors can be
divided into enu = ηnu − ζ n

u and enq = ηnq − ζ n
q , which implies that

(
ζ n+1
u , v̂n

)
Kn+1

j
= (

ζ n
u , vn

)
Kn

j
+ τA j

(
ωn, ζ n

u , vn
) + H j

(
ηu, v

n)

− √
dτL+

j

(
ζ n+1
q , v̂n

)
, (4.6)

(
ζ n+1
q , r̂ n

)
Kn+1

j
= (

ηn+1
q , r̂ n

)
Kn+1

j
− √

dL−
j

(
ζ n+1
u , r̂ n

)
, (4.7)

where

H j (ηu, v
n) = (

ηn+1
u , v̂n

)
Kn+1

j
− (

ηnu , v
n)

Kn
j
− τA j

(
ωn, ηnu , v

n) − (
εn1 , v

n)
Kn

j
, (4.8)

and the property (2.33) is used. In addition, some estimates for the projection error will be
given without proof, and similar analysis can be found in [48].

Lemma 4.2 Assume u is sufficiently smooth, then there exists a constant C > 0, independent
of h, τ and n, such that

‖ηn∗‖ + h1/2‖ηn∗‖�h(tn) + h‖∂xηn∗‖ ≤ Chk+1, f or ∗ = u, q, (4.9)
(
ηn+1
u , v̂n

) − (
ηnu , v

n) ≤ Cτhk+1‖vn‖, ∀vn ∈ H1
h (tn). (4.10)

Lemma 4.3 Assume A is defined by (2.15), then for any rn ∈ Vh(tn), there hold

|A(ωn, ηnu , r
n)| ≤ μCwx‖ηnu‖‖rn‖ + √

2α‖ηnu‖�h(tn)[[rn]], (4.11)

|A(ωn, ηnu , r
n)| ≤ μCwx‖ηnu‖‖rn‖ + 2αμh− 1

2 ‖ηnu‖�h(tn)‖rn‖. (4.12)
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We present an estimate for H j (ηu, v
n) to end this subsection. Applying the estimates

(4.9)–(4.11) and the local truncation error (4.4), we have

N∑

j=1

H j
(
ηu, v

n) ≤ C
(
τhk+1 + τ 2

)‖vn‖ + Cατhk+
1
2 [[vn]]. (4.13)

4.2 Error Estimates for the First Order Fully Discrete Scheme

In this subsection, we will show the error estimates for the first order fully discrete scheme
(3.1).

Theorem 4.4 Let the sufficiently smooth function u be the exact solution of Eq. (1.1) and unh
be the numerical solution of the fully discrete scheme (3.1). Then we have the following error
estimate

max
nτ≤T

‖u(x, tn) − unh‖ ≤ C
(
hk+

1
2 + τ

)
,

under the restriction τ ≤ τ0, where τ0 > 0 is a constant independent of h and the positive
constant C is independent of h, τ , n and uh.

Proof With the analogous arguments used for the stability analysis, we take the test function
v̂n = ζ n+1

u in the error equation (4.6) to derive the energy identity

1

2

∥∥ζ n+1
u

∥∥2 − 1

2

∥∥ζ n
u

∥∥2 = − 1

2

∥∥˜

ζ n+1
u − ζ n

u

∥∥2 − τ

2
α[[ζ n+1

u ]]2 + τA(
ωn+1, ζ̂ n

u − ζ n+1
u , ζ n+1

u

)

− √
dτL+(

ζ n+1
q , ζ n+1

u

) +
N∑

j=1

H j
(
ηu,

˜

ζ n+1
u

)
(4.14)

For the estimate ofA(ωn+1, ζ̂ n
u − ζ n+1

u , ζ n+1
u ), we need the similar property as that in (2.27)

∥∥∂x
(
ζ n+1
u

)∥∥ +
√
2μh−1[[ζ n+1

u ]] ≤ Cμ√
d

(∥∥ζ n+1
q

∥∥ + ∥∥ηn+1
q

∥∥)
.

Then the bound (2.21) yields

τA(
ωn+1, ζ̂ n

u − ζ n+1
u , ζ n+1

u

) ≤ Cμ√
d

ατ
(∥∥ζ n+1

q

∥∥ + ∥∥ηn+1
q

∥∥)∥∥ζ n+1
u − ζ̂ n

u

∥∥

≤ τ

2

∥∥ζ n+1
q

∥∥2 + τ

2

∥∥ηn+1
q

∥∥2 + C2
μα2

d
Cmτ

∥∥˜

ζ n+1
u − ζ n

u

∥∥2,
(4.15)

where we use the similar property (3.7). From the property (2.26) and error Eq. (4.7) , we
obtain

−√
dτL+(

ζ n+1
q , ζ n+1

u

) = √
dτL−(

ζ n+1
u , ζ n+1

q

)

= −τ‖ζ n+1
q ‖2 + τ

(
ηn+1
q , ζ n+1

q

)

≤ −τ

2

∥∥ζ n+1
q

∥∥2 + τ

2

∥∥ηn+1
q

∥∥2. (4.16)
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Moreover, applying the estimate (4.13), we have

N∑

j=1

H j
(
ηu,

˜

ζ n+1
u

) ≤ Cτ
(
hk+1 + τ

)∥∥˜

ζ n+1
u

∥∥ + Cατhk+
1
2 [[ζ n+1

u ]]

≤ τ

4

∥∥ζ n+1
u

∥∥2 + α

2
τ [[ζ n+1

u ]]2 + Cτ
(
h2k+1 + τ 2

)
. (4.17)

Here the similar property (3.7) is used. Combining the estimates (4.15)–(4.17) and (4.9)
together, the energy Eq. (4.14) turns out to be

1

2

∥∥ζ n+1
u

∥∥2− 1

2

∥∥ζ n
u

∥∥2≤ τ

4

∥∥ζ n+1
u

∥∥2+
(
C2

μα2

d
Cmτ − 1

2

)
∥∥˜

ζ n+1
u − ζ n

u

∥∥2 + Cτ
(
h2k+1 + τ 2

)
.

If the time step satisfies

C2
μα2

d
Cmτ − 1

2
≤ 0, and τ ≤ 1,

there holds
∥∥ζ n+1

u

∥∥2 ≤ C
∥∥ζ n

u

∥∥2 + Cτ
(
h2k+1 + τ 2

)
.

Consequently, the special initial condition uh(x, 0) = P−
h u(x, 0) and Gronwall’s inequality

provide

‖ζ n+1
u ‖2 ≤ C

(
h2k+1 + τ 2

)
,

which completes the proof by the triangle inequality. ��
Along the same arguments, we can obtain the error estimates for the second fully discrete

scheme (3.9) as well as the third order scheme (3.17). The results are listed in the following
without detailed proof.

Theorem 4.5 Let the sufficiently smooth function u be the exact solution of Eq.(1.1). Then
we have the following error estimate

max
nτ≤T

∥∥u(x, tn) − unh
∥∥ ≤ C

(
hk+

1
2 + τ l

)
,

here l = 2, 3 for unh is the numerical solution of the second order scheme (3.9) and third
order scheme (3.17), respectively. The time step satisfies τ ≤ τ0, where τ0 > 0 is a constant
independent of h and the positive constant C is independent of h, τ , n and uh.

Remark 4.6 For general smoothly moving domain problems, the analysis and results can not
be applied directly. One technical difficulty is that the grid function should approximate the
movement of the domain accurately, which needs to define a suitable high ordermesh velocity
in space and time other than the piecewise linear functions in the boundary elements.

5 Numerical Results

In this section, we will show the performance of the ALE-LDG method coupled with the
second and third order IMEX time-marching schemes (3.8)–(3.11) and (3.17) for linear
convection–diffusion equations. The program for testing examples for the first order fully
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Table 1 Accuracy test for c = 1 with fixed boundary, T = 10

N d = 1 d = 0.1 d = 0.01
L2 error Order L2 error Order L2 error Order

P1 40 2.64E−05 – 1.37E−01 – 3.98E−02 –

80 6.59E−06 2.00 2.99E−02 2.20 1.00E−02 1.99

160 1.64E−06 2.01 7.47E−03 2.00 2.52E−03 1.99

320 4.07E−07 2.01 1.87E−03 2.00 6.30E−04 2.00

640 1.01E−07 2.00 4.66E−04 2.00 1.58E−04 2.00

P2 20 1.29E−05 – 2.10E−02 – 1.37E−03 –

40 1.77E−06 2.86 2.69E−03 2.97 1.70E−04 3.02

80 2.33E−07 2.93 3.42E−04 2.97 2.10E−05 3.01

160 2.99E−08 2.97 4.32E−05 2.99 2.61E−06 3.01

320 3.78E−09 2.98 5.42E−06 2.99 3.26E−07 3.00

discrete scheme (3.1) is similar, we omit it here to save space. In all tests, the periodic
boundary conditions are used. For simplicity, we only consider the uniform partition of the
time interval [0, T ], namely, tn = nτ .

Example 5.1 We first test the problem with the fixed boundary

∂t u + c∂xu − d∂xxu = 0, (x, t) ∈ [0, 2π] × (0, T ],
u(x, 0) = sin(x), x ∈ [0, 2π], (5.1)

and the moving grid function

x j+ 1
2
(tn) = x j+ 1

2
(0) + 0.04

π2 sin(tn)
(
x j+ 1

2
(0) − 2π

)
x j+ 1

2
(0), j = 0, 1, . . . , N ,

which starts with a uniform grid, x j+ 1
2
(0) = jh, h = 2π

N . The exact solution is u(x, t) =
e−dt sin(x − ct).

The finite element space is piecewise linear and piecewise quadratic polynomials for the
second and third order fully discrete schemes, respectively. In the test, we take τ = h except
for d = 0.01, in which τ = 0.36h is used for the second order fully discrete scheme (3.8)–
(3.11) and τ = 0.2h is used for the third order scheme (3.17). The L2 error as well as the rates
of convergence are summarized in Table 1, which indicates that both schemes give optimal
orders of accuracy.

We also show accuracy test in time of the schemes (3.8)–(3.11) and (3.17) for the problem
(5.1). In this test, the space of piecewise polynomials of degree k is used for the kth order
time discretization such that the error of time discretization is dominant. We take N = 320,
T = 10 and c = 1 in the computation. Errors in L2-norm and orders of accuracy are listed
in Table 2, where optimal orders of accuracy in time are observed.

Example 5.2 Next we consider the problem

∂t u + c∂xu − d∂xxu = 0, (x, t) ∈ [0, 1] × (0, T ],
u(x, 0) = 1

2
sin(π(2x − 1)), x ∈ [0, 1].
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Table 2 Accuracy test in time for schemes (3.8)–(3.11) and (3.17)

τ d = 1 d = 0.5 d = 0.1
L2 error Order L2error Order L2 error Order

0.2 4.45E−05 – 4.40E−03 – 8.50E−01 –

0.1 1.12E−05 1.99 1.10E−03 2.00 5.02E−02 4.08

0.05 2.78E−06 2.01 2.73E−04 2.01 1.25E−02 2.00

0.025 6.90E−07 2.01 6.81E−05 2.00 3.13E−03 2.00

0.0125 1.72E−07 2.00 1.70E−05 2.00 7.82E−04 2.00

0.2 3.75E−06 – 1.96E−04 – 5.80E−03 –

0.1 4.98E−07 2.91 2.60E−05 2.92 7.39E−04 2.97

0.05 6.42E−08 2.96 3.34E−06 2.96 9.36E−05 2.98

0.025 8.16E−09 2.98 4.25E−07 2.98 1.19E−05 2.98

0.0125 1.03E−09 2.99 5.40E−08 2.98 1.52E−06 2.96

Table 3 Accuracy test for the moving grid function (5.2)

N c = 1 c = 0.1 c = 0.01
L2 error Order L2error Order L2 error Order

P1 20 1.77E−02 – 8.20E−04 – 6.99E−04 –

40 4.34E−03 2.03 1.98E−04 2.05 1.71E−04 2.03

80 1.07E−03 2.01 4.86E−05 2.02 4.23E−05 2.02

160 2.66E−04 2.01 1.21E−05 2.01 1.05E−05 2.01

320 6.61E−05 2.01 3.00E−06 2.01 2.62E−06 2.00

P2 20 2.27E−03 – 1.78E−04 – 1.61E−04 –

40 3.37E−04 2.75 2.44E−05 2.87 2.21E−05 2.86

80 4.60E−05 2.87 3.20E−06 2.93 2.91E−06 2.92

160 6.01E−06 2.94 4.12E−07 2.96 3.74E−07 2.96

320 7.69E−07 2.97 5.23E−08 2.98 4.74E−08 2.98

The grid movement is no longer obtained from a smooth function, which is taken as

x j+ 1
2
(tn+1) = x j+ 1

2
(tn) + (−1)n0.1hx j+ 1

2
(0)

(
x j+ 1

2
(0) − 1

)
, j = 0, 1, . . . , N , (5.2)

where x j+ 1
2
(0) = jh and h = 1

N . The finite element space is piecewise linear and piecewise
quadratic polynomials for the second and third order fully discrete schemes, respectively.
In this test, we take d = 0.1, T = 1 and τ = 2h. Table 3 shows the performance of fully
discrete schemes (3.8)–(3.11) and (3.17). In this case, the optimal convergence rate is also
observed from Table 3.

Example 5.3 We consider the problem with moving boundary

∂t u + c∂xu − d∂xxu = 0, (x, t) ∈ [sin(t), sin(t) + 2π] × (0, T ],
u(x, 0) = sin(x), x ∈ [0, 2π ],
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Table 4 Accuracy test for c = 1 with moving boundary, T = 10

N d = 1 d = 0.1 d = 0.01
L2 error Order L2error Order L2 error Order

P1 40 5.37E−05 – 4.58E−00 – 1.74E−02 –

80 1.36E−05 1.98 8.54E−02 5.75 4.50E−03 1.95

160 3.40E−06 2.00 2.14E−02 2.00 1.15E−03 1.97

320 8.49E−07 2.00 5.35E−03 2.00 2.90E−04 1.98

640 2.12E−07 2.00 1.34E−03 2.00 7.29E−04 1.99

P2 20 2.23E−05 – 1.05E−01 – 1.37E−03 –

40 3.39E−06 2.72 1.34E−02 2.97 1.70E−04 3.01

80 4.68E−07 2.85 1.71E−03 2.96 2.11E−05 3.01

160 6.12E−08 2.93 2.16E−04 2.99 2.63E−06 3.01

320 7.84E−09 2.96 2.72E−05 2.99 3.28E−07 3.00

and the moving grid x j+ 1
2
(tn) = x j+ 1

2
(0)+ sin(tn), which begins with a uniform grid as that

in Example 5.1. Notice that the computational domain does not follow the physical domain
exactly. The exact solution is u(x, t) = e−dt sin(x − ct).

The performance of the fully discrete schemes (3.8)–(3.11) and (3.17) are shown in Table
4. In the computation, we limit τ = h except for d = 0.01, where τ = 0.12h is taken to
ensure the stability. The numerical results in Table 4 reveal that both schemes arrive at the
optimal orders of accuracy. Moreover, compared with Table 1 when d = 0.01, we find that
the time step restriction is also influenced by the moving grid function.

6 Conclusion

In this paper,wehave presented anALE-LDGmethod for one-dimensional linear convection–
diffusion problems. The ALE framework is suggested by [24]. We have shown that the
semi-discrete ALE-LDG method satisfies L2 stability and sub-optimal error estimate, when
the Lax-Friedrichs flux is taken for the convection term. Moreover, we also discussed
three specific fully discrete ALE-LDG schemes and the time discretization is IMEX RK
approaches. The scaling argument plays an important role in our work, which has been used
to analyze quantities caused by the time-dependent cells, approximation space and velocity
grid field. We have proven that three fully discrete schemes are stable under the time step
restriction τ ≤ τ0, where τ0 is a positive constant and independent of the mesh size h, but
depends on the convection and diffusion coefficients, the polynomial degree, and the moving
grid function. With the time step condition, the quasi-optimal error estimate in space and
optimal convergence order in time for the corresponding fully discrete schemes have been
established. We also gave numerical examples to verify our theoretical results. The ALE-
LDG method, stability analysis and error estimates can be extended to convection–diffusion
problems with a nonlinear convection term. The analysis of the fully discrete ALE-LDG
scheme in the two dimensional case is more technical and will be considered in future.
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123



   21 Page 30 of 31 Journal of Scientific Computing            (2022) 90:21 

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Ascher,U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kuttamethods for time-dependent partial
differential equations. Appl. Numer. Math. 25, 151–167 (1997)

2. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differ-
ential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

3. Balázsová, M., Feistauer, M., Vlasák, M.: Stability of the ale space-time discontinuous Galerkin method
for nonlinear convection–diffusion problems in time-dependent domains. ESAIM Math. Model. Numer.
Anal. 52, 2327–2356 (2018)

4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution
of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
6. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of

the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71, 455–478
(2001)

7. Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–
diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

8. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite
element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

9. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation
and Applications. Lecture notes in Computational Science and Engineering, vol. 11. Springer (2000)

10. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite
element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

12. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V:
multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

13. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–
diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

14. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkinmethods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

15. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin
Heidelberg (2012)

16. Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method: Analysis and Applications to Compressible
Flow. Springer, Berlin (2015)

17. Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian methods. In:
Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics Fundamentals,
vol. 1, pp. 413–437. Wiley, Hoboken (2004)
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