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Abstract
In this paper, a new kind of hybrid method based on the weighted essentially non-oscilla-
tory (WENO) type reconstruction is proposed to solve hyperbolic conservation laws. Com-
paring the WENO schemes with/without hybridization, the hybrid one can resolve more 
details in the region containing multi-scale structures and achieve higher resolution in the 
smooth region; meanwhile, the essentially oscillation-free solution could also be obtained. 
By adapting the original smoothness indicator in the WENO reconstruction, the sten-
cil is distinguished into three types: smooth, non-smooth, and high-frequency region. In 
the smooth region, the linear reconstruction is used and the non-smooth region with the 
WENO reconstruction. In the high-frequency region, the mixed scheme of the linear and 
WENO schemes is adopted with the smoothness amplification factor, which could capture 
high-frequency wave efficiently. Spectral analysis and numerous examples are presented to 
demonstrate the robustness and performance of the hybrid scheme for hyperbolic conserva-
tion laws.
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1  Introduction

The hyperbolic conservation laws take a great part in numerical simulations. To solve com-
plex flow field, we need a high resolution scheme to resolve the small scales, and compress 
numerical oscillations. In 1987, Harten et  al. [17] proposed the essentially non-oscilla-
tory (ENO) scheme to solve problems for one-dimensional hyperbolic conservation law, 
in which the key idea was to identify the smoothest stencil for reconstruction based on 
the divided difference. In 1994, Liu et al. [27] designed the original weighted essentially 
non-oscillatory (WENO) scheme which used the convex combination of the sub-stencils 
and the nonlinear weights to recover its corresponding linear weights in smooth region 
and compressed the weight of the stencil containing shock nearly zero, and thus achieved 
the ENO property. To improve accuracy, Jiang and Shu [19] proposed a new smoothness 
indicator which is widely used in lots of WENO schemes. The original WENO scheme 
equipped with this smoothness indicator is named as the WENOJS scheme. Since the 
WENOJS scheme may lose accuracy in critical points, to overcome this defect, Henrick 
et al. [18] proposed the WENO-M scheme which used mapping to modify the nonlinear 
weight, but this strategy increased about 20% CPU time. Borges et  al. [5] proposed the 
WENOZ scheme which can give the numerical solution with low dissipation, while the 
computational cost is almost the same as the WENOJS scheme, and there is a parameter in 
the scheme that can be tuned to recover accuracy near critical points and to adjust dissipa-
tion. Afterward, lots of new smoothness indicators were designed [3, 4, 10, 15, 20, 42–44] 
to improve the performance of WENO-type schemes. People also proposed lots of hybrid 
WENO schemes to improve the performance, such as hybrid compact-ENO schemes [2], 
conservative hybrid compact-WENO schemes [29], characteristic-wise hybrid compact-
WENO schemes [32], multi-domain hybrid spectral-WENO methods [8]. The a posteriori, 
efficient, high-spectral resolution hybrid finite difference method [11], hybrid compact-
WENO finite difference schemes with shock detectors based on the conjugate Fourier algo-
rithm [9], radial basis function [39], and artificial neural network [40], etc.

It has been pointed out by Acker et al. in [1] that increasing the weight of non-smooth 
stencil is of great importance to give better resolution on coarse grid, while increasing the 
accuracy near critical points works on fine grid. In view of this point, we design a new kind 
of hybrid scheme to improve the existing WENO schemes, which can give the numerical 
solution with lower dissipation and less error in smooth region and suppress numerical 
oscillation effectively. For general hybrid methods [23–25, 45, 46], people often classify 
the whole domain into two parts: smooth region and non-smooth region, and use the cor-
responding linear scheme in smooth region while certain WENO scheme in non-smooth 
region. The effect of these hybrid methods is heavily based on the proposed shock detector, 
such as the discontinuity indicator based on the average total variation of the solution [31, 
47], the minmod-based TVB limiter [7], Harten’s multi-resolution analysis [16], the shock 
detection technique by Krivodonova et al. [21], the trigonometric detector-based conjugate 
Fourier analysis [9], the shock detection method based on radial basis function [39], the 
monotonicity-preserving discontinuity indicator [38], the shock detection method based on 
targeted ENO schemes [12, 13], and the shock detection method based on neural network 
[37, 40], etc. Different from the general approach in the hybrid schemes, we classify the 
whole domain into three parts: smooth, non-smooth, and high-frequency regions.

In this paper, we propose a very simple shock detector to distinguish the smooth region 
from the whole domain, which is based on the smoothness indicator in the WENO recon-
struction and similar to the approach in [4] for the third-order WENO scheme. The issue 
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for recovering accuracy near critical points is also a hot topic for WENO schemes. There 
is a strategy to deal with it by setting the small quantity arising in the nonlinear weight as 
a mesh size-dependent quantity, which appears in numerous literatures [1, 6, 42, 43]. We 
develop an alternative simple strategy to achieve the same goal by enforcing a threshold 
to include critical points in the smooth region. The rest domain is further identified as the 
non-smooth or high-frequency region with a detector also based on the smoothness indica-
tor in the WENO reconstruction. As usual, the linear reconstruction and the WENO recon-
struction are used in the smooth and non-smooth regions, respectively. In high-frequency 
region, a mixed scheme of the linear and WENO reconstruction is developed to improve 
the resolution on high-frequency waves, which is verified by the numerical spectral anal-
ysis. Compared with the WENO scheme without hybridization, this strategy can obtain 
numerical solutions with higher resolution and maintain the good capture of the outline 
near discontinuities.

Among all the high-order WENO schemes, the fifth-order WENO scheme is the most 
popular one, since this scheme maintains sufficiently low dissipation to capture shock, 
while some oscillation may appear for higher order WENO schemes due to the usage of 
larger sub-stencil. We apply our hybrid strategy to the fifth-order WENOJS and WENOZ 
finite difference schemes, respectively, named as WENOJS-H and WENOZ-H schemes. 
Detailed comparisons with the original and the hybrid schemes are presented, which dem-
onstrate that the hybrid schemes could give slightly sharper approximation near the dis-
continuities, and yield better results especially in the sophisticated region containing many 
small scales at slightly smaller computational cost. From spectral analysis [29] and numeri-
cal experiments, we can also see that these hybrid schemes work quite similarly. To some 
extent, the hybrid strategy can exploit the potential of the original scheme sufficiently.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce the WENO 
finite difference method for hyperbolic conservation laws, including the WENOJS and 
WENOZ reconstruction. Section 3 is devoted to the development of the hybrid strategy. 
First, we propose a simple detector to distinguish three different regions, which is also 
based on the smoothness indicator in the WENO reconstruction. Also, a mixed reconstruc-
tion in the high-frequency region is developed. The approximate spectral analysis is per-
formed to show the improvement of the hybrid schemes on the dispersion and dissipation 
relations. In Sect. 4, numerous experiment results are presented to show the robustness and 
high resolution feature of these new hybrid WENO schemes. Conclusions and perspectives 
are drawn in Sect. 5.

2 � The WENO Finite Difference Method

In this section, we will briefly introduce the finite difference method with the sliding opera-
tor and the WENO reconstruction.

2.1 � The Conservative Finite Difference Method

For the one-dimensional scalar conservation law

(1)ut + f (u)x = 0, x ∈ [a, b],
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we solve it on a uniform grid, a = x 1

2

< x 3

2

< ⋯ < x
N+

1

2

= b . Define Ii = [x
i−

1

2

, x
i+

1

2

] , 
Δx = x

i+
1

2

− x
i−

1

2

 and xi are the centers of the cells Ii , for i = 1, 2,⋯ ,N . Let h(x) be the 
sliding function satisfying

Then

Thus, Eq. (1) can be discretized in conservative form

where ui is the numerical approximation to the point value u(xi, t) , and the numerical flux 
f̂
i+

1

2

 is the approximation of h(x
i+

1

2

, t) obtained by reconstruction. In the reconstruction, 
f (ui) can be viewed as the approximation of the cell average of the sliding function 
h̄i =

1

Δx
∫ x

i−
1
2

x
i+

1
2

h(x)dx . Therefore, we need to reconstruct f̂
i+

1

2

= h
i+

1

2

 from the cell average 
h̄i . To maintain stability, the upwind mechanism is performed by the flux splitting, e.g., the 
Lax-Friedrichs splitting f̂

i+
1

2

= f̂ +
i+

1

2

+ f̂ −
i+

1

2

 with f ±(u) = 1

2
(f (u) ± �u) and � = max

u
|f �(u)| 

chosen in the relevant domain.
Similarly, the one-dimensional hyperbolic system

can be discretized as

where ui is the approximation to u(xi, t) . The easiest way is to reconstruct f̂
i+

1

2

 in a component-
wise fashion. However, for more demanding problems or when the order of accuracy is high, the 
more robust characteristic decomposition is needed. Let R = R(u

i+
1

2

),L = R
−1(u

i+
1

2

),� = �(u
i+

1

2

) 
be the matrices of right eigenvectors, left eigenvectors, and eigenvalues of the Jacobian f �(u

i+
1

2

) , 
respectively. The average state u

i+
1

2

 computed by a Roe average satisfies

Transform the point value uj and f (uj) into local characteristic field by

Next, we perform the Lax-Friedrichs flux splitting for each characteristic variable and the 
WENO reconstruction to obtain the corresponding component of the flux ĝ±

i+
1

2

 . The viscos-

(2)
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2

x−
Δx

2

h(�)d�

Δx
= f (u(x, t)).

(3)f (u)x =

h
(
x +

Δx

2
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− h

(
x −
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2

)

Δx
.

(4)dui

dt
= −

f̂
i+

1

2

− f̂
i−

1

2

Δx
,

(5)ut + f (u)x = 0, x ∈ [a, b]

(6)dui

dt
= −

f̂
i+

1

2

− f̂
i−

1

2

Δx
,

(7)f (ui+1) − f (ui) = f �(u
i+

1

2

)(ui+1 − ui).

(8)vj = Luj, gj = Lf j, j = i − 2,⋯ , i + 3.
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ity coefficient in the Lax-Friedrichs flux splitting can be taken as �l = max
j

|�l(uj)| for each 

characteristic variable in the relevant domain. Then, we project the new flux ĝ±
i+

1

2

 back into 

physical space by

The final numerical flux is formed by f̂
i+

1

2

= f̂
+

i+
1

2

+ f̂
−

i+
1

2

.
For multi-dimensional hyperbolic conservation laws on uniform grids, the similar proce-

dure can be performed in a dimension-by-dimension way to obtain the corresponding finite 
difference scheme in conservative form. We refer to [35, 36] for more details.

In any case as above, the fully discrete scheme can be obtained by applying the third-order 
TVD Runge-Kutta time discretization method [14]

where L is the spatial discrete operator given by (4) or (6).

2.2 � The WENO Reconstruction

Next, we introduce the WENO reconstruction procedure to obtain h
i+

1

2

 from the cell average h̄i 
of the sliding function. Generally, let {v̄i} be the cell average of a function v(x) on the uniform 
grid above. In the fifth-order case, for each following stencil:

there is a unique quadratic polynomial denoted by pk(x) satisfying

Besides, there is a fourth-degree polynomial denoted by PL(x) satisfying

Evaluate pk(x) at x
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2

 , we obtain the third-order approximations to v(x
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1

2
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pk(xi± 1

2

) = vk
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1

2

, k = 1, 2, 3. Let Dk(x) be the linear weights satisfying
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±
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2

.
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3
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(11)Sk = {Ii−3+k, Ii−2+k, Ii−1+k}, k = 1, 2, 3,
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(14)PL(x) =
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k=1

Dk(x)pk(x) = v(x) +O(Δx5),
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and take dk = Dk(xi+ 1

2

), d̃k = Dk(xi− 1

2

), k = 1, 2, 3. The explicit values for dk (k = 1, 2, 3) are 
1

10
,

6

10
 , and 3

10
 , respectively, and 3

10
,

6

10
,

1

10
 for d̃k . The smoothness indicators �k (k = 1, 2, 3) 

in the WENOJS reconstruction are computed by

where the superscript (r) represents the order of derivative. The nonlinear weights are 
given by

�k(x) are the non-normalized nonlinear weights, and �k(x) are the normalized nonlinear 
weights. The parameter � is set as 10−6 to avoid the denominator becoming zero and reduce 
the influence from critical points. The parameter p is set as 2 to provide enough weights to 
smooth stencils. Take wk = 𝛾k(xi+ 1

2

), w̃k = 𝛾k(xi− 1

2

), k = 1, 2, 3 , the WENO reconstruction 
polynomial PN(x) is given by

and the final fifth-order approximations at cell boundaries are given by

In the finite difference method, the numerical fluxes are taken as f̂ +
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The explicit formulas for �k are

By performing the Taylor expansion at xi , we have
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Compared with the WENOJS reconstruction, the only difference for the WENOZ recon-
struction is the use of novel nonlinear weights. Let �5 = |�1 − �3| , and the nonlinear 
weights are given by

and take wk = 𝛾k(xi+ 1

2

), w̃k = 𝛾k(xi− 1

2

), k = 1, 2, 3 . The parameter p is set as 2, which can 
adjust the final weights assigned to smooth and non-smooth stencils. From (22) and (24), it 
is easy to get

The � arising in the nonlinear weight can be taken as � = Δxl(l ⩽ 5 −
3

p
) , and then, we 

obtain the sufficient condition

which guarantees that the WENOZ scheme maintains the fifth-order accuracy near extrema 
regardless of the order of critical points.

As pointed out by Borgers et  al. [5], by tuning the parameter p, we can recover the 
accuracy near critical points, while larger p gives larger dissipation. Compared with 
the WENOJS scheme, the weight assigned to the non-smooth stencil is larger. Besides, 
near critical points, the nonlinear weight can often recover its linear weight better than 
the WENOJS scheme. Numerical experiments demonstrate that the WENOZ scheme can 
give a numerical solution with less dissipation and higher resolution. It is also popular 
to adopt the hybrid approach to reduce the dissipation and increase the resolution in the 
reconstruction.

3 � The Hybrid Reconstruction Method

In this section, we propose a new hybrid method to perform the reconstruction. The 
major difference from the existing hybrid strategies is that the domain is classified into 
three parts: smooth region, non-smooth region, and high-frequency region. In the smooth 
region, the linear reconstruction is used and the nonlinear WENO reconstruction in the 
non-smooth region. Meanwhile, a mixed reconstruction of the linear and nonlinear recon-
struction is adopted in the high-frequency region for higher resolution.

First, we need to propose some smoothness detectors to identify these sub-stencils. 
Based on the smoothness detector, if all sub-stencils are “smooth”, then the big stencil 
is marked as smooth region. If all sub-stencils are “non-smooth”, then the big stencil is 
marked as high-frequency region. Otherwise, the stencil is labeled as non-smooth region. 
There are many different ways to give the smoothness detectors in the hybrid methods. In 
this paper, we still adopt the smoothness indicator (15) in the WENOJS reconstruction as 
the major ingredient in the smoothness detector. This approach may not be the most sharp 
one but a simple and effective choice.
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, k = 1, 2, 3,
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13

3
|f ��
i
f ���
i
|Δx5 +O(Δx6).

(27)�k(x) − Dk(x) = O(Δx3),
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For the fifth-order method, let �A = min(�1, �2, �3) and �M =
1

3

3∑
i=1

�i , where �i (i = 1, 2, 3) 

are the smoothness indicators of the sub-stencils in the WENOJS reconstruction. In the 
smooth region, we have 𝜏5 < 𝛽M , since �5 = Δx5 , and �M = Δx2 if there are no critical points, 
where �5 = |�1 − �3| is the indicator used in the WENOZ reconstruction. To exclude the influ-
ence of critical points, the smooth region is identified by �5 ⩽ CΔx2 or �5 ⩽ �M . Otherwise, 
the region is either non-smooth or high-frequency. The high-frequency region is further identi-
fied by 𝛽A > CΔx and the rest is the non-smooth region. The scaling constant C is defined by

where U is the variable under reconstruction and the constant 10−40 is added to avoid it 
becoming zero. The parameter C = max{U2} + 10−40 is chosen to make the scheme scale-
free. Meanwhile, we found that taking C = 1 does not cause any trouble at least in our 
numerical tests and can get very similar numerical results, which indicate that the scheme 
is not very sensitive to this parameter. Thus, in numerical tests, the scaling parameter is set 
as C = 1 for simplicity unless otherwise stated.

As mentioned before, for hybrid methods, different approximations are adopted in different 
regions. Usually, the WENO-type approximation is used to preserve the ENO property in the 
non-smooth region, and the high-order linear approximation is taken to obtain high resolution 
and better spectral approximation. Unlike other hybrid methods, now, we have the additional 
high-frequency region. To increase the spectral resolution and stability, a mixed approxima-
tion of the linear and nonlinear methods is proposed as follows.

In the fifth-order method, we can choose the fifth-order linear approximation in (13), and 
its smoothness indicator is denoted by �L and computed by (15). In the high-frequency region, 
the mixed approximation is the convex combination of the linear and WENO approximations 
with the weights of w1 and w2 , respectively. The weights are computed by

where a =
�L

�A
 . Let PL and PN be the fifth-order linear and the WENO polynomials with the 

smoothness indicators �L and �N , respectively. By adopting this pair of weights (w1,w2) , 
we can make a conclusion that the smoothness indicator of the combined polynomial is no 
more than 2Q�N . It can be justified as follows.

The smoothness indicator of the combined polynomial can be written as

Thus, we have

We will get �W ⩽ 2Q�N as long as 2(w2

1
�L + w2

2
�N) ⩽ 2Q�N . Since 0 < 𝛽A ⩽ 𝛽N and 

a =
�L

�A
 , it suffices to let

(28)C = max{U2

j
∶ j = i − 2, i − 1,⋯ , i + 2} + 10−40,

(29)w1 = min

�
1,

1 +
√
1 + (a + 1)(Q − 1)

a + 1

�
, w2 = 1 − w1,

(30)�W =
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((w1P
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(
((w1P

L)(j))2 + ((w2P
N)(j))2

)
dx = 2(w2

1
�L + w2

2
�N).
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Substitute w2 with 1 − w1 , the conclusion follows by solving a one variable quadratic 
equation:

Denote F(a,Q) = 1+
√
1+(a+1)(Q−1)

a+1
 . It can be seen that F is an increasing function of Q and 

a decreasing function of a, which can adaptively adjust the weights according to the flow 
field information. When a ⩽ Q , the weight w1 = 1 for F(Q,Q) = 1 , and thus, the linear 
approximation is dominant. Through the parameter Q, we can control the usage of linear 
approximation in the high-frequency region.

Finally, we summarize our fifth-order hybrid reconstruction procedure as follows. 

Algorithm 1 Procedure for the hybrid reconstruction
i) Procedure WENO-H
ii) Given the cell averages vj for all j
iii) Calculate βi, i = 1, 2, 3, βA, βM and τ5
iv) if τ5 C∆x2 or τ5 βM then
v) Perform the linear reconstruction
vi) else if βA > C∆x then
vii) Perform the mixed reconstruction
viii) else
ix) Perform the WENO reconstruction

In this paper, we apply the hybrid approach on the fifth-order WENOJS and WENOZ 
finite difference schemes, respectively, named as WENOJS-H and WENOZ-H schemes. 
To examine the performances of schemes with/without the hybridization, we adopt the 
approach in [28–30] to compare the approximate dispersion and dissipation relations with 
the fifth-order linear (LIN5) reconstruction. Let w,w′ be the reduced wave number and 
the modified wave number, respectively. The results are shown in Figs.  1 and  2, which 
demonstrate that the new hybrid schemes maintain lower dispersion and dissipation errors 
than the original schemes. Without the hybrid procedure, the WENOZ scheme shows 

(32)w2

1
a + w2

2
= Q.

(33)(a + 1)w2

1
− 2w1 + 1 − Q = 0.
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Fig. 1   Approximate dispersion and dissipation relations for WENOJS-type schemes
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slightly better performance than the WENOJS scheme. After the hybridization, both hybrid 
schemes perform very similarly to each other, but much better performance than the origi-
nal ones. The similar observation can be found in other numerical tests in the following 
section.

In this approximate spectral analysis, we take � = 10−6, p = 2 for WENOJS and 
WENOZ schemes, and Q = 9 for both hybrid schemes. And the scaling parameter is set as 
C = 1 for simplicity, which is not sensitive in the schemes. In the rest of numerical tests, 
the same parameters are adopted unless otherwise stated.

4 � Numerical Results

In this section, we present the numerical results of the fifth-order WENOJS and WENOZ 
finite difference schemes and the corresponding hybrid WENOJS-H and WENOZ-H 
schemes. The third-order Runge-Kutta method (10) [14] is used to march in time and the 
CFL number is set as 0.6. Unless specified, we always take � = 10−6, p = 2 in all WENO 
schemes for fair comparison and keep Q = 9 and C = 1 in all the hybrid schemes. In the 
accuracy tests, we take Δt ≈ Δx

5

3 to make sure that the spatial error dominates.

Example 1 

(a)	 We approximate the following functions by the reconstruction algorithms of the fifth-
order WENOJS, WENOJS-H, and linear (LIN5) reconstruction: 

The numerical results are shown in Fig. 3. It can be seen that the hybrid reconstruc-
tion becomes the linear reconstruction and gives less error than original WENOJS 

(34)u1(x) = 1 + 3 sin(7x), 0 < x < 2𝜋,

(35)u2(x) =

⎧⎪⎨⎪⎩

1 + 3 sin(7x), 0 < x < 2,

3 sin(7x), 2 < x < 5,

1 + 3 sin(7x), 5 < x < 2𝜋.
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Fig. 2   Approximate dispersion and dissipation relations for WENOZ-type schemes
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reconstruction in most region. Near the discontinuities, the hybrid approach maintains 
the similar resolution as the WENOJS reconstruction. The WENOZ and its hybrid 
reconstruction perform similarly as the linear scheme, and thus, we omit it here.

(b)	 We approximate the following function [6] by the fifth-order WENOZ, WENOZ-H, 
and linear reconstruction algorithms: 

In Fig. 4, it shows that the hybrid reconstruction becomes the linear reconstruction in 
this case and gives less error than original WENOZ reconstruction near critical point.

Example 2  Consider the linear convection equation

with the initial condition u(x, 0) = sin x and the periodic boundary condition. We compute 
the numerical solution till T = 0.5 . The errors for different schemes are shown in Figs. 5 

(36)u3(x) = e2xx3,−1 < x < 1.

(37)ut + ux = 0
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Fig. 3   Numerical results of WENOJS-type schemes, uniform mesh with 640 cells. Left: error distributions 
for u1(x) ; right: error distributions for u2(x)
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Fig. 4   Numerical results of WENOZ-type schemes, uniform mesh with 100 cells. Left: error distributions 
for u3(x) ; right: zoomed-in error distributions near critical point for u3(x)
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and 6. We can see that the WENOJS-H scheme presents solution with less error than the 
original scheme, while the WENOZ-H scheme presents solution with less error than the 
original scheme on the coarse grid. Next, we solve the same Eq. (37) with the discontinu-
ous initial condition

There are two discontinuities in the domain. We compute the numerical solution till 
T = 2� . In Fig. 8, the time history of different regions is shown. The numerical results and 
error distributions for different schemes are shown in Fig. 7, which shows that the hybrid 
schemes maintain the same resolution as the original WENO schemes near discontinuities.

(38)u(x, 0) =

⎧⎪⎨⎪⎩

sin x, 0 < x < 2,

sin x − 1, 2 < x < 5,

sin x, 5 < x < 2𝜋.
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Fig. 5   Accuracy test of 1D scalar convection equation for the WENOJS-type schemes. Uniform meshes 
with N = 10, 20, 40, 80, 160 cells at time T = 0.5 . Left: L1 errors for the WENOJS-type schemes; right: L∞ 
errors for the WENOJS-type schemes
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Fig. 6   Accuracy test of 1D scalar convection equation for the WENOZ-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.5 . Left: L1 errors for the WENOZ-type schemes; right: L∞ errors 
for the WENOZ-type schemes
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Example 3  Consider the one-dimensional Burgers equation

with the initial condition u(x, 0) = 1

2
+ sin x and the periodic boundary condition. We com-

pute the numerical solution till T = 0.5 when the solution is still smooth. In Fig. 12, the 
time history of different regions is provided. The numerical results are shown in Figs. 9 
and 10. We can see that both hybrid schemes generate numerical solutions with less error 
than the original schemes. Then, we compute the numerical solution till T = 1.5 when the 
shock appears. The numerical results for different schemes are shown in Fig. 11; all the 
schemes generate oscillation free solution.

(39)ut +

(
u2

2

)

x

= 0, 0 < x < 2𝜋
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Fig. 7   Numerical results for the 1D scalar convection equation. Uniform mesh with 100 cells at time 
T = 2�
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Fig. 8   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the 1D scalar convection equation (only the center cell is marked). Uniform mesh with 320 cells till time 
T = 2� . Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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Fig. 9   Accuracy test of 1D scalar Burgers equation for the WENOJS-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.5 . Left: L1 errors for the WENOJS-type schemes; right: L∞ errors 
for the WENOJS-type schemes
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Fig. 10   Accuracy test of 1D scalar Burgers equation for the WENOZ-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.5 . Left: L1 errors for the WENOZ-type schemes; right: L∞ errors 
for the WENOZ-type schemes
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Fig. 11   Numerical results for the 1D scalar Burgers equation. Uniform mesh with 300 cells at time T = 1.5
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Example 4  We solve the 2D scalar convection equation

with the initial condition

and the periodic boundary condition. We compute the numerical solution till T = 0.1 . The 
numerical results are shown in Figs.  13 and  14. It is found that all the schemes gener-
ate oscillation-free solution, while the hybrid schemes give slightly less error than original 
schemes near discontinuities.

(40)ut + ux + uy = 0, (x, y) ∈ [0, 1]2

(41)u(x, 0) =

⎧⎪⎨⎪⎩

sin(2𝜋(x + y)) − 1, (x − 0.5)2 + (y − 0.5)2 <
1

8
,

sin(2𝜋(x + y)), otherwise,
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Fig. 12   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the 1D scalar Burgers equation (only the center cell is marked). Uniform mesh with 300 cells till time 
T = 1.5 . Blue circles: marks of non-smooth region; red squares: marks of high-frequency region

0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1
WENOJS
WENOJS-H
Exact

(a) WENOJS

0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1
WENOZ
WENOZ-H
Exact

(b) WENOZ

Fig. 13   1D cut along diagonal for the 2D scalar convection equation. Uniform mesh with 300 × 300 cells at 
time T = 0.1
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Example 5  We solve the 2D scalar Burgers equation

with the initial condition u(x, 0) = 0.5 + sin(
�

2
(x + y)) , and the periodic boundary condi-

tion. We compute the numerical solution till T =
0.5

�
 when the solution is still smooth. The 

numerical results are shown in Figs.  15 and 16. We can see that both the new schemes 
achieve fifth-order accuracy, while the hybrid schemes give less errors than original 
schemes especially in coarse grid. We proceed to solve the equation till T =

1.5

�
 when shock 

appears. The numerical results and errors are shown in Figs. 17 and 18. All schemes gener-
ate oscillation-free solution.

(42)ut +

(
u2

2

)

x

+

(
u2

2

)

y

= 0, (x, y) ∈ [−2, 2]2
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Fig. 14   Error distributions along diagonal for the 2D scalar convection equation. Uniform mesh with 
300 × 300 cells at time T = 0.1
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Fig. 16   Accuracy test of 2D scalar Burgers equation for the WENOZ-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T =
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 . Left: L1 errors for the WENOZ-type schemes; right: L∞ errors 
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Fig. 17   1D cut along diagonal for the 2D scalar Burgers equation. Uniform mesh with 100×100 cells at 
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Example 6  We solve the one-dimensional Euler equation

with the Riemann initial condition for the Lax’s problem

where � is the density, u is the velocity, P is the pressure, E =
1

2
�u2 +

P

�−1
 , and � is the ratio 

of specific heats. We compute the density � by the finite difference schemes at T = 0.16 in 
Fig. 19. In Fig. 20, the time history of different regions is shown. It can be seen that all 

(43)
�

�t

⎛⎜⎜⎝

�

�u

E

⎞⎟⎟⎠
+

�

�x

⎛⎜⎜⎝

�u

�u2 + P

u(E + P)

⎞⎟⎟⎠
= 0

(44)(�, u,P, �)T =

{
(0.445, 0.698, 3.528, 1.4)T, x ∈ [−0.5, 0),

(0.5, 0, 0.571, 1.4)T, x ∈ [0, 0.5],
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Fig. 19   Numerical results for the 1D Lax’s problem. Uniform mesh with 100 cells at time T = 0.16

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m
e

(a) f̂+
i+ 1

2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m
e

(b) f̂−
i+ 1

2

Fig. 20   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the 1D Lax’s problem (only the center cell is marked). Uniform mesh with 100 cells till time T = 0.16 . 
Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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schemes generate oscillation-free solution, while the hybrid schemes give slightly sharper 
approximation near shock and contact discontinuity.

Next, we solve the equations with the Riemann initial condition for the Sod’s problem

The referenced solution (black line) is the numerical solution computed by the fifth-order 
finite difference WENOJS scheme with 10 000 grid points. In Fig. 22, the time history of 
different regions is presented. The density � computed at T = 2 is plotted in Fig. 21, which 
shows that all schemes generate essentially oscillation-free solution.

Then, we consider the shock density wave interaction problem in [35] with a moving 
Mach=3 shock interacting with sine waves in density

(45)(�, u,P, �)T =

{
(1, 0, 1, 1.4)T, x ∈ [−5, 0),

(0.125, 0, 0.1, 1.4)T, x ∈ [0, 5].

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
WENOJS
WENOJS-H
Reference

(a) WENOJS

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
WENOZ
WENOZ-H
Reference

(b) WENOZ

Fig. 21   Numerical results for the 1D Sod’s problem. Uniform mesh with 200 cells at time T = 2
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Fig. 22   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the 1D Sod’s problem (only the center cell is marked). Uniform mesh with 200 cells till time T = 2 . 
Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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The referenced solution (black line) is the numerical solution computed by the fifth-order 
finite difference WENOJS scheme with 2 000 grid points. The final computational time is 
T = 1.8 . From Fig. 23, we can see that both hybrid schemes could capture high-frequency 
wave better than original schemes, and the performance of the hybrid schemes are similar. 
In Fig. 24, the time history of different regions is shown.

We now consider the interaction of two blast waves. The initial conditions are

(46)(�, u,P, �)T =

{
(3.857 143, 2.629 369, 10.333 333, 1.4)T, x ∈ [−5,−4),

(1 + 0.2 sin(5x), 0, 1, 1.4)T, x ∈ [−4, 5].

(47)(�, u,P, �)T =

⎧⎪⎨⎪⎩

(1, 0, 103, 1.4)T, x ∈ (0, 0.1),

(1, 0, 10−2, 1.4)T, x ∈ (0.1, 0.9),

(1, 0, 102, 1.4)T, x ∈ (0.9, 1).
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Fig. 23   Numerical results for the 1D Shu-Osher’s problem. Uniform mesh with 200 cells at time T = 1.8
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Fig. 24   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the 1D Shu-Osher’s problem (only the center cell is marked). Uniform mesh with 200 cells till time 
T = 1.8 . Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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The numerical solutions are shown in Fig. 25, where the referenced solution (black line) 
is the numerical solution computed by the fifth-order finite difference WENOZ-H scheme 
with 20 000 grid points. The final computational time is T = 0.038 . In Fig. 26, the time 
history of different regions is given. We can conclude that the hybrid WENOJS-H and 
WENOZ-H schemes show better resolution than the original WENOJS and WENOZ 
schemes. And the schemes after hybridization perform similarly.

The last case for 1D Euler equations is the Sedov’s blast wave problem [33]. This prob-
lem contains strong shocks with very low density. Initially, � = 1, u = 0,E = 10−12 every-
where except the energy in the center cell is the constant 3 200 000

Δx
 . The referenced solution 

(black line) is the numerical solution computed by the fifth-order finite difference WENOJS 
scheme with 4 000 grid points. We compute the numerical solution till T = 0.001 . From 
Fig.  27, it can be seen that the hybrid schemes generate numerical solutions with more 
sharper transition near shocks. By taking C = 1 , the time history of different regions is 
presented in Fig. 28. We also give another Fig. 29 to show the time history of different 

(a) (b)

Fig. 25   Numerical results for the interaction of two blast waves. Uniform mesh with 400 cells at time 
T = 0.038

Fig. 26   The time history of different regions of the numerical solution computed by the WENOZ-H scheme 
for the interaction of two blast waves (only the center cell is marked). Uniform mesh with 400 cells till time 
T = 0.038 . Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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regions, where C is determined by (28). For this extreme case, the scheme with C = 1 can 
still give a sharp capture of discontinuities as Fig. 27 shows.

Example 7  Next, we consider the accuracy test for two-dimensional Euler equations

in which � is the density, u and v are the velocities in the x and y directions, respectively, 
E =

1

2
�(u2 + v2) +

P

�−1
 is the total energy, and P is the pressure.

(48)
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Fig. 27   Numerical results for the Sedov’s blast wave. Uniform mesh with 400 cells at time T = 0.001

Fig. 28   C = 1 : the time history of different regions of the numerical solution computed by the WENOZ-H 
scheme for the Sedov’s blast wave (only the center cell is marked). Uniform mesh with 400 cells till time 
T = 0.001 . Blue circles: marks of non-smooth region; red squares: marks of high-frequency region
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Fig. 29   C is determined by (28): the time history of different regions of the numerical solution computed by 
the WENOZ-H scheme for the Sedov’s blast wave (only the center cell is marked). Uniform mesh with 400 
cells till time T = 0.001 . Blue circles: marks of non-smooth region; red squares: marks of high-frequency 
region

First, we consider the linear degenerate wave. Initially, these variables are set as 
�(x, y, 0) = 1 + 0.2 sin(x + y), u(x, y, 0) = 1, v(x, y, 0) = 1,P(x, y, 0) = 1 . We compute the 
numerical solution in [0, 2�] with periodic boundary conditions till T = 0.2 . The exact 
solution is �(x, y, t) = 1 + 0.2 sin(x + y − 2t) . The numerical errors are shown in Figs. 30 
and 31. All schemes achieve the fifth-order accuracy, while the WENOJS-H scheme pre-
sents less absolute error in each grid compared with the original WENOJS scheme. The 
WENOZ and WENOZ-H schemes perform quite similarly as in the 1D linear convection 
problem.

Then, we consider the vortex evolution problem. We compute this essential nonlinear 
problem in [0, 10]2 . The mean flow is � = 1,P = 1, (u, v) = (1, 1) . An isentropic vortex is 
added with no perturbation in the entropy S =

P

��
 . Let temperature T =

P

�
 , and the change 

for the velocities (u, v),T, S can be formulated as follows:
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Fig. 30   Accuracy test of 2D Euler equations for the WENOJS-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.2 . Left: L1 errors for the WENOJS-type schemes; right: L∞ errors 
for the WENOJS-type schemes



	 Communications on Applied Mathematics and Computation

1 3

where (x, y) = (x − 5, y − 5) , r2 = x
2
+ y

2 , and the vortex strength � = 5 . The exact solution 
is the passive convection of the vortex with the mean velocity. We compute the numeri-
cal solution with the periodic boundary condition till T = 0.2 . The numerical results are 
shown in Figs. 32 and 33. Now, both hybrid WENOJS-H and WENOZ-H schemes gener-
ate numerical solution with less error than the WENOJS and WENOZ schemes. And the 
hybrid schemes perform as well as the linear scheme even on the most coarse grid.

Example 8  Double Mach reflection problem [41, 48, 49]. We compute the numerical solu-
tion in a rectangular [0, 4] × [0, 1] . Initially, the computational domain is divided into two 
parts, and the dividing line lies at the bottom of the domain starting from x = 1

6
, y = 0 , 

making a 60◦ angle with the x-axis. Reflection boundary conditions are imposed for the 

(49)(�u, �v) =
�

2�
e0.5(1−r

2)(−y, x), �T = −
(� − 1)�2

8��2
e1−r

2

, �S = 0,
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Fig. 31   Accuracy test of 2D Euler equations for the WENOZ-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.2 . Left: L1 errors for the WENOZ-type schemes; right: L∞ errors 
for the WENOZ-type schemes
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Fig. 32   Accuracy test of 2D vortex evolution for the WENOJS-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.2 . Left: L1 errors for the WENOJS-type schemes; right: L∞ errors 
for the WENOJS-type schemes
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bottom boundary starting from x = 0 to x = 1

6
 . The top boundary is the exact motion of the 

Mach 10 shock. The final computational time is T = 0.2 . We present the contour line of 
region [0, 3] × [0, 1] in Fig. 34, and the zoomed-in figure in Fig. 35. Clearly, we can see that 
the new hybrid WENO schemes capture more details in flow field than WENOJS and 
WENOZ schemes. And the hybrid schemes perform similarly no matter which original 
WENO scheme is adopted. The history of ratios of different routes usage in the WENOZ-H 
scheme is shown in Fig. 36. The flag distributions at T = 0.2 are shown in Fig. 37, where 
the symbols flagx and flagy represent the detection results checked by the indicator in x- 
and y-directions, respectively. If �5 ⩽ CΔx2 or �5 ⩽ �M , then flagx = 0 ; otherwise, 
flagx = 1 . In the following text, either flagx or flagy represents the same meaning. The ratio 
of flagx is defined as 

∑
flagx

NxNy

 , where Nx,Ny are the the number of grid points in x- and 
y-directions, respectively, and the summation is taken over the whole computational 

101 102
10-6

10-5

10-4

10-3

10-2

10-1

100

LIN5
WENOZ
WENOZ-H

101 102
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

LIN5
WENOZ
WENOZ-H

Fig. 33   Accuracy test of 2D vortex evolution for the WENOZ-type schemes. Uniform meshes with 
N = 10, 20, 40, 80, 160 cells at time T = 0.2 . Left: L1 errors for the WENOZ-type schemes; right: L∞ errors 
for the WENOZ-type schemes
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Fig. 34   Numerical results for the double Mach reflection problem. Uniform mesh with 960 × 240 cells at 
time T = 0.2 . Forty-three equally spaced density contours from 1.887 to 22.9
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Fig. 35   Zoom-in figures for the double Mach reflection problem. Uniform mesh with 960 × 240 cells at 
time T = 0.2 . Forty-three equally spaced density contours from 1.887 to 22.9
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Fig. 36   Double Mach reflection problem: history of ratios of different routes usage for WENOZ-H. Left: 
usage for x-direction; right: usage for y-direction
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domain. The ratio of flagy is defined similarly. It shows that the simple hybrid indicator in 
the hybrid approach could capture the outline of discontinuities effectively.

Example 9  Rayleigh-Taylor instability problem [34]. The initial condition is

where c =
√

�P

�
 is the sound speed with � =

5

3
 . We compute the numerical solution in the 

region [0, 0.25] × [0, 1] . Reflective boundary conditions are imposed at the left and right 
sides of the domain. The bottom boundary condition is set as (�, u, v,P) = (2, 0, 0, 1) , while 
the top boundary condition is set as (�, u, v,P) = (1, 0, 0, 2.5) . The source term 
g(x, y, t) = (0, 0, �, �v)T is added to the right-hand side of the Euler equations (48). We 
compute the numerical solution till T = 1.95 . The numerical results for different schemes 
are shown in Fig.  38. Again, the hybrid schemes capture more details than the original 
ones. For the WENOZ-H scheme, the detection results in x- and y-directions at T = 1.95 

(50)(�, u, v,P)T =

{
(2, 0,−0.025c cos(8�x), 1 + 2y)T, y ∈ [0, 0.5),

(1, 0,−0.025c cos(8�x), y + 1.5)T, y ∈ [0.5, 1],

Fig. 37   Double Mach reflection problem: distributions of flag
x
 and flag

y
 for the numerical solution com-

puted by WENOZ-H at T = 0.2 checked by the hybrid indicator. Left: distribution of flag
x
 ; right: distribu-

tion of flag
y

Fig. 38   Numerical results of 
different WENO schemes for 
the Rayleigh-Taylor instabil-
ity problem. Uniform mesh 
with 120 × 480 cells at time 
T = 1.95 . Forty-three equally 
spaced density contours from 
0.952 269 to 2.145 89. From left 
to right: WENOJS, WENOJS-H, 
WENOZ, and WENOZ-H



	 Communications on Applied Mathematics and Computation

1 3

are shown in Fig. 39. We see that the indicator could capture the outline of discontinuities 
effectively.

Example 10  2D Riemann problem [22]. We compute the 2D Riemann problem in the 
region [0, 1] × [0, 1] with the initial condition

The final computational time is T = 0.3 . The numerical results for different schemes are 
shown in Fig. 40, and the zoomed-in figure is shown in Fig. 41. We can see that the hybrid 
WENO schemes capture more accurate details in flow field than the original schemes. The 
detection results in the WENOZ-H scheme at T = 0.3 are shown in Fig. 42, which gives an 
effective capture of the outline of discontinuities.

Example 11  The 2D implosion problem [26]. The initial condition is given by

(51)(𝜌, u, v,P)T =

⎧
⎪⎪⎨⎪⎪⎩

(1.5, 0, 0, 1.5)T, x > 0.5, y > 0.5,

(0.532 3, 1.206, 0, 0.3)T, x < 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029)T, x < 0.5, y < 0.5,

(0.532 3, 0, 1.206, 0.3)T, x > 0.5, y < 0.5.

Fig. 39   Rayleigh-Taylor instabil-
ity problem: distributions of flag

x
 

and flag
y
 for the numerical solu-

tion computed by WENOZ-H at 
T = 1.95 checked by the hybrid 
indicator. Left: distribution of 
flag

x
 ; right: distribution of flag

y
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The computational domain is a square with size 0.6 with the periodic boundary condi-
tion. We compute the solution till T = 0.75 , and the numerical results are shown in Fig. 43. 
The schemes after hybridization perform very similarly and increase the resolution on flow 
details. For the WENOZ-H scheme, the detection results in x- and y-directions at T = 0.75 
are shown in Fig. 44. We can still see that the indicator could resolve the outline of discon-
tinuities effectively.

(52)(𝜌, u, v,P)T =

{
(0.125, 0, 0, 0.14)T, 0.15 < x < 0.45, 0.15 < y < 0.45,

(1, 0, 0, 0.1)T, otherwise.

Fig. 40   Numerical results for the 2D Riemann problem. Uniform mesh with 1 024 × 1 024 cells at time 
T = 0.3 . Forty-three equally spaced density contours from 0.14 to 1.7
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Example 12  Next, we consider the forward step problem. The wind tunnel is 3 units length 
and 1 unit width. Initially, a Mach 3 flow with (�, u, v,P)T = (1.4, 3.0, 0, 1.0)T goes from 
the left to the right. The step with height 0.2 units is located in the interval [0.6, 3]. Inflow 
and outflow boundary conditions are applied along the left and right boundaries, respec-
tively, and reflective boundary conditions are imposed along the walls of the tunnel. Based 
on the assumption of a nearly steady flow, we adopt the method introduced in [41] to fix 
the singularity at the corner of the step. The numerical results are shown in Fig. 45. We can 
see that the hybrid schemes could resolve the slip line better than the classical schemes. 
For the WENOZ-H scheme, the detection results in x- and y-directions at T = 4.0 are 
shown in Fig. 46, where ratio of flag∗ is redefined as 

∑
flag∗

0.84NxNy

 , since there is a step located at 
the lower part of whole computational domain. We can still see that the indicator could 
present a nice capture of discontinuities.

Fig. 41   Zoom-in figures for the 2D Riemann problem. Uniform mesh with 1 024 × 1 024 cells at time 
T = 0.3
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At the end of this section, we present the CPU time for different problems computed by 
the classical schemes and the hybrid schemes in Table 1. For general hybrid schemes, the 
burdensome characteristic decomposition is removed in smooth region for efficiency. How-
ever, in our scheme, all the regions are classified based on the characteristic variables, and 
thus, the computational cost is not significantly reduced.

5 � Conclusion

In this paper, a new kind of hybrid approach was proposed for the WENO-type recon-
struction. Different from the existing hybrid methods, the reconstruction stencil is identi-
fied as smooth, non-smooth, and high-frequency regions by adopting the linear, WENO, 
and mixed reconstruction, respectively. The motivation is to increase the spectral resolu-
tion, which has been verified by the approximate spectral analysis and numerous numeri-
cal examples. The corresponding hybrid WENO finite difference schemes were proposed 
based on two classical WENO schemes for hyperbolic conservation laws, respectively. 
In numerical experiments, the hybrid schemes could achieve more accurate performance 
than the original schemes in the smooth region, better resolution in complex fluid field, 
and maintain the sharp and oscillation-free resolution near shocks. The new features of 
these hybrid WENO schemes are their simplicity and flexibility. No matter which original 
WENO scheme is used, the hybrid schemes perform very similarly. This hybrid approach 
can be applied to the finite volume method easily and will be generalized to higher order 
reconstruction.

Fig. 42   2D Riemann problem: distributions of flag
x
 and flag

y
 for the numerical solution computed by 

WENOZ-H at T = 0.3 checked by the hybrid indicator. Left: distribution of flag
x
 ; right: distribution of flag

y
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Fig. 43   Numerical results for the 2D implosion problem. Uniform mesh with 1 024 × 1 024 cells at time 
T = 0.75 . Forty-three equally spaced density contours from 0.3 to 1.2
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Fig. 44   2D implosion problem: distributions of flag
x
 and flag

y
 for the numerical solution computed by 

WENOZ-H at T = 0.75 checked by the hybrid indicator. Left: distribution of flag
x
 ; right: distribution of 

flag
y

Fig. 45   Numerical results for the forward step problem. Uniform mesh with 900 × 300 cells at time 
T = 4.0 . Ninety equally spaced density contours from 0.32 to 6.15

Fig. 46   Forward step problem: distributions of flag
x
 and flag

y
 for the numerical solution computed by 

WENOZ-H at T = 4.0 checked by the hybrid indicator. Left: distribution of flag
x
 ; Right: distribution of 

flag
y
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