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MULTIVARIATE VARYING COEFFICIENT MODEL FOR
FUNCTIONAL RESPONSES
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and University of Alberta

Motivated by recent work studying massive imaging data in the neu-
roimaging literature, we propose multivariate varying coefficient models
(MVCM) for modeling the relation between multiple functional responses
and a set of covariates. We develop several statistical inference procedures for
MVCM and systematically study their theoretical properties. We first estab-
lish the weak convergence of the local linear estimate of coefficient functions,
as well as its asymptotic bias and variance, and then we derive asymptotic bias
and mean integrated squared error of smoothed individual functions and their
uniform convergence rate. We establish the uniform convergence rate of the
estimated covariance function of the individual functions and its associated
eigenvalue and eigenfunctions. We propose a global test for linear hypotheses
of varying coefficient functions, and derive its asymptotic distribution under
the null hypothesis. We also propose a simultaneous confidence band for each
individual effect curve. We conduct Monte Carlo simulation to examine the
finite-sample performance of the proposed procedures. We apply MVCM to
investigate the development of white matter diffusivities along the genu tract
of the corpus callosum in a clinical study of neurodevelopment.

1. Introduction. With modern imaging techniques, massive imaging data
can be observed over both time and space [4, 17, 19, 25, 37, 41]. Such imag-
ing techniques include functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG), diffusion tensor imaging (DTI), positron emission tomog-
raphy (PET) and single photon emission-computed tomography (SPECT) among
many other imaging techniques. See, for example, a recent review of multiple
biomedical imaging techniques and their applications in cancer detection and pre-
vention in Fass [17]. Among them, predominant functional imaging techniques
including fMRI and EEG have been widely used in behavioral and cognitive neu-
roscience to understand functional segregation and integration of different brain
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regions in a single subject and across different populations [18, 19, 29]. In DTI,
multiple diffusion properties are measured along common major white matter fiber
tracts across multiple subjects to characterize the structure and orientation of white
matter structure in human brain in vivo [2, 3, 54].

A common feature of many imaging techniques is that massive functional data
are observed/calculated at the same design points, such as time for functional im-
ages (e.g., PET and fMRI). As an illustration, we present two smoothed functional
data as an illustration and a real imaging data in Section 6, that we encounter
in neuroimaging studies. First, we plot two diffusion properties, called fractional
anisotropy (FA) and mean diffusivity (MD), measured at 45 grid points along the
genu tract of the corpus callosum [Figure 1(a) and (b)] from 40 randomly selected
infants from a clinical study of neurodevelopment with more than 500 infants.
Scientists are particularly interested in delineating the structure of the variability
of these functional FA and MD data and their association with a set of covari-
ates of interest, such as age. We will systematically investigate the development
of FA and MD along the genu of the corpus callosum tract in Section 6. Second,
we consider the BOLD fMRI signal, which is based on hemodynamic responses
secondary to neural activity. We plot the estimated hemodynamic response func-
tions (HRF) corresponding to two stimulus categories from 14 randomly selected

(a) (b)

(c) (d)

FIG. 1. Representative functional neuroimaging data: (a) and (b) FA and MD along the genu tract
of the corpus callosum from 40 randomly selected infants; and (c) and (d) the estimated hemodynamic
response functions (HRF) corresponding to two stimulus categories from 14 subjects.
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subjects at a selected voxel of a common template space from a clinical study of
Alzheimer’s disease with more than 100 infants. Although the canonical form of
the HRF is often used, when applying fMRI in a clinical population with pos-
sibly altered hemodynamic responses [Figure 1(c) and (d)], using the subject’s
own HRF in fMRI data analysis may be advantageous because HRF variability is
greater across subjects than across brain regions within a subject [1, 33]. We are
particularly interested in delineating the structure of the variability of the HRF and
their association with a set of covariates of interest, such as diagnostic group [34].

A varying-coefficient model, which allows its regression coefficients to vary
over some predictors of interest, is a powerful statistical tool for addressing these
scientific questions. Since it was systematically introduced to statistical litera-
ture by Hastie and Tibshirani [24], many varying-coefficient models have been
widely studied and developed for longitudinal, time series and functional data
[12, 13, 15, 23, 26–28, 38, 44, 47, 51]. However, most varying-coefficient mod-
els in the existing literature are developed for univariate response. Let yi (s) =
(yi1(s), . . . , yiJ (s))T be a J -dimensional functional response vector for subject i,
i = 1, . . . , n, and xi be its associated p × 1 vector of covariates of interest. More-
over, s varies in a compact subset of Euclidean space and denotes the design point,
such as time for functional images and voxel for structural and functional images.
For notational simplicity, we assume s ∈ [0,1], but our results can be easily ex-
tended to higher dimensions. A multivariate varying coefficient model (MVCM) is
defined as

yij (s) = xT
i Bj (s) + ηij (s) + εij (s) for j = 1, . . . , J,(1.1)

where Bj(s) = (bj1(s), . . . , bjp(s))T is a p × 1 vector of functions of s, εij (s)

are measurement errors, and ηij (s) characterizes individual curve variations from
xT
i Bj (s). Moreover, {ηij (s) : s ∈ [0,1]} is assumed to be a stochastic process in-

dexed by s ∈ [0,1] and used to characterize the within-curve dependence. For im-
age data, it is typical that the J functional responses yi (s) are measured at the same
location for all subjects and exhibit both the within-curve and between-curve de-
pendence structure. Thus, for ease of notation, it is assumed throughout this paper
that yi (s) was measured at the same M location points s1 = 0 ≤ s2 ≤ · · · ≤ sM = 1
for all i.

Most varying coefficient models in the existing literature coincide model (1.1)
with J = 1 and without the within-curve dependence. Statistical inferences for
these varying coefficient models have been relatively well studied. Particularly,
Hoover et al. [26] and Wu, Chiang and Hoover [48] were among the first to in-
troduce the time-varying coefficient models for analysis of longitudinal data. Re-
cently, Fan and Zhang [15] gave a comprehensive review of various statistical pro-
cedures proposed for many varying coefficient models. It is of particular interest
in data analysis to construct simultaneous confidence bands (SCB) for any lin-
ear combination of Bj instead of pointwise confidence intervals and to develop
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global test statistics for the general hypothesis testing problem on Bj . For uni-
variate varying coefficient models without the within-curve dependence, Fan and
Zhang [14] constructed SCB using the limit theory for the maximum of the nor-
malized deviation of the estimate from its expected value. Faraway [16], Chiou,
Müller and Wang [8], and Cardot [5] proposed several varying coefficient models
and their associated estimators for univariate functional response, but they did not
give functional central limit theorem and simultaneous confidence band for their
estimators. It has been technically difficult to carry out statistical inferences includ-
ing simultaneous confidence band and global test statistic on Bj in the presence of
the within-curve dependence.

There have been several recent attempts to solve this problem in various set-
tings. For time series data, which may be viewed as a case with n = 1 and M → ∞,
asymptotic SCB for coefficient functions in varying coefficient models can be built
by using local kernel regression and a Gaussian approximation result for non-
stationary time series [52]. For sparse irregular longitudinal data, Ma, Yang and
Carroll [35] constructed asymptotic SCB for the mean function of the functional
regression model by using piecewise constant spline estimation and a strong ap-
proximation result. For functional data, Degras [9] constructed asymptotic SCB
for the mean function of the functional linear model without considering any co-
variate, while Zhang and Chen [51] adopted the method of “smoothing first, then
estimation” and propose a global test statistic for testing Bj , but their results can-
not be used for constructing SCB for Bj . Recently, Cardot et al. [6], Cardot and
Josserand [7] built asymptotic SCB for Horvitz–Thompson estimators for the mean
function, but their models and estimation methods differ significantly from ours.

In this paper, we propose an estimation procedure for the multivariate varying
coefficient model (1.1) by using local linear regression techniques, and derive a
simultaneous confidence band for the regression coefficient functions. We further
develop a test for linear hypotheses of coefficient functions. The major aim of this
paper is to investigate the theoretical properties of the proposed estimation pro-
cedure and test statistics. The theoretical development is challenging, but of great
interest for carrying out statistical inferences on Bj . The major contributions of
this paper are summarized as follows. We first establish the weak convergence of
the local linear estimator of Bj , denoted by B̂j , by using advanced empirical pro-
cess methods [31, 42]. We further derive the bias and asymptotic variance of B̂j .
These results provide insight into how the direct estimation procedure for Bj using
observations from all subjects outperforms the estimation procedure with the strat-
egy of “smoothing first, then estimation.” After calculating B̂j , we reconstruct all
individual functions ηij and establish their uniform convergence rates. We derive
uniform convergence rates of the proposed estimate for the covariance matrix of
ηij and its associated eigenvalue and eigenvector functions by using related results
in Li and Hsing [32]. Using the weak convergence of the local linear estimator
of Bj , we further establish the asymptotic distribution of a global test statistic for
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linear hypotheses of the regression coefficient functions, and construct an asymp-
totic SCB for each varying coefficient function.

The rest of this paper is organized as follows. In Section 2, we describe MVCM
and its estimation procedure. In Section 3, we propose a global test statistic for lin-
ear hypotheses of the regression coefficient functions and construct an asymptotic
SCB for each coefficient function. In Section 4, we discuss the theoretical prop-
erties of estimation and inference procedures. Two sets of simulation studies are
presented in Section 5 with the known ground truth to examine the finite sample
performance of the global test statistic and SCB for each individual varying co-
efficient function. In Section 6, we use MVCM to investigate the development of
white matter diffusivities along the genu tract of the corpus callosum in a clinical
study of neurodevelopment.

2. Estimation procedure. Throughout this paper, we assume that εi (s) =
(εi1(s), . . . , εiJ (s))T and ηi (s) = (ηi1(s), . . . , ηiJ (s))T are mutually indepen-
dent, and ηi (s) and εi (s) are independent and identical copies of SP(0,�η) and
SP(0,�ε), respectively, where SP(μ,�) denotes a stochastic process vector with
mean function μ(t) and covariance function �(s, t). Moreover, εi (s) and εi (t) are
assumed to be independent for s �= t , and �ε(s, t) takes the form of Sε(t)1(s = t),
where Sε(t) = (sε,jj ′(t)) is a J ×J matrix of functions of t and 1(·) is an indicator
function. Therefore, the covariance structure of yi (s), denoted by �y(s, t), is given
by

�y(s, t) = Cov
(
yi (s),yi(t)

) = �η(s, t) + Sε(t)1(s = t).(2.1)

2.1. Estimating varying coefficient functions. We employ local linear regres-
sion [11] to estimate the coefficient functions Bj . Specifically, we apply the Taylor
expansion for Bj(sm) at s as follows:

Bj(sm) ≈ Bj(s) + Ḃj (s)(sm − s) = Aj(s)zh1j
(sm − s),(2.2)

where zh(sm − s) = (1, (sm − s)/h)T and Aj(s) = [Bj(s)h1j Ḃj (s)] is a p × 2
matrix, in which Ḃj (s) = (ḃj1(s), . . . , ḃjp(s))T is a p × 1 vector and ḃj l(s) =
dbjl(s)/ds for l = 1, . . . , p. Let K(s) be a kernel function and Kh(s) =
h−1K(s/h) be the rescaled kernel function with a bandwidth h. We estimate Aj(s)

by minimizing the following weighted least squares function:

n∑
i=1

M∑
m=1

[
yij (sm) − xT

i Aj (s)zh1j
(sm − s)

]2
Kh1j

(sm − s).(2.3)

Let us now introduce some matrix operators. Let a⊗2 = aaT for any vector a and
C ⊗D be the Kronecker product of two matrices C and D. For an M1 ×M2 matrix
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C = (cjl), denote vec(C) = (c11, . . . , c1M2, . . . , cM11, . . . , cM1M2)
T . Let Âj (s) be

the minimizer of (2.3). Then

vec
(
Âj (s)

) = �(s,h1j )
−1

n∑
i=1

M∑
m=1

Kh1j
(sm − s)

[
xi ⊗ zh1j

(sm − s)
]
yij (sm),(2.4)

where �(s,h1j ) = ∑n
i=1

∑M
m=1 Kh1j

(sm − s)[x⊗2
i ⊗ zh1j

(sm − s)⊗2]. Thus, we
have

B̂j (s) = (
b̂j1(s), . . . , b̂jp(s)

)T = [
Ip ⊗ (1,0)

]
vec

(
Âj (s)

)
,(2.5)

where Ip is a p × p identity matrix.
In practice, we may select the bandwidth h1j by using leave-one-curve-out

cross-validation. Specifically, for each j , we pool the data from all n subjects and
select a bandwidth h1j , denoted by ĥ1j , by minimizing the cross-validation score
given by

CV(h1j ) = (nM)−1
n∑

i=1

M∑
m=1

[
yij (sm) − xT

i B̂j (sm,h1j )
(−i)]2

,(2.6)

where B̂j (s, h1j )
(−i) is the local linear estimator of Bj(s) with the bandwidth h1j

based on data excluding all the observations from the ith subject.

2.2. Smoothing individual functions. By assuming certain smoothness condi-
tions on ηij (s), we also employ the local linear regression technique to estimate
all individual functions ηij (s) [11, 38, 43, 45, 49, 51]. Specifically, we have the
Taylor expansion for ηij (sm) at s,

ηij (sm) ≈ dij (s)
T zh2j

(sm − s),(2.7)

where dij (s) = (ηij (s), h2j η̇ij (s))
T is a 2 × 1 vector. We develop an algorithm to

estimate dij (s) as follows. For each i and j , we estimate dij (s) by minimizing the
weighted least squares function:

M∑
m=1

[
yij (sm) − xT

i B̂j (sm) − dij (s)
T zh2j

(sm − s)
]2

Kh2j
(sm − s).(2.8)

Then, ηij (s) can be estimated by

η̂ij (s) = (1,0)d̂ij (s)
(2.9)

=
M∑

m=1

K̃h2j
(sm − s)

[
yij (sm) − xT

i B̂j (sm)
]
,
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where K̃h2j
(s) are the empirical equivalent kernels and d̂ij (s) is given by

d̂ij (s) =
[

M∑
m=1

Kh2j
(sm − s)zh2j

(sm − s)⊗2

]−1

×
M∑

m=1

Kh2j
(sm − s)zh2j

(sm − s)
[
yij (sm) − xT

i B̂j (sm)
]
.

Finally, let Sij be the smoother matrix for the j th measurement of the ith sub-
ject [11], we can obtain

η̂ij = (
η̂ij (s1), . . . , η̂ij (sM)

)T = SijRij ,(2.10)

where Rij = (yij (s1) − xT
i B̂j (s1), . . . , yij (sM) − xT

i B̂j (sM))T .
A simple and efficient way to obtain h2j is to use generalized cross-validation

method. For each j , we pool the data from all n subjects and select the optimal
bandwidth h2j , denoted by ĥ2j , by minimizing the generalized cross-validation
score given by

GCV(h2j ) =
n∑

i=1

RT
ij (IM − Sij )

T (IM − Sij )Rij

[1 − M−1 tr(Sij )]2 .(2.11)

Based on ĥ2j , we can use (2.9) to estimate ηij (s) for all i and j .

2.3. Functional principal component analysis. We consider a spectral decom-
position of �η(s, t) = (�η,jj ′(s, t)) and its approximation. According to Mercer’s
theorem [36], if �η(s, t) is continuous on [0,1] × [0,1], then �η,jj (s, t) admits a
spectral decomposition. Specifically, we have

�η,jj (s, t) =
∞∑
l=1

λjlψjl(s)ψjl(t)(2.12)

for j = 1, . . . , J , where λj1 ≥ λj2 ≥ · · · ≥ 0 are ordered values of the eigen-
values of a linear operator determined by �η,jj with

∑∞
l=1 λjl < ∞ and the

ψjl(t)’s are the corresponding orthonormal eigenfunctions (or principal compo-
nents) [22, 32, 50]. The eigenfunctions form an orthonormal system on the space
of square-integrable functions on [0,1], and ηij (t) admits the Karhunen–Loeve ex-
pansion as ηij (t) = ∑∞

l=1 ξij lψjl(t), where ξij l = ∫ 1
0 ηij (s)ψjl(s) ds is referred to

as the (j l)th functional principal component scores of the ith subject. For each
fixed (i, j), the ξij l’s are uncorrelated random variables with E(ξij l) = 0 and
E(ξ2

ij l) = λjl . Furthermore, for j �= j ′, we have

�η,jj ′(s, t) =
∞∑
l=1

∞∑
l′=1

E(ξij lξij ′l′)ψjl(s)ψj ′l′(t).
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After obtaining η̂i (s) = (η̂i1(s), . . . , η̂iJ (s))T , we estimate �η(s, t) by using the
empirical covariance of the estimated η̂i (s) as follows:

�̂η(s, t) = (n − p)−1
n∑

i=1

η̂i (s)η̂i (t)
T .

Following Rice and Silverman [39], we can calculate the spectral decomposition
of �̂η,jj (s, t) for each j as follows:

�̂η,jj (s, t) = ∑
l

λ̂j lψ̂j l(s)ψ̂j l(t),(2.13)

where λ̂j1 ≥ λ̂j2 ≥ · · · ≥ 0 are estimated eigenvalues and the ψ̂j l(t)’s are the
corresponding estimated principal components. Furthermore, the (j, l)th func-
tional principal component scores can be computed using ξ̂ij l = ∑M

m=1 η̂ij (sm) ×
ψ̂j l(sm)(sm − sm−1) for i = 1, . . . , n. We further show the uniform convergence
rate of �̂η(s, t) and its associated eigenvalues and eigenfunctions. This result is
useful for constructing the global and local test statistics for testing the covariate
effects.

3. Inference procedure. In this section, we study global tests for linear hy-
potheses of coefficient functions and SCB for each varying coefficient function.
They are essential for statistical inference on the coefficient functions.

3.1. Hypothesis test. Consider the linear hypotheses of B(s) as follows:

H0 : C vec
(
B(s)

) = b0(s) for all s vs. H1 : C vec
(
B(s)

) �= b0(s),(3.1)

where B(s) = [B1(s), . . . ,BJ (s)], C is a r × Jp matrix with rank r and b0(s) is a
given r × 1 vector of functions. Define a global test statistic Sn as

Sn =
∫ 1

0
d(s)T

[
C

(
�̂η(s, s) ⊗ �̂−1

X

)
CT ]−1d(s) ds,(3.2)

where �̂X = ∑n
i=1 x⊗2

i and d(s) = C vec(B̂(s) − bias(B̂(s))) − b0(s).
To calculate Sn, we need to estimate the bias of B̂j (s) for all j . Based on (2.5),

we have

bias
(
B̂j (s)

)
= [

Ip ⊗ (1,0)
]

(3.3)

× vec

(
�(s,h1j )

−1
n∑

i=1

M∑
m=1

Kh1j
(sm − s)

[
xi ⊗ zh1j

(sm − s)
]

× xi (sm)T
[
Bj(sm) − Âj (s)zh1j

(sm − s)
])

.
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By using Taylor’s expansion, we have

Bj(sm) − Âj (s)zh1j
(sm − s) ≈ 2−1B̈j (s)(sm − s)2 + 6−1 ˙B̈j (s)(sm − s)3,

where B̈j (s) = d2Bj(s)/ds2 and ˙B̈j (s) = d3Bj(s)/ds3. Following the pre-
asymptotic substitution method of Fan and Gijbels [11], we replace Bj(sm) −
Âj (s)zh1j

(sm − s) by 2−1 ˆ̈Bj(s)(sm − s)2 + 6−1 ˆ̇̈Bj(s)(sm − s)2, in which ˆ̈Bj(s)

and ˆ̇̈Bj(s) are estimators obtained by using local cubic fit with a pilot bandwidth
selected in (2.6).

It will be shown below that the asymptotic distribution of Sn is quite compli-
cated, and it is difficult to directly approximate the percentiles of Sn under the null
hypothesis. Instead, we propose using a wild bootstrap method to obtain critical
values of Sn. The wild bootstrap consists of the following three steps:

STEP 1. Fit model (1.1) under the null hypothesis H0, which yields B̂∗(sm),
η̂∗

i,0(sm) and ε̂∗
i,0(sm) for i = 1, . . . , n and m = 1, . . . ,M .

STEP 2. Generate a random sample τ
(g)
i and τi(sm)(g) from a N(0,1) gener-

ator for i = 1, . . . , n and m = 1, . . . ,M and then construct

ŷi (sm)(g) = B̂∗(s)T xi + τ
(g)
i η̂∗

i,0(sm) + τi(sm)(g)ε̂∗
i,0(sm).

Then, based on ŷi (sm)(g), we recalculate B̂(s)(g), bias(B̂(s)(g)) and d(s)(g) =
C vec(B̂(s)(g) − bias(B̂(s)(g)))− b0(s). We also note that C vec(B̂(s)(g)) ≈ b0 and
C vec(bias(B̂(s)(g))) ≈ 0. Thus, we can drop the term bias(B̂(s)(g)) in d(s)(g) for
computational efficiency. Subsequently, we compute

S(g)
n = n

∫ 1

0
d(s)(g)T [

C
(
�̂η(s, s) ⊗ �̂−1

X

)
CT ]−1d(s)(g) ds.

STEP 3. Repeat Step 2 G times to obtain {S(g)
n :g = 1, . . . ,G}, and then calcu-

late p = G−1 ∑G
g=1 1(S

(g)
n ≥ Sn). If p is smaller than a pre-specified significance

level α, say 0.05, then one rejects the null hypothesis H0.

3.2. Simultaneous confidence bands. Construction of SCB for coefficient
functions is of great interest in statistical inference for model (1.1). For a given
confidence level α, we construct SCB for each bjl(s) as follows:

P
(
b̂

L,α
jl (s) < bjl(s) < b̂

U,α
jl (s) for all s ∈ [0,1]) = 1 − α,(3.4)

where b̂
L,α
jl (s) and b̂

U,α
jl (s) are the lower and upper limits of SCB. Specifically, it

will be shown below that a 1 −α simultaneous confidence band for bjl(s) is given
as follows:(

b̂j l(s) − bias
(
b̂j l(s)

) − Cjl(α)√
n

, b̂j l(s) − bias
(
b̂j l(s)

) + Cjl(α)√
n

)
,(3.5)
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where Cjl(α) is a scalar. Since the calculation of b̂j l(s) and bias(b̂j l(s)) has been
discussed in (2.5) and (3.3), the next issue is to determine Cjl(α).

Although there are several methods of determining Cjl(α) including random
field theory [40, 46], we develop an efficient resampling method to approximate
Cjl(α) as follows [30, 55]:

• We calculate r̂ij (sm) = yij (sm) − xT
i B̂j (sm) for all i, j , and m.

• For g = 1, . . . ,G, we independently simulate {τ (g)
i : i = 1, . . . , n} from N(0,1)

and calculate a stochastic process Gj(s)
(g) given by

√
n
[
Ip ⊗ (1,0)

]

× vec

(
�(s,h1j )

−1
n∑

i=1

τ
(g)
i

M∑
m=1

Kh1j
(sm − s)

[
xi ⊗ zh1j

(sm − s)
]
r̂ij (sm)

)
.

• We calculate sups∈[0,1] |elGj (s)
(g)| for all g, where el be a p × 1 vector with

the lth element 1 and 0 otherwise, and use their 1 − α empirical percentile to
estimate Cjl(α).

4. Asymptotic properties. In this section, we systematically examine the
asymptotic properties of B̂(s), η̂ij (s), �̂η(s, t) and Sn developed in Sections 2
and 3. Let us first define some notation. Let ur(K) = ∫

t rK(t) dt and vr(K) =∫
t rK2(t) dt , where r is any integer. For any smooth functions f (s) and g(s, t), de-

fine ḟ (s) = df (s)/ds, f̈ (s) = d2f (s)/ds2, ˙f̈ (s) = d3f (s)/ds3 and g(a,b)(s, t) =
∂a+bg(s, t)/∂as ∂bt , where a and b are any nonnegative integers. Let H =
diag(h11, . . . , h1J ), B(s) = [B1(s), . . . ,BJ (s)], B̂(s) = [B̂1(s), . . . , B̂J (s)] and
B̈(s) = [B̈1(s), . . . , B̈J (s)], where B̈j (s) = (b̈j1(s), . . . , b̈jp(s))T is a p×1 vector.
Let S = {s1, . . . , sM}.

4.1. Assumptions. Throughout the paper, the following assumptions are
needed to facilitate the technical details, although they may not be the weakest
conditions. We need to introduce some notation. Let N(μ,�) be a normal random
vector with mean μ and covariance �. Let �1(h, s) = ∫

(1, h−1(u − s))⊗2Kh(u −
s)π(u)du. Moreover, we do not distinguish the differentiation and continuation at
the boundary points from those in the interior of [0,1]. For instance, a continuous
function at the boundary of [0,1] means that this function is left continuous at 0
and right continuous at 1.

ASSUMPTION (C1). For all j = 1, . . . , J , supsm
E[|εij (sm)|q] < ∞ for some

q > 4 and all grid points sm.

ASSUMPTION (C2). Each component of {η(s) : s ∈ [0,1]}, {η(s)η(t)T : (s,
t) ∈ [0,1]2} and {xηT (s) : s ∈ [0,1]} are Donsker classes.
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ASSUMPTION (C3). The covariate vectors xi ’s are independently and iden-
tically distributed with Exi = μx and ‖xi‖∞ < ∞. Assume that E[x⊗2

i ] = �X is
positive definite.

ASSUMPTION (C4). The grid points S = {sm,m = 1, . . . ,M} are randomly
generated from a density function π(s). Moreover, π(s) > 0 for all s ∈ [0,1] and
π(s) has continuous second-order derivative with the bounded support [0,1].

ASSUMPTION (C4b). The grid points S = {sm,m = 1, . . . ,M} are prefixed
according to π(s) such that

∫ sm
0 π(s) ds = m/M for M ≥ m ≥ 1. Moreover,

π(s) > 0 for all s ∈ [0,1] and π(s) has continuous second-order derivative with
the bounded support [0,1].

ASSUMPTION (C5). The kernel function K(t) is a symmetric density func-
tion with a compact support [−1,1], and is Lipschitz continuous. Moreover, 0 <

infh∈(0,h0],s∈[0,1] det(�1(h, s)), where h0 > 0 is a small scalar and det(�1(h, s))

denotes the determinant of �1(h, s).

ASSUMPTION (C6). All components of B(s) have continuous second deriva-
tives on [0,1].

ASSUMPTION (C7). Both n and M converge to ∞, maxj h1j = o(1),
Mh1j → ∞ and maxj h−1

1j |logh1j |1−2/q1 ≤ M1−2/q1 for j = 1, . . . , J , where
q1 ∈ (2,4).

ASSUMPTION (C7b). Both n and M converge to ∞, maxj h1j = o(1),
Mh1j → ∞ and log(M) = o(Mh1j ). There exists a sequence of γn > 0 such that

γn → ∞, maxj n1/2γ
1−q
n h−1

1j = o(1) and n−1/2γn log(M) = o(1).

ASSUMPTION (C8). For all j , maxj (h2j )
−4(logn/n)1−2/q2 = o(1) for q2 ∈

(2,∞), maxj h2j = o(1), and Mh2j → ∞ for j = 1, . . . , J .

ASSUMPTION (C9). The sample path of ηij (s) has continuous second-order
derivative on [0,1] and E[sups∈[0,1] ‖η(s)‖r1

2 ] < ∞ and E{sups∈[0,1][‖η̇(s)‖2 +
‖η̈(s)‖2]r2} < ∞ for some r1, r2 ∈ (2,∞), where ‖ · ‖2 is the Euclidean norm.

ASSUMPTION (C9b). E[sups∈[0,1] ‖η(s)‖r1
2 ] < ∞ for some r1 ∈ (2,∞) and

all components of �η(s, t) have continuous second-order partial derivatives with
respect to (s, t) ∈ [0,1]2 and infs∈[0,1] �η(s, s) > 0.

ASSUMPTION (C10). There is a positive fixed integer Ej < ∞ such that
λj,1 > · · · > λj,Ej

> λj,Ej+1 ≥ · · · ≥ 0 for j = 1, . . . , J .
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REMARK. Assumption (C1) requires the uniform bound on the high-order
moment of εij (sm) for all grid points sm. Assumption (C2) avoids smoothness
conditions on the sample path η(s), which are commonly assumed in the litera-
ture [9, 22, 51]. Assumption (C3) is a relatively weak condition on the covariate
vector, and the boundedness of ‖xi‖2 is not essential. Assumption (C4) is a weak
condition on the random grid points. In many neuroimaging applications, M is
often much larger than n and for such large M , a regular grid of voxels is fairly
well approximated by voxels generated by a uniform distribution in a compact
subset of Euclidean space. For notational simplicity, we only state the theoretical
results for the random grid points throughout the paper. Assumption (C4b) is a
weak condition on the fixed grid points. We will prove several key results for the
fixed grid point case in Lemma 8 of the supplemental article [53]. The bounded
support restriction on K(·) in Assumption (C5) is not essential and can be removed
if we put a restriction on the tail of K(·). Assumption (C6) is the standard smooth-
ness condition on B(s) in the literature [12, 13, 15, 23, 26–28, 38, 44, 47, 51]. As-
sumptions (C7) and (C8) on bandwidths are similar to the conditions used in
[10, 32]. Assumption (C7b) is a weak condition on n, M , h1j and γn for the
fixed grid point case. For instance, if we set γn = n1/2 log(M)−1−c0 for a posi-
tive scalar c0 > 0, then we have n1/2γ

1−q
n h−1

1j = n1−q/2 log(M)(1+c0)(q−1)h−1
1j =

o(1) and n−1/2γn log(M) = log(M)−c0 = o(1). As shown in Theorem 1 be-
low, if h1j = O((nM)−1/5) and γn = n1/2 log(M)−1−c0 , n1/2γ

1−q
n h−1

1j reduces

to n6/5−q/2 log(M)(1+c0)(q−1)M1/5. For relatively large q in Assumption (C1),
n6/5−q/2 log(M)(1+c0)(q−1)M1/5 can converge to zero. Assumptions (C9) and (C3)
are sufficient conditions of Assumption (C2). Assumption (C9b) on the sample
path is the same as Condition C6 used in [32]. Particularly, if we use the method
for estimating �η(s, s

′) considered in Li and Hsing [32], then the differentiability
of η(s) in Assumption (C9) can be dropped. Assumption (C10) on simple mul-
tiplicity of the first Ej eigenvalues is only needed to investigate the asymptotic
properties of eigenfunctions.

4.2. Asymptotic properties of B̂(s). The following theorem establishes the
weak convergence of {B̂(s), s ∈ [0,1]}, which is essential for constructing global
test statistics and SCB for B(s).

THEOREM 1. Suppose that Assumptions (C1)–(C7) hold. The following re-
sults hold:

(i)
√

n{vec(B̂(s) − B(s) − 0.5B̈(s)U2(K; s,H)H2[1 + op(1)]) : s ∈ [0,1]}
converges weakly to a centered Gaussian process G(·) with covariance matrix
�η(s, s

′) ⊗ �−1
X , where �X = E[x⊗2] and U2(K; s,H) is a J × J diagonal ma-

trix, whose diagonal elements will be defined in Lemma 5 in the Appendix.
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(ii) The asymptotic bias and conditional variance of B̂j (s) given S for s ∈
(0,1) are given by 0.5h2

1ju2(K)B̈j (s)[1 + op(1)] and n−1�η,jj (s, s)�
−1
X [1 +

op(1)], respectively.

REMARKS. (1) The major challenge in proving Theorem 1(i) is dealing with
within-subject dependence. This is because the dependence between η(s) and η(s ′)
in the newly proposed multivariate varying coefficient model does not converge to
zero due to the within-curve dependence. It is worth noting that for any given s, the
corresponding asymptotic normality of B̂(s) may be established by using related
techniques in Zhang and Chen [51]. However, the marginal asymptotic normality
does not imply the weak convergence of B̂(s) as a stochastic process in [0,1], since
we need to verify the asymptotic continuity of {B̂(s) : s ∈ [0,1]} to establish its
weak convergence. In addition, Zhang and Chen [51] considered “smoothing first,
then estimation,” which requires a stringent assumption such that n = O(M4/5).
Readers are referred to Condition A.4 and Theorem 4 in Zhang and Chen [51] for
more details. In contrast, directly estimating B(s) using local kernel smoothing
avoids such stringent assumption on the numbers of grid points and subjects.

(2) Theorem 1(ii) only provides us the asymptotic bias and conditional vari-
ance of B̂j (s) given S for the interior points of (0,1). The asymptotic bias and
conditional variance at the boundary points 0 and 1 are given in Lemma 5. The
asymptotic bias of B̂j (s) is of the order h2

1j , as the one in nonparametric regression

setting. Moreover, the asymptotic conditional variance of B̂j (s) has a complicated
form due to the within-curve dependence. The leading term in the asymptotic con-
ditional variance is of order n−1, which is slower than the standard nonparametric
rate (nMh1j )

−1 with the assumption h1j → 0 and Mh1j → ∞.
(3) Choosing an optimal bandwidth h1j is not a trivial task for model (1.1). Gen-

erally, any bandwidth h1j satisfying the assumptions h1j → 0 and Mh1j → ∞ can
ensure the weak convergence of {B̂(s) : s ∈ [0,1]}. Based on the asymptotic bias
and conditional variance of B̂(s), we can calculate an optimal bandwidth for esti-
mating B(s), h1j = Op((nM)−1/5). In this case, n−1h2

1j and (nM)−1h1j reduce

to Op(n−7/5M−2/5) and (nM)−6/5, respectively, and their contributions depend
on the relative size of n over M .

4.3. Asymptotic properties of η̂ij (s). We next study the asymptotic bias and
covariance of η̂ij (s) as follows. We distinguish between two cases. The first one is
conditioning on the design points in S , X, and η. The other is conditioning on the
design points in S and X. We define K∗((s − t)/h) = ∫

K(u)K(u+ (s − t)/h) du.

THEOREM 2. Under Assumptions (C1) and (C3)–(C8), the following results
hold for all s ∈ (0,L):
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(a) Conditioning on (S,X,η), we have

Bias
[
η̂ij (s)|S,η,xi

]
= 0.5u2(K)

[
η̈ij (s)h

2
2j + xT

i B̈j (sm)h2
1j

][
1 + op(1)

] + Op

(
n−1/2)

,

Cov
[
η̂ij (s), η̂ij (t)|S,η,xi

]
= K∗(

(s − t)/h2j

)
π(t)−1(Mh2j )

−1Op(1) − xT
i �−1

X xi (nMh1j )
−1Op(1).

(b) The asymptotic bias and covariance of η̂ij (s) conditioning on S and X are
given by

Bias
[
η̂ij (s)|S,X

] = 0.5u2(K)xT
i B̈j (sm)h2

1j

[
1 + op(1)

]
,

Cov
(
η̂ij (s) − ηij (s), η̂ij (t) − ηij (t)|S,X

)
= [

1 + op(1)
][

0.25u2(K)2h4
2j�

(2,2)
η,jj (s, t)

+ K∗(
(s − t)/h2j

)
π(t)−1(Mh2j )

−1Op(1)

+ n−1xT
i �−1

X xi�η,jj (s, t)
]
.

(c) The mean integrated squared error (MISE) of all η̂ij (s) is given by

n−1
n∑

i=1

∫ 1

0
E

{[
η̂ij (s) − ηij (s)

]2|S
}
π(s) ds

= [
1 + op(1)

]
(4.1)

×
{
O

(
(Mh2j )

−1) + n−1
∫ 1

0
�η,jj (s, s)π(s) ds

+ 0.25u2
2(K)

∫ 1

0

[
B̈j (s)

T �XB̈j (s)h
4
1j + �

(2,2)
η,jj (s, s)h4

2j

]
π(s) ds

}
.

(d) The optimal bandwidth for minimizing MISE (4.1) is given by

ĥ2j = O
(
M−1/5)

.(4.2)

(e) The first order LPK reconstructions η̂ij (s) using ĥ2j in (4.2) satisfy

sup
s∈[0,1]

∣∣η̂ij (s) − ηij (s)
∣∣ = Op

(∣∣log(M)
∣∣1/2

M−2/5 + h2
1j + n−1/2)

(4.3)

for i = 1, . . . , n.

REMARK. Theorem 2 characterizes the statistical properties of smoothing
individual curves ηij (s) after first estimating Bj(s). Conditioning on individual
curves ηij (s), Theorem 2(a) shows that Bias[η̂ij (s)|S,X,η] is associated with
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0.5u2(K)xT
i B̈j (sm)h2

1j , which is the bias term of B̂j (s) introduced in the estima-

tion step, and 0.5u2(K)η̈ij (s)h
2
2j is introduced in the smoothing individual func-

tions step. Without conditioning on ηij (s), Theorem 2(b) shows that the bias of
η̂ij (s) is mainly controlled by the bias in the estimation step. The MISE of η̂ij (s)

in Theorem 2(c) is the sum of Op(n−1 + h4
1j ) introduced by the estimation of

Bj(s) and Op((Mh2j )
−1 + h4

2j ) introduced by the reconstruction of ηij (s). The
optimal bandwidth for minimizing the MISE of η̂ij (s) is a standard bandwidth for
LPK. If we use the optimal bandwidth in Theorem 2(d), then the MISE of η̂ij (s)

can achieve the order of n−1 + h4
1j + M−4/5.

4.4. Asymptotic properties of �̂η(s, t). In this section, we study the asymp-
totic properties of �̂η(s, t) and its spectrum decomposition.

THEOREM 3. (i) Under Assumptions (C1) and (C3)–(C9), it follows that

sup
(s,t)∈[0,1]2

∣∣�̂η(s, t) − �η(s, t)
∣∣ = Op

(
(Mh2j )

−1 + h2
1j + h2

2j + (logn/n)1/2)
.

(ii) Under Assumptions (C1) and (C3)–(C10), if the optimal bandwidths hmj

for m = 1,2 are used to reconstruct B̂j (s) and η̂ij (s) for all j , then for
l = 1, . . . ,Ej , we have the following results:
(a)

∫ 1
0 [ψ̂j l(s) − ψjl(s)]2 ds = Op((Mh2j )

−1 + h2
1j + h2

2j + (logn/n)1/2);

(b) |λ̂j l − λjl| = Op((Mh2j )
−1 + h2

1j + h2
2j + (logn/n)1/2).

REMARK. Theorem 3 characterizes the uniform weak convergence rates of
�̂η(s, t), ψ̂j l and λ̂j l for all j . It can be regarded as an extension of Theo-
rems 3.3–3.6 in Li and Hsing [32], which established the uniform strong con-
vergence rates of these estimates with the sole presence of intercept and J = 1
in model (1.1). Another difference is that Li and Hsing [32] employed all cross
products yij yik for j �= k and then used the local polynomial kernel to estimate
�η(s, t). As discussed in Li and Hsing [32], their approach can relax the assump-
tion on the differentiability of the individual curves. In contrast, following Hall,
Müller and Wang [22] and Zhang and Chen [51], we directly fit a smooth curve
to ηij (s) for each i and estimate �η(s, t) by the sample covariance functions. Our
approach is computationally simple and can ensure that all �̂η,jj (s, t) are positive
semi-definite, whereas the approach in Li and Hsing [32] cannot. This is extremely
important for high-dimensional neuroimaging data, which usually contains a large
number of locations (called voxels) on a two-dimensional (2D) surface or in a 3D
volume. For instance, the number of M can number in the tens of thousands to
millions, and thus it can be numerically infeasible to directly operate on �̂η(s, s

′).
We use �̃η(s, s

′) to denote the local linear estimator of �η(s, s
′) proposed in

Li and Hsing [32]. Following the arguments in Li and Hsing [32], we can easily
obtain the following result.
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COROLLARY 1. Under Assumptions (C1)–(C8) and (C9b), it follows that

sup
(s,t)∈[0,1]2

∣∣�̃η(s, t) − �η(s, t)
∣∣ = Op

(
h2

1j + h2
2j + (logn/n)1/2)

.

4.5. Asymptotic properties of the inference procedures. In this section, we dis-
cuss the asymptotic properties of the global statistic Sn and the critical values of
SCB. Theorem 1 allows us to construct SCB for coefficient functions bjl(s). It
follows from Theorem 1 that√

n
[
b̂j l(s) − bjl(s) − Bias

(
b̂j l(s)

)] ⇒ Gjl(s),(4.4)

where ⇒ denotes weak convergence of a sequence of stochastic processes, and
Gjl(s) is a centered Gaussian process indexed by s ∈ [0,1]. Therefore, let XC(s)

be a centered Gaussian process, and we have[
C

(
�̂η(s, s) ⊗ �̂−1

X

)
CT ]−1/2d(s) ⇒ XC(s),

(4.5)
sup

s∈[0,1]
∣∣√n

[
b̂j l(s) − bjl(s) − Bias

(
b̂j l(s)

)]∣∣ ⇒ sup
s∈[0,1]

∣∣Gjl(s)
∣∣.

We define Cjl(α) such that P(sups∈[0,1] |Gjl(s)| ≤ Cjl(α)) = 1 − α. Thus, the
confidence band given in (3.5) is a 1 − α simultaneous confidence band for bjl(s).

THEOREM 4. If Assumptions (C1)–(C9) are true, then we have

Sn ⇒
∫ 1

0
XC(s)T XC(s) ds.(4.6)

REMARK. Theorem 4 is similar to Theorem 7 of Zhang and Chen [51]. Both
characterize the asymptotic distribution of Sn. In particular, Zhang and Chen [51]
delineate the distribution of

∫ 1
0 XC(s)T XC(s) ds as a χ2-type mixture. All dis-

cussions associated with Theorem 7 of Zhang and Chen [51] are valid here, and
therefore, we do not repeat them for the sake of space.

We consider conditional convergence for bootstrapped stochastic processes. We
focus on the bootstrapped process {Gj(s)

(g) : s ∈ [0,1]} as the arguments for es-
tablishing the wild bootstrap method for approximating the null distribution of Sn

and the bootstrapped process {Gj(s)
(g) : s ∈ [0,1]} are similar.

THEOREM 5. If Assumptions (C1)–(C9) are true, then Gj(s)
(g)(s) converges

weakly to Gj(s) conditioning on the data, where Gj(s) is a centered Gaussian
process indexed by s ∈ [0,1].

REMARK. Theorem 5 validates the bootstrapped process of Gj(s)
(g). An in-

teresting observation is that the bias correction for B̂j (s) in constructing Gj(s)
(g)

is unnecessary. It leads to substantial computational saving.

5. Simulation studies. In this section, we present two simulation example to
demonstrate the performance of the proposed procedures.
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EXAMPLE 1. This example is designed to evaluate the type I error rate and
power of the proposed global test Sn using Monte Carlo simulation. In this exam-
ple, the data were generated from a bivariate MVCM as follows:

yij (sm) = xT
i Bj (sm) + ηij (sm) + εij (sm) for j = 1,2,(5.1)

where sm ∼ U [0,1], (εi1(sm), εi2(sm))T ∼ N((0,0)T , Sε(sm) = diag(σ 2
1 , σ 2

2 )) and
xi = (1, xi1, xi2) for all i = 1, . . . , n and m = 1, . . . ,M . Moreover, (xi1, xi2)

T ∼
N((0,0)T ,diag(1 − 2−0.5,1 − 2−0.5) + 2−0.5(1,1)⊗2) and ηij (s) = ξij1ψj1(s) +
ξij2ψj2(s), where ξij l ∼ N(0, λjl) for j = 1,2 and l = 1,2. Furthermore, sm,
(xi1, xi2), ξi11, ξi12, ξi21, ξi22, εi1(sm), and εi2(sm) are independent random vari-
ables. We set (λ11, λ12, σ

2
1 , λ21, λ22, σ

2
2 ) = (1.2,0.6,0.2,1,0.5,0.1) and the func-

tional coefficients and eigenfunctions as follows:

b11(s) = s2, b12(s) = (1 − s)2, b13(s) = 4s(1 − s) − 0.4;
ψ11(s) = √

2 sin(2πs), ψ12(s) = √
2 cos(2πs);

b21(s) = 5(s − 0.5)2, b22(s) = s0.5, b23(s) = 4s(1 − s) − 0.4;
ψ21(s) = √

2 cos(2πs), ψ22(s) = √
2 sin(2πs).

Then, except for (b13(s), b23(s)) for all s, we fixed all other parameters at the
values specified above, whereas we assumed (b13(s), b23(s)) = c(4s(1 − s) − 0.4,
4s(1 − s) − 0.4), where c is a scalar specified below.

We want to test the hypotheses H0 :b13(s) = b23(s) = 0 for all s against
H1 :b13(s) �= 0 or b23(s) �= 0 for at least one s. We set c = 0 to assess the type I
error rates for Sn, and set c = 0.1,0.2,0.3 and 0.4 to examine the power of Sn. We
set M = 50, n = 200 and 100. For each simulation, the significance levels were
set at α = 0.05 and 0.01, and 100 replications were used to estimate the rejection
rates.

Figure 2 depicts the power curves. It can be seen from Figure 2 that the rejection
rates for Sn based on the wild bootstrap method are accurate for moderate sample

FIG. 2. Plot of power curves. Rejection rates of Sn based on the wild bootstrap method are calcu-
lated at five different values of c (0, 0.1, 0.2, 0.3, and 0.4) for two sample sizes of n (100 and 200)
subjects at 5% (green) and 1% (red) significance levels.
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TABLE 1
Empirical coverage probabilities of 1 − α SCB for all components of

B1(·) and B2(·) based on 200 simulated data sets

M b11 b12 b13 b21 b22 b23

α = 0.05

25 0.915 0.930 0.945 0.920 0.915 0.945
50 0.925 0.940 0.945 0.930 0.925 0.950
75 0.945 0.950 0.955 0.945 0.945 0.955

α = 0.01

25 0.985 0.965 0.985 0.985 0.990 0.980
50 0.995 0.980 0.985 0.985 0.995 0.985
75 0.990 0.985 0.990 0.995 0.990 0.990

sizes, such as (n = 100 or 200) at both significance levels (α = 0.01 or 0.05). As
expected, the power increases with the sample size.

EXAMPLE 2. This example is used to evaluate the coverage probabilities of
SCB of the functional coefficients B(s) based on the wild bootstrap method. The
data were generated from model (5.1) under the same parameter values. We set
n = 500 and M = 25, 50, and 75 and generated 200 datasets for each combination.
Based on the generated data, we calculated SCB for each component of B1(s)

and B2(s). Table 1 summarizes the empirical coverage probabilities based on 200
simulations for α = 0.01 and α = 0.05. The coverage probabilities improve with
the number of grid points M . When M = 75, the differences between the coverage
probabilities and the claimed confidence levels are fairly acceptable. The Monte
Carlo errors are of size

√
0.95 × 0.05/200 ≈ 0.015 for α = 0.05. Figure 3 depicts

typical simultaneous confidence bands, where n = 500 and M = 50. Additional
simulation results are given in the supplemental article [53].

6. Real data analysis. The data set consists of 128 healthy infants (75 males
and 53 females) from the neonatal project on early brain development. The gesta-
tional ages of these infants range from 262 to 433 days, and their mean gestational
age is 298 days with standard deviation 17.6 days. The DTIs and T1-weighted im-
ages were acquired for each subject. For the DTIs, the imaging parameters were
as follows: the six noncollinear directions at the b-value of 1000 s/mm2 with a ref-
erence scan (b = 0), the isotropic voxel resolution = 2 mm, and the in-plane field
of view = 256 mm in both directions. A total of five repetitions were acquired to
improve the signal-to-noise ratio of the DTIs.

The DTI data were processed by two key steps including a weighted least
squares estimation method [2, 54] to construct the diffusion tensors and a DTI
atlas building pipeline [20, 56] to register DTIs from multiple subjects to create
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FIG. 3. Typical simultaneous confidence bands with n = 500 and M = 50. The red solid curves are
the true coefficient functions, and the blue dashed curves are the confidence bands.

a study specific unbiased DTI atlas, to track fiber tracts in the atlas space and to
propagate them back into each subject’s native space by using registration infor-
mation. Subsequently, diffusion tensors (DTs) and their scalar diffusion properties
were calculated at each location along each individual fiber tract by using DTs in
neighboring voxels close to the fiber tract. Figure 1(a) displays the fiber bundle of
the genu of the corpus callosum (GCC), which is an area of white matter in the
brain. The GCC is the anterior end of the corpus callosum, and is bent downward
and backward in front of the septum pellucidum; diminishing rapidly in thickness,
it is prolonged backward under the name of the rostrum, which is connected below
with the lamina terminalis. It was found that neonatal microstructural development
of GCC positively correlates with age and callosal thickness.

The two aims of this analysis are to compare diffusion properties including FA
and MD along the GCC between the male and female groups and to delineate
the development of fiber diffusion properties across time, which is addressed by
including the gestational age at MRI scanning as a covariate. FA and MD, respec-
tively, measure the inhomogeneous extent of local barriers to water diffusion and
the averaged magnitude of local water diffusion. We fit model (1.1) to the FA and
MD values from all 128 subjects, in which xi = (1,G,Age)T , where G represents
gender. We then applied the estimation and inference procedures to estimate B(s)

and calculate Sn for each hypothesis test. We approximated the p-value of Sn us-
ing the wild bootstrap method with G = 1000 replications. Finally, we constructed
the 95% simultaneous confidence bands for the functional coefficients of Bj(s) for
j = 1,2.
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Figure 4 presents the estimated coefficient functions corresponding to 1, G and
Age associated with FA and MD (blue solid lines in all panels of Figure 4). The
intercept functions [panels (a) and (d) in Figure 4] describe the overall trend of FA
and MD. The gender coefficients for FA and MD in Figure 4(b) and (e) are negative
at most of the grid points, which may indicate that compared with female infants,
male infants have relatively smaller magnitudes of local water diffusivity along
the genu of the corpus callosum. The gestational age coefficients for FA [panel (c)
of Figure 4] are positive at most grid points, indicating that FA measures increase
with age in both male and female infants, whereas those corresponding to MD
[panel (f) of Figure 4] are negative at most grid points. This may indicate a negative
correlation between the magnitudes of local water diffusivity and gestational age
along the genu of the corpus callosum.

We statistically tested the effects of gender and gestational age on FA and
MD along the GCC tract. To test the gender effect, we computed the global test
statistic Sn = 144.63 and its associated p-value (p = 0.078), indicating a weakly
significant gender effect, which agrees with the findings in panels (b) and (e)
of Figure 4. A moderately significant age effect was found with Sn = 929.69
(p-value < 0.001). This agrees with the findings in panel (f) of Figure 4, indi-
cating that MD along the GCC tract changes moderately with gestational age. Fur-
thermore, for FA and MD, we constructed the 95% simultaneous confidence bands
of the varying-coefficients for Gi and agei (Figure 4).

Figure 5 presents the first 10 eigenvalues and 3 eigenfunctions of �̂η,jj (s, t) for
j = 1,2. The relative eigenvalues of �̂η,jj defined as the ratios of the eigenval-
ues of �̂η,jj (s, t) over their sum have similar distributional patterns [panel (a) of
Figure 5]. We observe that the first three eigenvalues account for more than 90%
of the total and the others quickly vanish to zero. The eigenfunctions of FA corre-
sponding to the largest three eigenvalues [Figure 5(b)] are different from those of
MD [Figure 5(c)].

In the supplement article [53], we further illustrate the proposed methodology
by an empirical analysis of another real data set.

APPENDIX

We introduce some notation. We define

TB,j (h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)
[
xi ⊗ zh(sm − s)

]
xT
i Bj (sm),

Tη,j (h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)
[
xi ⊗ zh(sm − s)

]
ηij (sm),

Tε,j (h, s) =
n∑

i=1

M∑
m=1

Kh(sm − s)
[
xi ⊗ zh(sm − s)

]
εij (sm),(A.1)



2654 H. ZHU, R. LI AND L. KONG

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Plot of estimated effects of intercept [(a), (d)], gender [(b), (e)], and age [(c), (f)] and their
95% confidence bands. The first three panels [(a), (b), (c)] are for FA and the last three panels [(d), (e)
and (f)] are for MD. The blue solid curves are the estimated coefficient functions, and the red dashed
curves are the confidence bands.
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(a) (b)

(c)

FIG. 5. Plot of the first 10 eigenvalues (a) and the first 3 eigenfunctions for FA (b) and MD (c).

ru(K; s, h) = u2(K; s, h)2 − u1(K; s, h)u3(K; s, h)

u0(K; s, h)u2(K; s, h) − u1(K; s, h)2 ,

Hh(sm − s) = Kh(sm − s)zh(sm − s),

�j (s;ηi , h1j ) = M−1
M∑

m=1

Hh1j
(sm − s)ηij (sm)

−
∫ 1

0
Hh1j

(u − s)ηij (u)π(u)du,

where ur(K; s, h) = ∫ 1
0 h−r (u−s)rKh(u−s) du for r ≥ 0. Throughout the proofs,

Ck’s stand for a generic constant, and it may vary from line to line.
The proofs of Theorems 1–5 rely on the following lemmas whose proofs are

given in the supplemental article [53].
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LEMMA 1. Under Assumptions (C1), (C3)–(C5) and (C7), we have that for
each j ,

sup
s∈[0,1]

n−1/2h1j

∣∣Tε,j (h1j , s)
∣∣ = Op

(√
Mh1j |logh1j |) = op(Mh1j ).(A.2)

LEMMA 2. Under Assumptions (C1), (C4), (C5) and (C7), we have that for
any r ≥ 0 and j ,

sup
s∈[0,1]

∣∣∣∣
∫

Kh1j
(u − s)

(u − s)r

hr
1j

d
[
�M(u) − �(u)

]∣∣∣∣ = Op

(
(Mh1j )

−1/2)
,

sup
s∈[0,1]

∣∣∣∣
∫

Kh1j
(u − s)

(u − s)r

hr
1j

εij (u) d�M(u)

∣∣∣∣ = Op

(
(Mh1j )

−1/2
√

|logh1j |),
where �M(·) is the sampling distribution function based on S = {s1, . . . , sM}, and
�(·) is the distribution function of sm.

LEMMA 3. Under Assumptions (C2)–(C5), we have

sup
s∈[0,1]

∣∣∣∣∣n−1/2
n∑

i=1

xi ⊗ �j(s;ηi , h1j )

∣∣∣∣∣ = op(1).(A.3)

LEMMA 4. If Assumptions (C1) and (C3)–(C6) hold, then we have

E
[
B̂j (s)|S

] − Bj(s) = 0.5h2
1ju2(K)B̈j (s)

[
1 + op(1)

]
,

(A.4)
Var

[
B̂j (s)|S

] = n−1�η,jj (s, s)�
−1
X

[
1 + op(1)

]
,

where en(s) = Op((Mh1j )
−1/2) with E[en(s)] = 0.

LEMMA 5. If Assumptions (C1) and (C3)–(C6) hold, then for s = 0 or 1, we
have

E
[
B̂j (s)|S

] − Bj(s) = 0.5h2
1j ru(K; s, h1j )B̈j (s)

[
1 + op(1)

]
,

(A.5)
Var

[
B̂j (s)|S

] = n−1�η,jj (s, s)�
−1
X

[
1 + op(1)

]
.

LEMMA 6. Under Assumptions (C1)–(C9), we have

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

εij (s)ηij (t)

∣∣∣∣∣ = Op

(
n−1/2(logn)1/2)

,

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

εij (s)�ηij (t)

∣∣∣∣∣ = Op

(
n−1/2(logn)1/2)

,

sup
s

n−1

∣∣∣∣∣
n∑

i=1

εij (s)xi

∣∣∣∣∣ = Op

(
n−1/2(logn)1/2)

,



MULTIVARIATE VARYING COEFFICIENT MODEL 2657

sup
s

n−1

∣∣∣∣∣
n∑

i=1

�ηij (s)xi

∣∣∣∣∣ = Op

(
n−1/2(logn)1/2)

.

LEMMA 7. Under Assumptions (C1)–(C9), we have

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

εij (s)εij (t)

∣∣∣∣∣ = O
(
(Mh2j )

−1 + (logn/n)1/2) = op(1).

We present only the key steps in the proof of Theorem 1 below.

PROOF OF THEOREM 1. Define

U2(K; s,H) = diag
(
ru(K; s, h11), . . . , ru(K; s, h1J )

)
,

Xn(s) = √
n
{
B̂(s) − E

[
B̂(s)|S

]}
,

Xn,j (s) = √
n
{
B̂j (s) − E

[
B̂j (s)|S

]}
.

According to the definition of vec(Âj (s)), it is easy to see that

vec
(
Âj (s)

) = �(s,h1j )
−1[

TB,j (h1j , s) + Tε,j (h1j , s) + Tη,j (h1j , s)
]
,(A.6)

Xn,j (s) = √
n
[
Ip ⊗ (1,0)

]
�(s,h1j )

−1[
Tε,j (h1j , s) + Tη,j (h1j , s)

]
.(A.7)

The proof of Theorem 1(i) consists of two parts:

• Part 1 shows that
√

n�(s,h1j )
−1Tε,j (h1j , s) = op(1) holds uniformly for all

s ∈ [0,1] and j = 1, . . . , J .
• Part 2 shows that

√
n�(s,h1j )

−1Tη,j (h1j , s) converges weakly to a Gaussian
process G(·) with mean zero and covariance matrix �η,jj (s, s

′)�−1
X for each j .

In part 1, we show that√
n
[
Ip ⊗ (1,0)

]
�(s,h1j )

−1Tε,j (h1j , s) = op(1).(A.8)

It follows from Lemma 1 that

n−1/2
n∑

i=1

xi ⊗
{
M−1

M∑
m=1

Kh1j
(sm − s)zh1j

(s)εi,j (sm)

}
= op(1)

hold uniformly for all s ∈ [0,1]. It follows from Lemma 2 that

(nM)−1�(s,h1j ) = �X ⊗ �1(h1j , s) + op(1)(A.9)

hold uniformly for all s ∈ [0,1]. Based on these results, we can finish the proof of
(A.8).

In part 2, we show the weak convergence of
√

n[Ip ⊗ (1,0)]�(s,h1j )
−1 ×

Tη,j (h1j , s) for j = 1, . . . , J . Part 2 consists of two steps. In Step 1, it follows
from the standard central limit theorem that for each s ∈ [0,1],√

n
[
Ip ⊗ (1,0)

]
�(s,h1j )

−1Tη,j (h1j , s) →L N
(
0,�η,jj (s, s)�

−1
X

)
,(A.10)
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where →L denotes convergence in distribution.
Step 2 shows the asymptotic tightness of

√
n[Ip ⊗ (1,0)]�(s,h1j )

−1 ×
Tη,j (h1j , s). By using (A.9) and (A.1),

√
n�(s,h1j )

−1Tη,j (h1j , s)[1+op(1)] can
be approximated by the sum of three terms (I), (II) and (III) as follows:

(I) = n−1/2
n∑

i=1

�−1
X xi ⊗ �1(h1j , s)

−1�j(s;ηi , h1j ),

(II) = n−1/2
n∑

i=1

�−1
X xi ⊗ �1(h1j , s)

−1ηij (s)

×
∫ min((1−s)h−1

1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)T π(s + h1ju) du,

(A.11)

(III) = n−1/2
n∑

i=1

�−1
X xi ⊗ �1(h1j , s)

−1

×
∫ min((1−s)h−1

1j ,1)

max(−sh−1
1j ,−1)

K(u)

(
1
u

)[
ηij (s + h1ju) − ηij (s)

]
× π(s + h1ju) du.

We investigate the three terms on the right-hand side of (A.11) as follows. It
follows from Lemma 3 that the first term on the right-hand side of (A.11) converges
to zero uniformly. We prove the asymptotic tightness of (II) as follows. Define

X̂n,j (s) = n−1/2
n∑

i=1

�−1
X xi ⊗ (1,0)�1(h1j , s)

−1ηij (s)

×
∫ min((1−s)h−1

1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)T π(s + h1ju) du.

Thus, we only need to prove the asymptotic tightness of X̂n,j (s). The asymptotic
tightness of X̂n,j (s) can be proved using the empirical process techniques [42]. It
follows that

(1,0)�1(h1j , s)
−1

∫ min((1−s)h−1
1j ,1)

max(−sh−1
1j ,−1)

K(u)(1, u)T π(s + h1ju) du

= u2(K; s, h1j )u0(K; s, h1j ) − u1(K; s, h1j )
2 + o(h1j )

u2(K; s, h1j )u0(K; s, h1j ) − u1(K; s, h1j )2 + o(h1j )
= 1 + o(h1j ).

Thus, X̂n,j (s) can be simplified as

X̂n,j (s) = [
1 + o(h1j )

]
n−1/2

n∑
i=1

ηij (s)�
−1
X xi .
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We consider a function class Eη = {f (s;x, η·,j ) = �−1
X xη·,j (s) : s ∈ [0,1]}. Due to

Assumption (C2), Eη is a P -Donsker class.
Finally, we consider the third term (III) on the right-hand side of (A.11). It is

easy to see that (III) can be written as

�−1
X ⊗ �1(h1j , s)

−1

×
∫ min((1−s)h−1

1j ,1)

max(−sh−1
1j ,−1)

K(u)

[
n−1/2

n∑
i=1

xi

{
ηij (s + h1ju) − ηij (s)

}] ⊗
(

1
u

)

× π(s + h1ju) du.

Using the same argument of proving the second term (II), we can show the asymp-
totic tightness of n−1/2 ∑n

i=1 xiηij (s). Therefore, for any h1j → 0,

sup
s∈[0,1],|u|≤1

∣∣∣∣∣n−1/2
n∑

i=1

xi

{
ηij (s + h1ju) − ηij (s)

}∣∣∣∣∣ = op(1).(A.12)

It follows from Assumptions (C5) and (C7) and (A.12) that (III) converges to zero
uniformly. Therefore, we can finish the proof of Theorem 1(i). Since Theorem 1(ii)
is a direct consequence of Theorem 1(i) and Lemma 4, we finish the proof of
Theorem 1. �

PROOF OF THEOREM 2. Proofs of parts (a)–(d) are completed by some
straightforward calculations. Detailed derivation is given in the supplemental doc-
ument. Here we prove part (e) only. Let K̃M,h(s) = K̃M(s/h)/h, where K̃M(s)

is the empirical equivalent kernels for the first-order local polynomial kernel [11].
Thus, we have

η̂ij (s) − ηij (s) =
M∑

m=1

K̃M,h2j
(sm − s)xT

i

[
Bj(sm) − B̂j (sm)

]
(A.13)

+
M∑

m=1

K̃M,h2j
(sm − s)

[
ηij (sm) + εij (sm) − ηij (s)

]
.

We define

εij (s) =
M∑

m=1

K̃M,h2j
(sm − s)εij (sm),

�ηij (s) =
M∑

m=1

K̃M,h2j
(sm − s)

[
ηij (sm) − ηij (s)

]
,

�Bj (s) =
M∑

m=1

K̃M,h2j
(sm − s)

[
Bj(sm) − B̂j (sm)

]
,

�ij (s) = εij (s) + �ηij (s) + xT
i �Bj (s).
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It follows from (A.13) that

η̂ij (s) − ηij (s) = �ij (s) = εij (s) + �ηij (s) + xT
i �Bj (s).(A.14)

It follows from Lemma 2 and a Taylor expansion that

sup
s∈[0,1]

∣∣εij (s)
∣∣ = Op

(√ |log(h2j )|
Mh2j

)

and

sup
s∈[0,1]

∣∣�ηij (s)
∣∣ = Op(1) sup

s∈[0,1]
∣∣η̈ij (s)

∣∣h(2)2
1j .

Since
√

n{B̂j (·) − Bj(·) − 0.5u2(K)2h2
1j B̈j (·)[1 + op(1)]} weakly converges to a

Gaussian process in �∞([0,1]) as n → ∞,
√

n{B̂j (·) − Bj(·) − 0.5u2(K)2h2
1j ×

B̈j (·)[1 + op(1)]} is asymptotically tight. Thus, we have

�Bij (s) = −
M∑

m=1

K̃M,h2j
(sj − s)0.5u2(K)2h2

1j B̈j (sm)
[
1 + op(1)

]

+
M∑

m=1

K̃M,h2j
(sj − s)

{
0.5u2(K)2h2

1j B̈j (sm)
[
1 + op(1)

]

+ Bj(sm) − B̂j (sm)
}
,

sup
s∈[0,1]

∥∥�Bj(s)
∥∥ = Op

(
n−1/2) + Op

(
h2

1j

)
.

Combining these results, we have

sup
s∈[0,1]

∣∣η̂ij (s) − ηij (s)
∣∣ = Op

(∣∣log(h2j )
∣∣1/2

(Mh2j )
−1/2 + h

(2)2
1j + h2

1j + n−1/2)
.

This completes the proof of part (e). �

PROOF OF THEOREM 3. Recall that η̂ij (s) = ηij (s) + �i,j (s), we have

n−1
n∑

i=1

η̂ij (s)η̂ij (t) = n−1
n∑

i=1

�ij (s)�ij (t) + n−1
n∑

i=1

ηij (s)�ij (t)

(A.15)

+ n−1
n∑

i=1

�ij (s)ηij (t) + n−1
n∑

i=1

ηij (s)ηij (t).

This proof consists of two steps. The first step is to show that the first three
terms on the right-hand side of (A.15) converge to zero uniformly for all (s, t) ∈
[0,1]2 in probability. The second step is to show the uniform convergence of
n−1 ∑n

i=1 ηij (s)ηij (t) to �η(s, t) over (s, t) ∈ [0,1]2 in probability.
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We first show that

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

�ij (s)ηij (t)

∣∣∣∣∣ = Op

(
n−1/2 + h2

1j + h2
2j + (logn/n)1/2)

.(A.16)

Since
n∑

i=1

�ij (s)ηij (t)

≤ n−1

{∣∣∣∣∣
n∑

i=1

εij (s)ηij (t)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

�ηij (s)ηij (t)

∣∣∣∣∣(A.17)

+
∣∣∣∣∣

n∑
i=1

xT
i �Bj (s)ηij (t)

∣∣∣∣∣
}
,

it is sufficient to focus on the three terms on the right-hand side of (A.17). Since∣∣xT
i �Bj (s)ηij (t)

∣∣ ≤ ‖xi‖2 sup
s∈[0,1]

∥∥�Bk(s)
∥∥

2 sup
t∈[0,1]

∣∣ηij (t)
∣∣,

we have

n−1

∣∣∣∣∣
n∑

i=1

xT
i �Bj (s)ηij (t)

∣∣∣∣∣ ≤ sup
s∈[0,1]

∥∥�Bk(s)
∥∥

2n
−1

n∑
i=1

‖xi‖2
∣∣ηij (t)

∣∣
= Op

(
n−1/2 + h2

1j

)
.

Similarly, we have

n−1

∣∣∣∣∣
n∑

i=1

�ηij (s)ηij (t)

∣∣∣∣∣ ≤ n−1
n∑

i=1

sup
s,t∈[0,1]

∣∣�ηij (s)ηij (t)
∣∣ = Op

(
h

(2)2
1j

) = op(1).

It follows from Lemma 6 that sup(s,t) n
−1{|∑n

i=1 εij (s)ηij (t)| = O((logn/n)1/2).
Similarly, we can show that sup(s,t) n

−1|∑n
i=1 �ij (t)ηij (s)| = Op(n−1/2 + h2

1j +
h2

2j + (logn/n)1/2).
We can show that

sup
(s,t)

∣∣∣∣∣n−1
n∑

i=1

[
ηij (s)ηij (t) − �η,jj (s, t)

]∣∣∣∣∣ = Op

(
n−1/2)

.(A.18)

Note that ∣∣ηij (s1)ηij (t1) − ηij (s2)ηij (t2)
∣∣

≤ 2
(|s1 − s2| + |t1 − t2|) sup

s∈[0,1]
∣∣η̇ij (s)

∣∣ sup
s∈[0,1]

∣∣ηij (s)
∣∣

holds for any (s1, t1) and (s2, t2), the functional class {ηj (u)ηj (v) : (u, v) ∈ [0,1]2}
is a Vapnik and Cervonenkis (VC) class [31, 42]. Thus, it yields that (A.18) is true.
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Finally, we can show that

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

�ij (s)�ij (t)

∣∣∣∣∣
(A.19)

= Op

(
(Mh2j )

−1 + (logn/n)1/2 + h4
j + h

(2)4
1j

)
.

With some calculations, for a positive constant C1, we have∣∣∣∣∣
n∑

i=1

�ij (s)�ij (t)

∣∣∣∣∣
≤ C1 sup

(s,t)

[∣∣∣∣∣
n∑

i=1

εij (s)εij (t)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

εij (s)�ηij (t)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

�ηij (t)xT
i �Bj (s)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

εij (s)xT
i �Bj (t)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

�ηij (s)�ηij (t)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

xT
i �Bj (s)�Bj (t)xi

∣∣∣∣∣
]
.

It follows from Lemma 7 that

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

εij (s)εij (t)

∣∣∣∣∣ = Op

(
(Mh2j )

−1 + (logn/n)1/2)
,

sup
(s,t)

n−1

[∣∣∣∣∣
n∑

i=1

εij (s)�ηij (t)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

�ηij (t)xT
i �Bj (s)

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

εij (s)xT
i �Bj (t)

∣∣∣∣∣
]

= Op

(
(logn/n)1/2)

.

Since sups∈[0,1] |�ηij (s)| = C2 sups∈[0,1] |η̈ij (s)|h2
2j , we have

sup
(s,t)

n−1

∣∣∣∣∣
n∑

i=1

�ηij (s)�ηij (t)

∣∣∣∣∣ = O
(
h

(2)4
1j

)
.

Furthermore, since sups∈[0,1] ‖�B(s)‖ = Op(n−1/2 + h2
j ), we have

n−1

∣∣∣∣∣
n∑

i=1

xT
i �Bj (s)�Bj(t)xi

∣∣∣∣∣ = Op

(
n−1 + h4

j

)
.

Note that the arguments for (A.16)–(A.19) hold for �̂η,jj ′(·, ·) for any j �= j ′.
Thus, combining (A.16)–(A.19) leads to Theorem 3(i).
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To prove Theorem 3(ii), we follow the same arguments in Lemma 6 of Li and
Hsing [32]. For completion, we highlight several key steps below. We define

(�ψj,j )(s) =
∫ 1

0

[
�̂η,jj (s, t) − �η,jj (s, t)

]
ψj,j (t) dt.(A.20)

Following Hall and Hosseini-Nasab [21] and the Cauchy–Schwarz inequality, we
have{∫ 1

0

[
ψ̂j,j (s) − ψj,j (s)

]2
ds

}1/2

≤ C2

{[∫ 1

0
(�ψj,j )(s)

2 ds

]1/2

+
∫ 1

0

∫ 1

0

[
�̂η,jj (s, t) − �η,jj (s, t)

]2
ds dt

}

≤ C2

{∫ 1

0

∫ 1

0

[
�̂η,jj (s, t) − �η,jj (s, t)

]2
ds dt

}1/2{∫ 1

0

[
ψj,j (t)

]2
dt

}1/2

+
∫ 1

0

∫ 1

0

[
�̂η,jj (s, t) − �η,jj (s, t)

]2
ds dt

≤ C3 sup
(s,t)∈[0,1]2

∣∣�̂η,jj (s, t) − �η,jj (s, t)
∣∣,

which yields Theorem 3(ii)(a).
Using (4.9) in Hall, Müller and Wang [22], we have

|λ̂j,j − λj,j |

≤ |
∫ 1

0

∫ 1

0
[�̂η,jj − �η,jj ](s, t)ψj,j (s)ψj,j (t) ds dt

+ O

(∫ 1

0
(�ψj,j )(s)

2 ds

)

≤ C4 sup
(s,t)∈[0,1]2

∣∣�̂η,jj (s, t) − �η,jj (s, t)
∣∣,

which yields Theorem 3(ii)(b). This completes the proof. �

PROOF OF THEOREM 5. The proof of Theorem 5 is given in the supplement
arctile [53]. �
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