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Abstract We develop mathematical models describing the evolution of stochastic age-structured popula-6

tions. After reviewing existing approaches, we formulate a complete kinetic framework for age-structured7

interacting populations undergoing birth, death and fission processes in spatially dependent environ-8

ments. We define the full probability density for the population-size age chart and find results under9

specific conditions. Connections with more classical models are also explicitly derived. In particular, we10

show that factorial moments for non-interacting processes are described by a natural generalization of11

the McKendrick-von Foerster equation, which describes mean-field deterministic behavior. Our approach12

utilizes mixed-type, multidimensional probability distributions similar to those employed in the study of13

gas kinetics and with terms that satisfy BBGKY-like equation hierarchies.14

Keywords Age Structure · Birth-Death Process · Kinetics · Fission15

1 Introduction16

Ageing is an important controlling factor in populations of organisms ranging in size from single cells to17

multicellular animals. Age-dependent population dynamics, where birth and death rates depend on an18

organism’s age, are important in quantitative models of demography [33], biofilm formation [3], stem cell19

differentiation [45, 49], and lymphocyte proliferation and death [56]. For example, cellular replication is20

controlled by a cycle [40, 43, 54], while higher organisms give birth depending on their maturation time.21

For applications involving small numbers of individuals, a stochastic description of the age-structured22

population is also desirable. A practical mathematical framework that captures age structure, intrinsic23

stochasticity, and interactions in a population would be useful for modeling many applications.24

Standard frameworks for analyzing age-structured populations include Leslie matrix models [6, 35, 36],25

which discretizes ages into discrete bins, and the continuous-age McKendrick-von Foerster equation, first26

studied by McKendrick [32, 38] and subsequently von Foerster [16], Gurtin and MacCamy [21, 22], and27

others [28, 53]. These approaches describe deterministic dynamics; stochastic fluctuations in population28

size are not incorporated. On the other hand, intrinsic stochasticity and fluctuations in total population29

are naturally studied via the Kolmogorov master equation [7, 31]. However, the structure of the master30

equation implicitly assumes exponentially distributed event (birth and death) times, precluding it from31

being used to describe age-dependent rates or age structure within the population. Evolution of the32

generating function associated with the probability distribution for the entire population have also been33

developed [4, 8, 44, 46]. While this approach, the Bellman-Harris equation, allows for age-dependent34

event rates, an assumption of independence precludes population-dependent event rates. More recent35
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Fig. 1 A: A general branching process. I indicates a budding or simple birth process, where the parental individual
produces a single offspring (a ‘singlet’) without death. II indicates binary fission, where a parent dies at the same
moment two newborn twins occur (a ‘doublet’). III indicates a more general fission event with four offspring (a
‘quadruplet’). IV indicates death, which can be viewed as fission with zero offspring. B: A binary fission process
such as cell division. At time t1 we have four individuals; two sets of twins. At time t2 we have six individuals;
two pairs of twins and two singlets.

methods [23, 26, 27, 30] have utilized Martingale approaches, which have been used mainly to investigate36

the asymptotics of age structure, coalescents, and estimation of Malthusian growth rate parameters.37

What is currently lacking is a complete mathematical framework that can resolve the age structure38

of a population at all time points, incorporate stochastic fluctuations, and be straightforwardly adapted39

to treat nonlinear interactions such as those arising in populations constrained by a carrying capacity40

[50, 51]. In a recent publication [20], we took a first step in this direction by formulating a full kinetic41

equation description that captures the stochastic evolution of the entire age-structured population and42

interactions between individuals. Here, we generalize the kinetic equation approach introduced in [20]43

along two main directions. First, we quantify the corrections to the mean-field equations by showing that44

the factorial moments of the stochastic fluctuations follow an elegant generalization of the McKendrick-45

von Foerster equation. Second, we show how the methods in [20] can be extended to incorporate fission46

processes, where single individuals instantaneously split into two identical zero-age offspring. These47

methods are highlighted with cell division and spatial models. We also draw attention to the companion48

paper [19], where quantum field theory techniques developed by Doi and Peliti [13, 14, 42] are used to49

address the same problem, providing alternative machinery for age-structured modeling.50

In the next section, we give a detailed overview of the different techniques currently employed in51

age-structured population modeling. In Section 3, we use previous results [20] to show how the moments52

of age-structured population size obey a generalized McKendrick-von Foerster equation. In Section 4, we53

expand the kinetic theory for branching processes involving fission. In Section 5, we demonstrate how54

our theory of fission can be applied to a microscopic model of cell growth. In Section 6, we demonstrate55

how to incorporate spatial effects. Conclusions complete the paper.56

2 Age-Structured Population Modelling57

Here we review, compare, and contrast existing techniques of population modeling: the McKendrick-58

von Foerster equation, the master equation, the Bellman-Harris equation, Leslie matrices, Martingale59

methods, and our recently introduced kinetic approach [20].60

2.1 McKendrick-von Foerster Equation61

It is instructive to first outline the basic structure of the classical McKendrick-von Foerster deterministic62

model as it provides a background for a more complete stochastic picture. First, one defines ρ(a, t) such63

that ρ(a, t)da is the expected number of individuals with age within the interval [a, a + da]. The total64

number of organisms at time t is thus n(t) =
∫∞
0
ρ(a, t)da. Suppose each individual has a rate of giving65

birth β(a) that is a function of its age a. For example, β(a) may be a function peaked around the time of66

M phase in a cell cycle or around the most fecund period of an organism. Similarly, µ(a) is an organism’s67

rate of dying, which typically increases with its age a.68

2



The McKendrick-von Foerster equation is most straightforwardly derived by considering the total69

number of individuals with age in [0, a]: N(a, t) =
∫ a
0
ρ(y, t)dy. The number of births per unit time from70

all individuals into the population of individuals with age in [0, a] is B(t) =
∫∞
0
β(y)ρ(y, t)dy, whilst the71

number of deaths per unit time within this cohort is D(a, t) =
∫ a
0
µ(y)ρ(y, t)dy. Within a small time72

window ε, the change in N(a, t) is73

N(a+ ε, t+ ε)−N(a, t) =

∫ t+ε

t

B(s)ds−
∫ ε

0

D(a+ s, t+ s)ds. (1)

In the ε→ 0 limit, we find74

∂N(a, t)

∂t
+
∂N(a, t)

∂a
=

∫ a

0

ρ̇(y, t)dy + ρ(a, t) = B(t)−
∫ a

0

µ(y)ρ(y, t)dy. (2)

Upon taking ∂
∂a of Eq. 2, we obtain the McKendrick-von Foerster equation:75

∂ρ(a, t)

∂t
+
∂ρ(a, t)

∂a
= −µ(a)ρ(a, t). (3)

The associated boundary condition arises from setting a = 0 in Eq. 2:76

ρ(a = 0, t) =

∫ ∞
0

β(y)ρ(y, t)dy ≡ B(t). (4)

Finally, an initial condition ρ(a, t = 0) = g(a) completely specifies the mathematical model.77

Note that the term on the right-hand side of Eq. 3 depends only on death; the birth rate arises in78

the boundary condition (Eq. 4) since births give rise to age-zero individuals. These equations can be79

formally solved using the method of characteristics. The solution to Eqs. 3 and 4 that satisfies a given80

initial condition is81

ρ(a, t) =

{
g(a− t) exp

[
−
∫ a
a−t µ(s)ds

]
, a ≥ t.

B(t− a) exp
[
−
∫ a
0
µ(s)ds

]
, a < t.

(5)

To explicitly identify the solution, we need to calculate the fecundity function B(t). By substituting82

Eq. 5 into the boundary condition of Eq. 4 and defining the propagator U(a1, a2) ≡ exp
[
−
∫ a2
a1
µ(s)ds

]
,83

we obtain the following Volterra integral equation:84

B(t) =

∫ t

0

B(t− a)U(0, a)β(a)da+

∫ ∞
0

g(a)U(a, a+ t)β(a+ t)da. (6)

After Laplace-transforming with respect to time, we find85

B̂(s) = B̂(s)Ls {U(0, t)β(t)}+

∫ ∞
0

g(a)Ls {U(a, a+ t)β(a+ t)} da. (7)

Solving the above for B̂(s) and inverse Laplace-transforming, we find the explicit expression86

B(t) = L−1t

{∫∞
0
g(a)Ls {U(a, a+ t)β(a+ t)} da

1− Ls {U(0, t)β(t)}

}
, (8)

which provides the complete solution when used in Eq. 5.87

The McKendrick-von Foerster equation is a deterministic model describing only the expected age88

distribution of the population. If one integrates Eq. 3 across all ages 0 ≤ a <∞ and uses the boundary89

conditions, the rate equation for the total population is ṅ(t) =
∫∞
0

(β(a)−µ(a))ρ(a, t)da. Generally, n(t)90

will diverge or vanish in time depending on the details of β(a) and µ(a). In the special case β(a) = µ(a),91

the population is constant.92

What is missing are interactions that stabilize the total population. Eqs. 3 and 4 assume no higher-93

order interactions (such as competition for resources, a carrying capacity, or mating patterns involving94

pairs of individuals) within the populations. Within the McKendrick-von Foerster theory, interactions95

are typically incorporated via population-dependent birth and death rates, β(a;n(t)) and µ(a;n(t)),96

respectively [11, 21, 22]. The McKendrick-von Foerster equation must then be self-consistently solved.97

However, as shown in [20], this assumption is an uncontrolled approximation and inconsistent with a98

detailed microscopic stochastic model of birth and death.99
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2.2 Master Equation Approach100

A popular way to describe stochastic birth-death processes is through a function ρn(t) defining the101

probability that a population contains n identical individuals at time t. The evolution of this process can102

then be described by the standard forward continuous-time master equation [7, 31]103

∂ρn(t)

∂t
= −n [βn(t) + µn(t)] ρn(t) + (n− 1)βn−1(t)ρn−1(t) + (n+ 1)µn+1(t)ρn+1(t), (9)

where βn(t) and µn(t) are the birth and death rates, per individual, respectively. Each of these rates can104

be population-size- and time-dependent. As such, Eq. 9 explicitly includes the effects of interactions. For105

example, a carrying capacity can be implemented into the birth rate through the following form:106

βn(t) = β0(t)

(
1− n

K(t)

)
. (10)

Here we have allowed both the intrinsic birth rate β0(t) and the carrying capacity K(t) to be functions107

of time. Eq. 9 can be analytically or numerically solved via generating function approaches, especially108

for simple functions βn and µn.109

Since ρn(t) only describes the total number of individuals at time t, it cannot resolve the distribution of110

ages within the fluctuating population. Another shortcoming is the implicit assumption of exponentially111

distributed waiting times between birth and death events. The times since birth of individuals are not112

tracked. General waiting time distributions can be incorporated into a master equation approach by113

assuming an appropriate number of internal “hidden” states, such as the different phases in a cell division114

cycle [54]. After all internal states have been sequentially visited, the system makes a change to the115

external population-size state. The waiting time between population-size changes is then a multiple116

convolution of the exponential waiting-time distributions for transitions along each set of internal states.117

The resultant convolution can then be used to approximate an arbitrary waiting-time distribution for118

the effective transitions between external states. It is not clear, however, how to use such an approach119

to resolve the age structure of the population.120

2.3 Bellman-Harris Fission Process121

The Bellman-Harris process [4, 8, 29, 44, 46] describes fission of a particle into any number of identical122

daughters, such as events II, III, and IV in Fig. 1A. Unlike the master equation approach, the Bellman-123

Harris branching process approach allows interfission times to be arbitrarily distributed. However, it does124

not model the budding mode of birth indicated by process I in Fig. 1A, nor does it capture interactions125

(such as carrying capacity effects) within the population. In such a noninteracting limit, the Bellman-126

Harris fission process is most easily analyzed using the generating function F (z, t) associated with the127

probability ρn(t), defined as128

F (z, t) ≡
∞∑
n=0

ρn(t)zn. (11)

We assume an initial condition consisting of a single, newly born parent particle, ρn(0) = δn,1. If we129

also assume the first fission or death event occurs at time τ , we can define F (z, t|τ) as the generating130

function conditioned on the first fission or death occurring at time τ and write F recursively [1, 2, 24]131

as:132

F (z, t|τ) =

{
z, t < τ,

H(F (z, t− τ)), t ≥ τ,
H(x) =

∞∑
m=0

hmx
m. (12)

The function H encapsulates the probability hm that a particle splits into m identical particles upon133

fission, for each non-negative integer m. For binary fission, we have H(x) = (1 − h2) + h2x
2 since134 ∑∞

m=0 hm = 1. Since this overall process is semi-Markov [52], each daughter behaves as a new parent135

that issues its own progeny in a manner statistically equivalent to and independent from the original136

parent, giving rise to the compositional form in Eq. 12. We now weight F (z, t|τ) over a general distribution137

of waiting times between splitting events, g(τ), to find138
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F (z, t) ≡
∫ ∞
0

F (z, t|τ)g(τ)dτ

= z

∫ ∞
t

g(τ)dτ +

∫ t

0

H(F (z, t− τ))g(τ)dτ. (13)

The Bellman-Harris branching process [2, 17] is thus defined by two parameter functions: hm, the139

vector of progeny number probabilities, and g(τ), the probability density function for waiting times140

between branching events for each particle. The probabilities ρn(t) can be recovered using a contour141

integral (or Taylor expanding) about the origin:142

ρn(t) =
1

2πi

∮
C

F (z, t)

zn+1
dz =

1

n!

∂nF (z, t)

∂zn

∣∣∣∣
z=0

. (14)

Note that Eq. 13 incorporates an arbitrary waiting-time distribution between events, a feature that143

is difficult to implement in the master equation (Eq. 9). An advantage of the branching process approach144

is the ease with which general waiting-time distributions, multiple species, and immigration can be145

incorporated. However, it is limited in that an independent particle assumption was used to derive146

Eq. 13, where the statistical properties of the entire process starting from one parent were assumed147

to be equivalent to those started by each of the identical daughters born at time τ . This assumption148

of independence precludes treatment of interactions within the population, such as those giving rise to149

carrying capacity. More importantly, the Bellman-Harris equation is expressed purely in terms of the150

generating function for the total population size and cannot resolve age structure within the population.151

2.4 Leslie Matrices152

Leslie matrices [35, 36] have been used to resolve the age structure in population models [9, 10, 12,153

18, 35–37, 44, 49]. These methods essentially divide age into discrete bins and are implemented by154

assuming fixed birth and death rates within each age bin. Such approaches have been applied to models155

of stochastic harvesting [10, 18] and fluctuating environments [15, 34] and are based on the following156

linear construction, iterated over a single time step:157


n0
n1
...

nN−1


t+1

=


f0 f1 . . . fN−2 fN−1
s0 0 . . . 0 0
0 s1 . . . 0 0
...

...
. . .

...
...

0 0 . . . sN−2 0

 ·


n0
n1
...

nN−1


t

. (15)

The value ni indicates the population size in age group i; fi is the mean number of offspring arriving158

to age group 0 from a parent in age group i; and si is the fraction of individuals surviving from age159

group i to i+ 1. These models have the advantage of being based upon algebraic linearity, which enables160

many features of interest to be investigated analytically [6]. However, they are inherently deterministic161

(although they can be used to study extrinsic environmental noise) and the discretization within such162

models results in an approximation. Thus, a fully continuous stochastic model is desirable.163

2.5 Martingale Approaches164

Relatively recent investigations have used Martingale approaches to model age-structured stochastic165

processes. These methods stem from stochastic differential equations and Dynkin’s formula [41] and166

considers general processes of the form F (f(an(t))), where the vector an(t) represents the time dependent167

age-chart of the population with variable size n; f is a symmetric function of the individual ages; and F168

is a generic function of interest. A Martingale decomposition of the following form results169

F (f(an(t))) = F (f(an(0))) +

∫ t

0

GF (f(an; s))ds+M
(f,F )
t , (16)
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Table 1 Advantages and disadvantages of different frameworks for stochastic age-structured populations.
‘Stochastic’ indicates that the model resolves probabilities of configurations of the population. ‘Age-dependent
rates’ indicates whether or not a model takes into account birth, death, or fission rates that depend on an indi-
viduals age (time after its birth). ‘Age-structured Populations’ indicates whether or not the theory outputs the
age structure of the ensemble population. ‘Age Chart Resolved’ indicates whether or not a theory outputs the
age distribution of all the individuals in the population. ‘Interactions’ indicates whether or not the approach can
incorporate population-dependent dynamics such as that arising from a carrying capacity, or from birth processes
involving multiple parents. ‘Budding’ and ‘Fission’ describes the model of birth and indicates whether the parent
lives or dies after birth. 1Birth and death rates in the McKendrick-von Foerster equation can be made explicit
functions of the total populations size, which must be self-consistently solved [21, 22]. 2Leslie matrices discretize
age groups and are an approximate method. 3Martingale methods do not resolve the age structure explicitly, but
utilize rigorous machinery. 4The kinetic approach for fission is addressed later in this work, but not in [20].

Theory Stochastic
Age-

dependent
rates

Age-
structured
Popula-

tions

Age
Chart

Resolved

Interac-
tions

Budding Fission

Verhulst Eq. 7 7 7 7 3 7 7

McKendrick Eq. 7 3 3 7 3 31 7

Master Eq. 3 7 7 7 3 3 3

Bellman-Harris 3 3 7 7 7 7 3

Leslie Matrices 7 32 3 7 3 7 7

Martingale 3 3 73 7 3 3 3

Kinetic Theory 3 3 3 3 3 3 34

where the operator G captures the mean behavior, and the stochastic behavior is encoded in the local170

Martingale process M
(f,F )
t [30]. Such analyses have enabled several features of general birth-death pro-171

cesses, including both budding and fission forms of birth to be quantified. Specifically, the Malthusian172

growth parameter can be explicitly determined, along with the asymptotic behavior of the age-structure.173

More recently there have been results related to coalescents and extinction of these processes [23, 26, 27].174

However, we will show the utility of obtaining the probability density of the entire age chart of the pop-175

ulation which allows efficient computations in transient regimes. The kinetic approach first developed in176

[20] introduces machinery to accomplish this.177

2.6 Kinetic Theory178

A brief introduction to the current formulation of our kinetic theory approach to age-structured pop-179

ulations can be found in [20]. The starting point is a derivation of a variable-dimension coupled set of180

partial differential equations for the complete probability density function ρn(an; t) describing a stochas-181

tic, interacting, age-structured population subject to simple birth and death. Variables in the theory182

include the population size n, time t, and the vector an = (a1, a2, . . . , an) representing the complete age183

chart for the n individuals. If we randomly label the individuals 1, 2, . . . , n, then ρn(an; t)dan represents184

the probability that the ith individual has age in the interval [ai, ai + dai]. Since individuals are consid-185

ered indistinguishable, ρn(an; t) is invariant under any permutation of the age-chart vector an. These186

functions are analogous to those used in kinetic theories of gases [39]. Their analysis in the context of187

age-structured populations builds on the Boltzmann kinetic theory of Zanette [55] and results in the188

kinetic equation189

∂ρn(an; t)

∂t
+

n∑
j=1

∂ρn(an; t)

∂aj
= −ρn(an; t)

n∑
i=1

γn(ai) + (n+ 1)

∫ ∞
0

µn+1(y)ρn+1(an, y; t)dy, (17)

where γn(a) = βn(a)+µn(a) and the age variables are separated from the time variable by the semicolon.190

The associated boundary condition is191

nρn(an−1, 0; t) = ρn−1(an−1; t)βn−1(an−1). (18)

Note that because ρn(an−1, 0; t) is symmetric in the age arguments, the zero can be placed equivalently192

in any of the n age coordinates. The birth rate function can be quite general and can take forms such as193
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βn−1(an−1) =
∑n−1

i=1 βn−1(ai) for a simple birth process or
∑

1≤i<j≤n−1 βn−1(ai, aj) to represent births194

arising from interactions between pairs of individuals.195

Equation 17 applies only to the budding or simple mode of birth such as event I in Fig. 1A. In [20] we196

derived analytic solutions for ρn(an; t) in pure death and pure birth processes, and showed that marginal197

densities obeyed a BBGKY-like (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy of equations. Fur-198

thermore, when the birth and death rates are age-independent (but possibly number-dependent), the199

hierarchy of equations reduce to a single master equation for the total number of individuals n in the200

population. Characterizing all the remaining higher moments of the distribution remains an outstanding201

problem. Moreover, methods to tackle fission modes of birth such as those shown in Fig. 1B were not202

developed. These are the two contributions described in this paper. Before analyzing these problems, we203

summarize the pros and cons of the different approaches in Table 1.204

3 Analysis of Simple Birth-Death Processes205

We now revisit the simple process of budding birth and death, and extend the kinetic framework intro-206

duced in [20]. We first show that the factorial moments for the density ρn(an; t) satisfy a generalized207

McKendrick-von Foerster equation. We also explicitly solve Eqs. 17 and 18, and derive for the first time208

an exact general solution for ρn(an; t).209

3.1 Moment Equations210

The McKendrick-von Foerster equation has been shown to correspond to a mean-field theory of age-211

structured populations in which the birth and death rates β(a) and µ(a) are population-independent [20].212

This leaves open the problem of determining the age-structured variance (and higher-order moments) of213

the population size.214

In [20], we derived the marginal k−dimensional distribution functions defined by integrating ρn(an; t)215

over n− k age variables:216

ρ(k)n (ak; t) ≡
∫ ∞
0

dak+1 . . .

∫ ∞
0

dan ρn(an; t). (19)

The symmetry properties of ρn(an; t) indicate that it is immaterial which of the n− k age variables are217

integrated out. From Eq. 17, we then obtained218

∂ρ
(k)
n (ak; t)

∂t
+

k∑
i=1

∂ρ
(k)
n (ak; t)

∂ai
=− ρ(k)n (ak; t)

k∑
i=1

γn(ai)

+

(
n− k
n

)
ρ
(k)
n−1(ak; t)

k∑
i=1

βn−1(ai)

+
(n− k)(n− k − 1)

n

∫ ∞
0

βn−1(y)ρ
(k+1)
n−1 (ak, y; t)dy

− (n− k)

∫ ∞
0

γn(y)ρ(k+1)
n (ak, y; t)dy (20)

+ (n+ 1)

∫ ∞
0

µn+1(y)ρ
(k+1)
n+1 (ak, y; t)dy.

Similarly, integrating the boundary condition in Eq. 18 over n− k of the (nonzero) variables, gives, for219

simple birth processes where βn(am) =
∑m

i=1 βn(ai),220

ρ(k)n (ak−1, 0; t) =
1

n
ρ
(k−1)
n−1 (ak−1; t)

k−1∑
i=1

βn−1(ai) +
n− k
n

∫ ∞
0

ρ
(k)
n−1(ak−1, y; t)βn−1(y)dy. (21)

We now show how to use these marginal density equation hierarchies and boundary conditions to derive221

an equation for the kth moment of the age density.222
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For k = 1, ρ
(1)
n (a; t)da is the probability that we have n individuals and that if one of them is randomly223

chosen, it will have age in [a, a+da]. Therefore, the probability that we have n individuals, and that there224

exists an individual with age in [a, a + da], is nρ
(1)
n (a; t)da. Summing over all possible population sizes225

n ≥ 1 yields the probability ρ(a, t)da =
∑

n nρ
(1)
n (a; t)da that the system contains an individual with age226

in the interval [a, a+ da]. More generally, nkρ
(k)
n (ak; t)dak is the probability that there are n individuals,227

k of which can be labelled such that the ith has age within the interval [ai, ai + dai]. Summing over the228

possibilities n ≥ k, we thus introduce factorial moments X(k)(ak; t) and moment functions Y (k)(ak; t)229

as:230

X(k)(ak; t) ≡
∞∑
n=k

(n)kρ
(k)
n (ak; t) ≡

k∑
`=0

s(k, `)Y (`)(a`; t),

Y (k)(ak; t) ≡
∞∑
n=k

nkρ(k)n (ak; t) ≡
k∑
`=0

S(k, `)X(`)(a`; t). (22)

Here (n)k = n(n − 1) . . . (n − (k − 1)) = k!
(
n
k

)
is the Pochhammer symbol, and s(k, `) and S(k, `) are231

Stirling numbers of the first and second kind, respectively [47, 48]. Although we are primarily interested232

in the functions Y (k)(ak; t), the factorial moments X(k)(ak; t) will prove to be analytically more tractable.233

One can then easily interchange between the two moment types by using the polynomial relationships234

involving Stirling numbers.235

After multiplying Eq. 20 by (n)k and summing over all n ≥ k, we find236

∂X(k)

∂t
+

k∑
i=1

∂X(k)

∂ai
+
∑
n≥k

(n)kρ
(k)
n

k∑
i=1

γn(ai) =
∑

n−1≥k

(n− 1)kρ
(k)
n−1

k∑
i=1

βn−1(ai)

+

∫ ∞
0

∑
n−1≥k+1

(n− 1)k+1ρ
(k+1)
n−1 (ak, y; t)βn−1(y)dy

−
∫ ∞
0

∑
n≥k+1

(n)k+1ρ
(k+1)
n (ak, y; t)γn(y)dy

+

∫ ∞
0

∑
n+1≥k+1

(n+ 1)k+1ρ
(k+1)
n+1 (ak, y; t)µn+1(y)dy, (23)

where, for simplicity of notation, the arguments (ak; t) have been suppressed from ρ
(k)
n and X(k). In the237

case where the birth and death rates βn(a) = β(a) and µn(a) = µ(a) are independent of the sample size,238

significant cancellation occurs and we find the simple equation239

∂X(k)

∂t
+

k∑
i=1

∂X(k)

∂ai
+X(k)

k∑
i=1

µ(ai) = 0. (24)

When k = 1, one recovers the classical McKendrick-von Foerster equation describing the mean-field240

behavior after stochastic fluctuations are averaged out. Equation 24 is a natural generalization of the241

McKendrick-von Foerster equation and provides all the age-structured moments arising from the popu-242

lation size fluctuations. If the birth and death rates, βn and µn, depend on the population size, one has243

to analyze the complicated hierarchy given in Eq. 23.244

To find the boundary conditions associated with Eq. 24, we combine the definition of X(k) with the245

boundary condition in Eq. 21 and obtain246

X(k)(ak−1, 0; t) =
∑
n≥k

(n)kρ
(k)
n (ak−1, 0; t)

=X(k−1)(ak−1; t)β(ak−1) +

∫ ∞
0

X(k)(ak−1, y; t)β(y)dy. (25)
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Setting X(0) ≡ 0, we recover the boundary condition associated with the classical McKendrick-von247

Foerster equation. For higher-order factorial moments, the full solution to the (k− 1)st factorial moment248

X(k−1)(ak−1; t) is required for the boundary condition to the kth moment X(k)(ak−1, 0; t).249

Specifically, consider the second factorial moments and assume the solution X(1) ≡ Y (1) to the250

McKendrick-von Foerster equation is available (from e.g., Eq. 5). In the infinitesimal interval da, the251

term Y (1)da is the Bernoulli variable for an individual having an age in the interval [a, a+ da]. Thus, in252

an extended age window Ω, we heuristically obtain the expectation253

E(YΩ(t)) =
∑
da∈Ω

Yda(t) =

∫
Ω

Y (1)(a; t)da, (26)

where YΩ(t) is the stochastic random variable describing the number of individuals with an age in Ω at254

time t. Using an analogous argument for the variance, we find255

Var(YΩ(t)) =
∑

da,db∈Ω

Cov(Yda, Ydb) =

∫
Ω2

Y (2)(a, b; t)dadb−
∫
Ω

Y (1)(a; t)da ·
∫
Ω

Y (1)(b; t)db. (27)

Thus, the second moment Y (2) allows us to describe the variation of the population size within any256

age region of interest. Similar results apply for higher order correlations. We focus then on deriving a257

solution to Y (2) and determining the variance of population-size-age-structured random variables. Eq. 24258

for general k is readily solved using the method of characteristics leading to259

X(k)(ak; t) = X(k)(ak −m; t−m)

k∏
j=1

U(aj −m, aj), (28)

where the propagator is defined as U(a, b) ≡ exp
[
−
∫ b
a
µ(s)ds

]
. We can now specify X(k) in terms of260

boundary conditions and initial conditions by selectingm = min {ak, t}. SinceX(k)(ak; t) ≡ X(k)(π(ak); t)261

is invariant to any permutation π of its age arguments, we have only two conditions to consider. The262

initial condition X(k)(ak; 0) = g(ak) encodes the initial correlations between the ages of the founder263

individuals and is assumed to be given. From Eq. 22, X(k)(ak; 0) must be a symmetric function in the264

age arguments. A boundary condition of the form X(k)(ak−1, 0; t) ≡ B(ak−1; t) describes the fecundity265

of the population through time. This is not given but can be determined in much the same way that266

Eq. 8 was derived.267

To be specific, consider a simple pure birth (Yule-Furry) process (β(a) = β, µ(a) = 0) started by a268

single individual. The probability distribution of the initial age of the parent individual is assumed to be269

exponentially distributed with mean λ. Upon using transform methods similar to those used to derive270

Eq. 8, we obtain the following factorial moments (see Appendix A for more details):271

X(1)(a; t) =

{
λe−λ(a−t), t < a

βeβ(t−a), t > a
, X(2)(a, b; t) =


0, t < a < b

λβe−λ(b−a)e(λ+β)(t−a), a < t < b

2β2e−β(b−a)e2β(t−a), a < b < t

. (29)

We have given X(2)(a, b; t) for only a < b since the region a > b can be found by imposing symmetry of272

the age arguments in X(2). After using Eq. 22 to convert X(1) and X(2) into Y (1) and Y (2), we can use273

Eqs. 26 and 27 to find age-structured moments, particularly the mean and variance for the number of274

individuals that have age in the interval [a, b]:275

E(Y[a,b](t)) =


eλ(t−a) − eλ(t−b), t < a < b

eβ(t−a) − eλ(t−b), a < t < b

eβ(t−a) − eβ(t−b), a < b < t,

(30)

Var(Y[a,b](t)) =


e2λt(e−λa − e−λb)(−e−λa + e−λb + e−λt), t < a < b

(eβ(t−a) − eλ(t−b))(eβ(t−a) + eλ(t−b) − 1), a < t < b

e2βt(e−βa − e−βb)(e−βa − e−βb + e−βt), a < b < t.

(31)
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Note that in the limits a → 0 and b → ∞, we recover the expected exponential growth of the total276

population size E(Y[0,∞]) = eβt for a Yule-Furry process. We also recover the known total population277

variance Var(Y[0,∞]) = eβt(eβt − 1).278

3.2 Full Solution279

Equation 17 defines a set of coupled linear integro-differential equations in terms of the density ρn(an; t).280

In [20], we derived explicit analytic expressions for ρn(an; t) in the limits of pure death and pure birth.281

Here, we outline the derivation of a formal expression for the full solution. To do so, it will prove useful282

to revert to the following representation for the density:283

fn(an; t) ≡ n!ρn(an; t). (32)

If an is restricted to the ordered region such that a1 ≤ a2 ≤ . . . ≤ an, fn can be interpreted as the284

probability density for age-ordered individuals (see [20] for more details). We will consider fn as a285

distribution over Rn; however, its total integral (n!) is not unity and it is not a probability density. We286

can use Eq. 32 to switch between the two representations, but simpler analytic expressions for solutions287

to Eq. 17 result when fn(an; t) is used.288

To find general solutions for fn(an; t) expressed in terms of an initial distribution, we replace ρn(an; t)289

with fn(an; t)/n! in Eq. 17 and use the method of characteristics to find a solution. Examples of char-290

acteristics are the diagonal timelines portrayed in Fig. 2. So far, everything has been expressed in terms291

of the natural parameters of the system; the age an of the individuals at time t. However, an varies in292

time complicating the analytic expressions. If we index each characteristic by the time of birth (TOB)293

b = t−a instead of age a, then b is fixed for any point (a, t) lying on a characteristic, resulting in further294

analytic simplicity. We use the following identity to interchange between TOB and age representations:295

f̂n(bn; t) ≡ fn(an; t), bn = t− an. (33)

We will abuse notation throughout our derivation by identifying t− an ≡ [t− a1, t− a2, . . . , t− an]. The296

method of characteristics then solves Eq. 17 to give a solution of the following form, for any t0 ≥ max{bn}297

f̂n(bn; t) = f̂n(bn; t0)Ûn(bn; t0, t) +

∫ t

t0

ds

∫ s

−∞
dy Ûn(bn; s, t)f̂n+1(bn, y; s)µn+1(s− y). (34)

This equation is defined in terms of a propagator Ûn(bm; t0, t) ≡ Un(am; t0, t) that represents the survival298

probability over the time interval [t0, t], for m individuals born at times bm, in a population of size n,299

Ûn(bm; t0, t) = exp

[
−

m∑
i=1

∫ t

t0

γn(s− bi)ds

]
, (35)

where we have again used the definition γn(a) = βn(a) + µn(a). The propagator Û satisfies certain300

translational properties:301

Ûn(bm; t0, t) =

m∏
i=1

Ûn(bi; t0, t), (36)

Ûn(bm; t0, t) = Ûn(bm; t0, t
′) · Ûn(bm; t′, t). (37)

The solution f̂n applies to any region of phase space where t0 ≥ max{bn}. If t0 = max{bn}, say302

t0 = bn, then we must invoke the boundary conditions of Eq. 18 to replace f̂n(bn−1, bn; bn) with303

f̂n−1(bn−1; bn)βn−1(bn − bn−1), where we have and will henceforth use the notation304

βn−1(bn − bn−1) ≡ βn−1(bn − [b1, b2, . . . , bn−1])

≡
n−1∑
i=1

βn−1(bn − bi). (38)
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Age

Time

s1

b2

b1

s′1

y1

b′1

y′1

t

0

f̂3(b2, b
′
1; t) = Û(b2, b

′
1; s1, t)·∫ t

b2

ds1

∫ s′1

0

dy1Û(b2, y1, b
′
1; b2, s1)µ4(s1 − y1)·

Û(b1, y1, b
′
1; b1, b2)β3(b2 − [b1, y1, b

′
1])·

Û(y1, b
′
1; s′1, b1)β2(b1 − [y1, b

′
1])·∫ b1

y1

ds′1

∫ 0

−∞
dy′1Û(y1, b

′
1, y
′
1; y1, s

′
1)µ3(s′1 − y′1)·

Û(b′1, y
′
1; 0, y1)β2(y1 − [b′1, y

′
1])·

f̂2(b′1, y
′
1; 0)

Fig. 2 A sample birth death process over the time interval [0, t]. Red and white circles indicate births and deaths
within [0, t]. The variables bi > 0 and b′j < 0 denote TOBs of individuals present at time t, while yi > 0, y′j < 0,
and si, s

′
j ∈ [0, t] indicate birth and death times of individuals who have died by time t. Terms arising from

application of the recursion in Eq. 34 and boundary condition of Eq. 18 are given to the right.

Eq. 34 is then used to propagate f̂n−1(bn−1; bn) backwards in time. To obtain a general solution, we305

need to repeatedly back-substitute Eq. 34 and the associated boundary condition, resulting in an infinite306

series of integrals. However, each term in the resultant sum can be represented by a realization of the307

birth-death process. We represent any such realization across time period [0, t], such as that given in308

Fig. 2, as follows.309

Let bm ∈ [0, t] and b′n < 0 denote the TOBs for m individuals born in the time interval [0, t],310

and n founder individuals, all alive at time t. Next, define yk ∈ [0, t] and y′` < 0 to be the TOBs311

of k individuals born in the time interval [0, t] and ` founder individuals, respectively. Here, all k + `312

individuals are assumed to die in the time window [0, t]. Their corresponding times of death are defined313

as sk and s′`, respectively. Thus, there will be n + ` individuals alive initially at time t = 0 and m + n314

individuals alive at the end of the interval [0, t].315

Next, consider the realization in Fig. 2, where we start with the two individuals at time 0 with TOBs316

b′1 and y′1. The individual with TOB b′1 survives until time t, while the individual with TOB y′1 dies at317

time s′1. Within the time interval [0, t] there are three more births with TOBs b1, b2 and y1, the last of318

which has a corresponding death time of s1, resulting in three individuals in total that exist at time t.319

To express the distribution f̂3(b2, b
′
1; t) in terms of the initial distribution f̂2(b′1, y

′
1; 0), conditional320

upon three birth and two death events ordered such that 0 < y1 < s′1 < b1 < b2 < s1 < t, we start321

with the distribution f̂2(b′1, y
′
1; 0). Just prior to the first birth time y1, we have two individuals, so322

that f̂3(·; y−1 ) ≡ 0 and Eq. 34 yields f̂2(b′1, y
′
1; y−1 ) = f̂2(b′1, y

′
1; 0)Û(b′1, y

′
1; 0, y1) (the death term does323

not contribute). To describe a birth at time y1, we use the boundary condition of Eq. 18 to construct324

f̂3(b′1, y
′
1, y1; y1) = f̂2(b′1, y

′
1; y−1 )β2(y1 − [b′1, y

′
1]).325

Immediately after y1 and before the next death occurs at time s′1, three individuals exist and326

f̂2(·; y+1 ) ≡ 0. Now, only the death term in Eq. 34 contributes and327

f̂2(y1, b
′
1; b−1 ) =

∫ b1

y1

ds′1

∫ 0

−∞
dy′1 Û(y1, b

′
1, y
′
1; y1, s

′
1)µ3(s′1 − y′1)f̂3(y1, b

′
1, y
′
1; s′1). (39)

Continuing this counting, we find the product of terms displayed on the right-hand side of Fig. 2.328

Next, we use the translational properties indicated in Eqs. 36 and 37 to combine the propagators329

associated with Fig. 2 into one term: Û(y′1; 0, s′1)Û(b′1; 0, t)Û(y1; y1, s1)Û(b1; b1, t)Û(b2; b2, t). In other330

words, each birth-death pair (y, s) is propagated along the time interval it survives; from max{y, 0} to331

min{s, t}. For example, the individual with TOB b′1 < 0 survives across the entire timespan [0, t], whereas332

the individual with TOB y1 is born and dies at times y1 and s1. These two individuals are propagated by333

the terms U(b′1; 0, t) and U(y1; y1, s1), respectively. Provided the order 0 < y1 < s′1 < b1 < b2 < s1 < t334

is preserved and the values b′1, y
′
1 < 0 are negative, the form of the integral expressions in Fig. 2 are335

preserved.336
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Fig. 3 Monte-Carlo simulations of densities in age- and number-dependent birth-death processes. Row A shows
results for a death-only process with a linear death rate function µ(a) = a. We initiated all simulations from 10
individuals with initial age drawn from distribution P (a) = 128a3e−4a/3. In row B, we consider a budding-only
birth process with a carrying capacity K = 5 (in Eq. 10). Here, simulations were initiated with a single parent
individual with an initial age also drawn from the distribution P (a). In (i), we plot the total number density

ρ
(0)
n (t) =

∫
daρn(a; t) for both processes. We also plot the single-particle density function ρn=1,5,9(a; t = 2) for

the pure death process in A(ii-iv) and ρn=1,3,5(a; t = 5) for the limited budding process in B(ii-iv). Finally, the

population-summed two-point correlations functions
∑

n ρ
(2)
n (a1, a2; t) for pure death and pure budding are shown

in panels A(v) and B(v).

After summing across all realizations Cm,k,` (the configuration in Fig. 2 is one member of C2,1,1)337

of the possible orderings of the birth and death times bm, yk, y′`, sk and s′`, we can write the general338

solution to Eq. 34 in the form339

f̂m+n(bm,b
′
n; t) =

∞∑
k,`=0

∑
Cm,k,`

∫ 0

−∞
dy′` ·

∫ t+(yk)

t−(yk)

dyk ·
∫ t+(sk)

t−(sk)

dsk ·
∫ t+(s′`)

t−(s′`)

ds′` · f̂n+l(b′n,y′`; 0)·

m∏
i=1

Û(bi; bi, t) ·
k∏
i=1

Û(yi; yi, si) ·
n∏
i=1

Û(b′i; 0, t) ·
∏̀
i=1

Û(y′i; 0, s′i)

m∏
i=1

βN(bi)(bi −A(bi))·

k∏
i=1

βN(yi)(yi −A(yi)) ·
k∏
i=1

µN(yi)(si − yi) ·
∏̀
i=1

µN(y′i)
(s′i − y′i). (40)

The terms t−(x) and t+(x) refer to the times below and above x relative to the ordering of times bm,340

yk, y′`, sk and s′k. For example, in Fig. 2, t−(b2) = [s′1, b1] and t+(b2) = [b2, s1] represent the lower and341

upper bounds of the vector b2 = [b1, b2] found from the ordering 0 < y1 < s′1 < b1 < b2 < s1. The342

term A(x) represents the vector of TOBs of the individuals alive just prior to time x. The term N(x)343

represents the number of individuals alive just prior to time x.344

Although analytic and complete, the solution given in Eq. 40 is unwieldy and difficult to implement.345

One can truncate the sum to remove low probability contributions, such as realizations containing im-346

probable numbers of intermediary births and deaths, and perform numerical integration. However, this347

approach also rapidly becomes infeasible as the dimensions increase. Therefore, we explore the general348

solution via event-based Monte-Carlo simulation. We initialize the process with a number of samples349

obtained from an initial distribution. Each sample is represented by a vector bn of birth times and is350

propagated forward in time. A timestep is chosen to be sufficiently small such that at most one birth or351

death event occurs within it, after which the vector bn is updated. This process is continued until the352

required time has been reached. Although the high dimensionality makes it difficult to sample enough353

realizations to sufficiently explore the distribution fn(an; t), lower dimensional marginal distributions354

such as f
(0)
n (·; t), f (1)n (a1; t) and f

(2)
n (a1, a2; t), and their counterparts ρn, can be sufficiently sampled.355

Figures 3A and B show results from simulations of a pure death and a pure birth process, respectively.356

In Fig. 3A we assumed a population-independent linear death rate µ(a) = a and initiated the pure death357

process with 10 individuals with initial ages drawn from a gamma distribution with unit mean and358
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standard deviation 1
2 . Fig. 3A(i) shows the simulated density which decreases in n with time. Figs. 3A(ii-359

iv) show that the weight of the reduced single-particle density function shifts to longer times and higher360

ages as the system size n is decreased. The sum over the population of the symmetric two-point correlation361

ρ
(2)
n (a1, a2; t = 2) is shown in Fig. 3A(v). The observed structure indicates no correlations in the death362

only process and the peak at a1 = a2 ≈ 2.6 reflects the fact that older individuals die faster, shifting363

the mean age slightly below the initial age plus the elapsed time (1+2=3). Fig. 3B shows results from364

Monte-Carlo simulations of a pure birth process with growth rate β0 = 1 and carrying capacity K = 5365

(Eq. 10). Here, we initiated the simulations with one individual with age drawn from the same gamma366

distribution P (a) = 128a3e−4a/3. In this case, the reduced single-particle density exhibits peaks arising367

from both from the initial distribution and from birth (Fig. 3B(ii-iv)). The two-point correlation function368 ∑∞
n=0 ρ

(2)
n (a1, a2; t = 5) exhibits a similar multimodal structure as shown in (v).369

In all simulations at least 400,000 trajectories were aggregated and the results are in good agree-370

ment with analytic solutions to Eq. 17. Similar analytic results can be obtained using Doi-Peliti second371

quantization methods, as is demonstrated in the companion paper [19]. In particular, the age-structured372

population-size function ρn(t) is expanded into a similar sum, where each term can be interpreted two373

ways: as an element in a perturbative expansion and also represented as a Feynman diagram in a path374

integral expansion. The moment equations from Section 3.1 that generalize the McKendrick equation375

can also be derived using second quantization.376

4 Age-Structured Fission-Death Processes377

We now derive a kinetic theory for a binary fission-death process, as depicted in Fig. 1B. We find a378

hierarchy of kinetic equations, analogous to Eqs. 17 and 18, and determine the mean behavior.379

4.1 Extended Liouville Equation for Fission-Death380

The binary fission-death process is equivalent to a birth-death process except that parents are instan-381

taneously replaced by two newborns. The process can also be thought of as a budding process in which382

the parent is instantaneously renewed. In order to describe both twinless individuals (singlets) and twins383

(a doublet), we have to double the dimensionality of our density functions. For example, in Fig. 1B at384

time t1, we have two pairs of distinct twins, with four individuals having two ages, whereas at time t2 we385

have two singlets and two doublets. Thus, we define the ages of current singlets and twins by am and a′n,386

respectively, where m is the number of singlets and n the number of pairs of twins. Transforming to the387

time-of-birth (TOB) representation, we define the TOB of current singlets and twins as xm = t−am and388

yn = t−a′n, respectively. For simplicity, we will assume that no simple birth processes occur and that par-389

ticles grow in number only through fission. The function βm,n(a) is defined as the age-dependent fission390

rate of an individual (whether a singlet or a doublet) of age a when the system contains m singlets and n391

doublets. Similarly, we have death rate µm,n(a), and event rate γm,n(a) = βm,n(a)+µm,n(a). We suppose,392

for the moment, that the TOBs are ordered so that x1 ≤ x2 ≤ . . . ≤ xm and y1 ≤ y2 ≤ . . . ≤ ym. The393

quantity fm,n(xm;yn)dxmdyn is then the probability of m singlets with ordered TOBs in [xm,xm+dxm]394

and n twin pairs with ordered TOBs in [yn,yn + dyn]. The density fm,n satisfies the following equation:395

∂fm,n(xm;yn; t)

∂t
+ fm,n(xm;yn; t)

[
m∑
i=1

γm,n(t− xi) + 2

n∑
j=1

γm,n(t− yj)

]
=

m∑
i=0

∫ xi+1

xi

fm+1,n(xi, z,xi+1,m;yn; t)µm+1,n(t− z)dz

+2

m∑
i=1

fm−1,n+1(x(−i)
m ;yi, xi,yi+1,n; t)µm−1,n+1(t− xi),

(41)

where the partial age vectors are defined as xi,j = (xi, . . . , xj) and the singlet age vector, doublet age396

vector, and time arguments are separated by semicolons. The term x
(−i)
m = (x1, . . . , xi−1, xi+1, . . . , xm)397

represents the vector of all m singlet TOBs, except for the ith one. The first term on the right hand side398

of Eq. 41 represents the death of a singlet particle with an unknown TOB z in the interval [xi, xi+1],399

while the second term describes the death of any one of two individuals in a pair of twins (with TOB400

xi).401
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The associated boundary conditions are402

fm,n(xm−1, t;yn; t) = 0, (42)

fm,n(xm;yn−1, t; t) = 2

m∑
i=1

fm−1,n(x(−i)
m ;yn−1, xi; t)βm−1,n(t− xi)

+

m∑
i=0

∫ xi+1

xi

fm+1,n−1(xi, z,xi+1,m;yn; t)βm+1,n−1(t− z)dz. (43)

The first term on the right-hand side above represents the fission of one of a pair of twins, generating403

a new pair of twins of age zero (TOB t), and leaving behind a singlet with TOB xi. The second term404

represents the fission (and removal) of a singlet with unknown TOB z, giving rise to an additional pair405

of twins of age zero.406

We now let xm and yn be unordered TOB vectors, and extend fm,n to the domain Rm+n by defining407

fm,n(xm;yn; t) = fm,n(T(xm);T(yn); t), where T is the ordering operator. Note that fm,n is not a proba-408

bility distribution under this extension; however, ρm,n(xm;yn; t)dxmdyn = 1
m!n!fm,n(xm;yn; t)dxmdyn409

can be interpreted as the probability that we have a population of m singlets and n pairs of twins, such410

that if we randomly label the singlets 1, 2, . . . ,m and the doublets 1, 2, . . . , n, the ith singlet has age in411

[xi, xi + dxi] and the jth doublet have age in [xj , xj + dxj ]. The density ρm,n obeys412

∂ρm,n(xm;yn; t)

∂t
+ ρm,n(xm;yn; t)

[
m∑
i=1

γm,n(t− xi) + 2

n∑
j=1

γm,n(t− yj)

]
=

(m+ 1)

∫ t

−∞
ρm+1,n(xm, z;yn; t)µm+1,n(t− z)dz

+ 2

(
n+ 1

m

) m∑
i=1

ρm−1,n+1(x(−i)
m ;yn, xi; t)µm−1,n+1(t− xi), (44)

with associated boundary condition413

ρm,n(xm−1, t;yn; t) = 0,

ρm,n(xm;yn−1, t; t) =
2

m

m∑
i=1

ρm−1,n(x(−i)
m ;yn−1, xi; t)βm−1,n(t− xi)

+

(
m+ 1

n

)∫ t

−∞
ρm+1,n−1(xm, z;yn−1; t)βm+1,n−1(t− z)dz. (45)

Equations 44 and 45 provide a complete probabilistic description of the population of singlets and414

doublets undergoing fission and death. We draw attention to the parallel paper [19], where we derive an415

equivalent hierarchy using methods used in quantum field theory developed by Doi and Peliti [13, 14, 42].416

4.2 Mean-Field Behavior417

Here, we analyze the mean-field behavior of the fission-death process by first integrating out unwanted418

variables from the full density ρm,n(xm;yn; t) to construct marginal or “reduced” densities. Successive419

integrals over any number of the variables xm and yn can be performed, giving:420

ρ(k,`)m,n (xk;y`; t) ≡
∫ t

−∞
dx′m−k

∫ t

−∞
dy′n−`ρm,n(xk,x

′
m−k;y`,y

′
n−`; t). (46)

For example, ρ
(0,0)
m,n (; ; t) is the probability of finding at time t, m singlets and n doublets, regardless421

of age. After integrating Eq. 44 we find the double hierarchy of equations422
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∂ρ
(k,`)
m,n (xk;y`; t)

∂t
+ ρ(k,`)m,n (xk;y`; t)

[
k∑
i=1

γm,n(t− xi) + 2
∑̀
i=1

γm,n(t− yi)

]

+ (m− k)

∫ t

−∞
ρ(k+1,`)
m,n (xk, z;y`; t)γm,n(t− z)dz + 2(n− `)

∫ t

−∞
ρ(k,`+1)
m,n (xk;y`, z; t)γm,n(t− z)dz

= (m+ 1)

∫ t

−∞
ρ
(k+1,`)
m+1,n (xk, z;y`; t)µm+1,n(t− z)dz

+ 2

(
n+ 1

m

) k∑
i=1

ρ
(k−1,`+1)
m−1,n+1 (x

(−i)
k ;y`, xi; t)µm−1,n+1(t− xi)

+ 2

(
n+ 1

m

)
(m− k)

∫ t

−∞
ρ
(k,`+1)
m−1,n+1(xk;y`, z; t)µm−1,n+1(t− z)dz. (47)

Similarly, integrating Eq. 45 yields boundary conditions for the marginal densities:423

ρ(k,`)m,n (xk−1, t;y`; t) =0,

ρ(k,`)m,n (xk;y`−1, t; t) =
2

m

k∑
i=1

ρ
(k−1,`)
m−1,n (x

(−i)
k ;y`−1, xi; t)βm−1,n(t− xi)

+ 2

(
m− k
m

)∫ t

−∞
ρ
(k,`)
m−1,n(xk;y`−1, z; t)βm−1,n(t− z)dz

+

(
m+ 1

n

)∫ t

−∞
ρ
(k+1,`−1)
m+1,n−1 (xk, z;y`−1; t)βm+1,n−1(t− z)dz. (48)

We can now analyze the densities X(x, t) and Y (y, t), where X(x, t)dx is the probability that there424

exists at time t a singlet with TOB in [x, x+ dx] and Y (y, t)dy is the probability that at time t we have425

one doublet with TOB in [y, y + dy]. Analogous to Eq. 22, we define426

X(x, t) ≡
∞∑

m,n=0

mρ(1,0)m,n (x; ; t) =

∞∑
m,n=0

m

∫ t

−∞
dxm−1

∫ t

−∞
dynρm,n(xm−1, x;yn; t),

Y (y, t) ≡
∞∑

m,n=0

nρ(0,1)m,n (; y; t) =

∞∑
m,n=0

n

∫ t

−∞
dxm

∫ t

−∞
dyn−1ρm,n(xm;yn−1, y; t). (49)

Upon setting (k, `) = (1, 0) and (k, `) = (0, 1), we multiply Eq. 47 by m and n, respectively, and sum both427

equations. If the fission and death rates βm,n(a) and µm,n(a) depend on population size, the resultant428

expressions are complex hierarchies which will be difficult to analyze. However, if βm,n(a) = β(a) and429

µm,n(a) = µ(a) are size-independent, many cancellations occur and the resulting equations for X and Y430

simplify significantly, giving431

∂X

∂t
= (2Y −X)γ(t− x),

∂Y

∂t
= −2Y γ(t− x). (50)

Similarly, repeating the operation on the boundary conditions in Eq. 48, we find boundary conditions432

for X and Y :433

X(t, t) = 0, Y (t, t) =

∫ t

−∞
(X(z, t) + 2Y (z, t))γ(t− z)dz ≡ B(t). (51)

Note that if T = X + 2Y is the total population density, Eqs. 50 and 51 reduce to McKendrick-von434

Foerster-like equations:435

∂T

∂t
= −γ(t− z)T, T (t, t) =

∫ t

−∞
T (z, t)γ(t− z)dz. (52)
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To solve Eqs. 50 and 51, we first define436

U(x; t1, t2) = exp

[
−
∫ t2

t1

γ(s− x)ds

]
, (53)

and find solutions of the form437

X(x, t) = X(x, t0)U(x; t0, t) + 2Y (x, t0)U(x; t0, t)(1− U(x; t0, t)),

Y (x, t) = Y (x, t0)U2(x; t0, t), (54)

provided t0 ≥ x. For an initial time of t = 0, we find, upon setting t0 = max{0, x},438

X(x, t) =

{
2B(x)U(x;x, t)(1− U(x;x, t)), x > 0,

X(x, 0)U(x; 0, t) + 2Y (x, 0)U(x; 0, t)(1− U(x; 0, t)), x < 0,
(55)

Y (x, t) =

{
B(x)U2(x;x, t), x > 0,

Y (x, 0)U2(x; 0, t), x < 0.
(56)

We now substitute Eqs. 55 and 56 into Eqs. 51 to find a Volterra equation for B(t):439

B(t) = 2

∫ t

0

B(x)U(x;x, t)β(t− x)dx+

∫ 0

−∞
[X(x, 0) + 2Y (x, 0)]U(x; 0, t)β(t− x)dx. (57)

Equation 57 along with Eqs. 55 and 56 constitute a complete solution for the mean density of singlets440

and doublets. Eqs. 55 and 56 also show that the total population density, T (x, t) = X(x, t) + 2Y (x, t),441

takes on a simple form in terms of B(t):442

T (x, t) =

{
2B(t)U(x;x, t), x > 0,

T (x, 0)U(x; 0, t), x < 0,
(58)

while the total mean population T (t) =
∫∞
0
T (x, t)dx is given by443

T (t) = 2

∫ t

0

B(x)U(x;x, t)dx+

∫ 0

−∞
T (x, 0)U(x; 0, t)dx. (59)

Before analyzing a specific model of the fission-death process, we will first establish the equivalence of444

our noninteracting kinetic theory with the Bellman-Harris fission process (discussed in Subsection 2.3)445

in the mean-field limit.446

4.3 Mean-field Equivalence to the Bellman-Harris Process447

Consider a Bellman-Harris fission process with an inter-branching time distributed according to the448

function g(τ) and an associated cumulative density function defined by G(t) =
∫ t
0
g(τ)dτ . Upon using449

the progeny distribution function H(·) given in Eq. 12, the Bellman-Harris model in Eq. 13 can be written450

equivalently as451

F (z, t) = z(1−G(t)) +

∫ t

0

H(F (z, τ))g(t− τ)dτ. (60)

If we restrict ourselves to a binary fission process, the progeny distribution function takes the form452

H(y) = h0 + h2y
2, where h0 and h2 = 1− h0 are the death and binary fission probabilities, conditional453

on an event taking place. Thus, the mean population defined as454

T (t) ≡ ∂F

∂z

∣∣∣∣
z=1

=

∫ ∞
t

g(τ)dτ + 2h2

∫ t

0

g(t− τ)T (τ)dτ (61)

has the Laplace-transformed solution455
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T̃ (s) =
1

s

1− g̃(s)

1− 2h2g̃(s)
. (62)

We now show that the same result arises from our full noninteracting (population-independent β(a)456

and µ(a)) kinetic approach. Since the fission and death rates can be expressed as β(y) = h2g(y)
1−G(y) and457

µ(y) = h0g(y)
1−G(y) , Eq. 53 reduces to U(x;x, t) = 1 − G(t − x) and U(0; 0, t) = 1 − G(t). Starting from a458

single individual with age zero, Eq. 59 can be written as459

T (t) = 2

∫ t

0

B(x)(1−G(t− x))dx+ (1−G(t)), (63)

which has the Laplace-transformed solution460

T̃ (s) = (2B̃(s) + 1)
1− g̃
s

. (64)

Similarly, Eq. 57 becomes461

B(t) = h2g(t) + 2

∫ t

0

B(x)h2g(t− x)dx, (65)

with Laplace-transformed solution462

B̃(s) =
h2g̃(s)

1− 2h2g̃(s)
. (66)

Substituting Eq. 66 in Eq. 64 results in Eq. 62 for T̃ (s), explicitly establishing the mean-field equiv-463

alence between the Bellman-Harris approach and our kinetic theory. Note that in the Bellman-Harris464

formulation, the waiting-time distributions of either fission or death have the same distribution g(a). In465

our kinetic theory, these rates can have distinct distributions, βn(a) and µn(a), and can also depend on466

population size, providing much greater flexibility.467

5 A Fission-only Model of Cell Division468

We now consider explicit results for a simple fission-only model (h2 = 1) of cell division where cell469

cycle times are rescaled to be Γ -distributed with unit mean and variance 1
α . This Γ -distribution and its470

Laplace transform g̃(s) are explicitly471

g(t) =
αα

Γ (α)
tα−1e−αt, g̃(s) =

( α

α+ s

)α
. (67)

Equation 66 for B(t) can then be solved to yield472

B(t) = L−1t

(
αα

(s+ α)α − 2αα

)
= αe−αtL−1(αt)

(
1

sα − 2

)
. (68)

The inverse Laplace transform is detailed in Appendix B and involves contour integration that yields473

B(t) = −α
π

∫ ∞
0

e−αt(r+1)rα sin(πα)

r2α − 4rα cos(πα) + 4
dr+

bα2 c∑
n=−bα2 c

2
1
α−1e(2

1
α cos( 2nπ

α )−1)αt cos

(
2

1
ααt sin

(
2nπ

α

)
+

2nπ

α

)
.

(69)
Similarly, from Eq. 62 we have474

T (t) = L−1t

(
1

s

(s+ α)α − αα

(s+ α)α − 2αα

)
= e−αtL−1(αt)

(
1

s− 1

sα − 1

sα − 2

)
, (70)

which can also be evaluated via a similar Bromwich integral:475
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a

Fig. 4 Plots of simulations and analytic results of a fission-only process with Γ -distributed branching times.
A, B, and C show mean populations as a function of time for dispersion values α = 1, α = 10, and α = 100,
respectively. Red dotted trajectories are realizations of simulations, while the solid red line is the mean. The blue
dashed curve is the mean population T (t) computed from Eq. 71 and is nearly indistinguishable from the red
solid curve. The upper and lower black lines correspond to the continuous-time Markovian fission process and the
discrete-time Galton-Watson process, respectively. D, E, and F depict the corresponding mean age-distributions
T (x, t) computed from Eq. 58 but plotted as functions of time t and age a.

T (t) =
1

π

∫ ∞
0

e−αt(r+1)

r + 1

rα sin(πα)

r2α − 4rα cos(πα) + 4
dr

+

bα2 c∑
n=−bα2 c

2
1
α

2α
e(2

1
a cos( 2nπ

α )−1)αt 2
1
α cos(2

1
α sin( 2nπ

α )αt)− cos(2
1
α sin( 2nπ

α )αt+ 2nπ
α )

2
2
α − 21+

1
α cos( 2nπ

α ) + 1
. (71)

For α = 1, g(t) = e−t is exponentially distributed, and we find the simple growth law T (t) = et,476

which is equivalent to the result E(Y[0,∞]) = eβt found earlier in Subsection 3.1. This corresponds477

to a continuously compounded population. On the other hand, when α is increased, the Γ -distribution478

sharpens about unity. Figs. 4A,B,C show that as α increases, the mean population size T (t) tends towards479

that given by the discrete-time Galton-Watson step process, as would be expected. In the α→∞ limit,480

the population compounds at discrete, evenly timed intervals leading to an overall lower population481

compared to that of a process with more frequent branching (smaller α). In Figs. 4D,E,F, we have used482

the expression for B(t) in Eqs. 58 and 69 to give the mean age-time distribution T (a, t). Note that unlike483

the solution to the Bellman-Harris equation shown in Figs. 4A,B,C, the mean density T (a, t) (Eq. 58)484

resolves age structure.485

6 Spatial Models486

We now illustrate how our age-structured kinetic model can be generalized to include spatial motion487

such as diffusion and convection. We will follow the approaches described in Webb [53] for incorporat-488

ing spatial effects in age-structured simple birth-death processes. Since these methods are adaptations489

of the McKendrick-von Foerster equation, they are deterministic and ignore stochastic fluctuations in490

population size. In a manner similar to how the McKendrick-von Foerster equation was extended to the491

stochastic domain using Eq. 17, here, we outline how to generalize the age-structured spatial process492

discussed in [53] to incorporate stochasticity.493

Consider a simple budding-mode birth-death process such that ρ̂n(bn;qn; t) is the probability density494

for a population containing n randomly labelled individuals with TOBs bn and positions qn. Although495
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ρ̂n(bn;qn; t) is again invariant under permutations of variables associated with different individuals, the496

relative orders of bn and qn must be preserved. For example, ρ̂2(b1, b2; q1, q2; t) = ρ̂2(b2, b1; q2, q1; t). For497

ease of presentation, we assume a one-dimensional system; generalizations to higher spatial dimensions498

are straightforward. We further suppose that individuals are undergoing identical, independent diffusion499

processes with diffusion constant D. Examples of other spatial processes that may be combined with500

stochastic age-structured kinetics can be found in [53]. We suppose that βn(a; q) and µn(a; q) are birth501

and death rates for an individual with age a and at spatial position q in a population of size n. Finally,502

the initial position of each newborn is determined by the position of the parent at the time of birth. The503

extended theory is described by the following kinetic equation for ρ̂n(bn;qn; t):504

∂ρ̂n(bn;qn; t)

∂t
=− ρ̂n(bn;qn; t)

n∑
i=1

γn(t− bi, qi) +D

n∑
i=1

∂2

∂q2i
ρ̂n(bn;qn; t)

+ (n+ 1)

∫ t

−∞
dy

∫
R

dq′ ρ̂n+1(bn, y;qn, q
′; t)µn+1(t− y, z). (72)

The corresponding boundary condition capturing the influx of newborn individuals is505

ρn(bn−1, t;qn; t) =
1

n

n−1∑
i=1

ρn−1(bn−1;qn−1; t)β(t− bi, qi)δ(qn − qi), (73)

which differs slightly from that in Eq. 18. In the original formulation, we do not track which individual506

is the parent of a newborn, whereas here the newborn has the same position (qn) as the parent (qi),507

setting its identity as the ith individual. In addition to a boundary condition, Eq. 72 requires an initial508

condition ρn(bn;qn; 0) to specify both the initial TOB and initial position of individuals.509

As with our earlier analyses, we first express ρn in terms of ρn+1 by introducing the propagator510

Un(bn;qn; t0, t) = exp
[
−
∑n

i=1

∫ t
t0
γn(s− bi, qi)ds

]
, which enables us to transform Eq. 72 to an inhomo-511

geneous heat equation for the function U−1n ρn,512

∂

∂t

[
U−1n (bn;qn; t0, t)ρn

]
= D

n∑
j=1

∂2

∂q2j

[
U−1n ρn

]
+(n+1)U−1n

∫ t

−∞
dy

∫
R

dz ρn+1(bn, y;qn, z; t)µn+1(t−y, z),

(74)
whose solution can be expressed in the form [5]513

ρn(bn;qn; t) =Un(bn;qn; t0, t)

∫
Rn

dq′nNqn(q′n, 2D(t− t0)In)ρn(bn;q′n; t0)

+ (n+ 1)

∫ t

t0

dsUn(bn;qn; s, t)

∫
Rm

dq′nNqn(q′n, 2D((t− t0)− s)In)

×
∫ s

−∞
dy

∫
R

dz ρn+1(bn, y;q′n; z; s)µn+1(s− y, z). (75)

Here, In denotes the n × n identity matrix and Nq(x, Σ) is the multivariate normal density for the514

vector q arising from a distribution with mean x and covariance Σ. This result expresses ρn in terms515

of ρn+1 and is analogous to Eq. 34. This solution is valid provided t0 > max{x}; for t0 = max{x}, we516

must invoke the boundary condition. One can then use Eq. 75 and the boundary condition to search for517

explicit solutions in much the same way as we did for our spatially independent kinetic theory. In the518

companion paper, we derive the mean-field equations for this spatial kinetic theory using quantum field519

theoretic methods developed by Doi and Peliti [19].520

7 Summary and Conclusions521

We have developed a complete kinetic theory for age-structured birth-death and fission-death processes522

that allow for systematic and and self-consistent incorporation of interactions at the population level.523
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Our overall result in [20], which we extend here, is the derivation of a kinetic theory for stochastic age-524

structured populations. The kinetic equations can be written in terms of a BBGKY-like hierarchy (or525

a double hierarchy in the case of fission). Methods of approximation and closure typically employed in526

gas/liquid kinetic theory, plasma physics, or fluid dynamics can then be applied.527

The analysis presented in this paper provides three new results. First, in Eq. 24, we have shown that528

the factorial moments of the age structure can be described by an equation that naturally generalizes the529

McKendrick-von Foerster equation. In particular, for population-independent birth, death, and fission530

rates we can determine the variance of the population size for specific age groups in a population,531

something that was not previously feasible without some form of approximation.532

Second, in Eqs. 17 and 18, we develop a complete probabilistic description of a population undergoing533

a binary fission and death process. Although a general analytic solution to these systems can be written534

down (Eq. 40), it is difficult to calculate and further work is needed to identify analytic techniques or535

numerical schemes that can more readily provide solutions. The methods we have introduced can also536

be viewed as a continuum limit of matrix population models.537

Third, we also outlined how to incorporate spatial dependence of birth and death into our age-538

structured kinetic theory. We considered only the simplest model of free diffusion in which individuals539

to not interact spatially. Spatially-mediated interactions can be incorporated by way of a “collision540

operator” in a full theory that treats both age and space kinetically.541

All of our results can also be derived using techniques from quantum field theoretical approaches542

[13, 14, 42], which are described in detail in a parallel paper [19]. Such methods provide alternative543

machinery to analyze the statistics of age- and space-structured populations and may provide new avenues544

for calculation.545

Finally, we note that the overall structure of our model is semi-Markov. That is, birth, death, and546

fission rates depend on only the time since birth of an individual and not on, for example, the number547

of generations removed from a founder. Such lineage aging processes are often important in cell biology548

(e.g., the Hayflick limit [25]) and would require extension of our state space to include generational class549

[56]. These extensions will be explored in future work.550

Appendix A: Second Factorial Moment Derivation551

We outline how to derive Eq. 29. Assume the initial population is described by X(1)(a; 0) = λe−λa and552

X(2)(a, b; 0) = 0. Note that X(1) is just the solution to the McKendrick-von Foerster equation given553

by the expression in Eq. 5. We can determine X(2) via Eq. 28 if we are able to identify the boundary554

condition B(a, t) ≡ X(2)(a, 0; t) ≡ X(2)(0, a; t). After setting m = min{a, b, t} in Eq. 28, we substitute555

the expressions for X(2) into the boundary condition Eq. 25 to give the following equation for B(a, t):556

B(a, t) =
β

2
X(1)(a; t) + β

{∫ t
0
B(a− b, t− b)db, t < a,∫ a

0
B(a− b, t− b)db+

∫∞
a
B(b− a, t− a)db, t > a.

(76)

An expression for B(a, t) in the region t < a can be obtained by solving along characteristics such as557

those portrayed in Fig. 2. We first define C(α, τ) = B(a, t), where α = a− t, τ = t, so that558

C(α, τ) =
β

2
X(1)(α+ τ ; τ) + β

∫ t

0

C(α, τ − b)db. (77)

A Laplace transform with respect to τ can then be used to find B(a, t) = βλ
2 e
−λae(λ+β)t.559

For t > a, note that the second integral in Eq. 76 extends into the region t < a, for which we now560

have an expression. Upon separating the integral into two parts, and similarly defining C(α, τ) = B(a, t),561

where α = a, τ = t− a along characteristics, we find562

C(α, τ) =
β2

2
eβτ + β

∫ α

0

C(b, τ)db+ β

∫ τ

0

C(b, τ − b)db+
βλ

2

∫ ∞
τ+α

e−λ(b−α)e(λ+β)τdb. (78)

A double Laplace transform in variables α and τ results in:563

Ĉ(u, v) =
β

u

(
Ĉ(u, v) + Ĉ(v, v)

)
+
β2

u

1

v − β
, (79)

from which we find Ĉ(v, v) = β2

(v−β)(v−2β) and so Ĉ(u, v) = β2

(u−β)(v−2β) . A double Laplace inversion then564

gives B(a, t) = β2e−βae2βt, from which X(2) can be uniquely determined from Eq. 28.565
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−R 2π/α

−ε γ

Im(  )s

Fig. 5 Bromwich integral for calculating the inverse Laplace transform in Eq. 80. The integral along γ is evaluated
using the residues at the poles and the integrals along the branch cut in Cauchy’s theorem.

Appendix B: Bromwich Integral Calculation566

Since the inverse Laplace transform provided by the Bromwich integral567

L−1t

(
1

sα − 2

)
=

1

2πi

∫ γ+i∞

γ−i∞

est

sα − 2
ds (80)

involves a branch point at s = 0, we construct a branch cut along the negative real axis and define568

s = reiθ where θ ∈ (−π, π). The denominator sα − 2 also produces poles at s = 2
1
α ei

2nπ
α where n is569

an integer with |n| ≤
⌊
α
2

⌋
. The contour required for the Bromwich integral is shown in Fig. 5 and is570

evaluated using Cauchy’s residue theorem.571

The integrals around the outer perimeter and the origin contribute zero in the limit as R →∞ and572

ε→ 0. The branch cuts and poles provide the nonzero contributions. First, consider the integrals along573

the branch cut. Writing the variable s as reiθ, for θ = ±π, we integrate 1
2πi

est

sα−2 along the two sides to574

give575

1

2πi

∫ 0

∞

e−rt(dreiπ)

rαeiπα − 2
+

1

2πi

∫ ∞
0

e−rt(dre−iπ)

rαe−iπα − 2
= − 1

π

∫ ∞
0

e−rtrα sin(πα) dr

r2α − 4rα cos(πα) + 4
. (81)

Next, we need to consider the poles at positions s = 2
1
α e

2nπi
α for |n| ≤ bα2 c. L’Hôpital’s rule leads to576

lim
s→2

1
α e

2nπi
α

{
s− 2

1
α e

2nπi
α

sα − 2

}
= lim
s→2

1
α e

2nπi
α

{
1

αsα−1

}
= α−12

1
α−1e

2nπi
α . (82)

If rn is the residue for the function est

sα−2 at the pole s = 2
1
α e

2nπi
α , we can write577

rn + r−n = 2Re

{
α−12

1
α−1e

2nπi
α e2

1
α e

2nπi
α t

}
=

2
1
α

α
e2

1
α cos( 2nπ

α t) cos

(
2

1
α sin

(
2nπ

α

)
+

2nπ

α

)
. (83)

Combining the contributions from the branch cut and the residues results in L−1(t)

(
1

sα−2
)
, which, when578

substituted into Eq. 68, gives the final result in Eq. 69.579

The derivation for the Laplace inversion in Eq. 70 is similar. Note that the value s = 1 is a removable580

singularity and the same set of poles and integration paths around branch cuts apply. Details are left to581

the reader.582

21



Acknowledgements583

This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-584

25915 to KITP and by the Gordon and Betty Moore Foundation under Award No. 2919 to the KITP.585

TC is also supported by the US National Institutes of Health through grant R56 HL126544, the NSF586

through grant DMS-1516675, and the Army Research Office through grant W911NF-14-1-0472.587

References588

1. Allen, L.J.S.: An introduction to Stochastic Processes with Application to Biology. Pearson Prentice589

Hall (2003)590

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972)591

3. Ayati, B.P.: Modeling the role of the cell cycle in regulating Proteus mirabilis swarm-colony devel-592

opment. Appl. Math. Lett. 20, 913–918 (2007)593

4. Bellman, R., Harris, T.E.: On the theory of age-dependent stochastic branching processes. Proc.594

Natl. Acad. Sci. USA 34, 601–604 (1948)595

5. Cannon, J.R.: The one-dimensional heat equation. Cambridge University Press, Cambridge (1984)596

6. Caswell, H.: Matrix population models. Wiley Online Library (2001)597

7. Chou, T., D’Orsogna, M.R.: First Passage Problems in Biology. In: R. Metzler, G. Oshanin, S. Redner598

(eds.) First-Passage Phenomena and Their Applications, pp. 306–345. World Scientific, Singapore599

(2014)600

8. Chou, T., Wang, Y.: Fixation times in differentiation and evolution in the presence of bottlenecks,601

deserts, and oases. J. Theor. Biol. 372, 65–73 (2015)602

9. Chowdhury, M.: A stochastic age-structured population model. Master’s thesis, Texas Tech Univer-603

sity, Lubbock, TX (1998)604

10. Cohen, J.E., Christensen, S.W., Goodyear, C.P.: A stochastic age-structured population model of605

stripped bass (Morone saxalilis) in the Potomac river. Can. J. Fish. Aquat. Sci. 40, 2170–2183606

(1983)607

11. Cushing, J.M.: The dynamics of hierarchical age-structured populations. J. Math. Biol. 32, 705–729608

(1994)609

12. Cushing, J.M.: An introduction to structured population dynamics. SIAM, Philadelphia (1998)610

13. Doi, M.: Second quantization representation for classical many-particle system. Journal of Physics611

A: Mathematical and General 9(9), 1465 (1976)612

14. Doi, M.: Stochastic theory of diffusion-controlled reaction. Journal of Physics A: Mathematical and613

General 9(9), 1479 (1976)614

15. Engen, S., Lande, R., Saether, B.E.: Effective size of a fluctuating age-structured population. Genetics615

170, 941–954 (2005)616

16. von Foerster, H.: Some remarks on changing populations in: The Kinetics of Cell Proliferation.617

Springer (1959)618

17. Fok, P.W., Chou, T.: Identifiability of age-dependent branching processes from extinction probabil-619

ities and number distributions. Journal of Statistical Physics 152, 769–786 (2013)620

18. Getz, W.M.: Production models for nonlinear stochastic age-structured fisheries. Mathematical621

Biosci. 69, 11–30 (1984)622

19. Greenman, C.D.: Second Quantization Approaches for Stochastic Age-Structured Birth-Death Pro-623

cesses. J. Stat. Phys. XXX (2016)624

20. Greenman, C.D., Chou, T.: A kinetic theory for age-structured stochastic birth-death processes.625

Phys. Rev. E 93, 012,112 (2016)626

21. Gurtin, M.E., MacCamy, R.C.: Nonlinear age-dependent population dynamics. Arch. Rational Mech.627

Anal pp. 281–300 (1974)628

22. Gurtin, M.E., MacCamy, R.C.: Some simple models for nonlinear age-dependent population dynam-629

ics. Math. Biosci 43, 199–211 (1979)630

23. Hamza, K., Jagers, P., Klebaner, F.C.: On the establishment, persistence, and inevitable extinction631

of populations. arXiv preprint arXiv:1410.2973 (2014)632

24. Harris, T.E.: The theory of branching processes. Dover, New York (1989)633

25. Hayflick, L.: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636634

(1965)635

26. Hong, J.: Coalescence in Bellman-Harris and multi-type branching processes. Ph.D. thesis, Iowa636

State University (2011)637

22



27. Hong, J., et al.: Coalescence in subcritical Bellman-Harris age-dependent branching processes. Jour-638

nal of Applied Probability 50(2), 576–591 (2013)639

28. Iannelli, M.: Mathematical theory of age-structured population dynamics. Applied Mathematics640

Monographs. Giardini editori e stampatori (1995)641

29. Jagers, P.: Age-dependent branching processes allowing immigration. Theory of Probability and its642

Applications 13, 225–236 (1968)643

30. Jagers, P., Klebaner, F.C.: Population-size-dependent and age-dependent branching processes.644

Stochastic Processes and their Applications 87(2), 235–254 (2000)645

31. Kampen, N.G.V.: Stochastic Processes in Physics and Chemistry. North-Holland Personal Library.646

Elsevier Science (2011)647

32. Keyfitz, B.L., Keyfitz, N.: The McKendrick partial differential equation and its uses in epidemiology648

and population study. Mathl. Comput. Modelling 26, 1–9 (1997)649

33. Keyfitz, N., Caswell, H.: Applied Mathematical Demography, 3rd Ed. Springer, New York, NY (2005)650

34. Lande, R., Orzack, S.H.: Extinction dynamics of age-structured populations in a fluctuating envi-651

ronment. Proc. Natl. Acad. Sci. USA 85, 7418–7421 (1988)652

35. Leslie, P.H.: The use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945)653

36. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35,654

213–245 (1948)655

37. Li, R., Leung, P.K., Pang, W.K.: Convergence of numerical solutions to stochastic age-dependent656

population equations with Markovian switching. J. Comp. Appl. Math. 233, 1046–1055 (2009)657

38. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc.658

44, 98–130 (1926)659

39. McQuarrie, D.A.: Statistical Mechanics. University Science Books (2000)660

40. Oh, J., Lee, Y.D., Wagers, A.J.: Stem cell aging: mechanisms, regulators and therapeutic opportu-661

nities. Nature Medicine 20, 870–880 (2014)662

41. Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer,663

Berlin (2003)664

42. Peliti, L.: Renormalisation of fluctuation effects in the A + A → A reaction. Journal of Physics A:665

Mathematical and General 19(6), L365 (1986)666

43. Qu, Z., MacLellan, W.R., Weiss, J.N.: Dynamics of the cell cycle: checkpoints, sizers and timers.667

Biophysical Journal 85, 3600–3611 (2003)668

44. Reid, A.T.: An age-dependent stochastic model of population growth. Bull. Math. Biophysics 15,669

361–365 (1953)670

45. Roshan, A., Jones, P.H., Greenman, C.D.: Exact, time-independent estimation of clone size distri-671

butions in normal and mutated cells. J. Roy. Soc. Interface 11, 20140,654 (2014)672

46. Shonkwiler, R.: On age-dependent branching processes with immigration. Comp. & Maths. with673

Appls. 6, 289–296 (1980)674

47. Stanley, R.P.: Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced675

Mathematics. Cambridge University Press, Cambridge (2012)676

48. Stanley, R.P.: Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced677

Mathematics. Cambridge University Press, Cambridge (2012)678

49. Stukalin, E.B., Aifuwa, I., Kim, J.S., Wirtz, D., Sun, S.X.: Age-dependent stochastic models for679

understanding population fluctuations in continuously cultured cells. Interface 10, 20130,325 (2013)680

50. Verhulst, P.: La loi d’accroissement de la population. Nouv. Mem. Acad. Roy. Soc. Belle-lettr.681

Bruxelles 18, 1 (1845)682

51. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. correspondance683
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