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Communication-Censored ADMM for Decentralized
Consensus Optimization

Yaohua Liu, Wei Xu , Gang Wu, Zhi Tian , and Qing Ling

Abstract—In this paper, we devise a communication-efficient
decentralized algorithm, named as communication-censored al-
ternating direction method of multipliers (ADMM) (COCA), to
solve a convex consensus optimization problem defined over a net-
work. Similar to popular decentralized consensus optimization al-
gorithms such as ADMM, at every iteration of COCA, a node ex-
changes its local variable with neighbors, and then updates its local
variable according to the received neighboring variables and its lo-
cal cost function. A different feature of COCA is that a node is not
allowed to transmit its local variable to neighbors, if this variable
is not sufficiently different to the previously transmitted one. The
sufficiency of the difference is evaluated by a properly designed
censoring function. Though this censoring strategy may slow down
the optimization process, it effectively reduces the communication
cost. We prove that when the censoring function is properly chosen,
COCA converges to an optimal solution of the convex consensus
optimization problem. Furthermore, if the local cost functions are
strongly convex, COCA has a fast linear convergence rate. Numeri-
cal experiments demonstrate that, given a target solution accuracy,
COCA is able to significantly reduce the overall communication
cost compared to existing algorithms including ADMM, and hence
fits for applications where network communication is a bottleneck.

Index Terms—Decentralized network, consensus optimization,
communication-censoring strategy, alternating direction method
of multipliers (ADMM).

I. INTRODUCTION

THIS paper considers solving a convex consensus optimiza-
tion problem defined over a bidirectionally connected de-

centralized network consisting of n nodes, in the form of

x̃∗ ∈ arg min
x̃

n∑

i=1

fi(x̃). (1)
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Here each node i holds a local convex cost function fi : Rp → R
that is kept private, and all the nodes share a common optimiza-
tion variable x̃ ∈ Rp. Our aim is to devise a communication-
efficient decentralized algorithm such that the nodes can collab-
oratively find an optimal solution x̃∗ through local computation
and limited information exchange among neighbors.

The consensus optimization problem in the form of (1) ap-
pears in various applications, such as wireless sensor networks
[1], [2], communication networks [4], [5], multi-robot networks
[6], [7], smart grids [8], [9], machine learning systems [10],
[11], to name a few. Various decentralized algorithms have been
proposed to solve this problem in recent years; see the survey
paper [12] and an incomplete overview in Section I-A. An ideal
decentralized algorithm is expected to reach an optimal solu-
tion with minimal communication and computation costs. Nev-
ertheless, the communication-computation tradeoff is essential
[12]–[15]. In this paper, we focus on the scenario that com-
putation is relatively cheap, and communication is the major
concern. Among existing decentralized algorithms, the alter-
nating direction method of multipliers (ADMM) is especially
suitable for this scenario [2], [16], [17]. In this paper, we shall
show by numerical experiments that, augmented with a simple
communication-censoring strategy which restricts nodes from
transmitting “less informative” messages to neighbors, the com-
munication efficiency of ADMM can be significantly improved.
The resultant algorithm, termed as communication-censored
ADMM (COCA), is able to reach a target solution accuracy
with slightly more computation but much less communication
compared to the classical ADMM. Rigorous analysis is pro-
vided to guide the design of the censoring strategy to guarantee
the convergence of COCA.

A. Related Work

A large number of decentralized algorithms have been de-
signed to solve the consensus optimization problem in the form
of (1), spurred by their robustness, scalability and potential of
privacy preservation in network applications. At every iteration
of a typical synchronous decentralized algorithm, there are a
communication step and a computation step: a node exchanges
its local variable with neighbors and then computes an updated
local variable according to the received neighboring variables
and its local cost function. According to the complexity of the
computation step, the existing decentralized algorithms can be
classified as: (i) zeroth-order algorithms where a node is only
able to evaluate its local cost function [18], [19]; (ii) first-order
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algorithms where a node can utilize its local gradient during
the optimization process, such as gradient descent method [20],
diffusion method [21], exact first-order algorithm [22], and lin-
earized ADMM [23], [24]; (iii) second-order algorithms where a
node can compute or approximately compute its local Hessian,
such as network Newton method [25], quasi-Newton method
[26], exact second-order method [27], and quadratically approx-
imated ADMM [28]; (iv) “higher-order” algorithms where at
every iteration a node needs to solve an optimization problem
whose complexity is determined by the local cost function, such
as dual decomposition method [1] and ADMM [2], [3]. Note
that this categorization is not strict; for example, applying the
successive convex approximation technique yields a class of al-
gorithms ranging from the first order to a higher order [29]. This
brief survey is also far from complete; for example, it does not
include asynchronous algorithms that are important to heteroge-
neous networks [30]. For a more comprehensive recent survey
on decentralized algorithms, readers are referred to [12].

At the expense of higher computation cost per iteration,
higher-order algorithms often enjoy faster convergence, which
leads to saving in the communication cost. Particularly, ADMM
has shown fast convergence in both practice and theory [16],
and is hence especially suitable for applications where compu-
tation is affordable but communication is expensive. A natural
question arises: Is it possible to further improve the communica-
tion efficiency of ADMM, without causing too much computation
overhead? Our answer is Yes. The key idea is to embed a simple
yet powerful communication-censoring strategy to ADMM. A
node is not allowed to transmit its local variable to neighbors,
if this variable is not sufficiently different from the previously
transmitted one. The sufficiency of the difference is evaluated
by a censoring function. Through properly choosing the censor-
ing function, the resultant algorithm, termed as communication-
censored ADMM (COCA), is able to converge to an optimal
solution of (1). The convergence rate of COCA is almost as fast
as that of ADMM such that the increment of computation cost
is minimal. Meanwhile, communication is significantly reduced
by avoiding transmissions of less informative messages.

To reduce the communication cost of a decentralized algo-
rithm, one approach is to quantize messages so as to transmit
less bits. The quantized ADMM is developed following this idea
[31]. An extreme is only to transmit one bit at every time, such
as the one-bit gradient descent method [32]. However, these
algorithms cannot guarantee exact convergence to the consen-
sual optimal solution, and the consensus error is caused by the
quantization error [31], [32]. Another approach is to avoid trans-
missions of “less informative” messages. Given an underlying
communication graph, the weighted ADMM deletes some of
the links prior to the optimization process so as to reduce the
number of message transmissions at every iteration [33]. Our
work is also along this line. In contrast, COCA adaptively deter-
mines whether a message is informative during the optimization
process, different from the weighted ADMM that determines
whether a node is informative in advance. Other efforts to re-
duce the communication cost include the random-walk ADMM
that randomly activates a succession of nodes and incrementally
updates the optimization variable [34], and the block-iterative

method that updates and communicates only a block of a high-
dimensional optimization variable at every iteration [35]. In
comparison, COCA is a deterministic algorithm, in which every
time every node updates the entire local variable.

Related to the communication-censoring strategy in COCA,
data-adaptive computation-censoring is a powerful tool to re-
duce the computation cost of big data processing over networks
[36]. When computation, other than communication, is the bot-
tleneck of the network, a node can skip a complicated update
when the innovation from the data is not sufficient. COCA is at
the other side of the coin, as it concerns more on communication
than computation. The concept of communication-censoring is
also related to event-triggered control, which is used to reduce
the number of actuator updates [37] or message transmissions
[38], [39] over continuous-time networks. The work in [40],
[41] and [42] combines the idea of event-triggered control with
discrete-time decentralized consensus optimization. However,
the event-triggered dual averaging algorithm in [40] and the
sub-gradient algorithm in [41] require diminishing step sizes
to guarantee exact convergence to an optimal solution, which
leads to relatively slow convergence rates. On the other hand,
we shall show that the event-triggered zero-gradient-sum algo-
rithm in [42] is indeed a communication-censored version of the
dual decomposition method in Section II-D. Because ADMM is
much faster than the dual decomposition method, COCA is also
much more communication-efficient and computation-efficient
than the event-triggered zero-gradient-sum algorithm, as vali-
dated by the numerical experiments in Section IV.

B. Our Contributions and Paper Organization

Section II introduces COCA, a novel communication-
censored ADMM, to improve the communication efficiency
of the classical ADMM, while incurring minimal computation
overhead. The key ingredient of COCA is a communication-
censoring strategy, which prohibits a node from transmitting its
local variable to neighbors, if this variable is not sufficiently dif-
ferent from the previously transmitted one. The sufficiency of the
difference is evaluated by a censoring function (Section II-B).
When the communication-censoring strategy is absent, COCA
degenerates to the classical ADMM (Section II-C). We also
show that the state-of-the-art event-triggered zero-gradient-sum
algorithm is indeed a communication-censored version of the
dual decomposition method, analogy to the connection between
COCA and ADMM (Section II-D). In Section III, We prove that
when the censoring function is properly chosen, COCA con-
verges to an optimal solution of the convex consensus optimiza-
tion problem (Theorem 1). Further, if the local cost functions
are strongly convex, COCA has a fast linear convergence rate
(Theorem 2). The analysis provides guidelines for tuning the
parameters of COCA, including the step size and the censor-
ing function. It also characterizes how the convergence rate of
COCA is affected by the properties of the cost functions and
the communication graph. Section IV presents numerical exper-
iments to demonstrate the communication efficiency of COCA.
Section V concludes the paper.
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II. ALGORITHM DEVELOPMENT

In this section, we devise COCA, the communication-
censored ADMM that improves the communication efficiency
of the classical ADMM in decentralized consensus optimiza-
tion. We also compare COCA with the classical ADMM and
the event-triggered zero-gradient-sum algorithm to demonstrate
their connections.

A. Network and Communication Models

Network Model: Throughout the paper, we consider a bidirec-
tionally connected network consisting of n nodes and r edges
(2r directed arcs). The underlying undirected communication
graph is denoted as G = {V, A}, where V is the set of nodes
with cardinality |V| = n and A is the set of directed arcs with
cardinality |A| = 2r. Two nodes i and j are called as neigh-
bors if the arc (i, j) ∈ A and, by the symmetry of the network,
(j, i) ∈ A. The set of node i’s neighbors is denoted as Ni with
cardinality dii = |Ni|.

Communication Model: Like the classical ADMM, COCA is
synchronous. Every iteration consists of two stages: the commu-
nication stage where every node exchanges its local variable with
neighbors and the computation stage where every node updates
its local variable according to the received neighboring variables
and its local cost function. In the communication stage, trans-
missions of messages are in a broadcast mode. When node i is
allowed to communicate, it broadcasts the local variable, which
is a p-dimensional vector, to all the neighbors, and the resultant
communication cost is 1. The transmissions of COCA could
also be implemented easily in the unicast mode. When node i
is allowed to communicate, it sends the local variable to all the
neighbors one by one. Therefore, the resultant communication
cost is |Ni|, the number of node i’s neighbors. Unlike the classi-
cal ADMM, in COCA, a node does not necessarily broadcast at
every iteration. It only transmits its local variable to neighbors
if this variable is sufficiently different to the previously trans-
mitted one. The sufficiency of the difference is evaluated by a
censoring function, which is designed below.

B. COCA: Communication-Censored ADMM

At time k of COCA, every node i keeps 3 + dii local variables,
where dii is its degree. The first is a primal variable xk

i ∈ Rp, a
copy of the optimization variable x̃. The second is a dual vari-
able λk

i ∈ Rp. Node i also keeps a state variable x̂k
i that records

its latest broadcast primal variable up to time k. Likewise, for
every neighbor j, node i keeps a state variable x̂k

j that records its
latest received primal variable from j up to time k. The storage
requirement is the same as that of ADMM. Similar to ADMM,
COCA only needs to transmit the primal variables xk

i . The dual
variables λk

i and the state variables x̂k
i are kept local. Note that

node i and its neighbors j ∈ Ni maintain an identical state vari-
able x̂k

i .
A key feature of COCA is that a node i is not allowed to

transmit its local variable xk
i to neighbors, if xk

i is not sufficiently
different from the previously transmitted x̂k−1

i , namely, its latest
state variable. Define the difference as

ξk
i = x̂k−1

i − xk
i . (2)

Algorithm 1: COCA Run by Node i.

Require: Initialize local variables to x0
i = 0, λ0

i = 0,
x̂0

i = 0, and x̂0
j = 0 for all j ∈ Ni.

1: for iterations k = 1, 2, . . . do
2: Compute local primal variable xk

i by

xk
i = arg min

xi

fi(xi) +
〈

xi, λk−1
i

−c
∑

j∈Ni

(x̂k−1
i + x̂k−1

j )

〉
+ cdii‖xi‖2.

3: Compute ξk
i = x̂k−1

i − xk
i .

4: If Hi(k, ξk
i ) ≥ 0, transmit xk

i to neighbors and let
x̂k

i = xk
i ; else do not transmit and let x̂k

i = x̂k−1
i .

5: If receive xk
j from any neighbor j, let x̂k

j = xk
j ; else

let x̂k
j = x̂k−1

j .

6: Update local dual variable λk
i as

λk
i = λk−1

i + c
∑

j∈Ni

(x̂k
i − x̂k

j ).

7: end for

The sufficiency of the difference is evaluated by a censor-
ing function Hi(k, ξk

i ) = ‖ξk
i ‖ − τk, where {τk} is a non-

increasing non-negative sequence. A typical choice for the cen-
soring function is

Hi(k, ξk
i ) = ‖ξk

i ‖ − αρk, (3)

where ρ ∈ (0, 1) and α > 0 are constants. Node i is allowed to
transmit its primal variable xk

i to neighbors, if and only if

Hi(k, ξk
i ) ≥ 0.

COCA run by node i is outlined in Algorithm 1, which is de-
vised by incorporating the censoring strategy into the classical
ADMM and elaborated in Section II-C. At time 0, node i initial-
izes its local variables to x0

i = 0, λ0
i = 0, x̂0

i = 0, and x̂0
j = 0

for all j ∈ Ni. For all subsequent times k, node i first computes
its local primal variable xk

i by solving

xk
i = arg min

xi

fi(xi) +

〈
xi, λk−1

i − c
∑

j∈Ni

(x̂k−1
i + x̂k−1

j )

〉

+ cdii‖xi‖2, (4)

where c > 0 is the step size of COCA. To solve (4), node i
needs its local dual variable λk−1

i , the state variable x̂k−1
i of

itself and the state variables x̂k−1
j of its neighbors which are al-

ready known, as well as the local cost function fi. Then, node
i calculates ξk

i , the difference between its current local primal
variable xk

i and the previously transmitted one x̂k−1
i by (2), fol-

lowed by evaluating Hi(k, ξk
i ). If Hi(k, ξk

i ) ≥ 0, then node i
transmits xk

i to neighbors and lets x̂k
i = xk

i ; otherwise, node
i does not transmit and lets x̂k

i = x̂k−1
i . If node i receives xk

j

from any neighbor j, then lets x̂k
j = xk

j ; else, lets x̂k
j = x̂k−1

j .
This way, the state variable of any node is identical to all the
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neighbors. Finally, the local dual variable λk
i is updated by

λk
i = λk−1

i + c
∑

j∈Ni

(x̂k
i − x̂k

j ), (5)

where c is the same positive step size as that in (4).
Next, we show that COCA is essentially a communication-

censored variant of the classical ADMM.

C. Connection With the Classical ADMM

At time k, the primal and dual updates of node i of the classical
ADMM [2], [16] are

xk
i = arg min

xi

fi(xi) +

〈
xi, λk−1

i − c
∑

j∈Ni

(xk−1
i + xk−1

j )

〉

+ cdii‖xi‖2, (6)

λk
i = λk−1

i + c
∑

j∈Ni

(xk
i − xk

j ). (7)

The updates of COCA in (4) and (5) use the state variables x̂k−1
i

and x̂k
i , while those of the classical ADMM in (6) and (7) use the

primal variables xk−1
i and xk

i . If we set Hi(k, ξk
i ) = 0 (namely,

no communication censoring), then COCA degenerates to the
classical ADMM. However, it is the communication-censoring
strategy that makes COCA more communication-efficient than
the classical ADMM.

Intuitively, if the difference between a current local primal
variable xk

i and a previously transmitted one x̂k−1
i is small, then

using either one does not make much difference to the opti-
mization process. Therefore, it is not necessary to transmit xk

i

to node i’s neighbors and the communication cost is reduced.
Nevertheless, the significance of the difference must be carefully
evaluated; otherwise, the accumulated error may eventually bias
the optimization process. For example, if we set the censoring
function to Hi(k, ξk

i ) = ‖ξk
i ‖ − αρk as in (3), then the signifi-

cance of the difference is evaluated by a geometrically decaying
threshold. Note that it does not mean more frequent communi-
cations when k is large, since the local primal variables might
have been very close to an optimal solution at time k such that
‖ξk

i ‖ is also small. Choosing larger α and ρ leads to less commu-
nications per iteration. On the other hand, with α = 0 or ρ = 0,
COCA is the same as the classical ADMM.

D. Connection With the Event-Triggered Zero-Gradient-Sum
Algorithm

The event-triggered zero-gradient-sum algorithm proposed
in [42] combines the idea of event-triggered control, which is
tightly related to our communication-censoring strategy, with
discrete-time decentralized consensus optimization. At time k,
node i runs
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk
i = arg minxi

fi(xi) −
〈

xi, c
∑

j∈Ni

wij(x̂k−1
j − x̂k−1

i )

+ ∇fi(x
k−1
i )

〉
, k = 1, 2, . . . ,

x0
i = x∗

i , k = 0,

where c > 0 is the step size, x∗
i := arg minx̃ fi(x̃) is the mini-

mizer of the local cost function, and wij is the (i, j)-th entry of
the adjacency matrix W ∈ Rn×n of the communication graph
such that wij = 1 if i and j are neighbors or wij = 0 otherwise.
The definitions of the local state variables x̂k

i are the same as
those in COCA.

Below we show that the event-triggered zero-gradient-sum
algorithm is indeed a communication-censored version of the
dual decomposition method, analogous to that COCA is a
communication-censored version of ADMM. Because ADMM
is much faster than dual decomposition, COCA is also much
more efficient than the event-triggered zero-gradient-sum algo-
rithm in terms of both communication and computation. We
begin by showing how the uncensored algorithms, ADMM and
dual decomposition, solve (1). For clarity, we present the algo-
rithms in matrix forms. Collect all variables xi, λi and x̂i in
matrices

X �

⎛

⎜⎜⎜⎜⎜⎝

xT
1

xT
2
...

xT
n

⎞

⎟⎟⎟⎟⎟⎠
, Λ �

⎛

⎜⎜⎜⎜⎜⎜⎝

λT
1

λT
2
...

λT
n

⎞

⎟⎟⎟⎟⎟⎟⎠
, X̂ �

⎛

⎜⎜⎜⎜⎜⎝

x̂T
1

x̂T
2
...

x̂T
n

⎞

⎟⎟⎟⎟⎟⎠
∈ Rn×p.

Define an aggregate cost function f(X) :=
∑n

i=1 fi(xi). The
diagonal degree matrix of the communication graph is D ∈
Rn×n, whose i-th diagonal element is dii, the degree of node
i. Also define the unsigned incidence matrix M+ ∈ Rn×2r and
the signed incidence matrix M− ∈ Rn×2r. If an arc l goes from
i to j, then the (i, l)-th and (j, l)-th entries of M+ are both 1,
while the (i, l)-th entry of M− is 1 and the (j, l)-th entry of M−
is −1. Recalling the definition of the adjacency matrix W , from
[43] we have that

D + W =
1

2
M+MT

+ , D − W =
1

2
M−MT

− .

When the underlying communication graph is connected, the
unconstrained consensus optimization problem (1) is equivalent
to the following constrained form

min
X,Z

f(X) :=

n∑

i=1

fi(xi),

s.t.
1

2

(
MT

+ + MT
−

MT
+ − MT

−

)
X =

(
I2r

I2r

)
Z, (8)

where I2r ∈ R2r×2r is an identity matrix and Z ∈ R2r×p is
an auxiliary variable. The consensus constraint in (8) enforces
all local variables xi to be equal [16]. The classical ADMM
minimizes the augmented Lagrangian of (8) with respect to X
and Z in an alternating direction manner, followed by updating
the dual variable Λ associated with the consensus constraint [16].
Eventually the auxiliary variable Z is eliminated, yielding

Xk = arg min
X

f(X) + 〈X, Λk−1 − c(D + W )Xk−1〉

+ 〈X, cDX〉,
Λk = Λk−1 + c(D − W )Xk.
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which exactly matches the node-wise updates (6) and (7). Cor-
respondingly, the matrix form of COCA is

Xk = arg min
X

f(X) + 〈X, Λk−1 − c(D + W )X̂k−1〉

+〈X, cDX〉, (9)

Λk = Λk−1 + c(D − W )X̂k. (10)

The dual decomposition method operates on a different equiv-
alent reformulation of (1), in the form of

min
X

f(X) :=

n∑

i=1

fi(xi),

s.t. MT
− X = 0, (11)

where the consensus constraint also enforces all local variables
xi to be equal [1]. Given the Lagrangian of (11) defined by
L(X, β) := f(X) + 〈β, MT

− X〉 where β ∈ R2r×p is the dual
variable, at time k, the dual decomposition method updates

Xk = arg min
X

L(X, βk−1), (12)

βk = βk−1 +
c

2
MT

− Xk. (13)

Write the optimality condition of (12) at two consecutive times
k − 1 and k as

∇f(Xk) + M−βk−1 = 0, (14)

∇f(Xk−1) + M−βk−2 = 0. (15)

Here we assume f to be smooth. When f is non-smooth, all
the subsequent derivations still hold true by replacing ∇f with
one of its subgradients. Subtracting (14) by (15) and plugging
in (13), we have

∇f(Xk) = ∇f(Xk−1) − c

2
M−MT

− Xk−1

= ∇f(Xk−1) + c(W − D)Xk−1.

Observing the event-triggered zero-gradient-sum algorithm
in (8), we can find that its matrix form is

∇f(Xk) = ∇f(Xk−1) + c(W − D)X̂k−1,

which is a communication-censored version of the dual decom-
position method. Initializing x0

i = x∗
i guarantees that (15) is

valid for k = 1, because under this initialization ∇f(X0) = 0
and lies in the column space of M−.

Therefore, we conclude that COCA and the event-triggered
zero-gradient-sum algorithm operate on two different equiva-
lent reformulations of (1) (namely, (8) and (11), respectively),
and are communication-censored versions of two different algo-
rithms (namely, ADMM and dual decomposition, respectively).
Empirically, dual decomposition is much slower than ADMM,
and is sensitive to the choice of the step size c. These bene-
fits of ADMM are inherited by COCA, which is also much
more communication-efficient and computation-efficient than
the event-triggered zero-gradient-sum algorithm, as we shall
demonstrate in the numerical experiments in Section IV.

III. CONVERGENCE AND LINEAR RATE OF CONVERGENCE

In this section, we prove that when the censoring function is
properly chosen, COCA converges to an optimal solution of the
convex consensus optimization problem (1). Further, if the local
cost functions are strongly convex, COCA converges at a linear
rate.

Before stating the main results, we make several assumptions.
Assumptions 1 and 2 are basic ones.

Assumption 1 (Network connectivity): The communication
graph G = {V, A} is bidirectionally connected.

Assumption 2 (Solution existence): There exists an optimal
solution set to (1), denoted by X ∗, which has at least one finite
element.

With Assumption 3, we can prove convergence of COCA to
an optimal solution of (1).

Assumption 3 (Convexity): The local cost functions fi are
convex.

With Assumption 4, COCA converges to the optimal solution
of (1) at a linear rate.

Assumption 4 (Strong convexity and Lipschitz continuous gra-
dients): The local cost functions fi are strongly convex with con-
stants mfi

> 0. Given any x̃, ỹ ∈ Rp, 〈∇fi(x̃) − ∇fi(ỹ), x̃ −
ỹ〉 ≥ mfi

‖x̃ − ỹ‖2
2 for any i. The minimum strong convexity

constant is mf := mini mfi
. The gradients of the local cost

functions are Lipschitz continuous with constants Mfi
> 0.

Given any x̃, ỹ ∈ Rp, ‖∇fi(x̃) − ∇fi(ỹ)‖2 ≤ Mfi
‖x̃ − ỹ‖2

for any i. The maximum Lipschitz constant is Mf := maxi Mfi
.

Theorem 1: Initialize the dual variable Λ0 in the column
space of M−, choose any positive step size c > 0, and set
{τk} as a non-increasing non-negative summable sequence such
that

∑∞
k=0 τk < ∞. Then under Assumptions 1–3, COCA con-

verges to an optimal solution of (1).
Proof: See Appendix A. �
Theorem 1 asserts that COCA converges to an optimal solu-

tion of (1) under mild conditions. The step size c is an arbitrary
positive constant. Initialization of the dual variable Λ0 in the
column space of M− is necessary for the convergence, and can
be easily reached by setting Λ0 = 0. For the communication-
censoring strategy, it is sufficient to guarantee convergence as
long as {τk} is a non-increasing non-negative summable se-
quence – for example, τk = 1/k2. Recall that node i is allowed
to transmit if and only if ‖ξk

i ‖ ≥ τk and ‖ξk
i ‖ denotes the dif-

ference between the current local variable xk
i and the previously

transmitted one x̂k−1
i . Thus, we expect that ‖ξk

i ‖ decays as fast as
τk. If not, the communication-censoring strategy shall enforce
transmitting the local variable so as to reduce the value of ‖ξk

i ‖.
Theorem 2: Initialize the dual variable Λ0 in the column

space of M−, set τk = αρk with α > 0 and ρ ∈ (0, 1), and
choose positive step size c such that

0 < c < min

{
4mf

η1
,

(μ − 1)σ̃2
min(M−)

μη3σ2
max(M+)

,

(
η1

4
+

η2σ2
max(M+)

8

)−1
(

mf − η3μM2
f

2σ̃2
min(M−)

) }
, (16)

where η1 > 0, η2 > 0, η3 > 0 and μ > 1 are arbitrary constants,
mf is the minimum strong convexity constant of the local cost
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functions, Mf is the maximum Lipschitz constant of the lo-
cal gradients, σmax(M+) is the maximum singular value of the
unsigned incidence matrix M+, and σ̃min(M−) is the minimum
non-zero singular value of the signed incidence matrix M−. Then
under Assumptions 1–4, COCA converges to the optimal solu-
tion of (1) at a linear rate.

Proof: See Appendix B. �
According to Theorem 2, to show linear convergence of

COCA to the optimal solution of (1), we need all the local cost
functions to be strongly convex and have Lipschitz continuous
gradients, which is common in convex analysis. The condition
that Λ0 stays in the column space of M− can be satisfied by set-
ting Λ0 = 0 as in Theorem 1. For linear convergence, the step
size c can be arbitrarily large by properly setting the constants
η1, η2, η3 and μ. However, the step size c shall influence the
constant of linear convergence rate, as shown in the proof.

Not surprisingly, to guarantee linear convergence, we expect
that ‖ξk

i ‖ decays as fast as τk = αρk so that the “state error”
decays at a linear rate. When the value of ‖ξk

i ‖ is larger than
the linearly decaying threshold, the communication-censoring
strategy allows transmitting the local variable. The resultant con-
stant of linear convergence rate, which is not explicitly shown in
Theorem 2 but appears in the proof, is dependent on but not
faster than ρ. Besides, the rate is also determined by the step
size c, the properties of the cost functions (parameterized by mf

and Mf ), as well as the properties of the communication graph
(parameterized by σ̃min(M−) and σmax(M+)).

Remark 1: When the communication-censoring strategy is
absent, COCA degenerates to the classical ADMM, thus its con-
vergence and rate of convergence are the same to those of the
classical ADMM. However, the communication-censoring strat-
egy and the resultant error caused by “outdated” information
make the theoretical analysis of COCA substantially more chal-
lenging than that of the classical ADMM, as we have pointed
out in the proof.

Remark 2: Note that the theoretical convergence rate of
COCA is no faster than that of the classical ADMM due to the
communication-censoring strategy, which, nevertheless, effec-
tively reduces the communication cost per iteration. Therefore,
given a target solution accuracy, COCA is able to significantly
reduce the overall communication cost compared to the classi-
cal ADMM, and hence fits for applications where network com-
munication is a bottleneck, as demonstrated in the numerical
experiments in Section IV.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to validate
the effectiveness of COCA in reducing the overall communica-
tion cost. We compare it with four existing algorithms: (i) the
classical ADMM without communication censoring [2], [16];
(ii) the random-walk ADMM (RndWalk ADMM) [34]; (iii) the
distributed ADMM (D-ADMM) with node coloring [3]; (iv)
the event-triggered zero-gradient-sum (ET-ZGS) algorithm that
is a communication-censored version of the dual decomposi-
tion method [42]. We consider three decentralized consensus
optimization problems: (i) least squares; (ii) logistic regression;
(iii) geometric median. The local cost functions are smooth in

Fig. 1. Performance of COCA and the classical ADMM, random-walk
ADMM and distributed ADMM over the line network for decentralized least
squares.

least squares and logistic regression, but is non-smooth in ge-
ometric median. The subproblems in the three algorithms have
explicit solutions in least squares and geometric median, but
require iterative solvers in logistic regression. The accuracy of
the local primal variables is defined by ‖Xk − X∗‖2

F /‖X0 −
X∗‖2

F , where we stack all local primal variables xk
i in a matrix

Xk ∈ Rn×p and n optimal solutions x∗ in a matrix X∗ ∈ Rn×p.

A. Decentralized Least Squares

In the decentralized least squares problem, each node i
has a local cost function fi(x̃) = (1/2)‖A(i)x̃ − y(i)‖2

2, where
A(i) ∈ Rp×p and y(i) ∈ Rp are private. To minimize f(x̃) :=∑n

i=1 fi(x̃) with COCA, the primal update of node i at time k is

xk
i = (AT

(i)A(i) + 2cdiiIp)−1

⎛

⎝AT
(i)y(i) − λk−1

i + c
∑

j∈Ni

(x̂k−1
i + x̂k−1

j )

⎞

⎠ ,

where Ip ∈ Rp×p is an identity matrix. Note that node i can
compute (AT

(i)A(i) + 2cdiiIp)−1 in advance to avoid computing
the inverse at every time. In the experiments, entries A(i) and
y(i) follow the i.i.d. uniform distribution within [0,10]. We set
the size of the network as n = 50 and the dimension of the local
variables as p = 3.

We compare the performance of COCA with the classical
ADMM, random-walk ADMM and distributed ADMM over
four network topologies: line, star, random and complete, as
shown in Figs. 1–4. In the random network, 10% of all possi-
ble bi-directional edges are randomly chosen to be connected.
The accuracies are compared with respect to the number of it-
erations and the communication cost, which is defined as the
number of messages broadcast by all the nodes up to the current
time. The step size c is tuned to the best for the classical ADMM,
and COCA uses the same step size. The censoring function of
COCA is Hi(k, ξk

i ) = ‖ξk
i ‖ − τk, where τk = αρk. The param-

eters α and ρ are also tuned to the best. Similarly, we use the best
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Fig. 2. Performance of COCA and the classical ADMM, random-walk
ADMM and distributed ADMM over the star network for decentralized least
squares.

Fig. 3. Performance of COCA and the classical ADMM, random-walk
ADMM and distributed ADMM over the random network for decentralized
least squares.

Fig. 4. Performance of COCA and the classical ADMM, random-walk
ADMM and distributed ADMM over the complete network for decentralized
least squares.

Fig. 5. Censoring pattern of COCA over the random network for decentralized
least squares. The x-axis is number of iterations, and the y-axis is node index.
A blue dot refers to that the node broadcasts at the time.

parameters for the random-walk ADMM and the distributed
ADMM. In all the networks, COCA is slower than the classical
ADMM in terms of the number of iterations, but faster in terms
of the communication cost. Given a target accuracy of 10−8, the
savings in the communication costs are significant: ∼1/2 sav-
ings in the line network, ∼1/2 savings in the star network, ∼2/3
savings in the random network, and ∼1/3 savings in the com-
plete network. In the complete network, information fusion is
efficient such that “less informative” messages are less frequent
and the advantage of COCA over the classical ADMM is less sig-
nificant, but we can still observe improvement on the communi-
cation efficiency. The random-work ADMM randomly activates
a succession of nodes, and every iteration amounts to activation
of one node. Regarding the communication cost, the random-
walk ADMM performs between COCA and classical ADMM
in the line, random and complete networks. It performs worse
than the other two in the star network. Our conjecture is that,
in the star network, the center and the edge nodes are activated
in an alternating manner, which makes the center node updates
too frequently. Compared with D-ADMM, COCA has better
communication efficiency in the random and star networks, but
incurs comparable yet slightly higher communication cost in the
line and complete networks. Note that D-ADMM is faster than
the classical ADMM since it updates the primal variables in an
ordered Gauss-Seidel fashion. Whenever a node receives a new
message from its neighbor, it utilizes this latest information to
update its primal variable. In comparison, the classical ADMM
and COCA use Jacobi updates, with the primal variables being
calculated using the messages received from the last iteration.
In addition, the distributed ADMM requires to color the nodes
into several groups, while the classical ADMM and COCA do
not need this preprocessing step.

To see how the censoring strategy influences the communi-
cations of the nodes, we take the random network as an exam-
ple to show the censoring pattern, as depicted in Fig. 5. The
x-axis is the number of iterations, and the y-axis is the node
index. A blue dot refers to that the node broadcasts at the time.
Observe that the nodes have similar communication costs even-
tually. Meanwhile, the frequency of communication censoring
does not change too much throughout the optimization process.
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result. But for COCA, we still need to manipulate (48). To do so,
we establish upper bounds for ‖Zk − Z∗‖2

F and ‖βk − β∗‖2
F as

follows.
From Zk := (1/2)MT

+ Xk and Z∗ := (1/2)MT
+ X∗, we can

bound ‖Zk − Z∗‖2
F with ‖Xk − X∗‖2

F as

‖Zk − Z∗‖2
F =

1

4
‖MT

+ (Xk − X∗)‖2
F

≤ σ2
max(M+)

4
‖Xk − X∗‖2

F . (49)

For ‖βk − β∗‖2
F , recall (42) to write

‖M−(βk − β∗)‖2
F = ‖∇f(Xk) − ∇f(X∗)

+ cM+(Zk − Zk−1) − c

2
M−MT

− Ek − c

2
M+MT

+ Ek−1‖2
F .

(50)

Applying ‖A + B‖2
F ≤ μ‖A‖2

F + μ/(μ − 1)‖B‖2
F for all μ >

1, we obtain an upper bound of (50) as

‖M−(βk − β∗)‖2
F ≤ γ1(μ‖∇f(Xk) − ∇f(X∗)‖2

F

+
μ

μ − 1
‖cM+(Zk − Zk−1)‖2

F )

+
γ1

γ1 − 1

(
γ2

∥∥∥
c

2
M−MT

− Ek
∥∥∥

2

F

+
γ2

γ2 − 1

∥∥∥
c

2
M+MT

+ Ek−1
∥∥∥

2

F

)
, (51)

for all μ > 1, γ1 > 1 and γ2 > 1. With particular note, in
the analysis of the classical ADMM, the bound corresponding
to (51) is ‖M−(βk − β∗)‖2

F ≤ μ‖∇f(Xk) − ∇f(X∗)‖2
F +

μ/(μ − 1)‖cM+(Zk − Zk−1)‖2
F because of the absence of the

error terms. For simplicity, below we choose γ1 = γ2 = 2 and
keep μ as it is. By Assumption 4, f has Lipschitz continuous
gradients with constant Mf such that

‖∇f(Xk) − ∇f(X∗)‖F ≤ Mf ‖Xk − X∗‖F . (52)

Using (52) and ‖Ek‖F ≤ ‖Ek−1‖F <
√

nτk−1 =
√

nαρk−1 to
further bound (51) as

‖M−(βk − β∗)‖2
F

≤ 2μ‖∇f(Xk) − ∇f(X∗)‖2
F +

2μ

μ − 1
‖cM+(Zk − Zk−1)‖2

F

+ ‖cM−MT
− Ek‖2

F + ‖cM+MT
+ Ek−1‖2

F

≤ 2μM2
f ‖Xk − X∗‖2

F +
2μc2σ2

max(M+)

μ − 1
‖Zk − Zk−1‖2

F

+
nc2α2

ρ2

(
σ4

max(M+) + σ4
max(M−)

)
ρ2k. (53)

Since the dual variable Λ0 is initialized in the column space
of M−, there exists β0 ∈ R2r×p staying in the column space of
MT

− such that Λ0 = M−β0. Then, by the dual update (22), every
βk is in the column space of MT

− . Meanwhile, there must exist
a finite optimal dual variable β∗ in the column space of MT

− as
shown by [23]. Thus, the left-hand side of (53) is lower-bounded

by

‖M−(βk − β∗)‖2
F ≥ σ̃2

min(M−)‖βk − β∗‖2
F , (54)

where σ̃min(M−) is the minimum non-zero singular value of M−.
Combining (53) and (54) yields the upper bound of ‖βk − β∗‖2

F

as

‖βk − β∗‖2
F ≤ 2μM2

f

σ̃2
min(M−)

‖Xk − X∗‖2
F

+
2μc2σ2

max(M+)

(μ − 1)σ̃2
min(M−)

‖Zk − Zk−1‖2
F

+
nc2α2

ρ2σ̃2
min(M−)

(σ4
max(M+) + σ4

max(M−))ρ2k.

(55)

Substituting (55) into (48), using ‖Ek−1‖F ≤ √
nαρk−1 and

reorganizing terms, we have
(

c −
(

η3

2
+

δ

c

)
2μc2σ2

max(M+)

(μ − 1)σ̃2
min(M−)

)
‖Zk − Zk−1‖2

F

+
1

c
‖βk − βk−1‖2

F

≤ c‖Zk−1 − Z∗‖2
F +

1

c
‖βk−1 − β∗‖2

F

− (1 + δ)c‖Zk − Z∗‖2
F − (1 + δ)

1

c
‖βk − β∗‖2

F

+

(
cη1

4
+

(
η3

2
+

δ

c

)
μM2

f

σ̃2
min(M−)

− mf

)
‖Xk − X∗‖2

F

+
(cη2

2
+ cδ

)
‖Zk − Z∗‖2

F +

((
η3

2
+

δ

c

)
nc2α2

ρ2σ̃2
min(M−)

(
σ4

max(M+) + σ4
max(M−)

)
+

nsα2

ρ2

)
ρ2k. (56)

Further substituting (49) into (56) yields
(

mf − cη1

4
−

(cη2

2
+ cδ

) σ2
max(M+)

4

−
(

η3

2
+

δ

c

)
μM2

f

σ̃2
min(M−)

)
‖Xk − X∗‖2

F

+

(
c −

(
η3

2
+

δ

c

)
2μc2σ2

max(M+)

(μ − 1)σ̃2
min(M−)

)
‖Zk − Zk−1‖2

F

+
1

c
‖βk − βk−1‖2

F

≤ c‖Zk−1 − Z∗‖2
F +

1

c
‖βk−1 − β∗‖2

F

− (1 + δ)c‖Zk − Z∗‖2
F − (1 + δ)

1

c
‖βk − β∗‖2

F

+

((
η3

2
+

δ

c

)
nc2α2

ρ2σ̃2
min(M−)

(
σ4

max(M+) + σ4
max(M−)

)
+

nsα2

ρ2

)
ρ2k, (57)
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in which we recall that η1, η2 and η3 are any positive constant,
μ is any constant larger than 1, and δ is any constant. Fixing η1,
η2, η3 and μ, we choose a particular δ such that the coefficients
in the left-hand side of (57) are non-negative. To this end, δ must
satisfy

δ ≤ min

{
(μ − 1)σ̃2

min(M−)

2μσ2
max(M+)

− cη3

2
,

(
cσ2

max(M+)

4
+

μM2
f

cσ̃2
min(M−)

)−1

(
mf − cη1

4
− cη2σ2

max(M+)

8
− η3μM2

f

2σ̃2
min(M−)

) }
. (58)

In the later analysis, we also need δ > 0. This is attainable as
long as the COCA step size c satisfies

c < min

{
(μ − 1)σ̃2

min(M−)

μη3σ2
max(M+)

,

(
η1

4
+

η2σ2
max(M+)

8

)−1
(

mf − η3μM2
f

2σ̃2
min(M−)

) }
. (59)

Thus, throwing away the left-hand side terms of (57), we have

c‖Zk−1 − Z∗‖2
F +

1

c
‖βk−1 − β∗‖2

F − (1 + δ)c‖Zk − Z∗‖2
F

− (1 + δ)
1

c
‖βk − β∗‖2

F + φρ2k ≥ 0, (60)

where we introduce a positive constant

φ :=
nsα2

ρ2

+

(
η3

2
+

δ

c

)
nc2α2

ρ2σ̃2
min(M−)

(
σ4

max(M+) + σ4
max(M−)

)
.

Step 3: Expanding (60) from time 0 to time k yields

c‖Zk − Z∗‖2
F +

1

c
‖βk − β∗‖2

F

≤ (1 + δ)−k

(
c‖Z0 − Z∗‖2

F +
1

c
‖β0 − β∗‖2

F

)

+ φ
k−1∑

k′=0

ρ2k′
(1 + δ)−(k−k′). (61)

Denote ε1 = min{(1 + δ)−1, ρ2} and ε2 = max{(1 + δ)−1,
ρ2}. Because δ > 0 and ρ ∈ (0, 1), we have ε2 ∈ (0, 1) and
(1 + ε2)/2 ∈ (ε2, 1). Thus, we rewrite (61) as

c‖Zk − Z∗‖2
F +

1

c
‖βk − β∗‖2

F

≤ εk
2

(
c‖Z0 − Z∗‖2

F +
1

c
‖β0 − β∗‖2

F

)
+ φ

k−1∑

k′=0

εk′
1 εk−k′

2

≤
(

1 + ε2

2

)k (
c‖Z0 − Z∗‖2

F +
1

c
‖β0 − β∗‖2

F

)

+ φ
k−1∑

k′=0

εk′
1

(
1 + ε2

2

)k−k′

(62)

≤
(

1 + ε2

2

)k (
c‖Z0 − Z∗‖2

F +
1

c
‖β0 − β∗‖2

F

)

+ φ

(
1 + ε2

2

)k k−1∑

k′=0

(
2ε1

1 + ε2

)k′

≤
(

1 + ε2

2

)k

(
c‖Z0 − Z∗‖2

F +
1

c
‖β0 − β∗‖2

F + φ

(
1 − 2ε1

1 + ε2

)−1
)

.

Hence (62) implies that {(Zk, βk)} converges to the optimal
solution (Z∗, β∗) of (8) when k goes to infinity at a Q-linear rate
(1 + ε2)/2. To show the convergence of {Xk} to X∗, revisiting
(47) and throwing away several terms, we have

(
mf − cη1

4

)
‖Xk − X∗‖2

F

≤ c‖Zk−1 − Z∗‖2
F +

1

c
‖βk−1 − β∗‖2

F

+
cη2

2
‖Zk − Z∗‖2

F +
η3

2
‖βk − β∗‖2

F + s‖Ek‖2
F

≤ c‖Zk−1 − Z∗‖2
F +

1

c
‖βk−1 − β∗‖2

F

+
cη2

2
‖Zk − Z∗‖2

F +
η3

2
‖βk − β∗‖2

F +
nsα2

ρ2
ρ2k. (63)

Hence, we conclude that when

c <
4mf

η1
, (64)

{Xk} converges to the optimal solution X∗ of (8) when k goes
to infinity at a R-linear rate max{(1 + ε2)/2, ρ2} and complete
the proof. �
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