
1750 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 7, APRIL 1, 2014

On the Linear Convergence of the ADMM in
Decentralized Consensus Optimization

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin

Abstract—In decentralized consensus optimization, a connected
network of agents collaboratively minimize the sum of their local
objective functions over a common decision variable, where their
information exchange is restricted between the neighbors. To this
end, one can first obtain a problem reformulation and then apply
the alternating direction method of multipliers (ADMM). The
method applies iterative computation at the individual agents and
information exchange between the neighbors. This approach has
been observed to converge quickly and deemed powerful. This
paper establishes its linear convergence rate for the decentralized
consensus optimization problem with strongly convex local objec-
tive functions. The theoretical convergence rate is explicitly given
in terms of the network topology, the properties of local objective
functions, and the algorithm parameter. This result is not only a
performance guarantee but also a guideline toward accelerating
the ADMM convergence.

Index Terms—Decentralized consensus optimization, alter-
nating direction method of multipliers (ADMM), linear
convergence.

I. INTRODUCTION

R ECENT advances in signal processing and control of net-
worked multi-agent systems have led to much research

interests in decentralized optimization [2]–[14]. Decentral-
ized optimization problems arising in networked multi-agent
systems include coordination of aircraft or vehicle networks
[2]–[4], data processing of wireless sensor networks [5]–[10],
spectrum sensing of cognitive radio networks [11], [12], state
estimation and operation optimization of smart grids [13], [14],
etc. In these scenarios, the data is collected and/or stored in
a distributed manner; a fusion center is either disallowed or
not economical. Consequently, any computing tasks must be
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accomplished in a decentralized and collaborative manner by
the agents. This approach can be powerful and efficient, as the
computing tasks are distributed over all the agents and infor-
mation exchange occurs only between the agents with direct
communication links. There is no risk of central computation
overload or network congestion.
In this paper, we focus on decentralized consensus optimiza-

tion, an important class of decentralized optimization in which
a network of agents cooperatively solve

(1)

over a common optimization variable , where
is the local objective function known by agent . This formu-
lation arises in averaging [4]–[6], learning [7], [8], and estima-
tion [9]–[13] problems. Examples of include least squares
[4]–[6], regularized least squares [8], [10]–[12], as well as more
general ones [7]. The values of can stand for average tempera-
ture of a room [5], [6], frequency-domain occupancy of spectra
[11], [12], states of a smart grid system [13], [14], and so on.
There exist several methods for decentralized consensus

optimization, including distributed subgradient descent algo-
rithms [15]–[17], dual averaging methods [18], [19], and the
alternating direction method of multipliers (ADMM) [8]–[10],
[20], [21]. Among these algorithms, the ADMM demonstrates
fast convergence in many applications, e.g., [8]–[10]. However,
how fast it converges and what factors affect the rate are both
unknown. This paper addresses these issues.

A. Our Contributions

Firstly, we establish the linear convergence rate of the
ADMM that is applied to decentralized consensus optimization
with strongly convex local objective functions. This theoretical
result gives a performance guarantee for the ADMM and
validates the observation in prior literature.
Secondly, we study how the network topology, the properties

of local objective functions, and the algorithm parameter affect
the convergence rate. The analysis provide guidelines for net-
working strategies, objective-function splitting strategies, and
algorithm parameter settings to achieve faster convergence.

B. Related Work

Besides the ADMM, existing decentralized approaches for
solving (1) include belief propagation [7], incremental opti-
mization [22], subgradient descent [15]–[17], dual averaging
[18], [19], etc. Belief propagation and incremental optimization
require one to predefine a tree or loop structure in the network,
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whereas the advantage of the ADMM, subgradient descent,
and dual averaging is that they do not rely on any predefined
structures. Subgradient descent and dual averaging work well
for asynchronous networks but suffer from slow convergence.
Indeed, for subgradient descent algorithms [15] and [16] estab-
lish the convergence rate of , where is the number of
iterations, to a neighborhood of the optimal solution when the
local subgradients are bounded and the stepsize is fixed. Further
assuming that the local objective functions are strongly convex,
choosing a dynamic stepsize leads to a rate of
[17]. Dual averaging methods using dynamic stepsizes also
have sublinear rates, e.g., as proved in [18] and
[19].
The decentralized ADMM approaches use synchronous steps

by all the agents but have much faster empirical convergence,
as demonstrated in many applications [8]–[10]. However, ex-
isting convergence rate analysis of the ADMM is restricted to
the classic, centralized computation. The centralized ADMM
has a sublinear convergence rate for general convex
optimization problems [23]. In [24] an ADMM with restricted
stepsizes is proposed and proved to be linearly convergent for
certain types of non-strongly convex objective functions. A re-
cent paper [25] shows a linear convergence rate for
some under a strongly convex assumption, and our paper
extends the analysis tools therein to the decentralized regime.
A notable work about convergence rate analysis is [20],

which proves the linear convergence rate of the ADMM ap-
plied to the average consensus problem, a special case of (1) in
which with being a local measurement
vector of agent . Its analysis takes a state-transition equation
approach, which is not applicable to the more general local
objective functions considered in this paper.

C. Paper Organization and Notation

This paper is organized as follows. Section II reformulates
the decentralized consensus optimization problem and develops
an algorithm based on the ADMM. Section III analyzes the
linear convergence rate of the ADMM and shows how to accel-
erate the convergence through tuning the algorithm parameter.
Section IV provides extensive numerical experiments to vali-
date the theoretical analysis in Section III. Section V concludes
the paper.
In this paper we denote as the Euclidean norm of a

vector and as the inner product of two vectors and
. Given a semidefinite matrix with proper dimensions, the
-norm of is . We let be the operator that

returns the largest singular value of and be the one
that returns the smallest nonzero singular value of .
We use two kinds of definitions of convergence, Q-linear con-

vergence and R-linear convergence. We say that a sequence ,
where the superscript stands for time index, Q-linearly con-
verges to a point if there exists a number such that

with being a vector norm. We say that

a sequence R-linearly converges to a point if for all
where Q-linearly converges to .

II. THE ADMM FOR DECENTRALIZED CONSENSUS
OPTIMIZATION

In this section, we first reformulate the decentralized con-
sensus optimization problem (1) such that it can be solved by
the ADMM (see Section II-A). Then we develop the decentral-
ized ADMM approach and provide a simplified decentralized
algorithm (see Section II-B).

A. Problem Formulation

Throughout the paper, we consider a network consisting of
agents bidirectionally connected by edges (and thus arcs).
We can describe the network as a symmetric directed graph

or an undirected graph , where
is the set of vertexes with cardinality is the set of
arcs with , and is the set of edges with .
Algorithms that solve the decentralized consensus optimization
problem (1) are developed based on this graph.
Generally speaking, the ADMM applies to the convex opti-

mization problem in the form of

(2)

where and are optimization variables, and are convex
functions, and is a linear constraint of and
. The ADMM solves a sequence of subproblems involving

and one at a time and iterates to converge as long as a saddle
point exists.
To solve (1) with the ADMM in a decentralized manner, we

reformulate it as

(3)

Here is the local copy of the common optimization variable
at agent and is an auxiliary variable imposing the con-

sensus constraint on neighboring agents and . In the con-
straints, are separable when are fixed, and vice versa.
Therefore, (3) lends itself to decentralized computation in the
ADMM framework. Apparently, (3) is equivalent to (1) when
the network is connected.
Defining as a vector concatenating all

as a vector concatenating all , and
, (3) can be written in a matrix form

as

(4)

where , which fits the form of (2), and is amenable to
the ADMM. Here are both
composed of blocks of matrices. If
and is the th block of , then the th block of and the

th block of are identity matrices ; otherwise
the corresponding blocks are zero matrices . Also, we
have with being a
identity matrix.
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B. Algorithm Development

Now we apply the ADMM to solve (4). The augmented La-
grangian of (4) is

where is the Lagrange multiplier and is a posi-
tive algorithm parameter. At iteration , the ADMM firstly
minimizes to obtain , secondly minimizes

to obtain , and finally updates from
and . The updates are

-

-
-

(5)

where is the gradient of at point if
is differentiable, or is a subgradient if is non-differentiable.
Next we show that if the initial values of and are properly

chosen the ADMM updates in (5) can be simplified (see also
the derivation in [8]). Multiplying the two sides of the -update
by and adding it to the -update, we have

. Further, multiplying the two
sides of the -update by and adding it to the -update we
have . Therefore (5) can be equivalently expressed
as

(6)

Letting with and recalling
, we know from the second

equation of (6). Therefore, the first equation in (6) reduces to
where

and . The third equation in (6)
splits to two equations
and . If we choose the ini-
tial value of as such that holds for

, summing and subtracting these two equations re-
sult in and ,
respectively. If we further choose the initial value of as

holds for .
To summarize, with initialization and

, (6) reduces to

(7)

In Section III we will analyze the convergence rate of the
ADMM updates (7). The analysis requires an extra initializa-
tion condition that lies in the column space of (e.g.,

) such that also lies in the column space of ;
the reason will be given in Section III.

Indeed, (7) also leads to a simple decentralized algorithm that
involves only an -update and a new multiplier update. To see
this, substituting into the first two equations
of (7) we have

(8)

which is irrelevant with . Note that in the first equation of
(8) the -update relies on other than . There-
fore, multiplying the second equation with we have

. Substituting it to
the first equation of (8) we obtain the -update where
is decided by and , i.e.,

. Let-
ting be a block diagonal matrix with its

th block being the degree of agent multiplying and
other blocks being ,
we know . Defining a new multiplier

, we obtain a simplified decentralized
algorithm

-

-
(9)

The introduced matrices , and are re-
lated to the underlying network topology. With regard to the
undirected graph and are the extended unoriented
and oriented incidence matrices, respectively; and are
the extended signless and signed Laplacian matrices, respec-
tively; and is the extended degree matrix. By “extended”,
we mean replacing every 1 by by , and 0 by in
the original definitions of these matrices [26]–[29].
The updates in (9) are distributed to agents. Note that

where is the local solution of agent and
where is the local Lagrange multiplier of

agent . Recalling the definitions of and , (9) trans-
lates the update of agent by

(10)

where denotes the set of neighbors of agent . The algorithm
is fully decentralized since the updates of and only rely
on local and neighboring information. The decentralized con-
sensus optimization algorithm based on the ADMM is outlined
in Table I.

III. CONVERGENCE RATE ANALYSIS

This section first establishes the linear convergence rate of the
ADMM in decentralized consensus optimization with strongly
convex local objective functions (see Section III-A); the de-
tailed proof of the main theoretical result is placed in Appendix.
We then discuss how to tune the parameter and accelerate the
convergence (see Section III-B).
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TABLE I
ALGORITHM 1: DECENTRALIZED CONSENSUS OPTIMIZATION BASED ON THE ADMM

A. Main Theoretical Result

Throughout this paper, we make the following assumption
that the local objective functions are strongly convex and have
Lipschitz continuous gradients; note that the latter implies
differentiability.
Assumption 1: The local objective functions are strongly

convex. For each agent and given any
with

. The gradients of the local objective functions are Lip-
schitz continuous. For each agent and given any

with .
Recall the definition . Assumption 1 di-

rectly indicates that is strongly convex (i.e.,
given any

with ) and the gradient of is Lipschitz con-
tinuous (i.e., for any

with ).
Although the convergence of Algorithm 1 to the optimal so-

lution of (4) can be shown based on the convergence property
of the ADMM (see e.g., [21]), establishing its linear conver-
gence is nontrivial. In [25] the linear convergence of the central-
ized ADMM is proved given that either is strongly convex
or is full row-rank in (8). However, the decentralized con-
sensus optimization problem does not satisfy these conditions.
The function is not strongly convex, and the matrix

is row-rank deficient.
Next we will analyze the convergence rate of the ADMM iter-

ation (7). The analysis requires an extra initialization condition
that lies in the column space of such that also lies
in the column space of , which is necessary in the analysis.
Note that there is a unique optimal multiplier lying in the
column space of . To see so, taking in (7) yields
the KKT conditions of (4)

(11)

where is the unique primal optimal solution and the
uniqueness follows from the strong convexity of as well
as the consensus constraint . Since the consensus
constraints are feasible, there is at least one
optimal multiplier exists such that . We
show that its projection onto the column space of , denoted
by , is also an optimal multiplier. According to the property
of projection, and hence .
Therefore, the projection that lies in the column space

of also satisfies . Next we show
the uniqueness of such a by contradiction. Consider two
different vectors that both lie in the
column space of and satisfy the equation. Therefore, we
have and .
Subtracting them yields . Since

where
is the smallest nonzero singular value of ,

we conclude that and consequently
which contradicts with the assumption of

and being different. Hence, is the unique dual
optimal solution that lies in the column space of .
Our main theoretical result considers the convergence of a

vector that concatenating the primal variable and the dual vari-
able , which is common in the convergence rate analysis of the
ADMM [23]–[25]. Let us introduce

(12)

We will show that is Q-linearly convergent to its
optimal with respect to the -norm. Further, the
Q-linear convergence of to implies
that is R-linearly convergent to its optimal .
Theorem 1: Consider the ADMM iteration (7) that solves (4).

The primal variables and have their unique optimal values
and , respectively; the dual variable has its unique op-

timal value that lies in the column space of . Recall the
definition of and defined in (12). If the local objective func-
tions satisfy Assumption 1 and the dual variable is initial-
ized such that lies in the column space of , then for any

is Q-linearly convergent to its optimal
with respect to the -norm

(13)

where

(14)

Further, is R-linearly convergent to following from

(15)

Proof: See Appendix.
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In Theorem 1, (14) shows that is no greater
than and hence converges to Q-linearly
at a rate

A larger guarantees faster convergence. On the other hand,
is a theoretical upper bound of the convergence rate, prob-

ably not tight. The Q-linear convergence of to translates
to the R-linear convergence of to as shown in (15).

B. Accelerating the Convergence

From (14) we can find that the theoretical convergence rate
(more precisely, its upper bound) is given in terms of the net-
work topology, the properties of local objective functions, and
the algorithm parameter. The value of is related with the free
parameter , the strongly con-
vexity constant of , the Lipschitz constant of , and
the algorithm parameter .
Now we consider tuning the free parameter and the algo-

rithm parameter to maximize and thus accelerate the con-
vergence (i.e., through minimizing that is actually an upper
bound). From the analysis we will see more clearly how the
convergence rate is influenced by the network topology and the
local objective functions. For convenience, we define the con-
dition number of as

Recall that and . Therefore,
is an upper bound of the condition numbers of the local ob-

jective functions. We also define the condition number of the
underlying graph or as

With regard to the underlying graph, the minimum nonzero
singular value of the extended signed Laplacian matrix ,
denoted as , is known as its algebraic connectivity
[26], [27]. The maximum singular value of the extended
signless Laplacian matrix , denoted as , has also
drawn research interests recently [28], [29]. Both
and are measures of network connectedness but the
former is weaker. Roughly speaking, larger and

mean stronger connectedness, and a larger means
weaker connectedness.
Keeping the definitions of and in mind, the fol-

lowing theorem shows how to choose the free parameter and
the algorithm parameter to maximize and accelerate the
convergence.
Theorem 2: If the algorithm parameter in (14) is chosen as

(16)

where

(17)

then

(18)

maximizes the value of in (14) and ensures that (15) holds.
Proof: Observing the two values inside the minimization

operator in (14), we find that only the second term is relevant
with . It is easy to check that the value of in (16), no matter
how is chosen, maximizes as

(19)

Inside the minimization operator in (19), the first and second
terms are monotonically increasing and decreasing with regard
to , respectively. To maximize , we choose a value of
such that the two terms are equal. Simple calculations show

that the value of in (17), which is larger than 1, satisfies this
condition. The resulting maximum value of is the one in (18).

The value of in (18) is monotonically decreasing with re-
gard to and . This conclusion suggests that
a smaller condition number of and a smaller condition
number of the graph lead to faster convergence. On the other
hand, if these condition numbers keep increasing, the conver-
gence can go arbitrarily slow. In fact, the limit of in (18) is 0
as or . Given , the upper bound of , we
define the upper bound of the convergence rate as

IV. NUMERICAL EXPERIMENTS

In this section, we provide extensive numerical experiments
and supplement to validate our theoretical analysis. We in-
troduce experimental settings in Section IV-A and then study
the influence of different factors on the convergence rate in
Sections IV-B through IV-E.

A. Experimental Settings

We generate a network consisting of agents and possessing
at most edges. If the network is randomly generated,
we define , the connectivity ratio of the network, as its actual
number of edges divided by . Such a random network
is generated with edges that are uniformly randomly
chosen, while ensuring the network connected.
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TABLE II
SUMMARY OF THE NUMERICAL EXPERIMENTS

We apply the ADMM to a decentralized consensus least
squares problem

(20)

Here is the unknown signal to estimate and its true
values follow the normal distribution is
the linear measurement matrix of agent whose elements follow

by default, and is the measurement vector of
agent whose elements are polluted by random noise following

. In Section IV-D the elements of the matrices need
to be further manipulated to produce different condition num-
bers of the objective functions. We reformulate (20) into the
form of (3) as

(21)

The solution to (20) is denoted by in which the part of agent
is denoted by . The algorithm is stopped once
reaches or the number of iterations reaches 4000,
whichever is earlier.
In the numerical experiments, we choose to record the primal

error instead of as the latter incurs
significant extra computation when the number of agents is
large. But note that is not necessarily monotonic in

. Let the transient convergence rate be . As
fluctuates, we report the running geometric-average rate of

convergence given by

(22)

which follows from (13) and (15). While , and
influence , observing

we see that their influence diminishes and the steady state

is upper bounded by as is. Throughout the numerical
experiments, we report and .
In the following subsections, we demonstrate how different

factors influence the convergence rate. We firstly show the
evidence of linear convergence, and along the way, the influ-
ence of the connectivity ratio on the convergence rate (see
Section IV-B). Secondly, we compare the practical convergence
rate using the best theoretical algorithm parameter in
(16) and that using the best hand-tuned parameter (see
Section IV-C). Thirdly, we check the effect of , the condition
number of the objective function (see Section IV-D). Finally,
we show how , the condition number of the network, as well
as other network parameters, influence the convergence rate
(see Section IV-E). The numerical experiments are summarized
in Table II.

B. Linear Convergence

To illustrate linear convergence of the ADMM for decen-
tralized consensus optimization, we generate random networks
consisting of agents. The connectivity ratio of the net-
works, , is set to different values. The ADMM parameter is set
as (16).
Fig. 1 depicts how the relative error, , varies in .

Obviously the convergence rates are linear for all ; a higher
connectivity ratio leads to faster convergence. Fig. 2 plots ,
which stabilizes within 10 iterations. From Figs. 1 and 2, one can
observe that for such randomly generated networks, varying the
connectivity ratio within the range [0.08, 1] does not signifi-
cantly change the convergence rate. The reason is that when is
larger than a certain threshold, its value makes little influence on
(see Table III in Section IV-C). We will discuss more about

the influence of in Section IV-D.
As a comparison, we also demonstrate the convergence of

the distributed gradient descent (DGD) method in Figs. 1 and
2. Using a diminishing stepsize [30], the DGD shows
sublinear convergence that is slow even for a complete graph
(i.e., ).

C. Algorithm Parameter

Here we discuss the influence of the ADMM parameter on
the convergence rate. The best theoretical value in (16),
though optimizing the upper bound of the convergence rate,
does not give best practical performance.We vary , and plot the
steady-state running geometric-average rates of convergence
in Fig. 3. For each curve that corresponds to a unique , wemark
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TABLE III
SETTINGS AND CONVERGENCE RATES CORRESPONDING TO FIGS. 1, 2, 4, AND 5

Fig. 1. Relative error versus iteration .

Fig. 2. Running geometric-average rate of convergence versus iteration .

the best theoretical value and the best practical value . Con-
sistently, are larger than .
Now we set , the hand-tuned optimal value, and plot

in Fig. 4 as per Fig. 1 and in Fig. 5 as per Fig. 2.
Comparing to those using , the best theoretical value,
in Figs. 1 and 2, the convergence improves significantly. The
numerical quantities of Figs. 1, 2, 4, and 5 are given in Table III.
It appears that is a stable overestimate of . Therefore, we

recommend for nearly optimal convergence using some
. Fig. 6 illustrates the convergence corresponding to

different values of . We randomly generate 4000 connected
networks with agents whose connectivity ratios are

Fig. 3. Steady-state running geometric-average rate of convergence versus
algorithm parameter .

Fig. 4. Relative error versus iteration .

uniformly distributed on . The random networks are di-
vided into 20 groups according to their condition numbers .
For each group of the random networks, the values of are
plotted with error bars, and compared with the theoretical upper
bound . For this dataset, appear to be a good overall
choice. A smaller imposes a risk of slower convergence when

is small.

D. Condition Number of the Objective Function

Now we study how , the condition number of the objec-
tive function, affects the convergence rate. We generate random
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Fig. 5. Running geometric-average rate of convergence versus iteration .

Fig. 6. Convergence performance obtained with for varying , where
is analytically given in (16).

networks consisting of agents with different connec-
tivity ratios . We set . To produce different , we first
generate a linear measurement matrix with its elements fol-
lowing . Second, we apply singular value decomposi-

tions to , scale the singular values to the range , and

rebuild .
Fig. 7 shows that the theoretical convergence rates are

monotonically increasing as increases, which is consistent
with Theorem 2. When the connectivity ratios are small, the
trend of disobeys the theoretical analysis. It is because that our
upper bound of the convergence rate, becomes loose when the
network connectedness is poor. When the network is well-con-
nected (say ), we can observe a positive correlation be-
tween and , which coincides with the theoretical analysis.

E. Network Topology

Last we study how the network topology affects the conver-
gence rate. Besides the condition number of the network
that is relevant, we also consider other network parameters in-
cluding the network diameter, geometric average degree, as well

Fig. 7. Convergence performance versus the condition number of the ob-
jective function at different connectivity ratios .

Fig. 8. Convergence performance versus the condition number of the network
obtained with networks of different topologies (random, line, cycle, star,

and complete) and of different sizes .

as imbalance of bipartite networks. In the numerical experi-
ments, the local objective functions are generated as described
in Section IV-A. The algorithm parameter is set as .
1) Condition Number of the Network: As it is difficult to

precisely design , the condition number of the network,
we run a large number of trials to sample . We randomly
generate 4000 connected networks with
agents, 12000 networks in total. Their connectivity ratios are
uniformly distributed on . In addition, we generate special
networks with topologies of the line, cycle, star, complete,
and grid types. The grid networks are generated in a 3D space
(2 5 5, 5 5 8, and 5 10 10).
Fig. 8 depicts the effect of on the convergence rate.

In Fig. 8, the dashed curve with error bars correspond to the
random networks, and the individual points correspond to the
special networks. There is only one dashed curve in the plot
since do not make significant differences.
The networks of the line, cycle, complete, and grid topologies
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Fig. 9. Convergence performance versus the condition number of the network
obtained with networks of different topologies (random, line, cycle, star,

complete, and grid) and of different sizes .

generate points in the plot that are nearly on the dashed curve,
which indicates that is a good indicator for convergence
rate. In addition, the trends of , the steady-state running
geometric-average rate of convergence, and , the theoretical
rate of convergence, are consistent. The points corresponding
to the three networks of the star topology are away from the
dashed side.
We observe that the convergence rate is closely related to ,

less to . To reach a target convergence rate, one therefore shall
have a sufficiently small , which in turn depends on and
, as well as other factors. To obtain a sufficiently small ,
typically, needs to be large if is small, but not as large if
is large. In other words, if one has a network with a large

number of agents (say ), a small connectivity ratio (say
) will lead to a small and thus fast convergence.

With the same , the networks with the star topology have
much faster convergence than random networks. We shall dis-
cuss this special topology at the end of this subsection.
2) Network Diameter: The network diameter is defined as

the longest distance between any pair of agents in the network.
In decentralized consensus optimization, is related to how
many iterations the information from one agent will reach all
the other agents.
To discuss the effect of the network diameter on the conver-

gence rate, we randomly generated 4000 connected networks
with agents and connectivity ratios uniformly dis-
tributed on . We also generate the networks of the line,
cycle, star, complete, and grid topologies. Most randomly gen-
erated networks possess small diameters. In this experiment, the
numbers of those with and
are 3141, 717 and 142, respectively. From Fig. 9, we conclude
that in general a larger diameter tends to cause a worse condition
number of the network and thus slower convergence, though this
relationship is interfered by network properties.
3) Geometric Average Degree: Define and as the

largest and smallest degrees of the agents in the network, respec-
tively. The geometric average degree reflects
the agents’ number of neighbors in a geometric average sense.

Fig. 10. Convergence performance versus the condition number of the net-
work and the network diameter obtained with networks of different topolo-
gies (random, line, cycle, star, complete, and grid) and of size .

Fig. 11. Convergence performance versus the condition number of the net-
work and the imbalance of bipartite networks obtained with networks of
random and star topologies and of size .

Its value reaches maximum at if the topology is complete;
and reaches minimum when the topology is a line.
To discuss the effect of the network diameter on the conver-

gence rate, we randomly generated 4000 connected networks
with agents and connectivity ratios uniformly dis-
tributed on . We also generate the networks of the line,
cycle, star, complete, and grid topologies. Most randomly gen-
erated networks possess small diameters. In this experiment, the
numbers of those with and
are 3141, 717 and 142, respectively. From Fig. 9, we conclude
that in general a larger diameter tends to cause a worse condition
number of the network and thus slower convergence, though this
relationship is interfered by network properties.
4) Imbalance of Bipartite Networks: Let denote

the class of bipartite networks with agents in one group and
agents in another group. Agents within either group cannot

directly communicate with each other. For a bipartite network
consisting of agents, its imbalance is defined
as , which can vary between 0 and .
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We randomly generate 1000 bipartite graphs of size
, whose connectivity ratios are uniformly distributed on

, for each of the cases .
The star topology corresponds to a special bipartite network
with . From Fig. 11, we find that for the
same , the networks with larger have faster convergence.
An extreme example is the network of the star topology. This
observation suggests us to assign few “hot spots” to relay in-
formation for fast convergence, if is fixed in advance. How-
ever, this approach may cause robustness or scalability issues
because the relaying agents are subject to extensive communi-
cation burden. Hence there is a tradeoff between fast conver-
gence and robustness or scalability in network design.

V. CONCLUSION

We apply the ADMM to a reformulation of a general decen-
tralized consensus optimization problem. We show that if the
objective function is strongly convex, the decentralized ADMM
converges at a globally linear rate, which can be given explic-
itly. It is revealed that several factors affect the convergence
rate that include the topology-related properties of the network,
the condition number of the objective function, and the algo-
rithm parameter. Numerical experiments corroborate and sup-
plement our theoretical findings. Our analysis sheds light on
how to construct a network and tune the algorithm parameter
for fast convergence.

APPENDIX

Proof: Consider the ADMM updates (7) and the KKT con-
ditions (11). Subtracting the three equations in (11) from the cor-
responding equations in (7) yields

(23)

(24)

(25)

respectively.
To prove the Q-linear convergence of we use

as an intermediate. Based on Assumption 1,
is strongly convex with a constant such that

(26)

Using (23), we can split the right-hand side of (26) to two terms

(27)

Substituting (24) and (25) to (27) we can eliminate the term
and obtain

(28)

Recall the definition of and defined in (12). It is obvious
that the right-hand side of (28) can be written as a compact
form . Using the equality

, (28) is equivalent to

(29)

and consequently using (26)

(30)

Having (30) at hand, to prove (13) we only need to show

(31)

which is equivalent to

(32)

The idea of proof is to show that and
are upper bounded by two non-overlapping parts of the

left-hand side of (32), respectively.
The upper bound of follows from (25) that

shows . Hence we have

(33)

where is the largest singular value of . To
find the upper bound of , we use two inequal-
ities and

; the latter holds
since has Lipschitz continuous gradients with a constant
. Therefore, given the positive algorithm parameter and

any it holds

(34)

Recall that from (23) is the summation of
and . Hence we can apply
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the basic inequality ,
which holds for any , to (34) and obtain

(35)

Since by assumption is initialized such that it lies in
the column space of , we know that lies in
the column space of too; see the ADMM updates
(7). Because also lies in the column space of

where
is the smallest nonzero singular value of .

Therefore from (35) we can upper bound by

(36)

Combining (33) and (36), we prove (32). From (33) we have

(37)

From (36) we have

(38)

Summing up (37) and (38) yields

(39)

Apparently, in (14) satisfies

(40)

and consequently (32), which proves (13).
To prove the R-linear convergence of to , we observe

that (30) implies , which proves
(15).
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