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Decentralized Dynamic Optimization Through the
Alternating Direction Method of Multipliers

Qing Ling and Alejandro Ribeiro

Abstract—This paper develops the application of the alternating
direction method of multipliers (ADMM) to optimize a dynamic
objective function in a decentralized multi-agent system. At each
time slot, agents in the network observe local functions and co-
operate to track the optimal time-varying argument of the sum
objective. This cooperation is based on maintaining local primal
variables that estimate the value of the optimal argument and aux-
iliary dual variables that encourage proximity with neighboring
estimates. Primal and dual variables are updated by an ADMM it-
eration that can be implemented in a distributed manner whereby
local updates require access to local variables and the most re-
cent primal variables from adjacent agents. For objective functions
that are strongly convex and have Lipschitz continuous gradients,
the distances between the primal and dual iterates to their corre-
sponding time-varying optimal values are shown to converge to a
steady state gap. This gap is explicitly characterized in terms of the
condition number of the objective function, the condition number
of the network that is defined as the ratio between the largest and
smallest nonzero Laplacian eigenvalues, and a bound on the drifts
of the optimal primal variables and the optimal gradients. Numer-
ical experiments corroborate theoretical findings and show that the
results also hold for non-differentiable and non-strongly convex
primal objectives.

Index Terms—Alternating direction method of multipliers
(ADMM), decentralized multi-agent system, dynamic optimiza-
tion.

I. INTRODUCTION

W E consider a multi-agent system composed of net-
worked agents whose goal at time is to solve a decen-

tralized dynamic optimization problem with a separable cost of
the form

(1)

Manuscript received June 28, 2013; revised October 03, 2013; accepted
November 29, 2013. Date of publication December 16, 2013; date of current
version February 10, 2014. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Joakim Jalden. The work
of Q. Ling was supported by NSFC 61004137. The work of A. Ribeiro was
supported by NSF CAREER CCF-0952867, NSF CCF-1017454, and AFOSR
MURI FA9550-10-1-0567. This paper was presented in part at the 14th IEEE
Workshop on Signal Processing Advances for Wireless Communications,
Darmstadt, Germany, June16–19, 2013.
Q. Ling is with the Department of Automation, University of Science and

Technology of China, Hefei, Anhui 230026, China and also with The State Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an, Shannxi
710071, China.
A. Ribeiro is with the Department of Electrical and Systems Engineering,

University of Pennsylvania, Philadelphia, PA 19104 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2013.2295055

The variable is common to all agents that have
as their goal the determination of the vector

that solves (1). The problem is decen-
tralized because the cost is separated into convex functions

known to different agents and dynamic because
the functions change over time. The purpose of this paper is
to develop the application of the alternating directions method
of multipliers (ADMM) to the solution of (1).
Problems having the general structure in (1) arise in de-

centralized multi-agent systems whose tasks are time-varying.
Problems of this sort are typical in wireless sensor networks
and autonomous teams, with specific examples including
estimation of the path of a stochastic process [2], signal de-
tection with adaptive filters [3], tracking moving targets [4],
and scheduling trajectories in an autonomous team of robots
[5]. In the case of static problems, i.e., when the functions

are the same for all times , there are many iterative
algorithms that enable decentralized solution of (1) which can
be classified as operating in either the primal [6]–[10] or dual
domain [11]–[17]. Primal domain methods determine new
iterates by averaging local solutions with those of neighbors
and descending along negative subgradient directions [6]–[10].
Dual ascent methods rely on the observation that subgradients
of the dual function depend on local and neighboring variables
only and can thereby be computed without global cooperation
[11]. Convergence of primal descent and dual ascent algorithms
is typically slow with dual ascent methods exhibiting somewhat
faster convergence. The convergence rate of dual ascent can
be further sped up by using distributed Newton methods [12]
or the ADMM algorithm [13]–[17]. The ADMM modifies
dual ascent by introducing a quadratic regularization term that
reduces the variability of subsequent iterates. Reducing this
variability improves numerical stability and results in a con-
vergence rate that, while not dramatically different from that
of dual ascent, is noticeably better in problems with ill-condi-
tioned dual functions [18]–[21]. Of particular note, the ADMM
has been proved to converge linearly to both the primal and
dual optimal solutions, when all local objective functions are
strongly convex and have Lipschitz continuous gradients [22].
Since a dynamic optimization problem can be considered as a

sequence of static optimizations any of the methods in [6]–[17]
can be utilized in their solution. This has indeed been tried
in, e.g., [23], [24], where separate time scales are assumed so
that the descent iterations are allowed to converge in between
different instances of (1). This is not entirely faithful to the
time-varying nature of (1) motivating the introduction of algo-
rithms that consider the same time scale for the evolution of
the functions and the iterations of the distributed optimiza-
tion algorithm [2], [25]–[27]. In their respective contexts these
papers establish that if the change in the functions is suffi-
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ciently slow minor modifications of static algorithms work rea-
sonably well on keeping track of the time-varying optimal ar-
gument . The goal of this paper is to show that the same
is true when applying the ADMM to a dynamic optimization
problem.
We begin the paper by introducing a formal problem defini-

tion and the dynamic ADMM algorithm which is based on the
introduction of local variables subject to consensus constraints
and alternating minimization of an augmented time-varying
Lagrangian (Section II). We further manipulate iterations and
introduce an initialization condition so that a simple decentral-
ized algorithm is obtained (Proposition 1). We then proceed to
analyze convergence properties of the dynamic ADMM algo-
rithm assuming that the local objective functions are strongly
convex and have Lipschitz continuous gradients (Section III).
These conditions are sufficient to ensure that the distances
between the primal and dual iterates to their corresponding
time-varying optimal values contract between successive steps
(Theorem 2) from where it follows that they reach a steady state
optimality gap (Theorem 3). This gap is characterized in terms
of problem specific constants and is shown to be proportional
to the condition number of the primal function, the condition
number of the network that is defined as the ratio between
the largest and smallest nonzero Laplacian eigenvalues, and
a bound on the drifts of the optimal primal variables and the
optimal gradients. Numerical results for a tracking application
are presented (Section IV) for strongly convex objectives
(Section IV-A) as well as for non-strongly convex, non-dif-
ferentiable primal objective functions (Sections IV-B, IV-C,
and IV-D). These numerical analyses corroborate theoretical
findings and show that the dynamic ADMM algorithm also
works for non-differentiable and non-strongly convex primal
objectives functions. Concluding remarks are presented to
close the paper (Section V).
Notation: For column vectors we use the nota-

tion to represent the stacked column vector
. For a block matrix we use to denote the th
block. Given matrices we use
to denote the block diagonal matrix whose th diagonal block
is . A sequence is said to converge Q-linearly to if

for all times where is
a constant. A sequence is said to converge R-linearly to
if for all times where and
are constants.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

Consider a network composed of a set of agents
and a set of arcs , where each

arc is associated with an ordered pair indi-
cating that can communicate to . We assume the network
is connected and the communication is bidirectional so that if

there exists another arc . The set of agents
adjacent to is termed its neighborhood and denoted as .
The cardinality of this set is the degree of agent . We de-
fine the block arc source matrix where the block

is an identity matrix if the arc
originates at node and is null otherwise. Likewise, define the
block arc destination matrix where the block

if the arc terminates at node
and is null otherwise. Here the arcs are sorted first
in an ascending order of and second in an ascending order of

and numbered from 1 to . Observe that the extended ori-
ented incidence matrix can be written as and the
unoriented incidence matrix as . The extended
oriented (signed) Laplacian is then given by ,
the unoriented (unsigned) Laplacian by and
the degree matrix containing nodes’ degrees in the diagonal
is . Denote as the largest singular value
of and as the smallest nonzero singular value of . The
singular value ratio is a measure of network connected-
ness that we refer to as the condition number of the graph.
To solve (1) in a decentralized manner we introduce variables

representing local copies of the variable , auxiliary
variables associated with each arc , and
reformulate (1) as

(2)

The constraints and imply that for all pairs
of agents forming an arc, the feasible set of (2) is
such that . We interpret the auxiliary variables as
being attached to the arc with the purpose of enforcing the
equality of the variables and attached to its source agent
and destination agent . For a connected network these local
neighborhood constraints further imply that feasible variables
must satisfy for all, not necessarily neighboring, pairs
of agents and . As a consequence, the optimal local variables
in (2) must coincide with the solution of (1); i.e.,
for all nodes .
To simplify discussion define the vector
concatenating all variables , the vector

concatenating all variables ,
and define the aggregate function as

. Using these definitions and the
definitions of the arc source matrix and the arc destination
matrix we can rewrite (2) in a matrix form as

(3)

Further define the matrix stacking
the arc source and arc destination matrices and and the
matrix stacking the opposite of two identity
matrices so that (3) reduces to

(4)

To introduce the dynamic ADMM for the problem in (2)—and
its equivalent forms in (3) and (4)—consider Lagrange mul-
tipliers associated with the constraints
and Lagrange multipliers associated with the con-
straints . Group the multipliers in the vector

and the multipliers in the vector
which are thus associated with the con-

straints and , respectively. Fur-
ther define associated with the constraint

, a positive constant , and define the aug-
mented Lagrangian function at time as
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which differs from the regular Lagrangian function by the addi-
tion of the quadratic regularization term .
The dynamic ADMM proceeds iteratively through alter-

nating minimizations of the Lagrangian with re-
spect to the primal variables and followed by an ascent step
on the dual variable . To be specific, consider arbitrary time
and given past iterates and . The primal iterate

is defined as
and given as the solution of the first order optimality condition

(5)
Using the value of from (5) along with the previous dual
iterate the primal iterate is defined as

and explicitly given by the so-
lution of the first order optimality condition

(6)

The dual iterate is then updated by the constraint vi-
olation corresponding to primal iterates
and in order to compute

(7)

Observe that the step size in (5)–(7) is the same constant used
in the augmented Lagrangian function.
The computations necessary to implement (5)–(7) can be dis-

tributed through the network. However, it is also possible to re-
arrange (5)–(7) so that with proper initialization the updates of
the auxiliary variables are not necessary and the Lagrange
multipliers and can be replaced by a lower
dimension vector . We do this in the
following proposition before showing that these rearranged up-
dates can be implemented in a decentralized manner. The sim-
plification technique is akin to those used in decentralized im-
plementations of the ADMM for static optimization problems;
see e.g., [14], [18, Ch. 3].
Proposition 1: Consider iterates , , and

generated by recursive application of (5)–(7). Re-
call the definition of , the oriented incidence ma-
trix , the unoriented incidence matrix

, the oriented Laplacian , the un-
oriented Laplacian , and the degree matrix

. Require the initial multipliers
to satisfy , the initial auxiliary vari-

ables to be such that and further define
variables . Then, for all times
iterates can be alternatively generated by the recursion

(8)

Proof: See Appendix A.
The iterations in (8) can be implemented in a decentralized

manner. To see that this is true consider the component of the
update for corresponding to the variable . Using the

definitions of the degree matrix and the unoriented Laplacian
we can write this component of the first equality in (8) as

(9)

Likewise, using the definitions of the oriented Laplacian the
update for can be written as

(10)

At the initialization stage, we choose in the column space
of (e.g., ). This is equivalent to choosing

such that both and are in the column
space of . Such initialization is necessary for the analysis in
Section III.
The decentralized dynamic ADMM algorithm run by agent

is summarized in Algorithm 1. At the initial time we ini-
tialize local variables to and . Agent also
initializes its local copies of neighboring variables to
for all , which is consistent with the initialization at agent
. For all subsequent times agent goes through successive steps
implementing the primal and dual iterations in (9) and (10) as
shown in steps 3 and 5 of Algorithm 1, respectively. Imple-
mentation of Step 3 requires observation of the local function
as shown in Step 2 and availability of neighboring variables

from the previous iteration. Implementation of Step
5 requires availability of current neighboring variables ,
which become available through the exchange implemented in
Step 4. This variable exchange also makes variables available
for the update in Step 3 corresponding to the following time
index.

Algorithm 1: Decentralized Dynamic ADMM at agent

Require: Initialize local variables to , .

Require: Initialize neighboring variables for all
.

1: for times do

2: Observe local function .

3: Compute local estimate of optimal variable
from [cf. (9)]

4: Transmit to and receive from neighbors
.

5: Update local variable as [cf. (10)]

6: end for
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III. CONVERGENCE ANALYSIS

This section analyzes convergence properties of the decen-
tralized dynamic ADMM algorithm (9), (10) by studying the
distance between primal iterates and
the optimal primal variables

. Throughout this section we make the fol-
lowing assumptions on the local objective functions .
Assumption 1 (Strong Convexity): Local objective func-

tions are differentiable and strongly convex. I.e., for all
agents , times , and all pairs of points and it holds

, where
is the strong convexity constant and is a

constant.
Assumption 2 (Lipschitz Gradients): Local objective func-

tions have Lipschitz continuous gradients. I.e., for all agents ,
times , and all pairs of points and it holds

, where is the Lips-
chitz constant and is a constant.
Assumptions 1 and 2 imply that the sum functions

are also strongly convex and with Lipschitz gra-
dients. Indeed, since is the minimum of all strong convexity
constants it follows from Assumption 1 that for all times and
pairs of points and it holds

(11)

Likewise, since is the maximum of all Lipschitz constants
it follows from Assumption 2 for all times and pairs of points
and it holds

(12)

Assumptions 1 and 2 and their respective global versions in (11)
and (12) are customary assumptions in the analysis of descent
algorithms.
Observe that in (4) the optimal primal variables

and are unique because the primal function is
strongly convex, but there are more than one optimal mul-
tipliers. There exists, however, a unique optimal multiplier

where lies in the
column space of . We will show existence and uniqueness of
such an in the proof of Lemma 1. We define the vector

which combines primal iterate and
dual iterate as well as the vector
concatenating the unique primal optimal value and the
unique optimal dual variable lying in the column space
of .
We will bound the distance to optimality by

the distance to optimality associated with the
vector measured in the Euclidean norm with respect to the
block diagonal matrix . To study
the evolution of the latter distance we introduce two lemmas
respectively concerned with the distance reduction associated
with the ADMM iteration and the distance increase associated
with the drift of the optimal argument . The first lemma,
relating the distance between iterate and op-
timal value at time to the distance be-
tween the optimal value associated with time and the iterate
at time , is introduced next.

Lemma 1: Consider the dynamic ADMM algorithm defined
by (5)–(7). The Lagrange multiplier is ini-
tialized by where lies in the column space
of and the primal variables are initialized by

. Consider the optimal multiplier
of (4) where lies in the column space of . Recall the
definitions of the vectors that stacks the
primal and dual iterates at time and
that stacks the current primal variable and optimal dual variable
lying in the column space of at time . Further define the
matrix and let be an arbitrary
constant to which we associate the contraction parameter

(13)

where is the largest singular value of the unoriented Lapla-
cian , is the smallest nonzero singular value of the oriented
Laplacian , is the Lipschitz continuity constant of ,

is the strong convexity constant of , and is the ADMM
stepsize. Then, the norm with respect to of the difference be-
tween and decreases by a factor of at least
relative to the difference between and

(14)

Proof: See Appendix B.
Since the ADMM iteration at time descends on the dual

function associated with the primal function , the result in
(14) of Lemma 1 is just a descent bound on the contraction of the
distance to optimality between times and . Observe that,
consistent with this observation, the iterates and
are for different times, whereas the optimal vector is the
one that corresponds to time in both sides of the inequality.
The reduction in distance from to

is determined by the contraction parameter , which
is the same constant that appears in the analysis of the static
decentralized ADMM in [22]. Since we know that , it
follows that is closer to than . Fixing

, larger means smaller distance from to
and stronger contraction.

As written in (13) the constant yields little insight on the al-
gorithm’s performance relative to problem parameters. To make
this dependence clearer let us select the step size and arbi-
trary constant that yield the largest contraction parameter
for given strong convexity constant , Lipschitz continuity
constant , as well as network connectedness constants
and . For any , the step size max-
imizes the second term of the two minimization arguments in
(13) and yields

(15)

The first argument of the minimization operator in (15) is mono-
tonically increasing in while the second term is monotonically
decreasing. To maximize their minimumwe choose the constant

that makes them equal, implying that we must have

(16)
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Substituting the expression in (16) for the parameter in (15)
yields the optimal contraction parameter

(17)

The best contraction parameter is a function of the upper
bound of the condition number of the primal functions
and the condition number of the graph . Observe that

we always have and that we can have small values of
when or when , i.e., when either

the primal functions or the graph are ill conditioned. When the
conditioning numbers are such that the con-
dition number of the graph dominates and we have
implying that the contraction is determined by the condition
number of the graph. When the condi-
tion number of the primal functions dominates and we have

. In this latter case the contraction is
constrained by both, the condition number of the primal func-
tions and the condition number of the graph.
To complete the analysis of the evolution of

we relate the norm with the distance
. This result is given in the following lemma

that shows how the drifts of the optimal primal variables
and the optimal gradients translate into a drift of
the optimal solutions .
Lemma 2: Consider the dynamic ADMM algorithm defined

by (5)–(7). The Lagrange multiplier is ini-
tialized by where lies in the column space
of and the primal variables are initialized by

. Let be the optimal solutions of (4) at time . Define
, , and as in Lemma 1. Further define the optimal

drift

(18)

where is the smallest nonzero eigenvalue of the oriented
Laplacian , is the number of nodes, is the number of
arcs, and is the ADMM stepsize. Then, the Euclidean distance
with respect to between and the optimal argument

is upper bounded by the sum of and the Euclidean
distance with respect to between and the optimal
argument

(19)
Proof: See Appendix C.

The gap determines the drift from to
on the basis of . We expect this gap to be small enough.
That is, the drift between the two successive optimal solutions

and as well as the drift between the two suc-
cessive optimal gradients and
are small enough; in another word, the change in the functions
is sufficiently slow.
Note that in (18) and (19), and are un-

defined when . To address this issue, we can define a
virtual initial optimization problem such that

and . Combining Lemma
1 and Lemma 2, we get the following theoretical bound which

describes the relationship between and
.

Theorem 1: Consider the dynamic ADMM algorithm defined
by (5)–(7). The Lagrange multiplier is ini-
tialized by where lies in the column space
of and the primal variables are initialized by

. Define , , and as in Lemma 1, the positive
number as in (13) and the time-varying gap as in (18).
Then the distance between and and the distance be-
tween and , both measured by the norm with
respect to , satisfy

(20)
Proof: Combining

in (19) and
in (14) we obtain (20).

Theorem 1 establishes linear convergence of the dynamic
ADMM to the neighborhood of optimality. The convergence is
discussed upon a vector , which is the combination of the
auxiliary primal variable and the dual variable . The
iterates are Q-linearly convergent to a neigh-
borhood of 0 with a constant . The neighborhood of opti-
mality is characterized by the scaled optimal argument drift
in (18). For static optimization problems, and The-
orem 1 degenerates to Q-linear convergence of
to 0 with a constant , which coincides with the analysis
of the static ADMM in [22].
The following theorem relates the distances

and so that the convergence result
in Theorem 1 can be translated into a more meaningful state-
ment regarding the suboptimality of primal iterates .
Theorem 2: Consider the dynamic ADMM algorithm defined

by (5)–(7). The Lagrange multiplier is ini-
tialized by where lies in the column space
of and the primal variables are initialized by

. Define as the strong convexity constant of in (11),
, , and as in Lemma 1, and the time-varying gap
as in (18). The distance between and measured

by the Euclidean norm and the distance between and
measured by the norm with respect to satisfies

(21)

Proof: (53) implies that

or equivalently

(22)

Combining (22) with
in (19) leads to (21).

Theorem 2 shows that the primal iterates are R-linearly
convergent to a neighborhood of since the iterates
are Q-linearly convergent to a neighborhood of . Both
neighborhoods of optimality are characterized by the scaled op-
timal argument drift in (18). For static optimization prob-
lems and the convergence is exactly linear to the
optimality.
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The result in the following theorem is stated in the form of
a steady state suboptimality gap which follows from recursive
application of the bound in Theorem 2.
Theorem 3: Consider the dynamic ADMM algorithm defined

by (5)–(7). The Lagrange multiplier is ini-
tialized by where lies in the column space
of and the primal variables are initialized by

. Define as the strong convexity constant of in
(11) and the corresponding positive numbers as in (13). If the
time-varying gap defined in (18) is smaller than for
all times , the distance between and measured by
the Euclidean norm satisfies

(23)

Proof: See Appendix D.
Remark: The analysis of the proposed decentralized dy-

namic ADMM requires that the local objective functions are
strongly convex. For centralized static optimization, [20] pro-
poses a multi-block ADMM and establishes its locally linear
convergence in the absence of the strongly convex assump-
tion. Transplanting the multi-block ADMM in [20] to the
decentralized dynamic case yields an algorithm in which each
arc maintains its Lagrange multiplier update and the agents
optimize their local solutions in a Gauss-Seidel manner. To
implement the Gauss-Seidel iterates the agents need to prede-
fine an order to update, which is nontrivial for a large-scale
multi-agent system. In comparison, the proposed algorithm
adopts Jacobi iterates that do not rely on any predefined order.
Further, in this paper the analysis is along the line of [19] and
[22] where the ADMM has globally linear convergence under
the assumption of strong convexity.

IV. NUMERICAL EXPERIMENTS

This section provides numerical experiments to demonstrate
the effectiveness of the proposed dynamic ADMM and vali-
date the theoretical analysis. Though the theoretical analysis as-
sumes that the decentralized optimization problem (1) is uncon-
strained, and the local objective functions are differentiable and
strongly convex, the proposed dynamic ADMM is applicable
to the constrained, non-differentiable and non-strongly convex
cases with a minor modification. Suppose that in (1) the cost
functions are not necessarily differentiable and the optimiza-
tion variable is subject to constraint where is a
convex set. For this case the update (9) is modified to

(24)
where

is a proximal point.
We consider a bidirectionally connected network composed

of agents where arcs (out of all 9900 pos-
sible arcs) are randomly chosen to be connected. At time agent
measures a true signal through a linear observation func-
tion where is random noise;

. Throughout the simulation we let evolves
along a nearly circular trajectory that is randomly polluted and

and for all . We consider
four cases:

Case 1: The decentralized optimization problem (1) is un-
constrained, and the local objective functions are differentiable
and strongly convex. Entries of the matrices
follow normal distribution and are non-
singular. Entries of the noises follow normal distri-
bution . The objective function at time is

and the local objective function of
agent is . In this case, the update
of in (9) reduces to solving a linear equation

Case 2: The decentralized optimization problem (1) is un-
constrained, and the local objective functions are differentiable
but not strongly convex. Entries of the matrices
follow normal distribution and are sin-
gular. Entries of the noises follow normal distribu-
tion . The objective function at time is

and the local objective function of
agent is . Note that in this case
the update of in (9) is the same as that in Case 1.
Case 3: The decentralized optimization problem (1) is un-

constrained, and the local objective functions are neither differ-
entiable nor strongly convex. Entries of the matrices

follow normal distribution . Among entries of the
noises , 90% are 0 and the remaining 10% follow
normal distribution . The objective function at time
is and the local objective
function of agent is . In this case,
the update of in (9) minimizes an objective function that
is the sum of an -norm term and a least squares term

Case 4: The decentralized optimization problem (1) is con-
strained, and the local objective functions are differentiable and
strongly convex. Entries of the matrices follow
normal distribution and are nonsingular.
Entries of the noises follow normal distribution

.We know in advance that the Euclidean distance be-
tween and is smaller than a threshold . The ob-
jective function at time is
subject to . The local objective func-
tion of agent is subject to

. Note that the local and global constraints
are different since at time the agents are unable to obtain a
common . In this case, the update of in (9) solves
a constrained optimization problem

In the numerical experiments we compare the pro-
posed dynamic ADMM with independent optimization
of agents. By independent optimization we mean that
each agent optimizes by itself without collaboration with
others. Suppose that agent ’s local objective function is

at time , its estimate on

is . Obviously this
approach is not applicable when is singular.
Hence we only consider independent optimization in Case 1.
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Fig. 1. True signal and decentralized estimate of agent 1 for Case 1.

Fig. 2. Tracking error of the dynamic ADMM for Case 1.

We evaluate performance of the algorithms by the tracking
error which is defined as .
Throughout the numerical experiments, we set the ADMM

parameter as 1. Though tuning may lead to better tracking
of the signal, we simply fix it since performance of the dynamic
ADMM is not sensitive to the value of as long as it is set as a
reasonable value.

A. Case 1

Fig. 1–Fig. 3 show simulation results of the dynamic ADMM
for Case 1. Fig. 1 compares the true signal, which is close to the
centralized solution, and the decentralized estimate of agent 1.
Due to the delay of network information diffusion agents are
unable to recognize dynamics of the aggregated objective func-
tion. As a result of this essential limitation of dynamic optimiza-
tion, the decentralized estimate cannot accurately track the true
signal. The difference between them is bounded throughout the
optimization process as discussed in the theoretical analysis [cf.
Theorem 3] and validated by Fig. 2. Fig. 3 shows the maximum
distance between decentralized estimates of all the agents with
respect to the two dimensions. Though each agent optimizes by
itself, the agents keep tight consensus. The key is the optimiza-
tion of the dual variables which guarantees that the consensus
constraints are not violated too much.

Fig. 3. Maximum distance between decentralized estimates with respect to the
two dimensions for Case 1.

Fig. 4. Tracking error of independent optimization for Case 1.

As a comparison, Fig. 4 shows tracking error of indepen-
dent optimization for Case 1. At some time slots, the tracking
errors of independent optimization are two-magnitude larger
than those of the dynamic ADMM. The main reason is that
the dynamic ADMM incorporates information of all agents and
achieves collaboration gain on the tracking accuracy, while in-
dependent optimization often fails when the observation noise
is very large or the local objective functions are ill-conditioned
at some agents.

B. Case 2

Fig. 5 and Fig. 6 show simulation results of the dynamic
ADMM for Case 2. Compared to Case 1 where the local objec-
tive functions are strongly convex, we can observe degradation
of the tracking performance when the local objective functions
are not strongly convex. Fig. 5 depicts an obvious delay of the
decentralized estimate of agent 1 with respect to the trajectory
of the true signal; such delay is much larger than that in Case 1
[cf. Fig. 1]. Accordingly, Fig. 6 shows that the tracking error
is larger than that in Case 1 [cf. Fig. 2]. We explain its reason
below. Non-strong convexity of a local objective function leads
to ambiguity of the corresponding local solution. In the dynamic
ADMM, introduction of the proximal term helps address this
ambiguity issue [cf. (24)]; however, its tracking performance is
still limited by the intrinsic non-strong convexity of local objec-
tive functions.
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Fig. 5. True signal and decentralized estimate of agent 1 for Case 2.

Fig. 6. Tracking error of the dynamic ADMM for Case 2.

Nevertheless, simulation results of Case 2 demonstrates
the advantage of the dynamic ADMM over the independent
optimization approach and the dynamic Lagrangian method
in [2] that are unable to handle the non-strong convexity case.
It is the quadratic regularization term appended in the aug-
mented Lagrangian function that introduces a proximal term
to each agent and makes each agent solve a strongly convex
subproblem. Therefore, the dynamic ADMM has favorable
numerical stability similar to the static ADMM.

C. Case 3

Fig. 7 and Fig. 8 show simulation results of the dynamic
ADMM for Case 3 in which the local objective functions are
neither differentiable nor strongly convex but the non-strong
convexity in this case does not bring ambiguity to the local so-
lutions. The non-differentiability is well handled in (24). From
Fig. 7 we can observe that the decentralized estimate of agent 1
tracks the true signal well. The tracking error in Fig. 8 is smaller
than that of Case 1 since the optimization model exploits spar-
sity prior of the true signals [cf. Fig. 2].

D. Case 4

Fig. 9 and Fig. 10 show simulation results of the dynamic
ADMM for Case 4. This constrained case is nontrivial since in
the constraints the inexact solutions , which are the

Fig. 7. True signal and decentralized estimate of agent 1 for Case 3.

Fig. 8. Tracking error of the dynamic ADMM for Case 3.

estimates of , bring extra uncertainty to the subsequent
problems that solves . Interestingly, the simulation results
of Case 4 are similar with those of Case 1. Fig. 9 depicts that the
decentralized estimate of agent 1 closely tracks the true signal.
The tracking error is also similar with that in Case 1, as shown
in Fig. 10 [cf. Fig. 2].

V. CONCLUSION

This paper introduces the ADMM to solve a decentralized
dynamic optimization problem. Traditionally the ADMM is a
powerful tool to solve centralized and/or static optimization
problems; we show that a minor modification enables it to adapt
to the decentralized dynamic cases. We prove that under certain
conditions, the differences between the ADMM iterates and the
optimal solutions, in both the primal and the dual domains, can
be characterized by the drifts between the successive primal
optimal solutions.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Substituting the multiplier update
in (7) into the update for the primal

variables in (5) leads to

(25)
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Fig. 9. True signal and decentralized estimate of agent 1 for Case 4.

Fig. 10. Tracking error of the dynamic ADMM for Case 4.

Similarly, substituting the multiplier update
in (7) into the expression for the auxiliary

variable in (6) leads to

(26)

Recalling the definitions of and
it follows from (26) that for all

other than the initial value. But for we have
by hypothesis from where it follows that

for all . Using this fact, the definition of ,
and the observation that the oriented incidence matrix is

we can conclude that

(27)

Further observe that from the definitions of ,
and the unoriented edge incidence matrix

it follows that
. Substituting this expression and the result

in (27) into (25) yields

(28)

Consider now (7) and recall that to sepa-
rate the equality along the and directions

(29)

Since we know from (26) and the initialization hypothesis that
for all we can sum up the two equalities

in (29) to obtain .
Reorder terms to write

(30)

where we also use the definition of the unoriented edge inci-
dence matrix to write the first equality. Further
recall that (30) is true for by hypothesis to conclude that
(30) is true for all times .
Using (30) to eliminate from the update for in (29)

yields

(31)

Here we use the definition of the oriented edge incidence ma-
trix . Multiplying both sides of (31) by
and using the definitions of the oriented Laplacian matrix

and the vector , we obtain the up-
date for in (8). Likewise, use (30) to eliminate and

from (28) so as to write

(32)
From the definition of the unoriented Laplacian we can replace

in (32) and further substitute for its
expression in (8). Since ,
we can write

(33)
The update for in (8) follows from (33) by regrouping
terms and observing that the degree matrix is

.

APPENDIX B
PROOF OF LEMMA 1

Proof: Proof of Lemma 1 is along the line of proving
a similar lemma that appears in analyzing the decentralized
static ADMM [22]. Start by observing that the initial condition

guarantees that for all sub-
sequent iterations . In such case the dynamic ADMM
iterations in (5)–(7) can be proven to be equivalent to [cf. (28),
(30), and (31)]

(34)

(35)

(36)
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Since lies in the column space of , from (36) we know
that also lie in the column space of for all subsequent
iterations .
Recall now the definitions of the optimal primal variables

and and the definition of the optimal multiplier
. Observe that the optimal primal vari-

ables and are unique because the primal functions
are strongly convex, but that there are more than one op-

timal multipliers . However, there exists a unique optimal
multiplier where lies
in the column space of . To see so write down the KKT con-
ditions for the optimization problem in (4) so as to obtain the
equalities

(37)

(38)

(39)

The definition of the matrix and the KKT
condition in (38) imply that the optimal multiplier

must satisfy . Using this fact
and the matrix definitions and we
rewrite (37) as

(40)

which implies that there exists lying in the column space
of .We prove uniqueness by contradiction. Consider two vec-
tors and both lying in the column space of where

and . If they both satisfy (40), i.e.

(41)

then subtracting the two equalities in (41) yields

(42)

Since where is
the smallest nonzero singular value of , (42) implies that

, which contradicts with .
Since this is absurd we must have implying that
there is a unique optimal multiplier
where lies in the column space of .
We proceed now to manipulate (39) in order to obtain a set of

equations similar to (35)-(36). Using again the definitions of the
matrices and we can separate
(39) in the two equations

(43)

Summing up the two equalities in (43) and using the definition
of the unoriented edge incidence matrix yields

(44)

Likewise, subtracting the two equalities in (43) and using the
definition of the oriented edge incidence matrix
yields

(45)

Subtracting (40) from (28) and reordering terms yields

(46)

Subtracting (44) from (30) yields

(47)

Multiplying (45) by and subtracting the result from (31)
yields

(48)

To complete the proof we use (46)–(48), the strong convexity in-
equality (11), and the Lipschitz continuity inequality (12). Next
we split the proof of (14) into two steps.
Fact 1: The first step proves that

(49)

Proof: To prove that (49) holds true start by noting that
according to Assumption 1 the primal objective functions
are strongly convex for all with constant . Replacing
by and by in the strong convexity inequality (11)
yields

(50)

Substituting the gradient difference (46) into (50) leads to

(51)

Expanding the right-hand side of (51) and rearranging terms in
each of the resulting summands we can rewrite (51) as

(52)

Substituting (47) and (48) into (52) and rearranging terms, we
have

(53)

Using the definitions of and we can rewrite (53) as

(54)

which completes the proof of (49).
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Fact 2: The second step proves that

(55)

Proof: Expanding terms and using the definition of the Eu-
clidean norm with respect to it follows that the inequality in
(56) is equivalent to

(56)

Computing the squared norm of both sides of (47) and using
the definition of the unoriented Laplacian it
follows that

(57)

Further using the definition of as the largest singular value
of the unoriented Laplacian we can rewrite (57) as

(58)

As per Assumption 2 the primal objective has Lipschitz contin-
uous gradients with Lipschitz constant upper bounded by
[cf. (12)]. Thus, replacing by and by in the
Lipschitz continuity inequality (12) yields

(59)
To further bound the optimality gap we use
the gradient difference in (46). Observe that for any constant

it holds .
Identifying and

we can then conclude from (46) that for any

(60)

Observe that the first term in the right-hand side of (60)
can be bounded in terms of the smallest nonzero eigen-
value of the oriented Laplacian .
Indeed, simply write the squared norm as the inner product

where have the same nonzero eigenvalues as and
observe that and both lie in the column space of

since we defined as the optimal multiplier lying in
this column space and initialized to be in the span of
which guarantees that has this property for all . It then
follows from the definitions of and that

(61)

Likewise, the second term in the right-hand side of (60) can be
bounded in terms of the largest eigenvalue of the unoriented

Laplacian . Indeed, simply write the squared
norm as the inner product

and use the definitions of
and to conclude that

(62)
Substituting the bound in (61) and (62) into (60) and the result
into (59) establishes that for all constants

(63)

Multiplying (58) by and (63) by followed by
summation of the resulting inequalities yields

(64)

As per the definition of the contraction parameter in (13) we
have and .
Thus, it follows from (64) that

(65)

and consequently (567), which proves (55).
Combining (49) and (55) yields (14).

APPENDIX C
PROOF OF LEMMA 2

Using the triangle inequality
and the definition

of , we have

(66)

The right-hand side of (66) involves the drifts of and . We
analyze the two drifts below. Recall that is the unique op-
timal solution of (1) at time . Due to the consensus constraints
in (2), we have that and

where denotes an all-one vector
and denotes the Kronecker product. Similarly, we have that

and . There-
fore, it holds

(67)

From KKT conditions of (4) we know that (cf. (40))

(68)
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Therefore
for all and consequently

(69)

Note again that we only consider and
which lie in the column space of . Expanding the squared
norm

and observing that is the
smallest nonzero eigenvalue of as well as
the smallest nonzero eigenvalue of , the vector

lying in the column space of guarantees
that
and hence

(70)

Substituting (67) and (70) to (66), the gap between
and is bounded by

defined in , which completes the proof.

APPENDIX D
PROOF OF THEOREM 3

Proof: We characterize the limit property of
based on (20) in Theorem 1 and (21) in Theorem 2.

From (20), we know that

(71)

Multiplying the row in (71) with by and sum-
ming all the rows up, we have

(72)

Adding to both sides, (72) becomes

(73)

Combining (73) with
in (21) leads to

(74)

or equivalently

(75)

Since for and , using the
summation formula of a geometric series

(76)

Putting together (74) and (75), we know

(77)

Taking , the first term in the left-hand side of (77)
vanishes while the second term reaches a limit value

. Therefore we obtain (23) that proves Theorem 3.
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