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DLM: Decentralized Linearized Alternating Direction
Method of Multipliers

Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro

Abstract—This paper develops the Decentralized Linearized Al-
ternating Direction Method of Multipliers (DLM) that minimizes
a sum of local cost functions in a multiagent network. The algo-
rithm mimics operation of the decentralized alternating direction
method of multipliers (DADMM) except that it linearizes the opti-
mization objective at each iteration. This results in iterations that,
instead of successive minimizations, implement steps whose cost is
akin to the much lower cost of the gradient descent step used in
the distributed gradient method (DGM). The algorithm is proven
to converge to the optimal solution when the local cost functions
have Lipschitz continuous gradients. Its rate of convergence is
shown to be linear if the local cost functions are further assumed
to be strongly convex. Numerical experiments in least squares and
logistic regression problems show that the number of iterations
to achieve equivalent optimality gaps are similar for DLM and
ADMM and both much smaller than those of DGM. In that sense,
DLM combines the rapid convergence of ADMM with the low
computational burden of DGM.
Index Terms—Decentralized optimization, linearized alter-

nating direction method of multipliers, multiagent network.

I. INTRODUCTION

C ONSIDER a multiagent system composed of net-
worked agents whose goal is to solve a decentralized

optimization problem with a separable cost of the form

(1)

The variable is common to all agents whose aim is to
find an optimal argument .We say (1)
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is decentralized because, despite the common goal of finding ,
the local cost function is known to agent only.
The decentralized optimization problem (1) arises in various ap-
plications, such as event detection in wireless sensor networks
[2]–[4], state estimation in smart grids [5], [6], spectrum sensing
in cognitive radio networks [7]–[9], and decentralized machine
learning in computer networks [10]–[12], to name a few.
While aggregating all functions at a common location is pos-

sible, it is more efficient to design decentralized optimization al-
gorithms in which agents iterate through information exchanges
with neighboring agents. Decentralized algorithms generating
iterates that converge to an optimal argument of (1) can
be divided into those operating in the primaldomain and those
operating in the dual domain. In the primal domain methods,
each agent averages its local iterate with those of neighbors and
descends along its local negative (sub)gradient direction. Typ-
ical primal domain methods include the distributed (sub)gra-
dient method (DGM) [13]–[16] and the dual averaging method
[17], [18]. The dual domain methods rewrite (1) to a constrained
form where the constraints force local solutionsto reach global
consensus. The dual ascent method is hence applicable because
(sub)gradients of the dual function depend on local and neigh-
boring solutions only and can thereby be computed without
global cooperation [19], [20]. The alternating direction method
of multipliers (ADMM) modifies dual ascent by penalizing the
constraints with a quadratic term and the resulting algorithm,
the decentralized ADMM (DADMM), improves numerical sta-
bility as well as rate of convergence [21]–[24].
The main advantage of the primal domain methods is their

low computation burden. The operation required at each iter-
ation is akin to a (sub)gradient step and, hence, entails a small
computation burden. However, existing primal domain methods
suffer from either slow convergence or low accuracy.With time-
varying stepsizes, the distributed gradient method and the dual
averaging method converge to the optimal solution at sublinear
rates [16], [17]. If the stepsize is constant, the distributed gra-
dient method is able to achieve a linear rate of convergence
under the assumption that the local cost functions have Lipschitz
gradients and are strongly convex; however, the algorithm con-
verges not to the actual optimizer but to a neighborhood of the
optimal solution [15]. The dual domain methods, on the other
hand, converge relatively fast to the exact optimal solution [24]
but have high computation burden. Indeed, each agent needs to
solve an optimization problem at each iteration, whose objective
is the local cost function plus some other term--a linear term in
the dual ascent method [19] and a quadratic term in DADMM
[21]–[23]. Since this local optimization problem has no explicit
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solution unless the local cost function has a special structure, it
has to be solved by a local iterative minimization method.
This paper develops the decentralized linearized ADMM

(DLM) algorithm that enjoys the advantages of both the primal
and the dual domain methods, i.e., low computation burden and
fast convergence to the exact optimal solution. Besides devel-
oping DLM we prove its convergence to the optimal argument
provided that the local cost functions have Lipschitz continuous
gradients. If we further assume that the local cost functions
are also strongly convex we show that the rate of convergence
to the optimal solution is linear. This convergence guarantees
are analogous to the ones for DADMM [24]. We point out
that DLM is related to various (centralized) algorithms that are
known as linearized ADMM [25]–[27] but it is not identical to
either of them; see Remark 2. More closely related approaches
are the decentralized inexact ADMM [28] and ADMM+ [29].
Their differences with DLM and with respect to each other
are relatively minor but lead to different analyses that provide
complementary insights.
This paper begins by reformulating the decentralized opti-

mization problem (1) to a constrained form, which is solved
through alternating minimization of the augmented Lagrangian
and linearization of the local cost functions (Section II). We
further reorganize the iterations and introduce an initialization
condition so that a simpler DLM algorithm is obtained (Propo-
sition 1). We then proceed to analyze convergence properties
of DLM (Section III) under the assumptions that the local ob-
jective functions have Lipschitz continuous gradients and are
strongly convex (Section III-A). The assumption of Lipschitz
continuous gradients guarantees convergence of the algorithm
(Theorem 1 in Section III-B) while the addition of a strong
convexity assumption establishes a linear rate of convergence
(Theorem 2 in Section III-C). Numerical experiments are pre-
sented (Section IV) for least squares (Section IV-A) and lo-
gistic regression (Section IV-B) problems. The numerical re-
sults corroborate theoretical findings on DLM. They also show
the number of iterations to achieve equivalent optimality gaps
are similar for DLM and DADMM and both much smaller than
those of DGM. In that sense, DLM combines the rapid conver-
gence of DADMMwith the low computational burden of DGM
(Section V).
Notation: For column vectors we use the notation

to represent the stacked column vector . For
a block matrix we use to denote the th block.
Given matrices we use to de-
note the block diagonal matrix whose th diagonal block is .
Let be the Euclidean norm of . For a positive definite ma-
trix , is the norm of with respect to
and is the inner product of and with
respect to .

II. ALGORITHM DEVELOPMENT

Consider a connected network composed of a set of agents
and a set of arcs , where

each arc is associated with an ordered pair in-
dicating that can communicate to . Assume communication

is bidirectional so that if arc the opposite arc
. We refer to agents adjacent to as the neigh-

bors of and denote their set as .
The cardinality of this set is represented by and re-
ferred to as the degree of agent . Further define the block arc
source matrix containing square blocks

of dimension . The block is not identi-
cally null if and only if the arc originates at node in
which case is given by the identity matrix.
Likewise, define the block arc destination matrix
containing square blocks . The block

if the arc terminates at node
and is null otherwise. The extended oriented incidence matrix is
then written as and the unoriented incidence ma-
trix as . The extended oriented (signed) Laplacian
is given by , the unoriented (unsigned) Lapla-
cian by , and the degree matrix containing
degrees in the diagonal blocks by .
Let and be the largest and smallest eigenvalues of , re-
spectively, and be the smallest nonzero eigenvalue of . The
eigenvalues , , and are measures of network connected-
ness [30]. We make the following assumptions on the local cost
functions .
Assumption 1: The local cost functions are proper closed

convex and differentiable.
Assumption 2: The local cost functions have Lipschitz

continuous gradients. There is a positive constant such
that for all agents and for any pair of points and it holds

.
Assumption 3: The local cost functions are strongly

convex. There is a positive constant such that
for all agents for any pair of points and it holds

.

A. DADMM: Decentralized ADMM
To develop DLM for a problem having the form of (1) we in-

troduce variables representing local copie of the vari-
able , auxiliary variables associated with each arc

, and reformulate (1) as

(2)

The constraints and force neighboring agents
and to reach consensus on their local copies and . Since

the edges are bidirectional, we have that
, . Insofar as the network is connected, this local

consensus implies that the variables in the feasible set of (2)
must be for all, not neecessarily neighboring, agent

. Thus, (2) is equivalent to (1) for connected networks in
the sense that for all and the optimal arguments of (2) must
satisfy and where, we recall, is an optimal
solution of (1).
Using the definitions of the arc source and arc destination ma-

trices and we can rewrite (2) in a more compact form. To
do so define the vector concatenating
all local variables and the vector
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concatenating all auxiliary variables . Introduce the ag-
gregate function defined as
and rewrite (2) in matrix form as

(3)

Further define the matrix stacking
the arc source and destination matrices and and the ma-
trix stacking the opposite of two identity
matrices so that (3) reduces to

(4)

Introduce now Lagrange multipliers associated with
the constraints and Lagrange multipliers as-
sociated with the constraints . Group the multipliers
in the vector and the multipliers in
the vector which are thus associated
with the constraints and , respec-
tively. Grouping and in the multiplier ,
which is therefore associated with the constraint ,
we define the augmented Lagrangian of (4) as

where is an arbitrary strictly positive constant.
The ADMM algorithm proceeds through alternating mini-

mizations of the augmented Lagrangian with respect to and
followed by a gradient ascent update of the Lagrange multi-

plier. Specifically, introduce iteration index and let , ,
and be variable iterates at time . At each iteration the aug-
mented Lagrangian is minimized with respect to and in an
alternating fashion

(5)

(6)

After updating variables and the Lagrange
multiplier is updated through the dual ascent iteration

(7)

Observing the special structures of the cost function and
the matrices and , the iterations in (5)–(7) can be imple-
mented in a decentralized manner. This implementation is the
DADMM algorithm [22]–[24].
The computation cost of a DADMM iteration is dominated

by the Lagrangian minimization with respect to in (5). The
dual update in (7) requires a few operations per agent because
the matrices and are as sparse as the graph. The minimiza-
tion with respect to in (6) is a simple quadratic minimization
that can be solved in a closed form. The minimization in (5), in
general, requires implementation of an iterative minimization
method. The idea of DLM is to avoid this minimization as we
explain in the following.

B. DLM: Decentralized Linearized ADMM
Similar to DADMM, the proposed DLM algorithm also op-

erates with alternating minimizations with respect to and

followed by a dual ascent step on the multiplier . However, in-
stead of minimizing exactly with respect to we perform an
inexact minimization in which the function is replaced
by a quadratic approximation centered at the current iterate. In
particular, say that past iterates , and are given.
Then, the primal iterate is defined as

(8)

where the approximation parameter is a constant. Comparin
the DADMM iteration in (5) with the DLM iteration in (8) we
see that the term in
the latter is a quadratic approximation of at point . The
steps in (6) and (7) remain unchanged with respect to DADMM.
The DLM algorithm is therefore defined by recursive applica-
tion of (8), (6) and (7).
Using first order optimality conditions for the minimization

problems in (8) and (6) yields explicit expressions for
and . The resulting equation for is

(9)

which can be solved explicitly for by inverting the ma-
trix . Likewise, the first order optimality condition
for (6) yields

(10)

which can be solved for if we invert the matrix .
By exploiting the sparse structure of and it is

possible to see that the variable components and can
be updated by agent using its own local iterates and iterates of
neighboring agents. Instead of developing that decomposition
we first notice that, similar to DADMM, the iterations in (9),
(10) and (7) can be replaced by a simpler set of iterations if the
variables are properly initialized. Such initialization is adopted
henceforth and specified in the following assumption.
Assumption 4: We require the initial Lagrange multiplier

to satisfy and the initial
auxiliary variable to be such that . We fur-
ther define variables

.
If the initialization condition in Assumption [4] holds, the

auxiliary variable can be eliminated and the Lagrange mul-
tipliers replaced by the smaller dimension vector

. We summarize the simplified algorithm in the fol-
lowing proposition; see [23], [31].
Proposition 1: Consider the sequence of variables gen-

erated by (9), (10) and (7). If Assumption [4] holds, iterates
can be alternatively generated by the recursion

(11)

(12)

where we define the weighted degree matrix
and the weighted unoriented Laplacian .

Proof: See Appendix A.
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The initial conditions in Assumption [4] are not difficult to
satisfy; e.g., it suffices to set and

for all arcs and agents . On the other hand,
implementation of (11) and (12) does not rely on Assumption 4.
Since the iterations in (11) and (12) are equivalent to the iter-
ations in (9), (10) and (7) with proper initialization, we imple-
ment (11) and (12), not (9), (10) and (7). To implement (11) and
(12) and have Proposition 1 hold we just need to make sure that

lies in the column space of . Further observe that the
matrices and are linear combinations of the degree matrix

and the unoriented Laplacian with identity matrices .
The coefficients in these linear combinations are , , and ,
which are parameters of DLM.
As is the case of (9), (10) and (7), the operations in (11) and

(12) can be implemented in a decentralized manner. Consider
the component of the update for corresponding to the
variable . Using the definitions of the weighted degree
matrix , the weighted unoriented Laplacian , and the ori-
ented incidence matrix , we can write this component of (11)
as

(13)

where we define the weighted degree such that
. Likewise, using the definition of the

oriented Laplacian the update in (12) can be written as

(14)

The iterations in (13) and (14) have intuitive appeal. The
iteration in (13) is reminiscent of gradient descent with step-
size . The gradient is corrected by the sum

which accounts for the disagreemen
between local variable and neighboring variables
and the dual variable . In turn, the dual variable is
just an integration device for past disagreements

between local variables and neighboring
variables for all times .
An algorithmic summary of DLM is shown in Algorithm 1.

At time we initialize local variables to arbitrary
and . The latter is one out of many possible selections
to ensure that the vector is in the column space of .
For all subsequent times agent goes through successive steps
implementing the primal and dual iterations in (13) and (14) as
shown in Step 2 and Step 4 of Algorithm 1, respectively. Imple-
mentation of Step 2 requires neighboring variables from
the previous iteration. Implementation of Step 4 requires cur-
rent neighboring variables , which become available
through the exchange implemented in Step 3. This variable ex-
change also makes variables available for the update in Step 2
corresponding to the following time index.
We proceed to analyze the convergence properties of DLM

after two pertinent remarks.

Algorithm 1 DLM algorithm run by agent

Require: Initialize local variables to and .

1: for times do

2: Compute local solution from [cf. (13)]

3: Transmit / receive from
neighbors .

4: Update local dual variable as [cf. (14)]

5: end for

Remark 1: As intended, DLM is advantageous over
DADMM due to its lower computation burden. The iterations
in (13) and (14) contain simple algebraic operations and a
gradient descent step. The counterpart of (13) in DADMM is a,
most often nontrivial, minimization of augmented by a
quadratic term. It is also interesting to compare DLM and DGM
[13]. In the latter, agent updates its local variable as

(15)

where is a stepsize sequence that can be chosen as constant
or nonsummable vanishing and the weights are elements of
a doubly stochastic matrix [32]. The idea
of the update in (15) is to descent along the negative gradient
direction while mixing local and neighboring it-
erates. This idea can be also construed as an interpretation of
(13) with the difference being the addition of the memory term

. In that sense we can think of DLM as a primal method
with memory—as opposed to a dual method with inexact La-
grangian minimization. Irrespective of interpretation, the com-
putation cost of DLM is of the same order as DGM.
Remark 2: DLM differs from the centralized linearized

ADMM in [25], [26] in that the latter linearizes the quadratic
term in the augmented Lagrangian in
(5)—while DLM linearizes the objective function . The
centralized linearized ADMM in [27] applies to objectives of
the form and uses linearized versions of these
functions in both, the iteration in (5) and the iteration
in (6). This, however, yields an algorithm that is not guaranteed
to converge to optimal arguments. An extra gradient step is
added to overcome this limitation. The special structure of the
cost function in (4), namely, that the objective does not contain
a term of the form precludes this problem. This yields the
simpler linearized algorithm defined by (9), (10) and (7) which
we transform into the DLM algorithm defined by (11) and (12).
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III. CONVERGENCE ANALYSIS

This section analyzes convergence and rate of convergence
of the proposed DLM algorithm. We analyze the iterations (9),
(10) and (7), instead of the iterations (11) and (12) (see also Al-
gorithm 1). Recall that they are equivalent under Assumption 4
as shown in Proposition 1. Section III-A provides basic assump-
tions and supporting lemmas. Section III-B proves convergence
of DLM, while Section III-C establishes a linear rate of conver-
gence under stronger assumptions.

A. Preliminaries

The analyses of convergence and rate of convergence are
based on Assumptions 1–3. Assumption 1 implies that the ag-
gregate function is proper closed convex
and differentiable. Assumption 2 implies that the aggregate
function has Lipschitz continuous gradients with constant

. For any pair of points and it holds

(16)

Assumption 3 implies that the aggregate function is
strongly convex with constant . For any pair of points
and it holds

(17)

Assumptions 1 and 2 are common in proving convergence of de-
scent algorithms. Assumption 3 is also a common requirement
to establish linear convergence rates.
We investigate convergence the primal variable and the

dual variable , which is a part of the Lagrange multiplier
, to their optimal values. Observe that due

to the consensus constraints, an optimal primal solution has the
form where is an optimal solution of (1).
If the local cost functions are not strongly convex, then there
may exist multiple optimal primal solutions; instead, if the local
cost functions are strongly convex (i.e., Assumption 3 holds),
the optimal primal solution is unique. For each optimal primal
solution , there exist multiple optimal Lagrange multipliers

where as we will prove in Lemma
1. In the analysis of convergence (Section III-B), we show that

converges to one of the optimal dual solutions whose
value depends on the initial dual variable . In establishing
a linear rate of convergence (Section III-C), we require that the
dual variable is initialized such that lies in the column
space of and consider its convergence to a unique dual solu-
tion that also lies in the column space of . Existence and
uniqueness of such an are also proved in Lemma 1 as we
state next.
Lemma 1: Given an optimal primal solution of (4), there

exist multiple optimal multipliers where
such that every is a primal-dual optimal pair.

Among all these optimal duals , there exists a unique
such that lies in the column space of .

Proof: See Appendix B.
In the subsequent analyses of convergence and rate of con-

vergence, we need a couple of equalities that connect ,
, and with a pair of optimal primal and dual

solutions and . These equalities are technical and provided
in the following lemma.
Lemma 2: Consider iterations (9), (10) and (7) initialized as

in Assumption 4. Let and be optimal for (4) and recall
the definition . Then, for all times , we
write the gradient difference as

(18)

Likewise, the primal variable difference satisfies

(19)

Proof: See Appendix C.

B. Convergence
To prove convergence of DLM iterates to an optimal pair

and of (4) we show that the primal and dual variables
and are closer to and than the previous

iterates and . More to the point, for a given optimal
pair define the energy function

(20)

Recall that the positive definite matrix is defined as
. We show that the energy function

is monotonically decreasing
with an improvement that is related to the squared distance
between the two successive points and

as we formally state next.
Lemma 3: Consider iterations (9), (10) and (7) with the ini-

tial conditions in Assumption 4. With denoting the smallest
eigenvalue of the unoriented Laplacian and the Lips-
chitz continuity constant of the local cost functions' gradients
define the constant

(21)

Assume that the DLM parameters and are chosen so
that and that Assumptions 1 and 2 hold. Then,
for all times we have that the energy function

in (20) is monotonically
decreasing and satisfies

(22)

Proof: See Appendix D.
To guarantee the condition we just need to make or

sufficiently large. For future reference further note that we must
have for any choice of DLM parameters and .
Since the energy function is monotonically de-

creasing and nonnegative, Lemma 3 implies that it must even-
tually converge. To prove convergence of the sequence to
an optimal solution we need to show not only that the en-
ergy function converges but that it converges to zero
for some optimal pair . Constructing this argument is
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not difficult if we follow analogous proofs for the centralized
ADMM; see e.g., [26], [33]. With particular note, recently [34]
also proves convergence of the centralized ADMM for non-
convex sharing and consensus problems. We give the conver-
gence result in the following theorem.
Theorem 1: Consider iterations (9), (10) and (7) with the ini-

tial conditions in Assumption 4. Let Assumptions 1 and 2 hold
and the constant in (21) be positive. Then, the sequences
and generated by the DLM algorithm converge to an op-
timal pair of (4). I.e., there exist optimal and
such that

(23)

Proof: See Appendix E.
We emphasize that Theorem 1 does not specify which optimal

primal and dual solutions and converge to. Indeed,
can converge to one of the optimal primal solutions

and can converge to one of the corresponding optimal dual
solutions. However, if let be initialized in the column space
of , from the dual iterate

in (37), we know that always lies in the column
space of for all times . Therefore, converges to
the unique optimal dual solution that corresponds to and lies
in the column space of ; existence and uniqueness of such a
dual solution have been proved in Lemma 1.
Note that we need to have a proper energy function in

(22) but that it is possible to have without violating the
hypotheses of Theorem 1. If we choose a negative we just need
to make larger to guarantee in (21). As long as ,
DLM converges to a pair of optimal , which shows ro-
bustness of DLM to the parameters and . It implies that the
cost function of (8), which is the Taylor expansion of the aug-
mented Lagrangian in (5), must have a positive definite Hessian.
The possibility of selecting negative notwithstanding, our nu-
merical analyses suggest that fastest convergence is achieved
with a constant that is slightly larger than the equivalent con-
stant used in DADMM [24] and positive constant of similar
order to —see Section IV.

C. Linear Rate of Convergence

If we add the strong convexity condition in Assumption 3 to
the hypotheses in Theorem 1 we can establish a linear rate of
convergence for DLM. To do so we use the strong convexity of
the local cost functions to develop a contraction inequality for
the energy function in (20) for a properly selected
optimal pair and a properly selected initial multiplier

. The particular optimal pair is formed by the unique op-
timal primal argument —which is unique because the local
cost functions are strongly convex—and the unique dual op-
timal solution lying in the column space of —which is unique
because we prove so in Lemma 1. The initial multiplier
must be selected in the column space of . This is needed be-
cause our analysis holds in the column space of and selecting

in that space ensures that stays in it for all times .
We emphasize that this setting is different to Lemma 3 that holds
for any pair of optimal primal and dual solutions and any initial

condition that satisfies Assumption 4. We present this result in
the following theorem.
Theorem: Consider iterations (9), (10) and (7) with the initial

condition in Assumption 4 and the further requirement that
lies in the column space of . Further assume that assumptions
1–3 hold, that the constant in (21) is , and let and be
the unique optimal pair of (4) for which lies in the column
space of . Then, there exists a contraction parameter
such the energy function in (20) satisfies

(24)

Proof: See Appendix F.
The constant has an explicit expression in terms of the un-

oriented Laplacian eigenvalues and , the oriented Lapla-
cian eigenvalue , the strong convexity and Lipschitz constants

and , and the DLM parameters and —see (68) in
Appendix F. The result in Theorem 2 is analogous to similar
results that hold for ADMM [35] and DADMM [24]. The result
is also related to the linear convergence results of the centralized
multi-block ADMM [38], the centralized ADMM on quadratic
problems [40], as well as the asymptotic linear convergence rate
of DADMM [39].
In the contraction inequality in (24) we have that

shrinks by a factor strictly smaller than 1
at all iterations. Therefore, Theorem 2 indicates linear
convergence of to 0. Since

, it follows that
also converges linearly to 0 because we have

that

(25)

To establish that converges linearly to 0 it suf-
fices to write the conventional Euclidean norm in
terms of the norm and take the square root of
both sides of (25). Substituting the inequality

into (25), we have the following corol-
lary of Theorem 2.
Corollary 1: Consider iterations (9), (10) and (7) and assume

the same hypotheses of Theorem 2. Then, there exists a contrac-
tion parameter such that

(26)

I.e., the primal variable converges linearly to the unique
optimal primal variable .
Corollary 1 shows that linearly converges to 0 if

the initial energy function is finite and the weighted
Laplacian is positive definite. Note that

is not necessarily monotonically decreasing as
is (see Theorem 2).

Remark 3: In Theorem 2 and Corollary 1, we require
that lies in the column space of in addition to the
initial condition in Assumption 4. Translating the initial con-
dition of to that of in Algorithm 1, we can see
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that the initial Lagrange multiplier determines where
the dual solution converges (Section III-B). To achieve linear
rate of convergence, must be chosen in the column
space of (e.g., ) because and

(Section III-C). This is equivalent to
choosing such that both and are
in the column space of .

IV. NUMERICAL EXPERIMENTS

This section provides numerical experiments to study the
convergence times of DLM as defined by Algorithm 1 for a
least squares problem (Section IV-A) and a logistic regres-
sion problem (Section IV-B). The local cost functions in the
least squares problem are strongly convex whereas the local
functions in the logistic regression example are convex but not
strongly convex. We consider various network topologies—
random, line, star, complete, and small world graphs—as well
as the effect of growing the number of agents in the network.
We also compare the performance of DLM with that of the
decentralized ADMM (DADMM) of [22] as defined by (5)–(7)
and the distributed gradient method (DGM) of [13] as defined
by (15), and an accelerated variant of DGM, the distributed
Nesterov gradient (DNG) method of [16], as defined by

where is the parameter of Nesterov
acceleration. In DGM and DNG, the weight matrix is
chosen following the maximum-degree rule [32]. Convergence
is studied in terms of the average absolute error

The average absolute error is the average of the local errors
observed at each agent .

A. Least Squares Regression
Agent measures a true signal through the noisy

linear transformation where is
the measurement matrix and is the noise vector. To
run global least squares regression taking advantage of the in-
formation collected by all agents we formulate a problem as in
(1) with the local cost function of agent given by

. With this particular choice of functions the iter-
ation in (13) and, equivalently, Step 2 of Algorithm 1, becomes

(27)

The iteration in (14) and Step 4 of Algorithm 1 is independent of
the specific form of . Elements of the matrix are chosen
at random from a normal distribution with zero mean and vari-
ance 1. Matrices are checked for invertibility by requiring

Fig. 1. Comparison of different decentralized optimization algorithms in a least
squares problem. DLM, DADMM, DNG, and DGM with constant and van-
ishing stepsizes are shown for a random network with agents and 384
edges. DLM has a slope close to DADMM but a much smaller computation cost
per iteration. DLM has similar computation cost per iteration as DNG and DGM
but converges much faster.

so that the local functions are strongly
convex with strong convexity parameter . A dif-
ferent matrix is chosen if this is not satisfied. The noise vec-
tors follow from a zero-mean Gaussian distribution
with covariance matrix .
Algorithm comparison. Given agents select bidi-

rectional edges at random until obtaining a connected network.
An example run of DLM, DADMM, DNG, and DGMwith con-
stant and vanishing stepsizes are shown for one such network in
Fig. 1. In this example the network contains 384 edges (

arcs) out of the 4950 possible. Different parameter combi-
nations are chosen for each algorithm and results are reported
for the one that minimizes the average absolute error in
(27) after iterations. These parameters are and

for DLM, for DADMM, for DNG,
for DGM with constant stepsize and

for DGM with decreasing stepsize. Note that for least squares
regression, local optimization of DADMM boils down to a ma-
trix inversion. The convergence rate of DLM is linear as proven
in Section III. More interesting, the difference in the slopes of
DLM and DADMM are minimal. The latter requires between
20% to 30% less iterations to achieve a target accuracy. This
penalty in convergence rate is small given that the computation
cost of each DLM iteration involves operations (cf. steps
2 and 4 of Algorithm 1)—in this experiment —whereas
DADMM requires solution of local optimization problems at
each iteration [22]. Further observe that DLM converges much
faster than DNG and DGM. This is consistent with earlier the-
oretical and numerical comparisons of DADMM, DNG, and
DGM [15], [16], [24].
Network topology. The slope of the convergence curve of

DLM varies with the choice of network topology. Convergence
curves for line, star, complete, and small world topologies are
shown in Figs. 2 and 3. The random small world topologies
are constructed through first forming a cycle topology and then
adding random edges. In all cases we consider agents
and choose parameters and in Algorithm 1 to minimize the
average absolute error in (27) after iterations.
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Fig. 2. Convergence of DLM on line, star, complete, and small world graphs.
All networks have agents. The small world graph is formed by a
cycle to which 100 extra random edges are added. Convergence is slowest for
the line and fastest for the complete graph. The star graph is good at diffusing
information with small average degree but large maximum degree. Small world
graphs diffuse information efficiently with small maximum degree.

Fig. 3. Convergence of DLM on small world networks with different average
degree. Convergence slopes for networks with agents and 100, 400,
or 700 random edges added to the cycle are shown. Convergence of the line and
complete graphs are also depicted for reference. Adding more random edges
to small world networks increases the agents' average degree but expedites
convergence.

As seen in Fig. 2 the fastest and slowest convergence are ex-
hibited by complete (with and ) and line graphs
(with and ), respectively. This is reasonable be-
cause these are the graphs for which it takes the longest and
shortest time possible for the observations of one agent to af-
fect all other agents. The faster convergence rate of complete
graphs comes at the expense of communication cost. Agents
in the line graph exchange information with one or two neigh-
bors only, whereas in the complete graph each agent commu-
nicates with all other agents. Small communication cost
and steep convergence slope are achieved by the star topology
also shown in Fig. 2 (with and ). While aggre-
gate communication cost is small for star topologies, the center
agent is a communication bottleneck. A structure that avoids
this problem is a small world network formed by a cycle plus
a given number of random edges. The convergence behavior
for a small world network with 100 random edges (200 edges
in total) is also shown in Fig. 2 (with and ).

Fig. 4. Convergence of DLM for small world networks of different sizes and
average degrees. Networks with and agents are shown. In
each case we add 1 or 7 random edges per agent. The convergence rate of DLM
is more sensitive to the average degree than to the network size.

Each agent in this network communicates with an average of 4
neighbors. Convergence slope improves substantially over the
line graph while avoiding the excessive communication cost of
a complete graph or the bottleneck of the star topology. This
is, again, not surprising. Small world networks are good at dif-
fusing information with small degrees because the addition of
random edges decreases the network's diameter.
The convergence slope of small world networks depends on

the number of random edges added. In Fig. 3 we show conver-
gence curves when we add 100, 300, and 700 random edges.
This corresponds to networks whose average degrees are 4, 8,
and 16, respectively; the parameters are and ,

and , and and , respectively.
The curves corresponding to line and complete graphs are also
shown for reference. Adding random edges to small world net-
works increases the agents' average degree and expedites con-
vergence. Observe that to reduce communication cost needed
to achieve a target accuracy, there is a tradeoff in setting the
average degree. Increasing the average degree requires higher
communication cost per iteration, but its gain in expediting con-
vergence becomes marginal when the network is dense enough.
Indeed, when the average degree is 16—in this case the network
has 100 deterministic edges and 700 random edges—the speed
of convergence is close to that of a complete graph, whose av-
erage degree is 99.
Scalability. The experiments above demonstrate a strong de-

pendence of the convergence rate of DLM with the network
topology. Here we show that the convergence rate is less de-
pendent of the network size using small world networks as a
test case. For that matter we consider connected small world
networks composed of: 1) agents with 100 determin-
istic edges and 100 random edges; 2) agents with 100
deterministic edges and 700 random edges; 3) agents
with 500 deterministic edges and 500 random edges; 4)
agents with 500 deterministic edges and 3500 random edges.
The corresponding optimal DLM parameters are 1) and

; 2) and ; 3) and ; 4)
and . Fig. 4 shows that convergence rates of DLM are
similar for the networks with the same average degree, which
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means similar network connectedness, rather than the same net-
work size. Also observe that the performance of DLM does not
degrade much when the network size increases.

B. Logistic Regression

We consider application of DLM to a logistic regression
problem. Agent has access to sample vectors and corre-
sponding classes. Denote the sample vectors as and
the corresponding classes as with .
We are interested in observing samples and estimating
the probability of observing class . We
postulate that this probability is given by the logistic function

for some vector to
be determined using the sample and class observation pairs

available at all agents. Given this model it follows
that the maximum likelihood estimate of the vector is given
by—see, e.g., [36] -

(28)

This problem has the form in (1) with the local functions defined
as

(29)

For this specific choice of functions the iteration in (13)
and Step 2 of Algorithm 1 becomes

(30)

The iteration in (14) and Step 4 of Algorithm 1 is independent
of the specific form of . Observe that the local cost func-
tions are convex but not strongly convex. Thus, the linear
convergence guarantees of Section III do not hold. The numer-
ical results show that, nonetheless, DLM succeeds in finding
and does so with a performance very close to the performance
of DADMM—and a much smaller computational cost compa-
rable to that of DGM.
As a particular numerical example consider a random small

world network composed of agents with 100 deter-
ministic edges and 100 random edges. Each agent has
samples and each sample is of dimension . Different
from the least squares regression in Section IV-A, DADMM
minimizations required at each step cannot be computed in
closed form. We solve these minimizations through a local
gradient descent algorithm with stepsize 0.01. We terminate the
local gradient descent when the Euclidean norm between two
successive solutions is less than . For implementation of
DADMM and DLM we use the parameters that minimize the
absolute error in (27) after running iterations.
These parameters are for DADMM and and

for DLM.

Fig. 5. Comparison of DLM and DADMM on the logistic regression problem.
In a random small world network composed of agents with 100 de-
terministic edges and 100 random edges, each agent has samples
and each sample is of dimension. DLM requires between 20% to 30%
more iterations to achieve a target accuracy than DADMM, but on average,
each DADMM iteration requires 80 gradient descent iterations. It follows that
in terms of computation cost DADMM is about 60 times more expensive than
DLM.

The results are shown in Fig. 5. Both algorithms converge
towards , but none of them converges linearly. The number
of iterations required by DLM to achieve a target accuracy is
larger than those required by DADMM. The difference is min-
imal, however. This small increase in the number of iterations
results in a large reduction in the computation cost of each it-
eration. Each DLM step requires computation of the update in
(27). Each DADMM iteration requires computation of gradient
descent steps that are numerically analogous to the DLM step in
(27). On average, each DADMM iteration in Fig. 5 requires 80
gradient descent iterations. As DLM requires between 20% to
30%more iterations to achieve a target accuracy than DADMM,
it follows that in terms of computation cost DADMM is about
60 times more expensive than DLM.

V. CONCLUSION
We introduced DLM, a decentralized version of the linearized

alternating direction method of multipliers to solve optimization
problems with separable objectives. The method is a variation
of the decentralized alternating direction method of multipliers
(DADMM). The main difference is that instead of performing
a minimization step in the primal domain, an objective cost lin-
earization is used to yield a step whose computational cost is
akin to that of a gradient descent step. This modification results
in DLM having a computational cost per iteration that is one
to two orders of magnitude smaller than the cost of DADMM.
The algorithm was proven to converge to optimal arguments at
a linear rate when the local objective functions have Lipschitz
continuous gradients and are strongly convex. Numerical exper-
iments were conducted for a least squares problems as well as
for a logistic regression problem. In both cases the number of
iterations required by DLM to achieve a target accuracy are of
the same order of those required by DADMM. Besides having
a much smaller total computational cost than DADMM, DLM
also outperforms the distributed gradient method (DGM) and its
accelerated variant.



4060 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 15, AUGUST 1, 2015

APPENDIX A
Proof of Proposition 1:
Proof: The proof is analogous to similar results in [23],

[31] and given here for completeness. Substituting themultiplier
update in (7)
into the update for the primal variables in (9) leads to

(31)

Similarly, substituting the multiplier update
in (7) into the expression for the

auxiliary variable in (10) leads to

(32)

Recalling the definitions of and
it follows from (32) that

for all . Since we have by hypothesis,
it follows that for all . Using this fact, the
definition of , and the definition of the oriented
incidence matrix , we conclude that for all

(33)

Further observe that from the definitions of ,
and the unoriented incidence matrix

, it follows that
. Substituting this expression and (33) into

(31) yields

(34)

Now consider (7) and recall that to sepa-
rate the equality along the and directions

(35)

Since we know from (32) and the initialization hypothesis that
for all we can sum up the two equalities

in (35) to obtain for
all . Reorder terms to write

(36)

where we also use the definition of the unoriented edge inci-
dence matrix to write the first equality. Since by
initialization hypothesis , (36) is true for
all times .
Using (36) to eliminate from the update for in (35)

yields

(37)

Here we use the definition of the oriented edge incidence ma-
trix . Multiplying both sides of (37) by
and using the definitions of the oriented Laplacian matrix

and the vector , we obtain the up-
date for in (12). Likewise, use (36) to eliminate

and from (34) so as to write

(38)

From the definition and the equality
in (12), we know that

. Using this equality and the definition
of the unoriented Laplacian , rewrite (38) to

(39)

Regrouping terms in (39) and observing that the degree matrix
is yield

(40)

The update for in (11) follows from (40) by using the
notations and .
Proof of Lemma 1:
Proof: Write down the KKT conditions for the decentral-

ized optimization problem in (4) so as to obtain the equalities

(41)
(42)
(43)

The definition of the matrix and the
equality in (42) imply that the optimal multiplier

must satisfy .
Using the fact of and the definitions of

and , we can rewrite (41) as

(44)

For any optimal primal solution , (44) suggests that there are
multiple optimal dual solutions . To see so, observe that the
oriented Laplacian is rank de-
ficient. Therefore, the rank of is less than ,
which is no more than for any connected network with
agents. Consequently, there are multiple vectors

satisfying (44).
Given an optimal dual solution that satisfies

, its projection onto the column space of , denoted
by , is also an optimal dual solution. This is true because ac-
cording to the property of projection, and hence

. Therefore, satisfies
and is an optimal dual solution, showing that there exists an op-
timal dual variable lying in the column space of .
We prove uniqueness of such an by contradiction. Con-

sider two vectors and both lying in the column space
of where and . If they are both
optimal dual solutions, then from (44)

(45)



LING et al.: DLM: DECENTRALIZED LINEARIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS 4061

Subtracting the two equalities in (45) yields

(46)

Observing that where
is the smallest nonzero eigenvalue value of

and hence is the smallest nonzero singular value of ,
(46) implies that , which contradicts with

. Since this is absurd we must have
implying that there is a unique optimal dual solution lying
in the column space of .
Proof of Lemma 2:
Proof: In this proof we reuse some intermediate results

from the proofs of Proposition 1 and Lemma 2. Begin by con-
sidering (37) and reorder terms to conclude that under the initial
conditions and , we have that

(47)

Further consider (38) and use the definition
to write

(48)

For a pair of optimal primal and dual solutions and , com-
bining the KKT conditions [cf. (41)] and

[cf. (42)] yields

(49)

as we have shown in (44). Now we consider the other KKT
condition [cf. (43)]. From the definitions of

and , we separate the condi-
tion into and . Subtracting the
two equalities and using the definition of the oriented incidence
matrix , it follows that and conse-
quently

(50)

Subtracting (49) from (48) yields (18) and subtracting (50) from
(47) yields (19).
Proof of Lemma 3:
Proof: From Assumptions 1 and 2 the aggregate cost func-

tion is convex and has Lipschitz continuous gradients with
constant , therefore it holds, see e.g., [37],

(51)

We consider the two terms on the right-hand side of (51) sepa-
rately. For the first summand in (51) substitute the result in (18)
of Lemma 2 for the factor so as to write

(52)

According to (19) we know that
, hence (52) can be rewritten as

(53)

Use the the definition of the Euclidean norm with respect to the
matrix to conclude that

(54)

which can be easily verified by expanding the squares and can-
celing terms in the right hand side. Further observe that

(55)

which can be easily verified as well by expanding the squares
and canceling terms in the right-hand side. Substituting (54) and
(55) into (53) and using the definition of the energy function

in (20), yields

(56)

The second summand in the right-hand side of (51) can be upper
bounded using the basic inequality

, where and , to write

(57)

Substituting the equality in (56) and the upper bound in (57) for
the corresponding terms of (51) yields after regrouping terms

(58)

Observe the fact that the smallest eigenvalue of is
such that the smallest eigenvalue of is

. Hence guarantees that
where

. Also, we know that
as . Substituting

these inequalities into (58) yields (22) and completes the proof.
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Proof of Theorem 1:
Proof: Lemma 3 implies that is monotonically

non-increasing. Since by hypothesis, we
know that as its smallest eigenvalue , and
thus is nonnegative. These two facts guarantee con-
vergence of , which further guarantees convergence
of to 0.
Again, due to we conclude that both
and converge to 0. From the convergence
of and (38), we conclude that

converges to 0, which further implies that
converges to 0 by the Lipschitz continuity

of . From the convergence of and (37),
we conclude that converges to 0.
Let and be a pair of optimal primal and dual solu-

tions of (4) whose values are finite. Monotonicity and nonneg-
ativity of imply that the sequence lies
in a compact region. Therefore, has at least a sub-
sequence that converges to a limit point. From the discussion
above, for any limit point we know that
and . Hence, we conclude that any limit point

satisfies the KKT conditions (cf. (49) and (50)) and is an
optimal solution to (4).
To complete the proof, it remains to show that the sequence

only has a unique limit point. Let and
be any two limit points of . As we have

proved above, both and are optimal solutions
to (4). Similar to (20), we define the energy functions

(59)

Also, we let and
. From (22) we have

(60)

Hence we know the limits

(61)

Consider the equality

(62)

Since is a limit point of , using (61) and
taking the limit of (62) leads to

(63)

Similarly, since is a limit point of , using
(61) and taking the limit of (62) leads to

(64)

Thus we must have ,
which proves that the limit point of is unique.
Proof of Theorem 2:
Proof: We begin the proof in a way similar to what we have

done in the proof of Lemma 3. Instead of using the fact that the
aggregate cost function is convex (cf. Assumption 1) and
has Lipschitz gradients with constant (cf. Assumption 2)
in Lemma 3, here we observe that the aggregate cost function

is strongly convex with constant (cf. Assumption 3).
Further, we consider the relation between and

instead of that between and
. Under Assumption 3 it holds

(65)

Manipulating the first term at the right-hand side of (65) as we
have done in the proof of Lemma 3 (cf. (52)–(55)), we obtain
the equality (cf. (56))

(66)

Substituting (66) into (65) yields

(67)

Next, we prove that there exists a contraction parameter

(68)
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such that it holds

(69)

In (68), is an arbitrary constant satisfying and is
an arbitrary constant satisfying .
Observe that such a exists since by hypothesis

and guarantees to be positive.
To prove (69), we develop lower bounds for its left-hand

side terms and upper bounds for its right-hand side terms. Ob-
serving that is Lipschitz continuous with constant
and substituting the expression of in (18),
we have

(70)

Using the basic inequality
that holds for any , we separate the right-hand

side of (70) and obtain

(71)

Since the largest eigenvalue of is , we have
;

also, since both and lie in the column space of
and the smallest nonzero eigenvalue of is
it holds . Using
these inequalities (71) leads to

(72)

Again from the basic inequality and Lipschitz continuity of
, for any it holds

(73)

Since the largest and smallest eigenvalues of are and
(which is positive by hypothesis), respectively,

and
. Combining these

two inequalities as well as (72) and (73), the sufficient condition
of (69) is

(74)

which is true for the contraction parameter in (68) since
.

Combining (67) and (69) yields the claim in (24).
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