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Abstract
We consider image deblurring problem in the presence of impulsive noise. It 
is known that total variation (TV) regularization with L1-norm penalized data 
fitting (TVL1 for short) works reasonably well only when the level of impulsive 
noise is relatively low. For high level impulsive noise, TVL1 works poorly. 
The reason is that all data, both corrupted and noise free, are equally penalized 
in data fitting, leading to insurmountable difficulty in balancing regularization 
and data fitting. In this paper, we propose to combine TV regularization with 
nonconvex smoothly clipped absolute deviation (SCAD) penalty for data 
fitting (TVSCAD for short). Our motivation is simply that data fitting should 
be enforced only when an observed data is not severely corrupted, while for 
those data more likely to be severely corrupted, less or even null penalization 
should be enforced. A difference of convex functions algorithm is adopted 
to solve the nonconvex TVSCAD model, resulting in solving a sequence of 
TVL1-equivalent problems, each of which can then be solved efficiently by 
the alternating direction method of multipliers. Theoretically, we establish 
global convergence to a critical point of the nonconvex objective function. 
The R-linear and at-least-sublinear convergence rate results are derived for the 
cases of anisotropic and isotropic TV, respectively. Numerically, experimental 
results are given to show that the TVSCAD approach improves those of the 
TVL1 significantly, especially for cases with high level impulsive noise, and 
is comparable with the recently proposed iteratively corrected TVL1 method 
(Bai et al 2016 Inverse Problems 32 085004).

Keywords: total variation, SCAD, deblurring, impulsive noise, DC 
programming, KL function, alternating direction method of multipliers
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1. Introduction

We consider the problem of recovering an image degraded by blur and impulsive noise. For 
simplicity, we focus solely on grayscale images with square domain, and by using the multi-
channel total variation (TV) regularization introduced in [56] our discussions extend, without 
essential difficulties, to multichannel images with either square or rectangle domains. Let ū be 
a clean image of size n-by-n. By stagnating the columns of ū in a left-upper and right-lower 
manner, ū can be treated equally as a vector in �n2

. Without loss of generality, we assume that 
the pixel values of ū are scaled into [0, 1]. The observed blurry and noisy image f ∈ �n2

 obeys 
f = Nimp(Kū), where K ∈ �n2×n2

 is a blurring operator corresponding to an underlying point 
spread function, and Nimp(·) represents a procedure of impulsive noise corruption. Our aim 
is to approximately recover the clean image ū from the blurry and noisy observation f, with 
the blurring operator K given. Apparently, this problem falls into the class of linear inverse 
problems.

In the rest of this section, we first review briefly some impulsive noise removal methods, 
either with or without the degradation of blur, and then summarize the notation and the organi-
zation of this paper.

1.1. Impulsive noise and filter methods

Impulsive noise is often generated by malfunctioning pixels in camera sensors, faulty memory 
locations in hardware, or erroneous transmission, see [9]. Two common types of such noise 
are salt-and-pepper (SP) noise and random-valued (RV) noise, both of which degrade an 
image by changing the values of a fraction of randomly selected pixels while leaving the rest 
ones untouched. When degraded by SP noise, the value of the selected pixel will be replaced 
with half probability by either the minimum or the maximum pixel value. RV noise degrades 
images in a similar way, except that intensities of the corrupted pixels are uniformly distrib-
uted between the minimum and the maximum pixel values. They are referred to as impulsive 
noise because corrupted pixels are mostly distinguishable from their neighbors, and intuitively 
RV noise is harder to remove than SP noise. Based on these features, a number of digital fil-
ter methods have been proposed [4], which first detect likely corrupted data entries and then 
replace them by using the filters. Among others, the median type filters are very popular due 
to their favorable denoising power and high computational efficiency, e.g. the adaptive median 
filter [34], the multistate median filter [16], and the median filter based on homogeneity infor-
mation [24, 41]. We mention that most of the aforementioned filters are merely suitable for 
denoising in the absence of blur.

1.2. Variational methods

An important class of methods for image deblurring is the variational approach, in which the 
ground truth ū is recovered approximately as the minimizer of a certain energy function. It is 
not uncommon that the energy function is composed of a data fitting term Φ(u) and a regu-
larization term Ψ(u), i.e. an optimization problem of the form minu Ψ(u) + µΦ(u) is solved 
to recover ū. Here µ > 0 is a weighting parameter balancing the two terms in minimization.

The purpose of the regularization term Ψ(u) is to enforce certain regularity conditions or 
prior constraints on the image, such as smoothness and boundedness. Indeed, image deblur-
ring problem is very ill-posed and, as a consequence, the regularization term is indispensable 
in stabilizing the recovery procedure. The traditional Tikhonov regularization [52] has been 
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widely used due to its simplicity. However, Tikhonov regularized models, though relatively 
easy to solve, tend to produce overly smoothed images and are unable to preserve important 
image attributes such as sharp boundaries. In contrast, the TV regularization pioneered by 
Rudin et  al [45] makes image edges and object boundaries, which are generally the most 
important features of an image, very well preserved due to the linear penalty on the image 
gradient, see, e.g. [1, 18], where the superiority of TV over Tikhonov-like regularization in 
recovering image blocky structures was analyzed. Using finite difference operations, one can 
discretize the TV into different forms, e.g. the well known isotropic and anisotropic discretiza-
tions of TV are given by

TViso(u) =
n2∑

i=1

‖Diu‖2 and TVaniso(u) =
n2∑

i=1

‖Diu‖1, (1.1)

respectively, where Di ∈ �2×n2
 is a local finite difference operator at the ith pixel (boundary 

conditions will be specified later). Exactly because of the attractive edge-preserving ability, 
TV regularization has been extremely widely used, see, e.g. a recent review paper up to 2013 
[11] and the references therein.

On the other hand, the data fitting term penalizes the deviation of the observed data from 
the physical model. In the case of additive noise, i.e. f = Ku + ω for some error ω ∈ �n2

, or 
impulsive noise as is the concern of this paper, Φ(u) usually takes the form ‖Ku − f‖ p

p  for 
p = 1 or 2. For additive Gaussian noise, p is usually set to 2 because minimizing ‖Ku − f‖2

2 
corresponds to seeking the maximum likelihood estimation of ū. Combined with TV regu-
larization, this leads to the influential TVL2 model [45]. However, practical systems usually 
suffer from outliers, where only a fraction of data entries are corrupted by noise of some non-
Gaussian distribution, e.g. impulsive noise. In such cases, nonsmooth data fitting is preferred 
due to its ability in fitting the uncorrupted data entries, e.g. �1-norm data fitting was originally 
introduced in [2] for pure denoising problem. The importance of nondifferentiable data fitting 
such as the �1-norm penalization has been examined deeply in [37, 38].

By combining TV regularization with �1-norm penalized data fitting ‖Ku − f‖1, we arrive 
at the well known TVL1 model, i.e.

minu TV(u) + µ‖Ku − f‖1, (1.2)

where TV(u) can be either isotropic or anisotropic discretizations. In practice, the anisotropic 
TV is slightly easier to process than the isotropic one. In fact, TVL1 model with anisotro-
pic TV can be reformulated as a linear program and has been studied in [27]. Theoretically, 
various geometrical properties of TVL1 model have been revealed in [15, 17, 58], which 
well justify its suitability for deblurring in the presence of impulsive noise. Numerically, very 
efficient algorithms have been designed for solving it, including the structure utilizing split-
and-penalty method [57] and the augmented Lagrangian type methods [25, 31] which are also 
known as split Bregman methods. These methods can deal with both isotropic and anisotropic 
TV. We note that simple bound constraint can be incorporated to improve the quality of recov-
ery, for which efficient structure-utilizing algorithms can still be designed, e.g. TVL1 model 
with constraint 0 � u � 1 was considered in [14].

1.3. Two-phase method and corrected TVL1 method

The TVL1 model (1.2) fits all data entries, both corrupted and noise-free, via entry-wise abso-
lute difference and with a unified weighting parameter μ. On the one hand, μ should be rea-
sonably small in order to weaken the influence of fitting the corrupted data. On the other hand, 
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if μ is not big enough, the recovered image is mostly over regularized and very blocky. As a 
consequence, it becomes critical to choose an appropriate weighting parameter μ so that regu-
larization and data fitting are well balanced, particularly for the cases with high level of noise. 
As a remedy, a two-phase method was proposed in [12] for image deblurring with impulsive 
and Gaussian noise. In the first stage, the outliers are approximately identified using median 
filters and removed from the data set. In the second stage, the image is restored by solving a 
regularized model with �1-norm data fitting that applies to the remaining data entries. In [12], 
a regularizer that approximates the Mumford–Shah regularizer [36] was applied, and the non-
smooth �1-norm was approximated by a smooth function, see [12, equation (7)]. A similar two 
phase approach was proposed in [13], where anisotropic TV regularizer was used to replace 
the nonconvex regularizer used in [12]. The resulting problem was again solved by smoothing 
methods. We note that solving the variational models arising from the second stage is gener-
ally much harder than solving the TVL1, which, in contrast, has very efficient algorithms  
[14, 25, 31, 57].

Very recently, an iteratively corrected TVL1 (abbreviated as CTVL1) method was proposed 
in [8]. The CTVL1 method accomplishes deblurring and impulsive noise removal simultane-
ously via solving a sequence of TVL1-equivalent problems. In particular, given the current 
point uk, the CTVL1 method [8] generates the next iterate uk+1 via

uk+1 = argminu TV(u) + µ
(
‖Ku − f‖1 − �k(u)

)
, (1.3)

where �k(u) = 〈sk, Ku − f 〉, sk = (sk
1, . . . , sk

n2)
T ∈ �n2

,

sk
i = φ

(
(Kuk − f )i

‖Kuk − f‖∞

)
, i = 1, 2, . . . , n2, and φ(t) = sign(t)(1 + ετ )

|t|τ

|t|τ + ετ
.

 (1.4)
Here we adopt the convention 0/0 = 0, and ε, τ > 0 are given parameters. It has been demon-
strated via extensive numerical results in [8] that the CTVL1 method performs very competi-
tive and, in particular, outperforms the two-phase method [12] for RV noise.

1.4. Notation

Given a vector v, its dimension and ith component are denoted by dim(v) and vi, respectively. 
The superscript ‘T’ denotes matrix or vector transpositions. The standard inner product in �n 
is denoted by 〈·, ·〉, i.e. 〈x, y〉 = xTy for x, y ∈ �n. We follow standard notation in convex anal-
ysis [43]. The set of extended-real-valued, lower-semicontinuous, proper and convex func-
tions on �n is denoted by Γ0(�n). The effective domain of an extended-real-valued function 
f on �n is denoted by dom f . The conjugate function f ∗ of a given f ∈ Γ0(�n) is defined by 
f ∗(x) = supy〈y, x〉 − f (y). The indicator function of a set Ω is denoted by χΩ, i.e. χΩ(x) = 0 
if x ∈ Ω, and +∞ otherwise. The Euclidean distance of a point x to a set S is denoted by 
dist(x, S). The gradient of a multivariate differentiable function f is denoted by ∇f . If unspeci-

fied, ‖ · ‖ denotes the �2-norm. Whenever there is no confusion, we let 
∑

i :=
∑n2

i=1.

1.5. Organization

The paper is organized as follows. The TVSCAD model and a difference of convex functions (DC) 
algorithm are proposed in section 2, with global convergence and convergence rate to a critical 
point established in section 3. Extensive numerical results, with comparisons to both TVL1 and 
CTVL1, are demonstrated in section 4. Finally, some concluding remarks are given in section 5.
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2. A TVSCAD approach

In this section, we present a TVSCAD model, reformulate it as a DC program, and propose a 
DC algorithm (DCA). A brief overview on DC programming is also included.

2.1. A TVSCAD model

The SCAD function was originally introduced in [26] as a penalty function for sparse variable 
selection. Let γ := (γ1, γ2) be a pair of given parameters satisfying γ2 > γ1 > 0. The one-
dimensional SCAD function ϕγ is defined as

ϕγ(x) =





|x|, if |x| � γ1,
−x2+2γ2|x|−γ2

1
2(γ2−γ1)

, if γ1 < |x| < γ2,
γ1+γ2

2 , if |x| � γ2,

x ∈ �, (2.1)

and its graph is given in the first plot of figure 1. It can be seen, from either the definition or 
the graph, that ϕγ coincides with the absolute value function if |x| � γ1 and takes the constant 
value (γ1 + γ2)/2 if |x| � γ2. For γ1 < |x| < γ2, the unique quadratic function, which con-
nect (±γ1, γ1) and (±γ2, (γ1 + γ2)/2) and make the connected parts smoothly linked, were 
inserted. The thresholding operator, also known as shrinkage or proximity operator, of ϕγ is 
defined as

T (x,ϕγ , τ) := argmin
y∈�

ϕγ(y) +
1

2τ
(y − x)2, x ∈ �, (2.2)

where τ > 0 is a parameter. We note that τ � γ2 − γ1 must be satisfied to guarantee that 
the objective function in (2.2) has a unique minimizer, see [26]. In this case, the graph of 
T (x,ϕγ , τ) is given in the second plot of figure 1. It is clear from the graph that SCAD penalty 
function makes the resulting estimator possesses three desired properties, namely, continuity, 
sparsity, and unbiasedness. In contrast, the widely used hard- and soft-thresholding estimators 
lack continuity and unbiasedness, respectively, see [26] for detailed discussions.

To present our TVSCAD model, we define the componentwise extension of ϕγ as follows

Φγ(v) =
dim(v)∑

i=1

ϕγ(vi), v ∈ �dim(v). (2.3)

Figure 1. Left: the SCAD function ϕγ. Middle: the thresholding operator T (x,ϕγ , τ). 
Right: A DC decomposition of the SCAD function: ϕγ(·) = | · | − ψγ(·).
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We propose the following TVSCAD model for image deblurring with impulsive noise:

minu {TV(u) + µΦγ(Ku − f ) | 0 � u � 1} , (2.4)

where Φγ is defined in (2.3), TV(u) can be either isotropic or anisotropic, and µ > 0. The 
motivation of using SCAD function here is simply to enforce less or even null data fitting and 
more regularization whenever (Ku)i deviates significantly from fi. This is quite reasonable 
as in such case the ith pixel is more likely to be corrupted. For those i such that (Ku − f )i is 
sufficiently small, the absolute deviation penalty is kept, as indicated by the definition of ϕγ. 
Note that here we also include in the model the bound constraint 0 � u � 1, which usually 
improves the recovery quality [14]. It is clear that the TVSCAD model is nonconvex and 
nonsmooth since ϕγ is so. The use of nonconvex and nonsmooth functions in image recovery 
usually results in images with better contrasts and sharper edges, see [20, 21, 39, 40], which 
reveal the theoretical advantages of least squares problems regularized by nonconvex and 
nonsmooth functions. In our setting, the nonconvex and nonsmooth SCAD function is adopted 
for data fitting.

2.2. Reformulation as a DC program

The TVSCAD problem (2.4) is nonconvex and nonsmooth and, in general, very challenging 
to solve. We reformulate the TVSCAD model as a DC program by decomposing the SCAD 
function (2.1) as the difference of two convex functions, where the first is the absolute value 
function | · | and the second is given by

ψγ(x) := |x| − ϕγ(x) =





0, if |x| � γ1,
x2−2γ1|x|+γ2

1
2(γ2−γ1)

, if γ1 < |x| � γ2,

|x| − γ1+γ2
2 , if |x| > γ2,

x ∈ �. (2.5)

The decomposition ϕγ = | · | − ψγ is illustrated in the last plot of figure 1. The component-
wise extension of ψγ, denoted by Ψγ , is given by

Ψγ(v) =
dim(v)∑

i=1

ψγ(vi), v ∈ �dim(v). (2.6)

It then follows from (2.3) and (2.6) that Φγ(v) = ‖v‖1 −Ψγ(v) for all v ∈ �dim(v). As a result, 
the TVSCAD model (2.4) can be reformulated as the following DC programming problem

minu {TV(u) + µ (‖Ku − f‖1 −Ψγ(Ku − f )) | 0 � u � 1} . (2.7)

The idea of decomposing a nonconvex function as the difference of two convex functions is 
not new, see, e.g. [29], where it was applied to sparse recovery problems. Before deriving our 
algorithm for solving the reformulated problem (2.7), we next give a very briefly overview on 
DC programming.

2.3. DC programming

DC programming refers to optimizing a function that can be written as the difference of two 
convex functions. This class of problems covers generic convex optimization and many real 
world nonconvex problems as special cases. The study of subgradient method for convex 
maximization problem in [46, 47] can be viewed as early works on DC programming. Later, 
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DC duality theory and DCAs were developed in [50, 51] based on the nonconvex duality 
results in [53, 54]. Now, DC programming, including model, theory and algorithms have been 
widely used in many applications. Interested readers can refer to the review papers [3, 33, 48].

Let g, h ∈ Γ0(�n). A generic DC programming problem takes the form

α := infx g(x)− h(x). (2.8)

It is standard result in convex analysis that the dual conjugate of h ∈ Γ0(�n) is itself, i.e. 
h∗∗ := (h∗)∗ = h, see, e.g. [43, theorem 12.2]. Therefore, the DC program (2.8) can be 
reform ulated as

α = inf
x

g(x)− h∗∗(x) = inf
x

(
g(x)− sup

y
〈x, y〉 − h∗(y)

)
= inf

y
m(y), (2.9)

where m(y) := infx g(x)− 〈x, y〉+ h∗(y) = h∗(y)− g∗(y) if y ∈ dom h∗, and +∞ otherwise. 
Plug into (2.9), we obtain

α = infy {h∗(y)− g∗(y) | y ∈ dom h∗} . (2.10)

We assume that α is finite, which implies that dom g ⊂ dom h and dom h∗ ⊂ dom g∗, and 
adopt the convention +∞− (+∞) = +∞. Then, (2.10) can be equivalently simplified as

α = infy h∗(y)− g∗(y), (2.11)

which is clearly also a DC programming problem and is known as the dual problem of (2.8). 
Note that there exists perfect symmetry between the primal and the dual DC programming 
problems (2.8) and (2.11). Interested readers can refer to [49, sections 3.1 and 3.2] and refer-
ences therein for more discussions on duality results, global and local optimality conditions 
of (2.8) and (2.11).

The classic DCAs (see [46, 47] and [49, section  3.3]) aim at solving the DC program 
(2.8) and its dual problem (2.11) to their global or local optimality. A simplified form of 
DCA solves (2.8) via linearizing the second part and solving a sequence of convex problems. 
Specifically, starting at an initial point x0 ∈ dom g, DCA iterates as

xk+1 = argmin
x

[
g(x)− (h(xk) + 〈yk, x − xk〉)

]
, yk ∈ ∂h(xk), k = 0, 1, 2, . . .

 
(2.12)

Under certain conditions, the DCA is well defined [49, lemma 3.6], and its convergence prop-
erties were summarized in [49, theorem 3.7] and [48, theorem 3]. In particular, the sequence 
of function values {g(xk)− h(xk)} is guaranteed to be decreasing, and if α is finite and the 
sequence {(xk, yk)} is bounded, then every limit point of {xk} (resp. {yk}) is a critical point 
of g − h (resp. h∗ − g∗), a notion that is slightly weaker than local minimizer [49, theorem 
3.2]. We emphasize that the theoretical results derived for our DCA in section 2.4 are much 
stronger than those existing ones for generic DC programming, see section 3.

2.4. A DCA

A DCA for solving the proposed TVSCAD model (2.7) is derived in this subsection. It is 
easy to verify that ψγ defined in (2.5) is smooth, and so is Ψγ  in (2.6). Given uk satisfying 
0 � uk � 1, our DCA generates the next iterate by

uk+1 = argmin
u

{
TV(u) + µ

(
‖Ku − f‖1 − �k(u)

)
+

η

2
‖u − uk‖2 | 0 � u � 1

}
,

 

(2.13)
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where η > 0 is a given parameter, and �k(u) is the linear part of Ψγ(Ku − f ) at uk, i.e.
�k(u) := Ψγ(Kuk − f ) + 〈KT∇Ψγ(Kuk − f ), u − uk〉. (2.14)

It is straightforward to verify that the DCA defined in (2.13) and (2.14) is a special case of the 
classic DCA (2.12) for DC programming (2.8) with

g(u) = TV(u) + µ‖Ku − f‖1 + χ0�u�1(u) +
η

2
‖u‖2 and h(u) = µΨγ(Ku − f ) +

η

2
‖u‖2.

 (2.15)
DCA resulting from the above decomposition makes the objective function of (2.13) strongly 
convex, and thus uk+1 is well defined. Indeed, it is exactly because of the resulting proximal 
term η2 ‖u − uk‖2 that makes our theoretical results in section 3 much stronger than those in 
[49]. In particular, the theory of DC programming for strongly convex g and h can only guar-
antee that limk→∞(uk+1 − uk) = 0, see, e.g. [49, theorem 3.7 (iii)], while we guarantee that 
the sequence {uk} converges globally to a critical point of the problem (2.4). Moreover, the 
addition of the proximal term also ensures R-linear convergence rate in the case of anisotropic 
TV. In computation, a small value of η can always be used to enhance robustness.

Next, we adapt the versatile and efficient alternating direction method of multipliers 
(ADMM, [28, 30]) to solving the subproblem (2.13). ADMM can be viewed as a practi-
cal variant of the classic augmented Lagrangian method [32, 42] or a dual application of 
the Douglas-Rachford splitting [19, 23] for monotone inclusion problem. ADMM has been 
applied to numerous applications, see, e.g. [10, 22], among others, it has been applied to TV 
based image deblurring problem [31] and its variants [25]. Given the encouraging perfor-
mance of ADMM, especially for TV regularized image recovering problems, it is appropriate 
here to adopt it as the subproblem solver.

ADMM has been applied to constrained TVL1 problem in [14]. With the additional proxi-
mal term η2 ‖u − uk‖2 and the linear term �k(u) added to the TVL1 problem, the resulting 
ADMM is similar. Here we present the algorithm only for completeness. We take the isotropic 
discretization of TV as an example, i.e. TV(u) =

∑
i ‖Diu‖, and the discussion for the case 

of anisotropic TV is completely analogues. First, we introduce a set of auxiliary variables 
{wi ∈ �2 : i = 1, . . . , n2} and v ∈ �n2

 to transfer {Diu : i = 1, . . . , n2} and Ku − f  out of the 
nondifferentiable norms. The set of wi’s is also denoted by w ∈ �2n2

. In order to treat the 
bound constraint, we also need an additional auxiliary variable x ∈ �n2

. Define

θ(w) :=
∑

i

‖wi‖, vk := Kuk − f , pk := ∇Ψγ(vk) and Ω := {u | 0 � u � 1}.

 

(2.16)

By omitting constant values, (2.13) can be reformulated as

min
u,v,w,x

{
θ(w) + µ

(
‖v‖1 − 〈 pk, v〉

)
+

η

2
‖u − uk‖2 | wi = Diu, ∀ i, v = Ku − f , x = u, x ∈ Ω

}
.

 (2.17)
The augmented Lagrange function associated with (2.17) is

L (w, v, x, u,λw,λv,λx) = θ(w) +
∑

i

(
〈(λw)i, Diu − wi〉+

βw

2
‖Diu − wi‖2)

+ µ
(
‖v‖1 − 〈 pk, v〉

)
− 〈λv, v − (Ku − f )〉+ βv

2
‖v − (Ku − f )‖2

+
η

2
‖u − uk‖2 − 〈λx, x − u〉+ βx

2
‖x − u‖2,

G Gu et alInverse Problems 33 (2017) 125008
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where λw ∈ �2n2
, λv,λx ∈ �n2

 are Lagrange multipliers, and βw,βv,βx > 0 are penalty param-
eters. Given u0 and (λ0

w,λ0
v ,λ0

x), the classic 2-block ADMM iterates as

(w j+1, v j+1, x j+1) = argmin
w,v,x

{
L
(
w, v, x, u j,λ j

w,λ j
v,λ j

x

)
| x ∈ Ω

}
, (2.18a)

u j+1 = argmin
u

{
L
(
w j+1, v j+1, x j+1, u,λ j

w,λ j
v,λ j

x

)}
, (2.18b)



λ j+1

w

λ j+1
v

λ j+1
x


 =



λ j

w − βw(w j+1 − Du j+1)

λ j
v − βv

(
v j+1 − Ku j+1 + f

)
λ j

x − βx(x j+1 − u j+1)


 . (2.18c)

We note that both (2.18a) and (2.18b) have closed form solutions and hence can be computed 
efficiently. In fact, the optimization of w, v and x in (2.18a) can be carried out in parallel since 
they are separable from each other. Moreover, w j+1 and v j+1 are given explicitly by the prox-
imity operators of θ and ‖ · ‖1, respectively, the computations of which have linear cost. On 
the other hand, x j+1 can be computed via a projection onto Ω. For convenience of the readers, 
here we present the formulas for computing these variables. Denote the proximity operator of 
any ϑ ∈ Γ0(�n) by proxϑ(·) := argminy ϑ(y) + 1

2‖y − ·‖2 and the Euclidean projection onto 
Ω by projΩ. Then, the solutions of (2.18a) are given by




w j+1 = prox θ
βw

(
Du j + λ j

w/βw
)

,

v j+1 = prox µ
βv

‖·‖1

(
Ku j − f + (λ j

v + µpk)/βv
)

,

x j+1 = projΩ
(
u j + λ j

x/βx
)

.

The u-subproblem (2.18b) is a least-squares problem, whose normal equations have a coef-
ficient matrix 

(
βwDTD + βvKTK + (βx + η)I

)
. Under the assumption of periodic boundary 

conditions, this matrix has a BCCB (block circulant matrix with circulant blocks) structure 
and thus can be diagonalized by two-dimensional discrete Fourier matrix. Therefore, the 
u-subproblem can be solved very efficiently via two fast Fourier transforms. The problem 
structures of this type were first recognized and fully exploited in [55], where an alternating 
minimization algorithm was designed based on quadratic penalty method for image deblur-
ring with Gaussian noise. Later, this splitting and alternating minimization idea was extended 
in [56, 57] to solve TVL1 problem and multichannel image deblurring.

2.5. Connections with the CTVL1 method

The connection between our DCA (2.13) and the CTVL1 method (1.3) recently proposed in 
[8] is explained in this subsection. By removing in (2.13) the bound constraint 0 � u � 1 and 
the proximal term η2 ‖u − uk‖2, we see that (2.13) differs from (1.3) only in the choice of �k(u). 
By letting vk = Kuk − f  and throwing away some constants, one can see that �k(u) for both 
methods has the form �k(u) = 〈sk, Ku − f 〉 with sk = (sk

1, . . . , sk
n2)

T  defined by

sk
i =

{
φ
(
vk

i /‖vk‖∞
)

, for (1.3),
ψ′
γ(v

k
i ), for (2.13),

i = 1, . . . , n2. (2.19)

Here φ and ψγ are defined in (1.4) and (2.5), respectively. It was suggested in [8] that ε2 = 10−3 
and τ = 2 should be used in φ, and the derivative of ψγ is given by
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ψ′
γ(x) =





0, if |x| � γ1,
x−γ1sign(x)

γ2−γ1
, if γ1 < |x| � γ2,

sign(x), if |x| > γ2,
x ∈ �.

Plots of φ and ψ′
γ (with γ1 = 0.15, γ2 = 0.5, and the practical choice of γ1 and γ2 will be dis-

cussed in section 4) are given in figure 2. From the figure, one may observe that if vk
i = (Kuk − f )i 

is positive and relatively large, the values of sk
i  will tend to be 1 and equal to 1 in (1.3) and 

(2.13), respectively. Consequently, this means the data fitting term µ
(
‖Ku − f‖1 − �k(u)

)
 

being nearly or totally cancelled out from (1.3) and (2.13), respectively. In other words, nearly 
no or just no penalization being enforced on vk

i = (Kuk − f )i. This coincides with our motiv-
ation as large (Kuk − f )i means the ith pixel is more likely to be corrupted by the impulsive 
noise, and thus should not be fitted. When vk

i = (Kuk − f )i is negative with its absolute value 
relatively large, similar explanation applies. On the other hand, when the absolute value of 
vk

i = (Kuk − f )i is relatively small, µ|(Ku − f )i| corresponding to �1-norm penalized data fit-
ting is used in (2.13) as opposed to µ|(Ku − f )i| minus a linear term used in (1.3).

We also mention that the outer loop convergence of the CTVL1 method is unknown in 
[8], while our algorithm is guaranteed to converge globally to a critical point of the TVSCAD 
problem (2.4), as will be shown in section 3.

3. Theoretical analysis

A major contribution of this paper lies in the theoretical side. In this section, we establish 
global convergence of the DCA (2.13). In comparison, the outer loop convergence of the 
CTVL1 method [8] is not guaranteed. Moreover, by further exploring the structures of the 
SCAD function, results on convergence rate are also established for the DCA (2.13).

We start with some definitions. Let F be an extended-real-valued, proper and lower semi-
continuous function on �n. The limiting subdifferential of F at x ∈ dom F  is defined by

Figure 2. Left: the φ function used by the CTVL1 method [8]. Right: the derivative 
of ψγ.
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∂F(x) :=
{

v ∈ �n : ∃ xt → x, F(xt) → F(x), vt → v, lim inf
z �=xt ,z→xt

F(z)− F(xt)− 〈vt, z − xt〉
‖z − xt‖

� 0
}

.

A necessary condition for x ∈ �n to be a minimizer of F is 0 ∈ ∂F(x), and a point satisfying 
this condition is called a critical or stationary point of F. Readers are referred to [44] for these 
basics. The function F is said to have the KL property at x̄ ∈ dom ∂F  with an exponent of σ 
(see [6, 7]) if there exist c, ε > 0 and v ∈ (0,∞] such that

dist(0, ∂F(x)) � c(F(x)− F(x̄))σ (3.1)

for all x satisfying ‖x − x̄‖ � ε and F(x̄) < F(x) < F(x̄) + v. If F has the KL property with 
the exponent σ at any x ∈ dom ∂F , then F is called a KL function with an exponent of σ. We 
continue using the notation of vk and Ω as defined in (2.16), and according to (2.4) and (2.7), 
we define

F(u) := TV(u) + µΦγ(Ku − f ) + χΩ(u) = TV(u) + µ (‖Ku − f‖1 −Ψγ(Ku − f )) + χΩ(u).

Lemma 3.1 (Sufficient decrease property). For any u0 ∈ Ω and η > 0, the sequence 
{uk} generated by (2.13) satisfies

F(uk)− F(uk+1) � η‖uk+1 − uk‖2, ∀ k � 0. (3.2)

Proof. By definition, (2.13) implies that uk ∈ Ω and thus χΩ(uk) = 0 for all k � 0. Let k � 0 
be fixed. The convexity of Ψγ  implies that Ψγ(vk+1) � Ψγ(vk) + 〈∇Ψγ(vk), vk+1 − vk〉. Thus,

F(uk)− F(uk+1) �
(
TV(uk) + µ‖vk‖1

)
−
(
TV(uk+1) + µ‖vk+1‖1

)
+ µ〈∇Ψγ(vk), vk+1 − vk〉.

 (3.3)

It follows from (2.13) that

sk+1 := µKT∇Ψγ(vk) + η(uk − uk+1) ∈ ∂ [TV(u) + µ‖Ku − f‖1 + χΩ(u)]
∣∣
u=uk+1 .

Further considering the convexity of TV(u) + µ‖Ku − f‖1 + χΩ(u), we obtain from (3.3) that

F(uk)− F(uk+1) � 〈sk+1, uk − uk+1〉+ µ〈∇Ψγ(vk), vk+1 − vk〉 = η‖uk+1 − uk‖2,

which completes the proof. □ 

Lemma 3.2 (KL property). If the TV is anisotropic as given in (1.1), then for any fixed 
µ > 0 the function F is a KL function with exponent 1/2.

Proof. According to the definitions of anisotropic TV (1.1) and Ψγ  (2.6), F is a piecewise 
linear-quadratic function, and every piece is defined on a closed polyhedral set. Denote by m 
the number of pieces of F, Fi the linear-quadratic function on the ith piece, and Ci the domain 
of Fi. Then, it holds that F(u) = min1�i�m {Fi(u) + χCi(u)}. Since χCi is a proper closed 
polyhedral function, if follows from [35, corollary 5.2] that F is a KL function with exponent 
1/2. □ 

Now we are ready to establish the global convergence and convergence rate results for our 
DCA. In the general theory of DC programming, see, e.g. [49, theorem 3.7 (iv)], it is only 
guaranteed that, if α in (2.8) is finite and the generated sequence is bounded, then any accu-
mulation point is a critical point. The same result is derived in part (i) of the following theorem 
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3.3, while the rest of the theorem, namely part (ii)–(iv), are much stronger than existing results 
for generic DC programming.

Theorem 3.3 (Global convergence and rate of convergence). Let u0 ∈ Ω, η > 0 
and {uk} be the sequence generated by (2.13). Then

 (i) any accumulation point of {uk} is a critical point of (2.4); 
 (ii) {uk} converges globally to a critical point of (2.4), and furthermore ∑∞

k=0 ‖uk+1 − uk‖ < +∞; 
 (iii) if the TV is anisotropic, then there exist h > 0 and τ ∈ (0, 1) such that ‖uk − u∗‖ � hτ k 

for all k � 0, i.e. the convergence rate is R-linear; 
 (iv) if the TV is isotropic, then {uk} converges to u∗ at least sublinearly.

Proof. 

  (i) It follows from (2.13) that

dk+1 := µKT (∇Ψγ(vk)−∇Ψγ(vk+1)
)
− η(uk+1 − uk) ∈ ∂F(uk+1). (3.4)

  Since uk ∈ Ω for all k � 0 and TV(u) + µΦγ(u) is bounded below (by 0), it follows from 
(3.2) that

∞∑
k=0

‖uk+1 − uk‖2 � F(u0)/η < +∞.

  It thus follows that limk→∞(uk+1 − uk) = 0. Let u∗ be any accumulation 
point of {uk} and {unk} be a subsequence such that limk→∞ unk = u∗. Then, 
limk→∞ unk+1 = limk→∞[(unk+1 − unk) + unk ] = u∗. By replacing k by nk and letting 
k → +∞ on the both sides of (3.4), we obtain immediately from the upper semiconti-
nuity of ∂F  and the continuity of ∇Ψγ that 0 ∈ ∂F(u∗), which completes the proof of 
part (i).

 (ii) According to [7, theorem 2.9], it suffices to guarantee that the sufficient decrease condi-
tion of {F(uk)}, the relative error condition on {dk} and the boundedness of {uk} hold for 
all k. In fact, {F(uk)} is sufficiently decreasing due to (3.2), and {uk} is bounded since 
0 � uk � 1. Moreover, since ∇Ψγ is Lipschitz continuous, we know from (3.4) that there 
must exist M > 0 sufficiently large such that

‖dk+1‖ � M‖uk+1 − uk‖. (3.5)

  Thus, all the conditions required to guarantee the global convergence of {uk} to a critical 
point have been fulfilled. The global convergence of {uk}, as well as the inequality ∑∞

k=0 ‖uk+1 − uk‖ < +∞, follows directly from [7, theorem 2.9].
 (iii) From (3.2), we see immediately that

F(uk+1)− F(u∗) �
∞∑

i=k+1

η‖ui+1 − ui‖2. (3.6)

  By lemma 3.2, F has the KL property at u∗ with σ = 1/2. It thus follows from (3.1) and 
(3.5) that there exists a sufficiently large K such that

F(uk+1)− F(u∗) �
1
c2 dist2

(
0, ∂F(uk+1)

)
�

M2

c2 ‖uk+1 − uk‖2, ∀ k � K.
 (3.7)
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  Define Ak =
∑∞

i=k ‖ui+1 − ui‖2. Combing (3.6) and (3.7), we get Ak+1 � M2

ηc2 (Ak − Ak+1), 

or equivalently Ak+1 � τ 2Ak for all k � K , where τ := M/
√

M2 + ηc2 ∈ (0, 1). Hence, 
there exist a constant ρ > 0 sufficiently large such that Ak � ρ2τ 2k for all k � 0, and 
hence ‖uk+1 − uk‖ � ρτ k , for all k � 0. Thus,

‖uk − u∗‖ �
∞∑
i=k

‖ui+1 − ui‖ �
ρ

1 − τ
τ k := hτ k, ∀ k � 0.

 (iv) Since the isotropic TV is semialgebraic, so is F. It then follows that F is a KL function with 

certain exponent σ ∈ [1/2, 1), see [6] for details. If σ > 1/2, then it is straightforward to 

show by following [5, theorem 2] that ‖uk − u∗‖ � hk−
1−σ
2σ−1 for some h > 0 and all k � 1, 

i.e. the convergence rate is sublinear. If σ = 1/2, then similar to the proof of (iii), we can 
derive that the sequence {uk} converges to u∗ with the faster R-linear rate. □

4. Numerical results

In this section, numerical results are presented to demonstrate the performance of the pro-
posed TVSCAD model (2.4) and the corresponding DCA (2.13). The superior performance of 
CTVL1 compared to the two-phase method [12] in terms of recovery quality has been dem-
onstrated in [8] via extensive numerical results. Therefore, we only compare TVSCAD with 
CTVL1. For reference purpose, we also present results of TVL1. We note that the per itera-
tion computational cost of TVSCAD and CTVL1 are roughly the same since both methods 
solve a TVL1-equivalent problem. The overall computational cost of both methods are also 
comparable since they consume roughly the same number of outer iterations. Apparently, both 
methods are more expensive than solving a single TVL1 problem.

Evaluating the quality of a recovered image is a challenging task, especially when the 
ground truth is unknown. Though several measures are available when the ground truth is 
given, e.g. MSE (means square error), SNR (signal-to-noise ratio), PSNR (peak signal-to-
noise ratio) and SSIM (structural similarity index), the evaluation process has to be aided by 
human eyes in many situations. Here we choose SNR as the measure, which is commonly 
used in the literature. Let ū and u be the original and the recovered images, respectively, and 
denote the mean intensity of ū by mean(ū). The SNR (in dB) of u is defined by

SNR := 20 × log10 (‖ū − mean(ū)‖/‖ū − u‖) . (4.1)

According to our experiments, adding the bound constraint 0 � u � 1 can generally stabi-
lize the compared algorithms and improve the recovery quality. Therefore, we incorporate 
this constraint into all the compared algorithms, and the resulting algorithms will still be 
referred as TVL1 and CTVL1. In our experiments, constrained TVL1-equivalent problems, 
e.g. (2.18) for TVSCAD, were always solved by ADMM with the same set of parameters. 
It is also our experience that the isotropic and anisotropic discretizations of TV do not 
result in significantly different recoveries in terms of both visual quality and SNR. Thus, 
we simply chose the anisotropic TV in our tests, which has favorable theoretical guarantee 
for TVSCAD.

All algorithms were implemented in Matlab, and the experiments were executed on a 
Lenovo Thinkpad laptop with an Intel Core i7-3667U CPU at 2.00 GHz and 8 GB of memory, 
running 64 bit Microsoft Windows 8 and Matlab v8.6 (R2015b).
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4.1. Details of setting

The details of our experiments are summarized below.

 – Tested images. In our experiments, we chose two images to test, i.e. House (256-by-256) 
and Pepper (512-by-512), both are obtained from the USC-SIPI Image Database4. The 
two images are named house and 4.2.07 in the image data base, both of which have 
been reused a lot in the academic image processing community. The original images are 
given in figure 3. In fact, a few other nonabnormal images were tested as well. Since the 
results remain largely similar provided that relevant parameters are properly set and also 
due to the limitation of space, only results of these two images are included. The reason 
that we choose to present results of these two images is because they are widely used in 
academic research works of imaging sciences.

 – Tested blur. We tested three types of blur, i.e. Gaussian, motion and average blurs, the 
kernel of which were generated by the Matlab function fspecial. A Gaussian kernel 
obeys two-dimensional truncated and normalized Gaussian distribution and thus is deter-
mined by the kernel size and the standard deviation, an average kernel obeys uniform 
distribution, while a motion blur is determined by the length and angle of the motion. For 
Gaussian and average blurs, the tested kernel size, denoted by hsize, was set to be 9. 
For Gaussian blur, the standard deviation, denoted by std, of the tested kernel was set to 
be 10. For motion blur, we tested len = 7 and angle = 45◦. Readers are referred to the 
MathWorks documentation for details about what fspecial does and how it is done. 
We have also tested disk and pillbox blurs. Since the comparison results remain largely 
alike, we only present recovered results of Gaussian, motion and average blurs.

 – Impulsive noise. We tested the two common types of impulsive noise, i.e. SP and RV 
noise. In general, RV noise is much harder to remove than SP noise. In our experiments, 
we tested 90% SP noise and 70% RV noise.

 – Parameters: μ, τ, ε, γ1, γ2, η, and others. Now we specify the model and algorithmic 
parameters used in our tests.

 (i) The ‘best’ choice of the parameter μ is known to be problem dependent and very hard 
to find. In fact, this is largely an open problem, even for the simpler TVL2 model [45]. 
In our experiments, based on the widely used Lena image, which can also be found 
at the USC-SIPI Image Database, we first solved a sequence of bound constrained 
TVL1 problems to search for each specific case the ‘best’ choice of μ, i.e. a value 
that gives nearly the highest possible SNR, for bounded constrained TVL1 problems. 
These ‘best’ values of μ will then be used to determine the parameters for TVSCAD 
and CTVL1.

 (ii) For TVSCAD and CTVL1, the model parameter μ is set by µ = cµ∗

1−r
. Here 

µ∗ denotes the ‘best’ μ found based on the Lena image for bound constrained 
TVL1 model, c > 0 is a constant, and r denotes the noise level defined by 
(# corrupted pixels)/(# total pixels). This simple rule for setting μ is based on 
numerical experiments. We set c = 5 and c = 3 for SP and RV noise, respectively, 
which may be suboptimal but performed favourably in our tests. We emphasize that 
both TVSCAD and CTVL1 are much less sensitive in the choice of μ than TVL1 due 
to the additional correction term �k(u) at each iteration, see detailed discussions in [8]. 
Continuation on μ, i.e. starting from a small value and increasing it gradually, is also 
applied to enhance the performance and stability of the algorithms.

4 http://sipi.usc.edu/database/
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 (iii) Parameters τ and ε, which define φ in (1.4) for CTVL1, and parameters γ1 and 
γ2, which define the SCAD function ϕγ in (2.1), are also problem dependent. 
Consequently, the ‘best’ choices of these parameters are very difficult to determine. 
For CTVL1, we set τ = 2 and ε = 10−3, as recommended by the authors of [8]. 
For TVSCAD, we set γ2 = max(0.2 × 0.85k−1, 0.1) and γ1 = 0.08/k, where k � 1 
denotes the iteration counter. Our choice of γ2 is based on experiments, which per-
formed favourably in all the tested cases. It is definitely possible to adjust the rule for 
choosing γ2 case by case. However, a uniformly defined γ2 is preferred.

 (iv) The proximal term η2 ‖u − uk‖2 is added mainly to facilitate the theoretical analysis. 
In practice, the presence of this term also prevents uk+1 from deviating too much 
from uk, and thus stabilizes the algorithm. We set η to be 10−5 throughout. For 
solving the constrained TVL1 problem like (2.17), we set βw = 50, βv = 100 and 
βx = 100 uniformly for all cases, and ADMM performs very stable and efficient.

Figure 3. Tested images. Left: House (256-by-256). Right: Pepper (512-by-512).

Blurry. Blurry and noisy. TVL1: SNR 4.07dB CTVL1: Iter 15, SNR 13.50dB TVSCAD: Iter 15, SNR 15.64dB

Blurry. Blurry and noisy. TVL1: SNR 5.43dB CTVL1: Iter 15, SNR 14.79dB TVSCAD: Iter 15, SNR 14.99dB

Figure 4. Gaussian blur (hsize = 9, std = 10), 90% SP noise.
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Blurry. Blurry and noisy. TVL1: SNR 6.54dB CTVL1: Iter 30, SNR 17.37dB TVSCAD: Iter 30, SNR 16.47dB

Blurry. Blurry and noisy. TVL1: SNR 6.59dB CTVL1: Iter 30, SNR 11.57dB TVSCAD: Iter 30, SNR 11.44dB

Figure 5. Gaussian blur (hsize = 9, std = 10), 70% RV noise.

Blurry. Blurry and noisy. TVL1: SNR 3.53dB CTVL1: Iter 15, SNR 6.59dB TVSCAD: Iter 15, SNR 7.22dB

Blurry. Blurry and noisy. TVL1: SNR 4.40dB CTVL1: Iter 15, SNR 7.71dB TVSCAD: Iter 15, SNR 8.05dB

Figure 6. Motion blur (len = 7, angle = 45◦), 90% SP noise.

Blurry. Blurry and noisy. TVL1: SNR 6.10dB CTVL1: Iter 30, SNR 14.68dB TVSCAD: Iter 30, SNR 13.82dB

Blurry. Blurry and noisy. TVL1: SNR 6.51dB CTVL1: Iter 30, SNR 11.59dB TVSCAD: Iter 30, SNR 12.09dB

Figure 7. Motion blur (len = 7, angle = 45◦), 70% RV noise.
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 – Initialization. For solving TVL1 problem by ADMM, we set u0 = f  always. For TVSCAD 
and CTVL1, u0 is set to be the solution obtained from solving TVL1. To compute uk+1 
from uk by solving the TVL1-equivalent problem like (2.13), ADMM (2.18) is initialized 
from uk. Each time we launched ADMM, all the starting Lagrange multipliers are set to 
zero.

 – Stopping rule. For solving each TVL1-equivalent subproblem, the ADMM (2.18) was ter-
minated by ‖u j+1 − u j‖/(1 + ‖u j‖) � 10−4. According to our experiments, in the case 
of SP noise, the quality of recovered images does not change significantly after no more 
than 15 iterations for both TVSCAD and CTVL1, while in the case of RV noise, a few 
more iterations are usually required, see [8] for a similar conclusion. In our experiments, 
we terminated both methods after 15 and 30 iterations for SP and RV noise, respectively. 
For TVSCAD, a more practical stopping rule could be introduced depending on detecting 
the stagnation of objective function values in (2.4). However, this is not possible for 
CTVL1 since the convergence of its outer loop is unknown. Nonetheless, a practically 
effective stopping rule that performs uniformly favorable in terms of SNR deserves fur-
ther research.

Figure 8. Average blur (9 × 9), 90% SP noise.

Figure 9. Average blur (9 × 9), 70% RV noise.
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4.2. Comparison results with TVL1 and CTVL1

In this section, we present comparison results with CTVL1. For reference purpose, results of 
TVL1 are also presented. We emphasize that we have modified TVL1 and CTVL1 by add-
ing the bound constraint 0 � u � 1 to improve the recovery quality. Without this constraint, 
pixel values of recovered images may fall out of [0, 1]. In such cases, truncation or rescaling 
technique needs to be incorporated, which influences the SNR values of recovered results. We 
tested three blurs, i.e. Gaussian blur (hsize = 9, std = 10), motion blur (len = 7, angle 
= 45◦) and average blur (hsize = 9). For each blur, 90% SP noise and 70% RV noise were 
tested. Detailed experimental results are given in figures 4–9, including the blurry images, the 
blurry and noisy images and the recovered images by all the compared algorithms.

It can be see from figures 4–9 that both TVSCAD and CTVL1 outperform TVL1 signifi-
cantly for all the tested cases. It is also observed in our experiments that for low noise level 
TVL1 performs reasonably well, while TVSCAD and CTVL1 perform better. For high noise 
level, TVSCAD and CTVL1 can improve the results of TVL1, and the improvements are 
mostly significant. This is desirable and easy to understand because both methods enforce 
less fitting on likely noisy data, as a result of which the likely uncorrupted data can be fitted 
more sufficiently by attaching a parameter μ larger than that of TVL1. From figures 4–9, the 
images recovered by both CTVL1 and TVSCAD are apparently much better than those recov-
ered by TVL1 in terms of both visual quality and SNR. As we observe from the numerical 
experiments, in general both TVSCAD and CTVL1 improve SNR as the algorithms proceed. 
Moreover, the objective function value of (2.4) also decreases monotonically and quickly. 
Comparing the results of CTVL1 and TVSCAD, we see that TVSCAD performs competitive 
with CTVL1. In particular, TVSCAD performs mostly better than CTVL1 in the case of SP 
noise. For RV noise, TVSCAD is also competitive with slightly inferior performance.

We remark that the performances of both TVSCAD and CTVL1 depend on a few param-
eters, as specified at the beginning of this section. In addition, the adaptive choices of and the 
continuation strategies on these parameters also influence the behavior of the algorithms. As a 
consequence, different parameters may lead to opposite results in performances of TVSCAD 
and CTVL1. It is definitely possible to tune relevant parameters case by case to obtain much 
better results for each test. However, for nonconvex problems it is generally very challenging 
to tune an optimization algorithm to its best performance by using a unified set of parameters 
and adaptive rules. The numerical results presented here are only to illustrate the feasibil-
ity and the potential superiority of the proposed model and algorithm. Issues including the 
choice of model and algorithms parameters, the adaptive choices of these parameters and a 
practically useful stopping rule definitely deserve further investigations given the promising 
performance of the proposed TVSCAD model and the DCA.

5. Concluding remarks

We proposed, analyzed and tested a nonconvex TVSCAD model for image deblurring with 
impulsive noise corruption. To solve the nonconvex TVSCAD model, we proposed a DCA, 
which enjoys favorable convergence properties, namely, global convergence to a critical point 
of the nonconvex objective function, R-linear rate of convergence in the case of anisotropic 
TV, and at-least-sublinear convergence rate for isotropic TV regularization case. These results 
are much stronger than existing results for general DC programming. Extensive numerical 
results demonstrated that TVSCAD performs favorably. In particular, it performs much better 
than TVL1 and very competitive with the CTVL1 method [8].
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We note that the idea of this paper can be extended to solve more problems. For example, 
color image processing based on the multichannel TV regularization proposed in [57]. The 
idea of DCA can also be extended to solve problems with other nonconvex penalty function, 
such as folded concave functions [29]. At present, it remains largely unexplored on how to 
adaptively choose the weighting parameter μ and the SCAD parameters γ1 and γ2, which 
are clearly problem dependent. Our choice in this paper could be far from optimal for cer-
tain specific instances. Another problem is how to determine a ‘better’ DC decomposition 
of the objective function. Our choice in (2.15) was motivated by the easiness of subproblem 
and better convergence properties of the whole algorithm. In fact, this problem is known as 
regularization technique in DC programming and kept open for a long time. Moreover, the 
theoretical properties of the TVSCAD model is definitely very important in understanding its 
performance and deserves further investigations. Related results for regularized least squares 
problem have been presented in [20, 21, 39, 40]. We leave these issues to further research.
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