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On Global Linear Convergence in Stochastic
Nonconvex Optimization for
Semidefinite Programming

Jinshan Zeng

Abstract—Nonconvex reformulations via low-rank factorization
for stochastic convex semidefinite optimization problem have at-
tracted arising attention due to their empirical efficiency and scal-
ability. Compared with the original convex formulations, the non-
convex ones typically involve much fewer variables, allowing them
to scale to scenarios with millions of variables. However, it opens a
new challenge that under what conditions the nonconvex stochastic
algorithms may find the population minimizer within the optimal
statistical precision despite their empirical success in applications.
In this paper, we provide an answer that the stochastic gradient
descent (SGD) method can be adapted to solve the nonconvex re-
formulation of the original convex problem, with a global linear
convergence when using a fixed step size, i.e., converging exponen-
tially fast to the population minimizer within an optimal statistical
precision in the restricted strongly convex case. If a diminishing
step size is adopted, the bad effect caused by the variance of gra-
dients on the optimization error can be eliminated but the rate is
dropped to be sublinear. The core of our treatment relies on a novel
second-order descent lemma, which is more general than the exist-
ing best result in the literature and improves the analysis on both
online and batch algorithms. The developed theoretical results and
effectiveness of the suggested SGD are also verified by a series of
experiments.

Index Terms—Stochastic gradient descent, semidefinite opti-
mization, low-rank factorization.
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1. INTRODUCTION

HE following semi-definite optimization problem, that is,
minimizing a finite sum of convex functions with the pos-
itive semidefinite (PSD) constraint,

n

f(X):%Zfi(X) subject to X =0, (1)

i=1

min
X eRpxp

has been found in a wide range of applications like matrix sens-
ing [25], [40], ordinal embedding [1], [8], community detection
[29], synchronization [6], 1-bit matrix completion [13], [18],
phase retrieval [14], [15], subspace tracking [5], principle com-
ponent analysis [4], [38], recommendation systems [22] and pty-
chography [24], etc.

Putting in a statistical learning background, problem (1) arises
as empirical risk minimization where each f; measures the loss
on the i-th sample from the dataset Z" := {Z3, ..., Z, }, which
is generated independently from some identical yet unknown
probability distribution Pz, with a low-rank parameter matrix
X €SP, where S, denotes the set of symmetric and positive
semidefinite matrices of the size p x p. In this setting, f;(X) =
((X; Z;) for some function £ : S”_ x Z — R, often a negative
logarithmic likelihood plussing a convex regularization [33], and
in this case let

X' € arg min Ez[((X; Z")], (@
Xesh,

be any minimizer of the population risk Ezn» [¢(X; Z™)] where
Ez» denotes the expectation over product measure [[;" | Py,.
Since the distribution Pz, is generally unknown, thus, the empir-
ical risk minimization problem (1) is commonly used as an alter-
native one. Henceforth, we call X" the population minimizer; a
global optimum of problem (1), denoted by X *, will be called as
empirical minimizer whose rank is denoted by r* := rank(X™).
Thus, problem (1) can be reformulated as the following rank
constrained problem,

1 n
i X)=— (X)) s.t. rank(X) < r*, 3
in f(X) n;f( ) s.t. rank(X) < 7%, (3)
where X * is also a global optimum of problem (3).
In applications, r* is generally unknown and for the sake of
reducing computational cost, one often looks for the following
low rank approximate problem with r» < r* instead of solving
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Tlustration of the error decomposition form (5).

the exact rank-constrained problem (3), that is,

1 n
Xngé% f(X)= - Z_Zl fi(X) st.rank(X) <r. (4
Iterative algorithms like (stochastic) gradient descent method
are widely used to solve problem (4), which return a sequence
{X"}1en of rank-r semidefinite matrices. Using the triangle in-
equality, the distance between the ¢-thiterate X* and X", called
recovery error or total error in this paper, admits the following
decomposition,

|X' = X"|p < |IX' = X]F

recovery error optimization error

+ X =X e X=X e (5)

approximation error statistical error

where X' is the rank-r best approximation of X* via truncated
singular value decomposition (SVD). Such error decomposition
form is illustrated in Figure 1.

There are three terms in the error decomposition (5). The
first term characterizes the error between X* and X . since the
rank of X* is at most 7. Note that the first error term is mainly
due to the used optimization algorithm that will be discussed
below, and thus named as the optimization error. The second
term represents the rank-r best approximation error, which can
be generally bounded as follows:

(r =r)- o (X7) <[IX7 = XTp < (7" = 7) - 0, (X7),

where o; (X™*) is the i-th largest singular value of X*. It is obvi-
ous that | X — X*||p = 0whenr = r* and || X — X*||Fr >0
when r < 7*. Such error is mainly introduced by the use of a
smaller hypothesis space, i.e., the rank-r hypothesis space, to
parsimoniously explore the larger model space where empirical
minimizer lies in, and thus, called the approximation error. The
last term implies the error between the empirical minimizer X*
and the population minimizer X*", and thus we name it as the
statistical error or sample/estimate error throughout the rest of
this paper.

There has been an extensive study in statistics on characteriz-
ing the statistical error bound || X*" — X*||p < 8(n, d) in var-
ious scenarios, with probability at least 1 — § (6 € (0,1)). For
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example, it is shown in [31], [32] that: under restricted strongly
convex (RSC) condition, the minimax optimal error rates can

be achieved at S(n, §) &~ O(1/ =L log p) for matrix sensing or

completion problems, up to a logarithmic factor. In this case, the
square loss with matrix nuclear norm regularization is chosen
for f;(X) and X' recovers the unknown true parameter from
Gaussian noise. Moreover, for 1-bit matrix completion problem
using the logistic loss, it is shown in [13], [18] that the minimax
optimal error rate S(n, §) ~ O(y/r*p/n). Besides these special
cases, a general treatment can be seen in [33], which enables us
the following assumption in this paper.

Assumption 1 (Statistical error): Given n and a confidence
0 € (0,1), let S(n, J) be the optimal statistical error bound of
problem (1), that is,

| X" — X*||p < S(n,§)with probability at least 1 — 6.

Moreover, it holds S(n,d) — 0 as n — oc.

Now the crucial thing is to bound the optimization error which
relies on the particular algorithm in choice. There are many al-
gorithms in optimization for solving problem (1), mainly in-
cluding the traditional first-order methods like the well-known
projected gradient descent method [34], interior point method
[2], and more specialized path-following interior point methods
which use the (preconditioned) conjugate gradient or residual
scheme to compute the Newton direction (for more detail, see
the survey [30] and references therein). However, most of the ex-
isting theoretical analysis of these traditional methods are based
on the optimization framework, and mainly focus on the (even-
tual) convergence and rate of the iterative sequence itself, that
is, under what conditions, the generated sequence converges as
t — oo, and more frequently, to a stationary point, while the
statistical error between the limiting point and the population
minimizer X" is generally not taken into consideration. More
importantly, most of these traditional optimization methods are
not well-scalable in practice mainly due to the PSD constraint,
ie, X > 0.

To circumvent this difficult constraint, the idea of low-rank
factorization was adopted in optimization literature [11], [12]
and became very popular in the past few years due to its empirical
success (e.g., [26]). Specifically, given a small positive integer
r, low-rank factorization recasts the rank-r approximate prob-
lem (4) into an unconstrained problem by introducing another
rectangular matrix U € RP*" with r < p such that X = UU7,
Let g(U) := f(UUT) and problem (4) leads to,

ymin - g(U). ©)
Problems (1) and (6) will be equivalent when r = r* in the sense
that problem (6) can find a global optimum X* of problem (1)
with rank(X*) = r*. Since the PSD constraint has been elimi-
nated, the recast problem (6) has a significant advantage over (1),
but this benefit has corresponding cost: the objective function is
no longer convex but instead nonconvex in general. Even for
the simple first-order methods like the factored gradient descent
(FGD) and gradient descent (GD) for problem (6), their global
linear convergence' remains unspecified until the recent work

By global linear convergence, it means that the algorithm converges to a
global optimum exponentially fast.
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in [7], [42]. The analysis in [7] only considers the optimiza-
tion and approximation error terms in (5), while the analysis in
[42] only considers the optimization and statistical error terms
in (5) with » = r*, under the statistical framework established
in [31]. However, both FGD and GD suffer the scalability issue
that when applied to the large scale applications with a big n,
evaluation of n derivatives is expensive or prohibitive.

To meet this challenge, online or stochastic algorithms [37]
have been widely adopted nowadays, that is, at each iteration,
we only use the gradient information of one sample (or one
mini-batch of samples), which is randomly chosen from the total
samples. [19] proposed a nonconvex stochastic gradient descent
(SGD) approach for the low-rank least squares problem with
Gaussian ensembles, and developed its convergence based on
the martingale technique. However, their analysis is only lim-
ited to the square loss and the noise models satisfying rank-1
sampling condition (see, [19, Condition 2]). Moreover, the ex-
actrank r* is imposed in their analysis. Recently, [27] proposed a
SGD algorithm for online matrix completion problem and estab-
lished its linear convergence based on the incoherence property.
However, their analysis is limited to matrix completion with
square loss and noiseless observations, and also focuses on the
case r = r*. It is still open how to deal with more general non-
linear loss functions such as noisy matrix sensing and nonmetric
embedding. [45] proposed an accelerated SGD called stochastic
variance-reduced gradient (SVRG) algorithm for matrix sens-
ing and established the global linear convergence based on the
restricted isometry property (RIP), which is generally stronger
than the restricted strongly convex (RSC) condition. Later, [43]
extended the algorithm in [45] to a more general low-rank matrix
recovery problem and developed the global linear convergence
mainly based on RSC condition and under the statistical frame-
work established in [31]. Similar to [27], both [45] and [43]
only considered the special case, i.e., 7 = r*. So far, most of
the existing works on stochastic algorithms do not consider the
general case of < r* with nonlinear losses, where the approx-
imation error is no longer zero and should be handled via some
special treatments, which is the gap to be filled in this paper.
Moreover, although SVRG achieves linear convergence, it still
needs to compute full gradients over all samples in its outer loop,
which is impractical in some big data problems though sharing
the same theoretical rate with the batch gradient descent. In this
sense, SGD is still a fundamental solution for large scale appli-
cations. To our surprise, as we shall see soon, even the simple
SGD equipped with a constant step size choice that is widely
used in applications, can be shown to achieve global linear con-
vergence (i.e., converging to a global optimum exponentially
fast) toward an estimate with statistical precision. This is due
to the existence of statistical error above, one does not need to
reduce the variance of stochastic gradients for sequence conver-
gence toward a particular minimizer; any point within a ball of
optimal statistical precision will be good.

A. Contributions

Based on the error decomposition (5), we establish the global
linear convergence (i.e., converging to a global optimum expo-
nentially fast) and early stopping criterion of SGD for a more
general nonlinear objective function and in the more practical
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algorithmic settings, that is, 7 < r* and the existence of statisti-
cal error, under the smooth and RSC assumptions, and certain an
initialization scheme. Our main theorem can be stated as follows
(its precise statement is shown in Theorem 2).

Main Theorem 1: Under the smooth, RSC and rank-r ap-
proximation error assumptions, SGD using a sufficiently small
step size will converge to a small neighborhood of X expo-
nentially fast with a proper initialization, which can be obtained
easily by certain initialization scheme. Furthermore, suppose
that the statistical error assumption holds, and if r is taken ap-
propriately such that the rank-r approximation error is no more
than the statistical precision S(n, d), then after O(log ﬁ) it-
erations, with high probability, SGD can recover the population
minimizer X' within a statistical precision O(S(n, d)).

Besides the fixed step size above, we also establish the simi-
lar results for SGD with the diminishing step sizes, but the rate
degenerates to be sublinear. It is worth noting that if there is no
statistical error, the diminishing step sizes are generally neces-
sary to eliminate the effect brought by the variance of samples.

B. Main Novelty

The main novelty of this paper is to establish the global lin-
ear convergence of SGD with a fixed step size for the low-rank
stochastic semidefinite optimization problem, under some more
general and weaker conditions than those in the literature. The
comparisons between the existing works and this paper are pre-
sented in Table I. All these global linear convergence results are
generally established by two steps, i.e., establishing the local
convergence  to the global optimum firstly with a proper good
initial guess, and then showing such proper initial guess can be
obtained by some initialization schemes. For a fair comparison,
we present the local convergence guarantees of all these algo-
rithms, since their initialization schemes can be very similar,
i.e., using one or several iterates of certain convex methods (say,
projected gradient descent).

Compared to [27] and [45], this paper considers a general
nonlinear loss, while [27] and [45] only consider the square loss.
The main assumptions used in [27] and [45] respectively are the
incoherence and restricted isometry property (RIP), which are
generally stricter than the restricted strongly convex (RSC) con-
dition used in this paper. Moreover, when applied to the problems
considered in both [27] and [45] (in this case, x = 1), the radius
of the initialization ball required in this paper is generally larger
than both of them (see, Table I).

Compared to [43], which extends [45] from the square loss to
a general nonlinear loss, the radius of initialization ball of [43] is

% while that of this paper is %

than %, where « is the “condition number” of the objective
function f (to be specified in (10)), o,.(X}) is the 7-th largest
singular value of the rank-r approximation X of the optimum
X* with < r* := rank(X™). Moreover, [43] only considers
the case of = r*, while this paper considers a general case of
r < r*. Similar claims also hold in the comparison between [42]

and this paper.

, which is larger

2The local convergence means such kind of convergence starting from an
initialization close to the global optimum.
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TABLE I
COMPARISONS ON THE LOCAL CONVERGENCE GUARANTEES OBTAINED IN THE EXISTING WORKS AND THIS PAPER. THE NOTATION x MEANS SUCH KIND OF
ERROR IS NOT CONSIDERED. THE TERMINOLOGIES IN THE FIRST ROW ARE THE ABBREVIATIONS OF “OPTIMIZATION ERROR”, “APPROXIMATION ERROR”,
“STATISTICAL ERROR”, “L0OSS FUNCTION”, “ASSUMPTION” AND “CONVERGENCE RATE”, RESPECTIVELY. IT SHOULD BE POINTED OUT THAT [45] AND [43]
CONSIDERED THE SVRG WITH OPTION-II (I.E., THE OUTPUT OF THE INNER LOOP IS RANDOMLY TAKEN FROM THE INNER LOOP UPDATES VIA A UNIFORM
RANDOM WAY), WHILE [44] CONSIDERED THE SIMILAR CONVERGENCE OF SVRG WITH OPTION-I (i.e., THE OUTPUT OF THE INNER LOOP IS TAKEN AS
THE LAST ITERATE OF THE INNER LOOP). THE LINEAR CONVERGENCE OF SVRG CONSIDERED IN [44] IS SHOWN IN THE METRIC £(U*, Uy) := ||U — U ||%,

UNDER THE INITIALIZATION REQUIREMENT & (U°,ux)

= O(#) AND RSC. IT CAN BE OBSERVED THAT THE METRIC & (U, U}:) Is GENERALLY

STRICTER THAN &(U°, U) USED IN THIS PAPER.

opt err  approx err  statist err loss assump [1X* - X! r EWU°, U rate
SGD 1) v X X square  incoherence 0 %ﬁ(*) linear
SVRG ) v X v square RIP 0 Ir <1)6( o) linear
SVRG 43 v X v general RSC 0 %f*) linear
GD 421 v X v general RSC 0 Url(gi ) linear
FGD 71 v v X general RSC O( % ) Of % ) linear
FGD (i paper v v v general  RSC o)) Lo ey
SGD (fixed, this paper) v v v general RSC o2 g( ) ) (v2- 12) ZT X" linear

Compared to [7], this paper significantly improves the orders
of both rank-r approximation error and the radius of initializa-
tion ball. More specifically, the requirement on the rank-r ap-

proximation error can be relaxed from the order O(#)&)))

to O(%X)), and the requirement on the radius of initialization

can be relaxed from O(%) to O(#) (see Table 1),
where 7(X) is the condition number of X

Besides more general cases considered and weaker assump-
tions imposed in this paper, the proof technique of this paper is
also significantly different from the others. Our key technique for
the proofs is the establishment of a novel second-order descent
lemma, which generalizes the lower bound in [7, Lemma 14]
with a larger domain. As a by-product, we significantly weaken
the convergence conditions of FGD derived in [7] and then es-
tablish the similar results of Main Theorem 1 via applying our
developed analysis framework (see, Table I). We can also show
that the order O(o,.(X})) on the radius of the initialization is
tight in the sense that we can find a counter example such that
FGD can not converge to the global optimum once the initializa-
tion radius is not smaller than o,.(X*), as shown in Proposition
2. Moreover, the effectiveness as well as the developed theoret-
ical results of the suggested SGD algorithm are verified by a
series of numerical experiments.

C. Organization and Notations

The rest of this paper is organized as follows. Section II
presents the main convergence results. Section III extends the
developed framework to FGD. Section IV presents some related
work. Section V provides a set of numerical experiments to
demonstrate the effectiveness of the considered algorithm.
We conclude this paper and point some future directions in
Section VI. All the proofs are presented in Appendix.

For any X,Y € RP*P_ their inner product is defined as
(X,Y) =tr(XTY). Forany X € RP*P, || X||r and || X||2 de-
note its Frobenius and spectral norms, respectively, and o, (X))
and oy,ax (X)) denote the smallest and largest strictly positive sin-

gular values of X, denote 7(X) := %, with a slight abuse

of notation, we also use 01(X) = opax(X) = || X2, and X,
denotes the rank-r approximation of X via its truncated singu-
lar value decomposition (SVD) for any » < p. I,, denotes the
identity matrix with the size p X p. We will omit the subscript p
of I,, if there is no confusion.

II. MAIN RESULTS

In this section, we first adapt the stochastic gradient descent
method to solve problem (1), then present our main results, and
latter illustrate the novelty of our proof techniques.

A. Stochastic Gradient Descent Method

Throughout the paper, we assume that f is a symmetric func-
tion, i.e., f(X) = f(XT).Let X = UUT, then the gradient of
g(U) = f(UU") is

Vg(U) = (VUUT) + VF(UUNTU =2V f(X)U.

Factored Gradient Descent (FGD): FGD can be described
as follows: let U* be the ¢-th iterate and X! := U'(U*)T, then
U'*1 is updated according to the following

Uttt =U' =V (XU, (7
where 77 > 0 is a step size.

Stochastic Gradient Descent (SGD): The SGD method for
problem (1) can be described as follows: at the ¢-th iteration,
pick an i; € {1,...,n} via a uniformly random way, and then
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update the next iterate via
Ut =U" -V fi, (XU, 8)

where 7; > 0 is a fixed (or diminishing) step size. Since i; is
uniformly sampled, it holds

Es, [V f;, (XU = V(X')U*, Vt € N. ©)

Initialization: One of commonly used strategies is to con-
struct the initialization directly from the observed data like in
the applications of matrix sensing, matrix completion and phase
retrieval (say, [7], [16], [17], [25], [35], [46]). Such strategy is
generally effective for the case that the objective function has a
small x, generally the least squares case, while for the general
function as considered in this paper, another common strategy is
to use one of the standard convex algorithms (say, projected gra-
dient descent (ProjGD)). Some specific implementations of this
idea have been used in [7], [40], [42]. Motivated by the existing
literature, this paper also suggests using the ProjGD method to
generate the initialization U°. More specifically,

a) let X° be the T-th iterate of ProjGD starting from zero
(that is, X =0, X' = Projg (X' — 7V f(X'1)),
t=1,...,T, X" = XT);

b) then let the initialization U° be the rank-r factorization of
X9 ie., X0 = UoU°T.

B. Assumptions

In the following, we provide some basic assumptions used
in this paper, which are regular and from the existing literature
(say, [7]).

Assumption 2: The objective function f:S% — R is L-
smooth for some constant L > 0, i.e., its gradient V f is Lip-
schitz continuous with constant L. Moreover, f is (u,7)-
restricted strongly convex (RSC) for some constant ;4 > 0 and
a positive integer r < r*, that is, it is convex, and for any
X,Y € S% with at most rank r,

FY) 2 F(X) + (VFO),Y = X) + S|y - X]

Such assumption is regular and widely used in literature (say,
[33]). Let U € RP*" be a rank-r factorization of X' satisfying
U:UT = X. Based on Assumption 2, we define

Ri= 0= (V2—-1)r, (10)

7 := min (- v0)* 1
T + 2y +20)7(0))

¢ =01 —17/2). (11)

It is obvious that 0 < £ < 1/2. We also need an assumption on
rank-r approximation error.
Assumption 3 (rank-r approximation error): The following
holds
1X; = X" |lr < (V2= 1)EV267 - 0, (X),

T

where x and ¢ are specified in (10) and (11), respectively, and
o, (X}) is the r-th largest singular value of X*.
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Such assumption naturally holds for » = r*, while when r <
r*, it might be satisfied if the singular values of X* possess
certain compressible property * or near low-rank property [31].
Under the above assumptions, we define several constants as
follows:

(V2 - 1)*¢02(X;)

A= — — & X — X%, (12)
- (V2 - 1L€UT(X:) _ VA,
e V22 ll)fg’"(x’*‘) + VA, (13)
By = sup B [|VAOUTU - VAUUNU|Z,
{(U:E(U,U:) <}
(14)
LA ¢
e b rems reind (4
For any 7 € (0, max), we define
" (V2-1éor(X;) [y By o
K L
v = (v2- 1L€UT(X:) /A - KLBO. (17)

It is easy to check v; < <~ <, < yo0,.(X}).

C. Linear Convergence of SGD With Fixed Step Size

In order to characterize the convergence of SGD, we need the
following metric,

E(U, V) :=min||U - VR||%,Y U,V € RF*",
ReO

where O is the set of orthogonal matrices of size r x r. Such
metric has been used in [7] and some other references like [40].
We first give a locally linear convergence of SGD with a fixed
step size starting from a proper good initialization within a pre-
scribed ball, shown as follows.
Theorem I (Local linear convergence of SGD with ny = n):

Let {U"} be a sequence generated by SGD (8). Let Assumptions
2 and 3 hold, and 7 € (0, 7yax ). The following hold:

1) Suppose that 7 < E(U°,U;) <~7. Let p:=1— % .
(v —EWO°, U)) € (0,1), then
al) {E[E(U',U;)]} is decreasing,
a2) B[|X"]lo] < 2(yu + [IX7]l2). where X' =U"

(UHT, and
a3) E[E(U',U;)] < (E(U°U;) =) - p* + /s

2) If EWU°,U;) <+, then E[E(U',U;)] <~ for any

teN.

The proof of Theorem 1 is provided in Appendix C. Parts
(1) and (2) of Theorem 1 show certain locally linear con-
vergence (i.e., converging to a global optimum starting from
some proper initial point) of SGD, as depicted in Figure 2(a).
From Figure 2(a), starting from an initialization lying in a 7,!-
neighborhood of U, SGD converges exponentially fast until

30;(X™*) decays in a power law, i.e., o;(X*) < Ci™9,i=1,2,...
some constants C, ¢ > 0.

,p for
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(@ SGD (1, O("))

(b) SGD (:, O(4))

Fig. 2. Local convergence paths of SGD with different step sizes.
achieving a much smaller ~,’-neighborhood of U} in expecta-
tion, then stagnates and never jumps out from this smaller neigh-
borhood. From (16)-(17) and by assumptions of Theorem 1, fyl"
and ;! satisfy

(V2+ 1) slIX* - X7F  2(V2+1)nBy _

18
20, (X)) porxp 019
(V) RIX - X 4 (V24 1) o
N o (X7) por(X5)
2 —1)o,. (X}
LNy
K
- (V2-1)éon(X7) N (V2 - 1)2€202(X;)  4n€Bo
- K K2 L’
(19)
where the third inequality holds for 0 < 1 < Npax < 4@—@0 and

the definition of A (12). This implies that the radius of the lim-
iting ball (i.e., 7;") is intrinsically related to || X* — X || and
1By, while the radius of the initialization ball (i.e., ;]) is intrin-
sically related to o,.(X}). Particularly, when r = r*,

"< 4(V2+1) nBO,’yﬂ - (V2 - 1)£UT(X*).
NUT’(X:) K

Since 7 can be sufficiently small, (20) implies that the radius of
the initialization ball is generally much bigger than the radius of
the limiting ball.

Theorem 1 shows the locally linear convergence of SGD with
a fixed step size starting from a proper good initial point. Thus, it
is crucial to show whether such proper initial point can be easily
achieved in practice. In the following, we provide a proposition
to show that such a desired initial point can be easily obtained
by the suggested initialization scheme, i.e., only few iterations
of ProjGD are needed.

Proposition 1 (Feasibility of initialization scheme): Let As-
sumption 2 hold with 1 < x < 64(+/2 — 1) (in this case, £ =
1/2), and r = r*. Let U° be generated by the initialization
scheme described in Section II-A. If

(V2 - 1)%07(X7)
RIXHE

(20)

T > logy_,.1 21

then £(U°, U*) < (2=1ox(X0) .

Similar result of Proposition 1 has been established in [42]
for the gradient descent method. According to [42, Theorem
5.7], the condition on « is x € (1,4/3), while the requirement
in Proposition 1 is x € (1,64(y/2 — 1)], which significantly
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relaxes the condition in [42]. The proof of Proposition 1 is pro-
vided in Appendix E.

With the help of Proposition 1, we can boost the locally linear
convergence of SGD with a fixed step size shown in Theorem 1
to the following globally linear convergence.

Theorem 2 (Globallinear convergence of SGD withn, =n):
Let Assumption 2 hold with 1 < x < 64(v/2 — 1), and r = r*.
Let {U'} be a sequence generated by SGD with U° via the
initialization scheme in Section II-A (where T satisfies (21)),
and 7 € (0, Pmax) (Where 1y,.x is defined in (15) with € = 1/2).
Then for any ¢t € N,

EEU, U] < (€W U7) =) - 5+

where 7, is defined in (16), and p is defined in Theorem 1.

Furthermore, suppose that Assumption 1 holds, and if

0 <1 < min{Nmax, %}, then after 7* = O(log

(ﬁ)) iterations, with probability at least 1 — ¢, the following
holds

E[| X — X' p] = O(S(n,8)), ¥t > T*.

As demonstrated by the final part of Theorem 2, if there is a
statistical error (possibly introduced by the use of noisy data or
finite samples), then it is not necessary for SGD to run amount
of iterations to achieve a high convergence precision, but fewer
iterations (in the order of O(log(1/S(n,d)))) are sufficient to
achieve the statistical precision S(n,d) with high probability,
as long as r is taken appropriately such that the rank-r approx-
imation error is smaller than the statistical error. In this sense,
the final part of Theorem 2 gives certain early stopping criterion
of SGD. Moreover, Theorem 2 shows that the practical perfor-
mance of SGD may be improved via gradually shrinking the
step size (but not necessary diminishing to 0) during the update
procedure. We leave this in our future work.

D. O(1/t)-Convergence of SGD With Diminishing Step Size
By Lemma 4 in Appendix A,

IX* = X2lp < 2+ VAU 2 VEU! UF)
<3|Uxll2vEWU, UY)

due to 9 < v/2 — 1. Based on this inequality and (18), even if
| X — X*||F = 0, the optimization error does not approach to
0but to the order O(\/nBy7(X;) /1) mainly due to the variance
term By. In order to circumvent this issue, the diminishing step
size is generally adopted for the update of SGD, that is, 7, is
assumed to satisfy: > ;- o7 = 0o and Y, 17 < co. In this
paper, without loss of generality, we choose

__n
t+1’

for some 7 € (0, Nmax ), Where 7max is specified in (15). Sim-
ilarly, we can define two positive sequences {7/} and {7/} as

follows
o () [y B
K L 7’
e V20 11)5”()(:) +4/A- 47%530. (23)

e (22)

S

0. (

"=
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Then 7} is decreasing and ~/, is increasing with lim;_,., 7} =
and lim;_,o 75, = vy, and forany t € N, v, <~ <7/ <471 <
’yf,, < Y., Where v; and v,, are specified in (13).

Theorem 3 (Local convergence of SGD with diminishing n;):
Let {U'} be a sequence generated by SGD with 7, as in (22).
Let Assumptions 2 and 3 hold. The following hold:

1) Assume that U satisfies v, < £(U°,U}) < ~7. Then

there hold
al) {E[E(U,U;)|} is decreasing,
a2) E[| X'||s] < 200 + 1 ]o). and
a3) EE(U",U7)] — v = O(1).

2) IfEWU°,U}) < v, then E[E(Ut, U:)] <v,VteN.

Parts (1) and (2) of Theorem 3 establish the global conver-
gence and sublinear rate of SGD with diminishing step sizes in
expected error £(U*, U). Its convergence path is illustrated in
Figure 2(b). It is well known that the rate O(1/t) is optimal for
SGD in the vector setting (see, [9] and reference therein). Par-
ticularly, if » = r*, then ; = 0. In this case, Theorem 3 shows
that SGD with diminishing step sizes can exactly recover the
global optimum X* in expectation. However, when there is a
statistical error, exact recovery of X* might be not desired, in-
stead, we only need to run O (1/S(n, 0)) iterations such that the
algorithm can find the population minimizer X" within an op-
timal statistical precision. It is worth noting that Theorem 3 also
holds for generic diminishing step sizes. The proof of Theorem
3 is presented in Appendix D.

Similarly, by Theorem 3 and Proposition 1, we can establish
the globally sublinear convergence of SGD with diminishing
step size, shown as follows.

Theorem4 (Global convergence of SGD with diminish. n;):
Let Assumption 2 hold with 1 < k < 64(\/5 —1),and r = r*.
Let {U'} be a sequence generated by SGD with U° via the
initialization scheme in Section II-A (where T satisfies (21)),
and 7, is defined as in (22). Then fort = 1,2, .. .,

1
Bl U2 - =0 (7).
Furthermore, suppose that Assumption 1 holds, then after
T = O(ﬁ) iterations, with probability at least 1 — &, the
following holds

E[|X! — X[ 5] = O(S(n,d)),Vt > T*.

E. Main Technique Novelty: Second-Order Descent Lemma

Our key development for the proofs is a second-order descent
lemma, which generalizes the lower bound in [7, Lemma 14]
with a larger domain.

Lemma 1 (Second-order descent lemma): Let Assumption 2
hold. Forany U € RP*" let X = UuT, Qu be abasis of the col-
umn space of U, and Py := QuQF. If E(U,U;}) < vo0,(X])
for some 7y, specified in (10), then the following holds

2<Vf<X>U, U—Vy) > (V2= 1o (X))EWU,UY)
LEXULUY) + fHPUVﬂ M3 — 5|\X* - X%,

(24)

25

where Vj; := U} R}, and R}, := arg mingeo ||U — U} R||%.
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2nd-orderdescent lemma (this paper)

=N - lo, (X))

c.(X))

- 100°x° 77 (X))
~

V/ “1st-orderdescent lemina

® (Bhojanapalli gt al., 2416)

Fig.3. Illustration on the second-order descent lemma (Lemma 1) with a larger
domain of radius O (o, (X)/k) (black), than the previous (first-order) descent
lemma with smaller domain of radius O(o,-(X)/k272(X})) (red).

Lemma 1 is similar to [7, Lemma 14], in which the bound is
2V f(X

4
+ v

\U,U = V) > 0.3u0,(X;) - E(U, U})

L * *
WUIF = S1X7 = X70E (25)

the E(U,U) < mpettsley =
O( or(X7)

m) which generally admits a smaller domain than

ours: E(U,U}) < (ﬂflfT(X’t) = O(”"(,jq)), as depicted in
Figure 3. To achieve such a more general lemma, in addition
to the first order term of £(U,U;) which has been used in
literature, the second order term £2(U,U;) is introduced to
characterize the lower bound of 2(V f(X)U,U — V), where
the name second-order descent lemma comes. It leads to our
relaxed conditions for both SGD and FGD (shown latter). Proof
details are provided in Appendix B.

under assumptions:

III. EXTENSIONS AND DISCUSSIONS

In this section, we apply the established proof technique to
FGD and improve the existing convergence results in [7], then
give some discussions on the radius of the initialization ball.

According the similar proof of Theorem 1 with By = 0, we
can easily derive the following improved convergence results of
FGD.

Corollary 1 (Global linear convergence of FGD): Let {U*}
be a sequence generated by FGD (7). Let Assumptions 2 and 3
hold, and 0 < 1 < m Then all claims in Theorem

1 (1) and (2) hold without expectation, where ~,’, yg and p in
Theorem 1 should be replaced by y;, v, and p := 1 — L2 - (y,, —
EUY,UY)) € (0,1), respectively.

Moreover, if 1 < k < 64(\/§ — 1), r=7r* and T satisfies
(21), then for any t € N,

EU,U;) < (EW,UY) = m) - p' + e
Furthermore, suppose that Assumption 1 holds, then after

T = O(log(3 5T, ))) iterations, with probability at least 1 — 9,
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(a) Iterative error (b) Iterative error of FGD

Fig. 4. Experiments for matrix sensing problem. It requires about 350 and
4 x 10* epochs for SGD (diminish) and FGD, respectively, to achieve the pre-
cision 3.2 x 1077,

the following holds
X! — X p = O(S(n,0)), vt > T*.

From Corollary 1, we significantly weaken the convergence
conditions of FGD derived in [7]. More specifically, the require-
ment on the rank-r approximation error can be relaxed from
the order O(-% E(T}((;()T)) to O(UT(:(: )), and the requirement on

the radius of initialization can be relaxed from O(%) to

O(%), where « is the “condition number” of the objective
function f (specified in (10)), 0,.(X}) and 7(X) are respec-
tively the r-th largest singular value and the condition number
of X". We can also show that the order O(c,-(X}")) on the radius
of the initialization is tight in the sense that we can find a counter
example such that FGD can not converge to the global optimum
once the initialization radius is not smaller than o,.(X}).
Proposition 2 (Necessity of order O(o,(X}))): Suppose

that r» = r*. There exists a counter example (shown in
Appendix F) such that £(U°, U}) = o,.(X}) and the other con-
ditions in Corollary 1 hold, but FGD does not converge to X *.

IV. RELATED WORK

It is well-known that the most intuitive benefit of stochastic
gradient descent (SGD) method is that SGD employs informa-
tion (a cheaper gradient at each iteration) more efficiently than
the batch gradient descent method, while its main disadvantage
is the slower convergence due to the variance of the stochas-
tic direction [9]. To address this limitation, methods endowed
with variance reduction capabilities have been developed. One
of the typical methods is the stochastic variance reduced gradi-
ent (SVRG) [28]. Two loops including an inner loop and outer
loop, are employed in the iterate of SVRG. Two options are
introduced to update the outer loop from the inner loop, one
is to take the last iterate of the inner loop (Option I) and the
other one is to pick randomly from the inner loop (Option II).
In the vector case (i.e., the argument variable is vector), the lin-
ear convergence of outer loop with Option II is proved in [28],
while the linear convergence of SVRG with Option I (as well
as adopting Barzilai-Borwein step size strategy) is provided in
[39]. More specifically, SVRG performs linear convergence (in
expectation) of the outer loop via mainly exploiting an inner
loop to reduce the variance of the stochastic direction. As we
can see from Theorem 1, the negative effect of the variance in-
troduced by the stochastic direction can not be eliminated if we
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use a fixed step size, while it can be eliminated via using the
diminishing step size as shown in Theorem 3, however, in the
diminishing step-size case, the convergence speed degrades to
be a sublinear rate (i.e., O(1)).

Besides such type of convergence results developed in this
paper, there is another type of the convergence results of SGD
and SVRG for nonconvex optimization, that is, the convergence
to a stationary point, which is generally characterized by the
decay of the term E[||V f(x!)||3]. Such kind of results can be
found in many recent works (say, [3], [21], [36]). In [21], the
convergence rate of SGD is proved to be O(ﬁ) in the sense

that E[||V f(2%)|3] < O(#), t=1,...,T. Such rate can be

improved to O(%) for SVRG as shown in [3], [36]. It can be
observed that this type of convergence results is very different
with the type established in this paper, in the sense that the
convergence results established in [3], [21], [36] focus on the
convergence to a stationary point and the convergence rates are
non-asymptotic, while the convergence results obtained in this
paper are about the convergence to a global optimum and the
convergence rates are asymptotic.

V. NUMERICAL EXPERIMENTS

In this section, we implement two applications to show the ef-
fectiveness of the proposed algorithm and also verify our devel-
oped theoretical results. The code is available in https://github.
com/alphaprime/Stochastic_Factored_Gradient_Descent.

A. Matrix Sensing

We consider the following matrix sensing problem

] 1 n )
win f(X) = 5~ ;(bl — (4, X))?,
where X € RP*P is a low-rank matrix, A; € RP*P is a sub-
Gaussian independent measurement matrix of the i-th sample,
b; € R, and n € N is the sample size.

Specifically, we let p = 128, the optimal matrix X* :=
U*U*T be a low-rank matrix with rank(X*) = 4 and the sam-
ple size n = 8p. For both FGD and SGD, we take r = r*, and
construct the initialization U empirically via 10 iterations of
projected gradient descent. For FGD, we use 1 = m,
where L is the Lipschitz constant of V f. For SGD, we use a
more consecutive fixed step size 1) = and a diminish-

R 8LH)1( e
ing step size 7, = t% Henceforth, we denote SGD (fixed) and
SGD (diminish) as abbreviations of SGD with a fixed step size
and SGD with diminishing step sizes, respectively. The experi-
ment results are shown in Figure 4. An epoch of SGD includes
n iterations of SGD, and an epoch of FGD is exactly an iteration
of FGD. The iterative error curves of SGD and FGD are shown
along epochs since both of them exploit a full scan of gradients
over sample per epoch and their computational complexities per
epoch are thus comparable. From Figure 4, we can observe the
following phenomena:

® SGD can significantly speed up FGD in the sense that
much fewer epochs are required for SGD to achieve the
same precision. Specifically, about 350 and 4 x 10* epochs
are required for SGD (diminish) and FGD, respectively, to



ZENG et al.: ON GLOBAL LINEAR CONVERGENCE IN STOCHASTIC NONCONVEX OPTIMIZATION FOR SEMIDEFINITE PROGRAMMING

4269

ProjGD
—&~ FGD
iosap |
& svre

: %Hlmﬁlmmmm

0 50 100 150 200 250 300 350 o 100 200
epoch number

(a) GNMDS

Fig. 5.
than SVRG in terms of epoch.

achieve the same limiting precisions. The speedup of SGD
in the perspective of epoch number is more than 100 times
of FGD. This exhibits the main advantage of SGD over
FGD.

¢ Inthebeginning, SGD (fixed) will be much faster than SGD
(diminish) until SGD (fixed) attains to its limitation, i.e.,
7, This is because the rate of SGD (fixed) is O((p™)"),
while that of SGD (diminish) is O(-%; ), where ¢ is the epoch
number. Moreover, we can also observe that SGD (dimin-
ish) is much faster than FGD at the initial several epochs.
This is mainly due to that n = 1024 and thus, % will be
much smaller than O(p’) when ¢ is relatively small.

These experiment results demonstrate the effectiveness of

SGD and also verify our developed theoretical results.

B. Ordinal Embedding

In this subsection, we apply SGD to the ordinal embedding
problem, which aims to learn representation of data objects as
points in a low-dimensional space. There are mainly three exist-
ing models to deal with this problem, i.e., the generalized non-
metric multidimensional scaling (GNMDS) [1], the stochastic
triplet embedding (STE) and its variant replacing the Gaussian
kernel in STE with Student-t kernel (called TSTE for short) [41].
Their objective functions are shown as follows

) = g SO A(X) 4+ (),

ceC

where C is a set of ordinal constraints, |C| is its cardinality, and
. is some loss function (say, the hinge loss for GNMDS, the
scale-invariant loss with Gaussian kernel for STE, and the scale-
invariant loss with Student-t kernel for TSTE). In this applica-
tion, we compare the performance of SGD with the state-of-the-
art methods including the projected gradient descent (ProjGD)
method, FGD and an accelerated SGD method, i.e., SVRG sug-
gested in [43],* to show its effectiveness.

Music artist dataset: We implement SGD on a real world
dataset called Music artist dataset, collected by [20] via a

4As considered in [43], the output of the inner loop of SVRG is randomly
chosen from all the iterates in the inner loop via a uniformly random way, i.e.,
Option II is adopted.

(b) STE

300 400 500 600 o 100 200 300 400 500 600
‘epoch number

(c) TSTE

Experiments for ordinal embedding problem using different models. From (a)-(c), SGD is much faster than both ProjGD and FGD, and also slightly faster

web-based survey. In this dataset, there are 1032 users and 412
music artists. The number of triplets on the similarity between
music artists is 213472. A triplet (i,j, k) indicates an ordi-
nal constraint like dfj(X ) < d%.(X), which means that “mu-
sic artist © is more similar to artist j than artist k”, where
d3;(X) is the Euclidean distance between artists i and j, , j, k €
{1,...,p}, and p is the number of total kinds of music artists.
Specifically, we use the data pre-processed by [41] via remov-
ing the inconsistent triplets from the original dataset. In this
dataset, there are 9107 triplets for p = 400 artists. The genre
labels for all artists are gathered using Wikipedia, to distin-
guish nine music genres (rock, metal, pop, dance, hip hop,
jazz, country, gospel, and reggae). Thus, the desired dimension
r*=9.

For each method, we implement independently 50 trials, and
then record: (a) the generalization error and (b) the running time.
For each trail, 80% triplets are randomly picked as the training
set and the rest as the test set. All three methods start with the
same initial point, which is chosen according to the suggested
initialization scheme with 7" = 10. Each curve in Figure 5 shows
the trend of generalization error of one method with respect to
the epoch number.

From Figure 5, SGD can significantly speed up the batch
methods in terms of epoch number for all three models.
Particularly, the generalization error curve of SGD decays much
faster than those of batch methods at the first 50 epochs, which
means that SGD can quickly get an admissible result (say, for
GNMDS model, its generalization error after 50 epochs is about
0.2). However, if a better generalization error is desired, then
the advantage of SGD in the computational cost will gradually
lose. Similar phenomenon can be also observed from Table II
in terms of running time. From Table II, when the training error
desired is 0.15, there are about 30 times and 6 times speedup
for ProjGD and FGD, respectively. Moreover, by Figure 5 and
Table II, the performance of SGD is also slightly better than
SVRG in terms of both generalization error and training time.
The outperformance of SGD over SVRG in terms of general-
ization error might be mainly due to the existence of statistical
error (in this case, one may not need to reduce the variance of
stochastic gradients for sequence convergence toward a partic-
ular minimizer).
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TABLE I
COMPARISONS ON CPU TIME (SECOND.) OF DIFFERENT ALGORITHMS FOR
THE MUSIC ARTIST DATASET. THE VALUES IN THE FIRST COLUMN MEAN
THE TRAINING ERROR (TRAINERR) ACHIEVED. NAN IN THIS TABLE MEANS
THAT THE CONSIDERED ALGORITHM CAN NOT ACHIEVE THE GIVEN
PRECISION WITHIN AN ACCEPTABLE CPU TIME.

GNMDS
TrainErr  method min max mean median std
ProjGD  19.1460 37.7370  33.0843  36.4140 5.9570
015 FGD 3.1730 3.7340 3.5511 3.5800 0.1261
. SVRG 6.5610 352910 14.9224  11.7270  8.9589
SGD 0.3750 0.5720 0.4921 0.4935 0.0414
ProjGD  33.2510 37.9230 36.6465 36.8795 1.0384
010 FGD 3.9260 4.4100 4.2234 4.2405 0.0952
. SVRG 12.8870 354390 24.1533  23.2580 8.4652
SGD 0.9950 1.3780 1.2292 1.2360 0.0878
ProjGD 359540 382200 37.0647 37.0735 04511
0.05 FGD 4.8840 5.3810 5.1745 5.1815 0.1065
: SVRG 339010 354390 34.6991 34.7435 0.4319
SGD 3.7970 3.9900 3.8739 3.8785 0.0390
STE
TrainErr  method min max mean median std
ProjGD NaN NaN NaN NaN NaN
0.15 FGD 2.6080 3.0540 2.7410 2.7320 0.0883
’ SVRG 7.5170 59.1890  23.3683  13.5385  19.1085
SGD 0.3060 0.4550 0.3784 0.3780 0.0094
ProjGD NaN NaN NaN NaN NaN
0.10 FGD 3.2740 3.6270 3.4012 3.3985 0.0844
’ SVRG 16.3070  59.3330  35.7929  30.1635  17.1202
SGD 0.8550 1.2100 1.0327 1.0370 0.0732
ProjGD NaN NaN NaN NaN NaN
0.05 FGD 4.2310 4.7280 4.4184 4.4090 0.1008
’ SVRG 50.5800  60.8430  57.6998  57.9515 1.6374
SGD 6.7680 7.7830 7.4048 7.4020 0.1346
TSTE
TrainErr  method min max mean median std
FGD 9.4100 10.5050  9.7593 9.7470 0.2095
0.15 SVRG 6.3840 NaN 23.0009  15.7890  17.8931
SGD 0.5310 0.7240 0.6065 0.5990 0.0481
FGD 10.7330  11.8990  11.1459  11.1325 0.2223
0.10 SVRG 13.9850 NaN 369182  31.8430 18.8322
SGD 1.2880 1.9390 1.6284 1.6345 0.1560
FGD 12.6700  14.0660  13.1275  13.1020 0.2716
0.05 SVRG 37.8560 NaN 56.5836  60.3290 6.7433
SGD 8.2410 8.7180 8.4136 8.3985 0.0895

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we consider a nonlinear stochastic semidefi-
nite optimization problem in the scenario of statistical learning.
An error decomposition consisting of approximation error, opti-
mization error, and statistical error, is proposed for the analysis
of an algorithm designed for this kind of problem. Stochastic
gradient descent method is particularly considered in this paper.
Specifically, under assumptions of RSC, smoothness and rank-r
approximation error, we can show that SGD with a fixed (di-
minishing) step size can converge to a smaller neighborhood of
a global optimum at a linear (sublinear) rate as long as the ini-
tialization lies in a neighborhood of the optimum, which can be
easily achieved by the suggested initialization scheme. Further-
more, if the rank r is taken appropriately such that the rank-r
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approximation error is smaller than the optimal statistical error
S(n, ), then after about O(—log S(n,d)) (or O(1/8(n,d)))
iterations, SGD with a fixed (or diminishing) step size may
approach the population minimizer within the statistical preci-
sion. To establish the convergence of SGD, we develop a novel
second-order descent lemma, which improves and generalizes
the best existing ones in literature. It is left open whether the
prescribed initialization ball has tightest rates.

APPENDIX

In the appendix, we present the main proofs of this paper.

A. Preliminary Lemmas

We firstly provide several preliminary lemmas, which will be
frequently used in our proofs.

Lemma 2 (Lemma 5.4 in [40]): For any U,V € RP*" then
we have

I0U" = VVIE = 2V2 = 1)ai(V) - E(U, V).
Lemma 3: Forany U € RP*" let X = UUT. If (U, Uy) <
~vo,-(X) for some constant 0 < v < 1, then
0 (X) = (1= 7)o, (X)).

Proof: Using the norm ordering || - ||z < |- ||r and the
Weyl’s inequality for perturbation of singular values (see, [23,
Theorem 3.3.16]), we get

|0i(U) — 0i(Uy)| < yror(Up), 1 <i <7 (26)
which implies that
o) 2 (1= Aoy (U7).
Thus, 0, (X) > (1 — \/7)%0, (X2). n
Lemma 4: Forany U € RP*" let X = UUT. If (U, Uy) <

~o,(X}) for some constant v > 0, then
IX = X lr < 2+ v 262U, U7)

<@V +7) -7 U;) - on(X7),

where 7(U}) = Zl%g

Proof: Let Rj; := argmingeo |U — U;R||% and V;:
U} R;;. Note that

IX = X7 |lp = lUUT = U Ry Ry U | e
= |UW =V5)" + (U = V)V lle
< (|1Ull2 + VeI 1T = Ve[l
< 2+ VUL 1EY2(U, Uy),

where the first inequality holds for the triangle inequality and
the inequality: || AB”||p < ||A|l2 - || B||F for any two matrices
with the same sizes, where A is full-column rank, and the sec-
ond inequality is due to (26). Substituting the hypothesis of this
lemma yields the final inequality of the lemma. |

For any matrix U € RP*", let Qy be a basis of the column
space of U. Denote Py := QUQE. Then Py - U = U. For any
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matrix Y € RP*P, Py Y is a projection of Y onto the subspace
spanned by X := UUT.

Lemma 5: Let Assumption 2 hold. For any U € RP*", let
X =UUT If E(U,U}) < vo0,(X}), where v is specified in
(10), then the following hold:

D [IVFX)|r < [VAXD]r + 297 +

20) L) (X),
b) X :=X — IPyVf(X)Py is symmetric and positive

semideﬁnite with rank r, where 7 is specified in (11),
¢ (I-Py)X;=0.

Proof:
a) Note that

IVF(XOllr < IVAXDIe + LIX = X7[r

< IVAXDF + 2vA0 +70)
x Lr(Ur)or(X5),

where the first inequality holds for the L-smoothness of
f, and the second inequality holds for Lemma 4,

b) Since X — 1 -PyVf(X)Py =Pu(X
Py, thus, the i-th eigenvalue \;(X
Puy)=0fori=r+1,...

7 V(X))
-1 PUVf( )
, p. While for anyz =1,.

: /\max(Pva(X)PU)
> (1= A0)%0n (X))

e+ v +70) L7 (Ur)

“Omax(V (X))

\3\
I

7 IV
Ur(Xi)) >0,

where the third inequality holds for Lemma 3 and (a) of
this lemma, and the final inequality holds for the definition
of 77 (11). Therefore, X is positive semidefinite.

¢c) By E(U,U}) < v0-(X}) and 0 <y <+v2—1, we
have 0;(X) - 0;(X}) >0, i € {1,...,7} and
0i(X:) =0, 0:(X)=0,i€{r+1,...,p},

which implies that X" lies in the subspace spanned by X .
In other words, X" does not lie in the orthogonal subspace
of the subspace spanned by X, that is, the following holds

(I—Py)X* = 0.

Thus, we end the proof of this lemma. ]

B. Proof of Lemma I
Note that
AV X)U,U - V) = 2(VF(X), X = VU™
= (Vf(X), X = X7) +(Vf(X), X + X[ — 2V§UT>(727)

where the lower bounds of these two terms in the right-hand side
of the above equality are provided by the following two lemmas,
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respectively. Thus, substituting (28) and (30) into (27) yields the
claim of this lemma.
Lemma 6: Under conditions of Lemma 1, there holds

(VAX), X + X —2v5U07)

>_7||Pva( )IIF—* U, Uy),

% (28)

where ¢ is specified in (11).
Proof: Note that

(VF(X), X +X;—2v;UT)
= (PuVf(X)+ I -Pu)VFX), X +X;—2V5UT)
= (PuVI(X), X + X} —2V;U7)
= (PuVf(X),(U = V{)(U = Viy)T)

)7

(1-n/2
2y TPV (X

L

NE — 201 —7/2) -E4(U,UY),

(29)

where the second equality is due to (I — Py)V f(X), X) =0,
(I Py)VF(X),V5UT) =0 and (I Py)Vf(X), X;) =
0by (I — Py)U = 0and Lemma 5(c), and the last equality holds
for X} = UUT = (U:R;)(U:R;)T = ViViT, and the in-
equality holds for the basic inequality: (Y, Z) > —3||Y||% —
25| Z||% forany Y, Z € RP*P and § > 0. [ |
Lemma 7: Under conditions of Lemma 1, there holds

(VI(X), X - X7) >

&PV

L
+ (V2= Dpor(XDEWU,UT) = SIX" = X;[E, - (30)
where ¢ is specified in (11).
Proof: To bound (Vf(X), X — X7), we utilize the follow-
ing three inequalities mainly by the L-smoothness and (u,r)-

restricted strong convexity of f, that is,
() f(X7) 2 F(X) +(V[(X), X7 = X) +
(i) f(X) = f(X*) + (1= 7/2)7L7" - [|[PuV (X)),

i) (X > F(X) ~ Z|x°

-
§||Xr - X”%‘?
- X%

where (i) holds for the (u, r)-restricted strong convexity of f, (ii)
holds for the following inequality induced by the L-smoothness
of f,i.e.,

FX) > F(X) + (VA(X), X = X) — SIX — X
(where X := X — %PUVf(X)PU)

= F(X)+ (1= /2L - [PuV (X

(- AVI(X), PV F(X)Po) = [PoV 7)),

and f(X) > f(X*) since X* is an optimum and X is a feasible
point by Lemma 5(b), and (iii) holds for the L-smoothness of f
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and the optimality condition V f(X*)U* =0, i.e.,

I

FOXD) < FX) 4 (VF(X), X = X5) + 21X = X

* L * *
= P+ SIXT = X3

where the equality holds for V f(X*)U* = 0, which directly
implies the following facts: Vf(X*)U} =0, Vf(X*)X* =0
and Vf(X*)X; =0due to X* = U*U*" and X} = UsU;".
Summing the inequalities (i)—(iii) yields

(Vf(X), X = X7)
H X - L * *
> BIX = X+ L7 POV IO - 21X - X[

> (V2 = Duor (XDEU, ) = SIIX* = X7

+ELT [PV F(X0)E,

where the second inequality is due to Lemma 2, i.e., || X —
X% = 2(v2 = D)o (X2)E(U. Uy). O

C. Proof of Theorem 1

To prove Theorem 1, we first justify the following lemma.

Lemma 8: Let Assumptions 2 and 3 hold. Given the cur-
rent iterate U, let X = UUT, i, be randomly chosen from
{1,...,n}, n be a fixed step size, and U™ be the next iter-
ate updated via (8). If || X |2 < B for some constant 5 > 0,
0 <1< 155, and E(U,U;) < ~1, then there holds

E, [T, U))]

<eU.U) - B <2(ﬁ ) e,y
~EH0.U) - € - X - TR 61

Proof: Given the current iterate U, let
Riy := axgmin [U — USRI, Vi, = U7 Ry
Then E(U,U;) = ||U — V;5||%. Note that
EUT,U7) =min |UF — U/ R|7
<|Ut =Vl = 1T =U) + (U - V)lE
= U= Vil + 200" —U,U - Vi) + |UT - Ul%
=E(U,U7) = 20{V [i,(X)U, U = Vi) + 0? IV £, (X)U | 7,
and
IV£i,(X)UN% = V£, (X)U = VAX)U + V(XU
< 2|V, (X)U = VXU 7 + IVF(X)U ).
Thus,
EWUT, U <EWU,UY) —2n(Vfi,( X)UU - V)
+ 202V £i,(X)U = V(XU |7 + 207V F (XU 7.
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Taking expectation of both sides of the above inequality over i,
by (9) and the definition of By (14), we have

E, [EUT, U] < EU,UY)

= 2(V(X)U.U = Vi) + 20*Bo + 207° |V f(X)U | 7
< EU.U;) = 2p(VF(X)U,U = Vgj) + 21° By

+ 2021 X |2 - [ PuV F(X)IIF,

where the final inequality holds for
IVFOUNE = IPuV XU + (T = Pu)VAX)U|E,

I(X=Py)VF(X)UIF =0 and [[PyVF(X)U[FE < [ X]2]
PuV f(X)||%. By Lemma 1, it follows

L
E, [E(UT,UD)] < EU,UL) + Z—gs%a Ur)

L
~ (V2= 1) nuon (X)EW,U7) + TIX" = X% + 20 Bo

£

PN (57 - 20X

I
< EU, U + Z? XU, UY)

= (V2= 1) o (X)W, U;)

+ X - X+ 20 B, (2)
where the second inequality is due to the assumptions of this
lemma, i.e., n < ﬁ and || X ||2 < B. Therefore, we prove this
lemma. |

Based on Lemma 8, we prove Theorem 1.

Proof of Theorem 1: From Lemma 8 and by the definitions of
7, and~]! (17), we can easily verify thatif v, < E[E(U*, U})] <

7 for any t € N, there hold
i) E[EU, U] < E[EWU, Uy,
i) X! = U~ U7 Ryye + U Ry 13 < 2(|U* -~ U
Ry l5 + 1 X5]l2) < 26U U + [|X72),

where R}, := argmingeo |U" — UsR||%. Since 7, <
E(U°,Ur) <~1, then inductively by (i), {E[E(U! U]}
is monotonically decreasing, and E[E(U*,U*)] < £(U°,U}),
which together with (i) shows that E[|| Xt||5] < 2(E(U°, U*) +
IX5N2) < 2(yw + || X|l2) =: B. Thus, (al) and (a2) hold.

Moreover, by (31) and the definitions of 'yl" and ;! (17), we
have

E[E(U",U;)] <E[EU*,U))]

- 55 (1~ EEULUD) - (BE@,07)] =)
<ElEW,U;)
_nL.

(v = EWU°,UN) - EEUTH U] =), (33)

2€
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where the second inequality holds for v < E[£(U*"1,U})] < D. Proof of Theorem 3

0 * . . . .
E(UP,Uy) <~ forany t € Ny. The above inequality implies Proof: Note that (31) still holds for the diminishing step size

E[E(UL, U] — o (22) for each t € N, that is,

nk
2

<(1-L- qp-e@ v - @e@ o —ap),  EBEETLUIISEULLD

34 mL (2(\5 — Do, (X;)

% E(UNUY) - XU UY)
which shows the linear convergence (a3). g

For any z € R, we define a univariate function h(z) = z — i o 4¢B,
% (] + 1)z — 2% — 4~1). Then its derivative is — &I = Xl — e - 17 > - (37
h(z)=1- Zj (A + nkL .z Based on (37) and following the similar derivations of the proof
§ € of Theorem 1, we can claim that Theorem 3 (al) and (a2) hold.
o1 ’yln + vl n % 2> 0.z < AT In the f'ollowing, we 'mainly' prove Theorem 3 (a3). By (37) and
16(v, + | X2) € V= illccordlng to the similar derivations of (33), forany ¢t € N, we
ave
where the first inequality holds for 7 < Npmax < 8L(7+HXH2) I
L M1

Thus, for any 0 < z < =/, E[E(U, U] <E[EWUT, U]
h(z) < h(y)) =,
which shows that (2) holds.

2
< (y ' —EEUTLUD) - EEUTLUD =17

In the following, we prove the final part of this theorem. From < E[g(U t—1’ U:)] _ nggL (v — g(UO’ U?))
(7,
t—1 * t—1
(V2+1) k|| X* = X712 2(V2+1)nBo < SEEUTHLUD =7, (38)
* * — Il
20,(X7) por (X7) where the second inequality holds for ~! >~9 =7

(V24 1) k|| X* = X2 4(V2+1)nBy and by Theorem 3 (al), E[E(U'1,U;)] < E(U°, U}). Let
= o (X7) po (X5 ar :=E[E(UU)] —~ and by ==~ —v,Vt €N, and ¢ :=

22 (v — E(UO,U;)). (38) implies
Let C:=/E(U° U;)—~,. Applying the inequality (i.e.,

Va+b</a++/b for any a,b > 0) twice to the inequality w < (1 B f) o1 b1 (39)
in (a3) yields b= ¢) Tt t
EEUL U] < C(V/B)' + /o Note that
A éB
L VBE|XT = X|e 10nB, by = VA — /A - ’ti 0
<C(/p)' + o) o oL
o o _ 41€ B 1
By Lemma 4, - 1neBo \ L+ 1
_— : L(VA+/a- )
1X" = Xl < 2+ VI VETET) B, L.
< . = , 40
< 3|07 | VETT ), Sonfa_mm tr1oer @
where the second inequality is due to y9 < \/2 — 1. Thus, for
any t € N, where ¢; := L\/% Substituting (40) into (39) yields
E[|IX" ~ X;|l¢] < 3CIU; (V) ) .
C1
<(1-= —.
+3V3rT (U)X = XJ || F + 37(U;)\/10nBo /. (35) = (1 t) Gt “D
Substituting (35) into (5) yields Based on (41), it is easy to check that
E[| X" - X"||r] < 3C|U2(VP)" + S(n,6) 0( ¢ )
ay = .
+ (V3T (U7) + DIX" = X7|lp + 37(U7)v/10nBo/ - t+1

(36) Thus, we have proved the first two parts of this theorem. While

Based on (36), we can claim the final part of this theorem. Thus, the final part of this theorem can be easily proved via the similar
we finish the proof. B proof of Theorem 1. |
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E. Proof of Proposition 1
Proof: We first show £ = 1 when 1 < r < 64(v2 — 1) and
r = r*. By the definition of £ (11), it suffices to show
(-vi) 1
(2y70 +7)7(U) —

By the above inequality, the definition of 7, (10) and some basic
derivations, the above inequality holds if

A(vV2 - 1)(r(U;) - 1)?
(VT2(U7) +37(U7) + 7(U7) + 1)2 ~

<A(V2 = 1)(/T2(U2) + 37(Uz) + 7(UF) +1)%

Since 7(U}) > 1 and k > 1 by their definitions, it is easy to
check that

1<k <64(V2-1)

implies the above inequality.

Then we show the computational complexity of such initial-
ization scheme. From [10, Theorem 3.6], we have that for con-
secutive updates Xt X' and the optimum X*, projected gra-
dient descent satisfies:

X! = X% < (1= IX7F = X7,
which implies for any t € N
X! = X% < (1= )" | X0 = XF||F
=1 —-r D" X7
Thus, by the hypothesis of 1",

N 2(vV2 — 1)%¢e3(X*
X0 = X = X7 - x| < 22X,
K

By Lemma 2, there holds

X0 — X*|2 2—1)éo0, (X*
2(v/2 — 1)o,(X*) K
Therefore, we end the proof. [ |

F. Proof of Proposition 2

Proof: Given a positive integer r* > 2, consider the follow-
ing optimization problem

min ) = %HX AP st X =0, (42
where
L1 001 Opq Opeg
ol , 1 0 0
oo, 0 0 0
ol , o0 0 -1
I,-—1 is an identity matrix of the size (r* —1) x (r* —1),

0,1 € R"=1x1 denotes an all 0’s vector, and 07, _; denotes
the transpose of 0,.-_; . Itis easy to check that the global optimum

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 16, AUGUST 15, 2019

of the problem (42) is

II‘*—I 07'*—1 07'*—1 07'*—1
* 071‘171 0 0
X" = T ,
0., O 0 0
oL, o0 0 0
and rank(X*) = r*, and
Ir*fl Or*fl
* 077“:‘71 1
Ur=1 -
07.*_1 O
oL, 0

Moreover, it is obvious that the constant x = 1 in this case. In the
following, we apply FGD to solve this problem. Particularly, we
taker = r*, then U} = U*, 0, (X)) = 1,7(X}) = landy, =0
in this case. We consider the following initialization

| P
. oz, o
U= or 0
r*—1
oL , 0

Then E(U°,U*) = 1 = 0,(X}), and it is easy to check that
UoUCt U = v, AU° = U°.
Thus, (UOUOT — A)U° =0, and
Ul =U° — pU°U°" — A)U° = U°, vy > 0,

which implies that FGD converges from the first step, that is,
Ut = U, vt € N. However, £(UY, U*) = 1 but not 0. [ ]
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