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Abstract

For the physical vacuum free boundary problem with the sound speed being C1/2-
Hölder continuous near vacuum boundaries of the compressible Euler equations with
damping, the global existence of solutions and convergence to Barenblatt self-similar
solutions of the porous media equation was recently proved in [34] for 1-d motions by
Luo and the author. This paper generalizes the results for 1-d motions to 3-d spherically
symmetric motions. Compared with the 1-d theory, besides the high degeneracy of
the equations near the physical vacuum boundary, the analytical difficulties lie in the
complexity of equations and the coordinates singularity in the center of symmetry
which is resolved by constructing suitable weights. The results obtained in this work
contribute to the theory of global solutions to free boundary problems of compressible
inviscid fluids in the presence of vacuum states, for which the currently available results
are mainly for the local-in-time well-posedness theory, also to the theory of global
smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.

1 Introduction

Due to its great physical importance and mathematical challenges, the motion of physical
vacuum in compressible fluids has received much attention recently (cf. [7], [9]-[13], [20]-
[23], [31]-[35], [42, 43]), and significant progress has been made on the local well-posedness
theory (cf. [7, 9, 10, 20, 21, 35]). However, much less is known on the global existence
and long time dynamics of solutions, which are of fundamental importance in both physics
and nonlinear partial differential equations. This is the main issue we address in this work
for the spherically symmetric motions of three-dimensional isentropic compressible inviscid
flows with frictional damping. Physical vacuum problems arise in many physical situations
naturally, for example, in the study of the evolution and structure of gaseous stars (cf.
[5, 11]) for which vacuum boundaries are natural boundaries. Another situation in which the
physical vacuum plays an important role is the gas-vacuum interface problem of compressible
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isentropic Euler equations with damping (cf. [31]-[33], [42, 43]). In three dimensions, this
problem is given as follows:

ρt + div(ρu) = 0 in Ω(t),

(ρu)t + div(ρu⊗ u) +∇xp(ρ) = −ρu in Ω(t),

ρ > 0 in Ω(t),

ρ = 0 on Γ(t) := ∂Ω(t),

V(Γ(t)) = u · n,
(ρ,u) = (ρ0,u0) on Ω := Ω(0).

(1.1)

Here (x, t) ∈ R3 × [0,∞), ρ, u, and p denote, respectively, the space and time variable,
density, velocity and pressure; Ω(t) ⊂ R3, Γ(t), V(Γ(t)) and n represent, respectively, the
changing volume occupied by a gas at time t, moving interface of fluids and vacuum states,
normal velocity of Γ(t) and exterior unit normal vector to Γ(t). We consider a polytropic
gas: the equation of state is given by

p(ρ) = ργ for γ > 1 (1.2)

with the adiabatic constant set to be unity for convenience. Equations (1.1)1,2 describe
the balance laws of mass and momentum, respectively; conditions (1.1)3,4 state that Γ(t) is
the interface to be investigated; (1.1)5 indicates that the interface moves with the normal
component of the fluid velocity; and (1.1)6 is the initial conditions for the density, velocity

and domain. Let c =
√
p′(ρ) =

√
γργ−1 be the sound speed, the condition

−∞ < ∇n(c
2) < 0 on Γ(t) (1.3)

defines a physical boundary (cf. [7, 10, 21], [31]-[33]).
The compressible Euler equations of isentropic flow with damping are closely related to

the porous media equation (cf. [15, 16, 17, 31]):

ρt = ∆p(ρ), (1.4)

when (1.1)2 is simplified to Darcy’s law:

∇xp(ρ) = −ρu. (1.5)

For (1.4), basic understanding of the solution with finite mass M > 0 is provided by Baren-
blatt (cf. [4]), which is spherically symmetric and given by

ρ̄(x, t) = ρ̄(r, t) = (1 + t)−
3

3γ−1

(
A−B(1 + t)−

2
3γ−1 r2

) 1
γ−1

with r = |x|, (1.6)

where

B =
γ − 1

2γ(3γ − 1)
and (γA)

3γ−1
2(γ−1) =Mγ

1
γ−1 (γB)

3
2

(∫ 1

0

y2
(
1− y2

) 1
γ−1 dy

)−1

. (1.7)
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Clearly,∫ R̄(t)

0

r2ρ̄(r, t)dr =M for t ≥ 0, where R̄(t) =
√
A/B(1 + t)1/(3γ−1). (1.8)

The corresponding Barenblatt velocity ū is defined by

ū(x, t) = (x/r)ū(r, t) in the region {(r, t) : 0 ≤ r ≤ R̄(t), t > 0},

where

ū(r, t) = −p (ρ̄)r
ρ̄

=
r

(3γ − 1)(1 + t)
satisfying ū(0, t) = 0 and ˙̄R(t) = ū

(
R̄(t), t

)
.

So, (ρ̄, ū) defined in the region {(r, t) : 0 ≤ r ≤ R̄(t), t > 0} solves (1.4) and (1.5).
The vacuum boundary r = R̄(t) of Barenblatt’s solution is physical. This is the major

motivation to study the physical vacuum free boundary problem of compressible Euler e-
quations with damping. To this end, a class of explicit spherically symmetric solutions to
problem (1.1) was constructed in [31], which are of the following form:

Ω(t) = BR(t)(0), c2(x, t) = c2(r, t) = e(t)− b(t)r2 and u(x, t) = (x/r)u(r, t), (1.9)

where
R(t) =

√
e(t)/b(t) and u(r, t) = a(t)r.

In [31], a system of ordinary differential equations for (e, b, a)(t) was derived with e(t), b(t) >
0 for t ≥ 0 by substituting (1.9) into (1.1)1,2 and the time-asymptotic equivalence of this
explicit solution and Barenblatt’s solution with the same total mass was shown. Indeed, the
Barenblatt solution of (1.4) and (1.5) can be obtained by the same ansatz as (1.9):

c̄2(x, t) = ē(t)− b̄(t)r2 and u(x, t) = ā(t)x.

Substituting this into (1.4), (1.5) and (1.8) with R̄(t) =
√
ē(t)/b̄(t) gives

ē(t) = γA(1 + t)−3(γ−1)/(3γ−1), b̄(t) = γB(1 + t)−1 and ā(t) = (3γ − 1)−1(1 + t)−1,

where A and B are determined by (1.7). Precisely, it was proved in [31] the following
time-asymptotic equivalence:

(a, b, e)(t) = (ā, b̄, ē)(t) +O(1)(1 + t)−1ln(1 + t) as t→ ∞.

A question was raised in [31] whether this equivalence is still true for general solutions
to problem (1.1). For this purpose, we seek solutions to problem (1.1) of the form:

Ω(t) = BR(t)(0), ρ(x, t) = ρ(r, t), u(x, t) = (x/r)u(r, t) with r = |x|.

Then problem (1.1) reduces to

(r2ρ)t + (r2ρu)r = 0 in (0, R(t)) ,

ρ(ut + uur) + pr = −ρu in (0, R(t)) ,

ρ > 0 in [0, R(t)) ,

ρ (R(t), t) = 0, u(0, t) = 0,

Ṙ(t) = u(R(t), t) with R(0) = R0,

(ρ, u)(r, t = 0) = (ρ0, u0) (r) on (0, R0) ,

(1.10)
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so that R(t) is the radius of the domain occupied by the gas at time t and r = R(t) represents
the vacuum free boundary which issues from r = R0 and moves with the fluid velocity. One of
motivations to study the spherically symmetric solution is that the Barenblatt solution posses
the same symmetry, and it is expected that spherically symmetric solutions will provide
insights on the local and long time behavior of solutions to the general three-dimensional
problem (1.1). Locally, at each point x in Ω(t), it might be plausible to rotate a solution in all
possible ways about x and average all rotations in the spirit of spherical mean. In long time,
for a general three-dimensional problem, it is expected that the geometry of the boundary
becomes more and more symmetric due to the dissipation of damping which dissipates the
total energy.

In the spherically symmetric setting, the physical vacuum boundary condition (1.3) re-
duces to

−∞ < (c2)r < 0

in a small neighborhood of the boundary. To capture this singularity, the initial domain is
taken to be a ball {0 ≤ r ≤ R0} and the initial density is assumed to satisfy

ρ0(r) > 0 for 0 ≤ r < R0, ρ0(R0) = 0 and −∞ <
(
ργ−1
0

)
r
< 0 at r = R0. (1.11)

We require that the initial total mass is the same as that of the Barenblatt solution, that is,∫ R0

0

r2ρ0(r)dr =

∫ R̄(0)

0

r2ρ̄0(r)dr =M. (1.12)

The conservation law of mass, (1.10)1, and (1.8) give∫ R(t)

0

r2ρ(r, t)dr =

∫ R0

0

r2ρ0(r)dr =M =

∫ R̄(t)

0

r2ρ̄(r, t)dr for t ≥ 0.

In the present work, we prove the global existence of smooth solutions to problem (1.10)
when initial data are small spherically symmetric perturbations of Barenblatt solutions and
they have the same total masses. Moreover, we obtain the pointwise convergence with a rate
of density which gives the detailed behavior of the density, the convergence rate of velocity
in supreme norm and the precise expanding rate of physical vacuum boundaries. The results
obtained in this article also prove the nonlinear asymptotic stability of Barenblatt solutions
in the setting of physical vacuum free boundary problems.

The physical vacuum with the sound speed being C1/2-Hölder continuous across vacuum
boundaries makes it challenging and interesting in the study of free boundary problems
in compressible fluids, even for the local-in-time existence theory, since standard methods
of symmetric hyperbolic systems (cf. [24]) do not apply. Indeed, characteristic speeds of
the compressible isentropic Euler equations become singular with infinite spatial derivatives
at vacuum boundaries which creates much severe difficulties in analyzing the regularity
near boundaries. Recently, important progress has been made in the local-in-time well-
posedness theory for the compressible Euler equations (cf. [7, 9, 10, 20, 21]). On the other
hand, it poses a great challenge to extend the local-in-time existence theory to the global
one of smooth solutions, due to the strong degeneracy near vacuum states caused by the
singular behavior of physical vacuum. Obtaining the global-in-time regularity of solutions
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near vacuum boundaries by establishing the uniform-in-time higher-order estimates is the key
to analyses. This is nontrivial due to the strong degenerate nonlinear hyperbolic nature. To
obtain global-in-time estimates, it is essential to show decay estimates, which are achieved in
the present work by introducing time weights to quantify the long time behavior of solutions.
This is in sharp contrast to the weighted estimates used in establishing the local-in-time well-
posedness theory (cf. [7, 9, 10, 20, 21, 35]), where only spatial weights are involved.

It should be noted that, as the first step to understand global solutions and their long
time behavior for physical vacuum boundary problems of the isentropic compressible Euler
equations with frictional damping, Luo and the author (cf. [34]) proved the global smooth
solutions and convergence to Barenblatt solutions as time goes to infinity in one-dimensional
case, based on a construction of higher-order weighted functionals with both space and time
weights capturing the behavior of solutions both near vacuum states and in large time,
an introduction of a new ansatz, higher-order nonlinear energy estimates and elliptic esti-
mates. In general, much more obstacles appear in the study of multi-dimensional problems
of compressible Euler equations as a prototype. Compared with the one-dimensional case
studied in [34], it is much more difficult and involved to solve the three-dimensional spher-
ically symmetric problem, (1.10), in the construction of the nonlinear weighted functionals,
nonlinear weighted estimates and elliptic estimates. Besides the difficulty of degeneracy of
the equations at vacuum states, one of the difficulties in solving (1.10) is the coordinates
singularity at the origin, the center of symmetry, which carries the true three-dimensional
nature. We succeed in constructing suitable weights to resolve the coordinates singularity in
this paper. As an intermediate step passing from one-dimensional case in [34] to the general
three-dimensional problem, (1.1), we believe the ideas and estimates including the nonlinear
weighted functionals and pointwise decay estimates developed in this paper will contribute
to a understanding of the behavior of solutions to problem (1.1).

It should be pointed that the Lp-convergence of L∞-weak solutions for the Cauchy prob-
lem of the one-dimensional compressible Euler equations with damping to Barenblatt solu-
tions of the porous media equations was given in [16] with p = 2 if 1 < γ ≤ 2 and p = γ
if γ > 2 and in [17] with p = 1, respectively, using entropy-type estimates for the solution
itself without deriving estimates for derivatives. However, the interfaces separating gases
and vacuum cannot be traced in the framework of L∞-weak solutions. The aim of this work
is to understand the behavior and long time dynamics of physical vacuum boundaries, for
which obtaining the global-in-time regularity of solutions is essential.

There has been a recent explosion of interests in the analysis of free boundary problems
for both compressible and incompressible inviscid flows. (As for viscous flows, there have
been many results on the free boundary Navier-Stokes equations which cause quite different
difficulties in analyses from those for inviscid flows, so we do not discuss the works in that
regime here.) For incompressible inviscid flows, one may refer to [2, 3, 6, 8, 26, 28, 36, 38,
39, 47] for the local-in-time theory; while the global-in-time theory is rather recent which
is for both 2-d and 3-d water wave problems of irrotational flows (cf. [18, 19, 40, 41]).
For compressible inviscid flows, besides the aforementioned results on vacuum boundary
problems, the local-in-time existence and uniqueness for the 3-d compressible Euler equations
modeling a liquid rather than a gas were established in [29] by using Lagrangian variables
combined with Nash-Moser iteration to construct solutions. (For a compressible liquid, the
density is assumed to be a strictly positive constant on the moving boundary. As such,
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the compressible liquid provides a uniformly hyperbolic, but characteristic, system.) An
alternative proof for the existence of a compressible liquid was given in [37], employing
a strategy based on symmetric hyperbolic systems combined with Nash-Moser iteration.
From the above discussions, one may see that the current available theories of free boundary
problems for invscid flows, in particular for compressible invscid flows, are mainly on local-
in-time solutions. The results obtained in this paper are among the first ones on the global
solutions of free boundary problems for compressible inviscid fluids in the presence of vacuum
states.

In a broader context, the equation we consider in this work fall into the class of hyperbolic
systems with dissipation for which most available results on the global existence of smooth
solutions are for strictly hyperbolic systems or systems endowed with strict convex entropy
(cf. [14, 27, 30, 44, 45, 46]). Indeed, the isentropic compressible Euler equations with
frictional damping fail to be strictly hyperbolic at the vacuum state ρ = 0, and the standard
mechanic entropy η(ρ,m) = p(ρ)/(γ − 1) + m2/(2ρ) with m = ρu being the momentum
fails to be strictly convex. The results obtained in this paper, together with those in [34],
contribute therefore to the global existence theory of smooth solutions of hyperbolic systems
which are not strictly hyperbolic.

2 Reformulation of the problem and main results

2.1 Fix the domain and Lagrangian variables

We make the initial domain of the Barenblatt solution,
(
0, R̄(0)

)
, as the reference domain

and define a diffeomorphism η0 :
(
0, R̄(0)

)
→ (0, R0) by∫ η0(r)

0

r2ρ0(r)dr =

∫ r

0

r2ρ̄0(r)dr for r ∈
(
0, R̄(0)

)
,

where ρ̄0(r) := ρ̄(r, 0) is the initial density of the Barenblatt solution. Clearly,

η20(r)ρ0(η0(r))η0r(r) = r2ρ̄0(r) for r ∈
(
0, R̄(0)

)
. (2.1)

Due to (1.11), (1.6) and the fact that the total mass of the Barenblatt solution is the same
as that of ρ0, (1.12), the diffeomorphism η0 is well defined. For simplicity of presentation,
set

I :=
(
0, R̄(0)

)
=
(
0,
√
A/B

)
.

To fix the boundary, we transform system (1.10) into Lagrangian variables. For r ∈ I, we
define the Lagrangian variable η(r, t) by

ηt(r, t) = u(η(r, t), t) for t > 0 and η(r, 0) = η0(r), (2.2)

and set the Lagrangian density and velocity by

f(r, t) = ρ(η(r, t), t) and v(r, t) = u(η(r, t), t). (2.3)
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Then the Lagrangian version of system (1.10) can be written on the reference domain I as

(η2f)t + r2fvr/ηr = 0 in I × (0,∞),

fvt + (fγ)r/ηr = −fv in I × (0,∞),

v(0, t) = 0 on (0,∞),

(f, v) = (ρ0(η0), u0(η0)) on I × {t = 0}.

(2.4)

It should be noted that we need ηr(r, t) > 0 for r ∈ I and t ≥ 0 to make the Lagrangian
transformation sensible, which will be verified in (3.3). Indeed, ηr > 0 implies η(r, t) > 0 for
r ∈ I and t ≥ 0, due to the boundary condition that the center of the symmetry does not
move, v(0, t) = 0. The map η(·, t) defined above can be extended to Ī = [0,

√
A/B]. In the

setting, the vacuum free boundaries for problem (1.10) are given by

R(t) = η
(
R̄(0), t

)
= η

(√
A/B, t

)
for t ≥ 0. (2.5)

It follows from solving (2.4)1 and using (2.1) that

f(r, t)η2(r, t)ηr(r, t) = ρ0(η0(r))η
2
0(r)η0r(r) = r2ρ̄0(r), r ∈ I. (2.6)

So, the initial density of the Barenblatt solution, ρ̄0, can be viewed as a parameter and
system (2.4) can be rewritten as

ρ̄0ηtt + ρ̄0ηt +
(η
r

)2 [(r2
η2
ρ̄0
ηr

)γ]
r

= 0 in I × (0,∞),

η(0, t) = 0, on (0,∞),

(η, ηt) = (η0, u0(η0)) on I × (0,∞).

(2.7)

2.2 Ansatz

Define the Lagrangian variable η̄(r, t) for the Barenblatt flow in Ī by

∂tη̄(r, t) = ū(η̄(r, t), t) =
η̄(r, t)

(3γ − 1)(1 + t)
for t > 0 and η̄(r, 0) = r, (2.8)

so that

η̄(r, t) = r (1 + t)1/(3γ−1) for (r, t) ∈ Ī × [0,∞) (2.9)

and

ρ̄0η̄t +
( η̄
r

)2 [(r2
η̄2
ρ̄0
η̄r

)γ]
r

= 0 in I × (0,∞).

Since η̄ does not solve (2.7)1 exactly, we introduce a correction h(t) which is a solution of
the following initial value problem of ordinary differential equations:

htt + ht − (η̄r + h)2−3γ/(3γ − 1) + η̄rtt + η̄rt = 0, t > 0,

h(t = 0) = ht(t = 0) = 0.
(2.10)
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(Notice that η̄r, η̄rt and η̄rtt are independent of r.) The new ansatz is then given by

η̃(r, t) := η̄(r, t) + rh(t), (2.11)

so that

ρ̄0η̃tt + ρ̄0η̃t +

(
η̃

r

)2 [(
r2

η̃2
ρ̄0
η̃r

)γ]
r

= 0 in I × (0,∞). (2.12)

It should be noted that η̃r is independent of r. We will prove in the Appendix that η̃ behaves
similar to η̄, that is, there exist positive constants K and C(n) independent of time t such
that for all t ≥ 0,

(1 + t)1/(3γ−1) ≤ η̃r(t) ≤ K (1 + t)1/(3γ−1) , η̃rt ≥ 0,∣∣∣∣dkη̃r(t)dtk

∣∣∣∣ ≤ C(n) (1 + t)
1

3γ−1
−k , k = 1, 2, · · · , n.

(2.13)

Moreover, there exists a certain constant C independent of t such that

0 ≤ h(t) ≤ C(1 + t)
1

3γ−1
−1 ln(1 + t) and |ht(t)| ≤ C(1 + t)

1
3γ−1

−2 ln(1 + t), t ≥ 0. (2.14)

The proof of (2.14) will also be given in the Appendix.

2.3 Main results

To state the main theorem, we write equation (2.7)1 in a perturbation form around the
Barenblatt solution. Let

ζ(r, t) := η(r, t)/r − η̃(r, t)/r.

Thus,

η(r, t) = η̃(r, t) + rζ(r, t) and ηr(r, t) = η̃r(t) + ζ(r, t) + rζr(r, t). (2.15)

It follows from (2.7)1 and (2.12) that

rρ̄0ζtt + rρ̄0ζt + (η̃r + ζ)2
[
ρ̄γ0 (η̃r + ζ)−2γ (η̃r + ζ + rζr)

−γ]
r
− η̃2−3γ

r (ρ̄γ0)r = 0, (2.16)

Denote
α := 1/(γ − 1), l := 3 + min {m ∈ N : m > α} = 4 + [α].

For j = 0, · · · , l and i = 0, · · · , l − j, we set

Ej(t) := (1 + t)2j
∫
I

[
r4ρ̄0

(
∂jt ζ
)2

+ r2ρ̄γ0
∣∣∂jt (ζ, rζr)∣∣2 + (1 + t)r4ρ̄0

(
∂jt ζt

)2]
dr,

Ej,i(t) := (1 + t)2j
∫
I

[
r2ρ̄

1+(i−1)(γ−1)
0

(
∂jt ∂

i
rζ
)2

+ r4ρ̄
1+(i+1)(γ−1)
0

(
∂jt ∂

i+1
r ζ

)2]
dr.

The higher-order norm is defined by

E(t) :=
l∑

j=0

(
Ej(t) +

l−j∑
i=1

Ej,i(t)

)
.
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It will be proved in Lemma 3.7 that

sup
r∈I

{
2∑

j=0

(1 + t)2j
∣∣∂jt ζ(r, t)∣∣2 + 1∑

j=0

(1 + t)2j
∣∣∂jt ζr(r, t)∣∣2

}
≤ CE(t)

for some constant C independent of t. So the boundedness of E(t) gives the uniform bound-
edness and decay of the perturbation ζ and its derivatives. In what follows, we state our
main result.

Theorem 2.1 Suppose that (1.12) holds. There exists a constant δ̄ > 0 such that if E(0) ≤ δ̄,
then the problem (2.7) admits a global unique smooth solution in I × [0,∞) satisfying for all
t ≥ 0,

E(t) ≤ CE(0)

and

sup
r∈I

{
2∑

j=0

(1 + t)2j
∣∣∂jt ζ(r, t)∣∣2 + 1∑

j=0

(1 + t)2j
∣∣∂jt ζr(r, t)∣∣2 + ∑

i+j≤l−2, 2i+j≥3

(1 + t)2j

×
∣∣∣∣ρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(r, t)

∣∣∣∣2 + ∑
i+j=l−1

(1 + t)2j
∣∣∣∣rρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(r, t)

∣∣∣∣2

+
∑
i+j=l

(1 + t)2j
∣∣∣∣r2ρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(r, t)

∣∣∣∣2
}

≤ CE(0),

(2.17)

where C is a positive constant independent of t.

It should be noticed that the time derivatives involved in the initial higher-order energy
norm, E(0), can be determined via the equation by the initial data ρ0 and u0 (see [9, 35] for
instance).

As a corollary of Theorem 2.1, we have the following theorem for solutions to the original
vacuum free boundary problem (1.10).

Theorem 2.2 Suppose that (1.12) holds. There exists a constant δ̄ > 0 such that if E(0) ≤ δ̄,
then the problem (1.10) admits a global unique smooth solution (ρ(η, t), u(η, t), R(t)) for
t ∈ [0,∞) satisfying

|ρ (η(r, t), t)− ρ̄ (η̄(r, t), t)| ≤C
(
A−Br2

) 1
γ−1 (1 + t)−

4
3γ−1

×
(√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

)
,

(2.18)

|u (η(r, t), t)− ū (η̄(r, t), t)| ≤ Cr(1 + t)−1
(√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

)
, (2.19)

for all r ∈ I and t ≥ 0; and for all t ≥ 0,

c1(1 + t)
1

3γ−1 ≤ R(t) ≤ c2(1 + t)
1

3γ−1 , (2.20)
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∣∣∣∣dkR(t)dtk

∣∣∣∣ ≤ C(1 + t)
1

3γ−1
−k, k = 1, 2, 3, (2.21)

c3(1 + t)−
3γ−2
3γ−1 ≤

∣∣∣(ργ−1
)
η
(η, t)

∣∣∣ ≤ c4(1 + t)−
3γ−2
3γ−1 when

1

2
R(t) ≤ η ≤ R(t). (2.22)

Here C, c1, c2, c3 and c4 are positive constants independent of t.

The pointwise behavior of the density and velocity for the vacuum free boundary problem
(1.10) to that of the Barenblatt solution are given by (2.18) and (2.19), respectively. It is
also shown in (2.18) that the difference of density to problem (1.10) and the corresponding
Barenblatt density decays at the rate of (1 + t)−4/(γ+1) in L∞, while the density of the
Barenblatt solution, ρ̄, decays at the rate of (1+ t)−3/(γ+1) in L∞ (see (1.6)). (2.20) gives the
precise expanding rate of the vacuum boundaries of the problem (1.10), which is the same
as that for the Barenblatt solution shown in (1.8). Furthermore, it verifies in (2.22) that the
vacuum boundary R(t) is physical at any finite time.

3 Proof of Theorem 2.1

The proof is based on the local existence of smooth solutions (cf. [35, 9, 20]) and continuation
arguments. The uniqueness of the smooth solutions can be obtained as in section 11 of [35].
In order to prove the global existence of smooth solutions, we need to obtain the uniform-in-
time a priori estimates on any given time interval [0, T ] satisfying supt∈[0,T ] E(t) < ∞. For
this purpose, we use a bootstrap argument by making the following a priori assumption: Let
ζ be a smooth solution to (2.16) on [0, T ], there exists a suitably small fixed positive number
ϵ0 ∈ (0, 1) independent of t such that for t ∈ [0, T ],

2∑
j=0

(1 + t)2j
∥∥∂jt ζ(·, t)∥∥2L∞ +

1∑
j=0

(1 + t)2j
∥∥∂jt ζr(·, t)∥∥2L∞ +

∑
i+j≤l−2, 2i+j≥3

(1 + t)2j

×
∥∥∥∥ρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(·, t)

∥∥∥∥2
L∞

+
∑

i+j=l−1

(1 + t)2j
∥∥∥∥rρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(·, t)

∥∥∥∥2
L∞

≤ ϵ20.

(3.1)

This in particular implies, noting (2.13), that for 0 ≤ θ1, θ2 ≤ 1,

1

2
(1 + t)

1
3γ−1 ≤ (η̃r + θ1ζ + θ2rζr)(r, t) ≤ 2K(1 + t)

1
3γ−1 , (r, t) ∈ I × [0, T ]. (3.2)

Moreover, it follows from (2.15) and (3.2) that

1

2
(1 + t)

1
3γ−1 ≤ ηr(r, t), r

−1η(r, t) ≤ 2K(1 + t)
1

3γ−1 , (r, t) ∈ I × [0, T ]. (3.3)

Here K is the positive constant appearing in (2.13)1.
Under this a priori assumption, we prove in section 3.2 the following elliptic estimates:

Ej,i(t) ≤ C

i+j∑
ι=0

Eι(t), when j ≥ 0, i ≥ 1, i+ j ≤ l,

10



where C is a positive constant independent of t. With the a priori assumption and elliptic
estimates, we show in section 3.3 the following nonlinear weighted energy estimate: for some
positive constant C independent of t,

Ej(t) ≤ C

j∑
ι=0

Eι(0), j = 0, 1, · · · , l.

Finally, the a priori assumption (3.1) can be verified in section 3.4 by proving

2∑
j=0

(1 + t)2j
∥∥∂jt ζ(·, t)∥∥2L∞ +

1∑
j=0

(1 + t)2j
∥∥∂jt ζr(·, t)∥∥2L∞ +

∑
i+j≤l−2, 2i+j≥3

(1 + t)2j

×
∥∥∥∥ρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(·, t)

∥∥∥∥2
L∞

+
∑

i+j=l−1

(1 + t)2j
∥∥∥∥rρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(·, t)

∥∥∥∥2
L∞

+
∑
i+j=l

(1 + t)2j
∥∥∥∥r2ρ̄ (γ−1)(2i+j−3)

2
0 ∂jt ∂

i
rζ(·, t)

∥∥∥∥2
L∞

≤ CE(t).

for some positive constant C independent of t. This closes the whole bootstrap argument
for small initial perturbations and completes the proof of Theorem 2.1.

3.1 Preliminaries

In this subsection, we list some embedding estimates for weighted Sobolev spaces which will
be used later and introduce some notations to simplify the presentation. For any bounded
interval I, set d(r) = dist(r, ∂I). For any a > 0 and nonnegative integer b, the weighted
Sobolev space Ha,b(I) is given by

Ha,b(I) :=

{
da/2F ∈ L2(I) :

∫
I

da|∂krF |2dr <∞, 0 ≤ k ≤ b

}
with the norm

∥F∥2Ha,b(I) :=
b∑

k=0

∫
I

da|∂krF |2dr.

Then for b ≥ a/2, it holds the following embedding of weighted Sobolev spaces (cf. [25]):

Ha,b(I) ↪→ Hb−a/2(I)

with the estimate

∥F∥Hb−a/2(I) ≤ C∥F∥Ha,b(I) (3.4)

for some positive constant C depending on a, b and I.
The following general version of the Hardy inequality whose proof can be found in [25]

will also be used often in this paper. Let k > 1 be a given real number and F be a function
satisfying ∫ δ

0

rk
(
F 2 + F 2

r

)
dr <∞,

11



where δ is a positive constant; then it holds that∫ δ

0

rk−2F 2dr ≤ C(δ, k)

∫ δ

0

rk
(
F 2 + F 2

r

)
dr,

where C(δ, k) is a constant depending only on δ and k. As a consequence, one has∫ √
A/B

√
A/(4B)

(√
A/B − r

)k−2

F 2dr ≤ C

∫ √
A/B

√
A/(4B)

(√
A/B − r

)k (
F 2 + F 2

r

)
dr, (3.5)

where C is a constant depending on A, B and k.

Notations:
1) Throughout the rest of paper, C will denote a positive constant which only depend

on the parameters of the problem, γ and M , but does not depend on the data. They are
referred as universal and can change from one inequality to another one. Also we use C(β)
to denote a certain positive constant depending on quantity β.

2) We will employ the notation a . b to denote a ≤ Cb, a ∼ b to denote C−1b ≤ a ≤ Cb
and a & b to denote a ≥ C−1b, where C is the universal constant as defined above.

3) In the rest of the paper, we will use the notations∫
=:

∫
I
, ∥ · ∥ =: ∥ · ∥L2(I) and ∥ · ∥L∞ =: ∥ · ∥L∞(I).

4) We set
σ(r) := ρ̄γ−1

0 (r) = A−Br2, r ∈ I.

Then Ej and Ej,i can be rewritten as

Ej(t) = (1 + t)2j
∫ [

r4σα
(
∂jt ζ
)2

+ r2σα+1
∣∣∂jt (ζ, rζr)∣∣2 + (1 + t)r4σα

(
∂jt ζt

)2]
(r, t)dr,

Ej,i(t) = (1 + t)2j
∫ [

r2σα+i−1
(
∂jt ∂

i
rζ
)2

+ r4σα+i+1
(
∂jt ∂

i+1
r ζ

)2]
(r, t)dr.

5) We set

Io :=
(
0,
√
A/(4B)

)
and Ib :=

(√
A/(4B),

√
A/B

)
.

Then
I = Io ∪ Ib.

Moreover, it gives from the Hardy inequality (3.5) that for k > 1,∫
Ib
σk−2(r)F 2dr ≤ C(A,B, k)

∫
Ib
σk(r)

(
F 2 + F 2

r

)
dr, (3.6)

provided that the right-hand side of (3.6) is finite.
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3.2 Elliptic estimates

In this subsection, we prove the following elliptic estimates.

Proposition 3.1 Suppose that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1).
Then it holds that for t ∈ [0, T ],

Ej,i(t) .
i+j∑
ι=0

Eι(t) when j ≥ 0, i ≥ 1, i+ j ≤ l. (3.7)

The proof of this proposition consists of Lemma 3.2 and Lemma 3.3.

3.2.1 Lower-order elliptic estimates

Dividing equation (2.16) by ρ̄0, one has

rζtt + rζt + σ (η̃r + ζ)2
[
(η̃r + ζ)−2γ (η̃r + ζ + rζr)

−γ]
r

+
γ

γ − 1
σr
[
(η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ − η̃2−3γ
r

]
= 0.

Note that

(η̃r + ζ)2
[
(η̃r + ζ)−2γ (η̃r + ζ + rζr)

−γ]
r

= −2γ (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
−γ ζr − γ (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ−1 (2ζr + rζrr)

= −γη̃1−3γ
r (4ζr + rζrr) + J1,

(η̃r + ζ)2−2γ (η̃r + ζ + rζr)
−γ − η̃2−3γ

r = −γη̃1−3γ
r (rζr) + (2− 3γ)η̃1−3γ

r ζ + J2,

where

J1 :=− 2γ
[
(η̃r + ζ)1−2γ (η̃r + ζ + rζr)

−γ − η̃1−3γ
r

]
ζr

− γ
[
(η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ−1 − η̃1−3γ
r

]
(2ζr + rζrr) ,

J2 := (η̃r + ζ)2−2γ (η̃r + ζ + rζr)
−γ − η̃2−3γ

r + γη̃1−3γ
r (rζr)− (2− 3γ)η̃1−3γ

r ζ.

(3.8)

Then,

γη̃1−3γ
r

[
rσζrr + 4σζr +

γ

γ − 1
rσrζr

]
=rζtt + rζt +

γ(2− 3γ)

γ − 1
σrη̃

1−3γ
r ζ + σJ1 +

γ

γ − 1
σrJ2.

(3.9)

Lemma 3.2 Assume that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1). Then,

E0,1(t) . E0(t) + E1(t), 0 ≤ t ≤ T.
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Proof. Multiply equation (3.9) by η̃3γ−1
r rσα/2 and square the spatial L2-norm of the product

to obtain∥∥r2σ1+α
2 ζrr + 4rσ1+α

2 ζr + (1 + α) r2σ
α
2 σrζr

∥∥2
.(1 + t)2

(∥∥r2σ α
2 ζtt
∥∥2 + ∥∥r2σ α

2 ζt
∥∥2 + ∥∥rσ1+α

2 J1

∥∥2 + ∥∥rσ α
2 σrJ2

∥∥2)+ ∥∥rσ α
2 ζ
∥∥2

.E1 + (1 + t)2
(∥∥rσ1+α

2 J1

∥∥2 + ∥∥rσ α
2 σrJ2

∥∥2)+ ∥∥rσ α
2 ζ
∥∥2 (3.10)

where we have used (2.13) and the definition of E1. It follows from the Taylor expansion,
(3.2) and (3.1) that

|J1| . (1 + t)−
3γ

3γ−1 (|rζr|+ |ζ|) (|rζrr|+ |ζr|) . (1 + t)−
3γ

3γ−1 ϵ0 (|rζrr|+ |ζr|) ,

|J2| . (1 + t)−
3γ

3γ−1
(
|rζr|2 + |ζ|2

)
. (1 + t)−

3γ
3γ−1 ϵ0 (|rζr|+ |ζ|) .

Thus,

(1 + t)2
(∥∥rσ1+α

2 J1

∥∥2 + ∥∥rσ α
2 σrJ2

∥∥2)
.ϵ20

(∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2 + ∥∥rσ α

2 σrζ
∥∥2) . (3.11)

Note that∥∥rσ α
2 ζ
∥∥2 = ∫

Io
r2σαζ2dr +

∫
Ib
r2σαζ2dr .

∫
Io
r2σ1+αζ2dr +

∫
Ib
r4σαζ2dr . E0. (3.12)

Then, it yields from (3.10), (3.11) and (3.12) that∥∥r2σ1+α
2 ζrr + 4rσ1+α

2 ζr + (1 + α) r2σ
α
2 σrζr

∥∥2
.E0 + E1 + ϵ20

(∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2) . (3.13)

In what follows, we analyze the left-hand side of (3.13), which can be expanded as∥∥r2σ1+α
2 ζrr + 4rσ1+α

2 ζr + (1 + α) r2σ
α
2 σrζr

∥∥2
=
∥∥r2σ1+α

2 ζrr
∥∥2 + 16

∥∥rσ1+α
2 ζr
∥∥2 + (1 + α)2

∥∥r2σ α
2 σrζr

∥∥2
+

∫ [
4r3σ2+α + (1 + α)r4σ1+ασr

] (
ζ2r
)
r
dr + 8(1 + α)

∫
r3σ1+ασrζ

2
rdr.

(3.14)

With the help of the integration by parts and the fact σr = −2Br, one has∫ [
4r3σ2+α + (1 + α)r4σ1+ασr

] (
ζ2r
)
r
dr

=−
∫ [

4r3σ2+α + (1 + α)r4σ1+ασr
]
r
ζ2rdr

≥− 12

∫
r2σ2+αζ2rdr − (1 + α)2

∫
r4σασ2

rζ
2
rdr − C

∫
r4σ1+αζ2rdr.
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Substitute this into (3.14) and use σr = −2Br to give∥∥r2σ1+α
2 ζrr + 4rσ1+α

2 ζr + (1 + α) r2σ
α
2 σrζr

∥∥2
≥
∥∥r2σ1+α

2 ζrr
∥∥2 + 4

∥∥rσ1+α
2 ζr
∥∥2 − C

∫
r4σ1+αζ2rdr.

In view of (3.13), we then see that∥∥r2σ1+α
2 ζrr

∥∥2 + 4
∥∥rσ1+α

2 ζr
∥∥2

.E0 + E1 + ϵ20

(∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2) . (3.15)

On the other hand, it follows from (3.13) and (3.15) that∥∥(1 + α) r2σ
α
2 σrζr

∥∥2
≤2
∥∥r2σ1+α

2 ζrr + 4rσ1+α
2 ζr + (1 + α) r2σ

α
2 σrζr

∥∥2 + 2
∥∥r2σ1+α

2 ζrr + 4rσ1+α
2 ζr
∥∥2

.E0 + E1 + ϵ20

(∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2) .

This, together with (3.15), gives∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2

.E0 + E1 + ϵ20

(∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2) , (3.16)

which implies, with the aid of the smallness of ϵ0, that∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r2σ α

2 σrζr
∥∥2 . E0 + E1.

In view of σr = −2Br, we then see that∥∥r2σ1+α
2 ζrr

∥∥2 + ∥∥rσ1+α
2 ζr
∥∥2 + ∥∥r3σ α

2 ζr
∥∥2 . E0 + E1,

which implies∥∥rσ α
2 ζr
∥∥2 = ∫

Io
r2σαζ2rdr +

∫
Ib
r2σαζ2rdr

.
∫
Io
r2σ2+αζ2rdr +

∫
Ib
r6σαζ2rdr . E0 + E1.

(3.17)

This finishes the proof of Lemma 3.2. 2

3.2.2 Higher-order elliptic estimates

For i ≥ 1 and j ≥ 0, it yields from ∂jt ∂
i−1
r (3.9) and σr = −2Br that

γη̃1−3γ
r

[
rσ∂jt ∂

i+1
r ζ + (i+ 3)σ∂jt ∂

i
rζ + (α + i) rσr∂

j
t ∂

i
rζ
]

=r∂j+2
t ∂i−1

r ζ + r∂j+1
t ∂i−1

r ζ +P1 +P2.
(3.18)
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where

P1 :=− γ

j∑
ι=1

[
∂ιt
(
η̃1−3γ
r

)]
∂j−ι
t

[
rσ∂i+1

r ζ + (i+ 3)σ∂irζ + (α + i) rσr∂
i
rζ
]

− γ∂jt

{
η̃1−3γ
r

[
i−1∑
ι=2

Cι
i−1 [∂

ι
r(rσ)] ∂

i+1−ι
r ζ + 4

i−1∑
ι=1

Cι
i−1 (∂

ι
rσ) ∂

i−ι
r ζ

+(α + 1)
i−1∑
ι=1

Cι
i−1 [∂

ι
r (rσr)] ∂

i−ι
r ζ

]}
+ (i− 1)∂i−2

r

(
∂j+2
t ζ + ∂j+1

t ζ
)

− 2γ(2− 3γ)B

γ − 1
∂jt
[
η̃1−3γ
r

(
r∂i−1

r ζ + (i− 1)∂i−2
r ζ

)]
,

(3.19)

P2 :=∂
i−1
r

(
σ∂jtJ1

)
+ (1 + α)∂i−1

r

(
σr∂

j
tJ2

)
. (3.20)

(Recall that J1 and J2 are defined in (3.8).) Here and thereafter Cj
m is used to denote the

binomial coefficients for 0 ≤ j ≤ m,

Cj
m =

m!

j!(m− j)!

and summations
∑i−1

ι=1 and
∑i−1

ι=2 should be understood as zero when i = 1 and i = 1, 2,
respectively. Multiply equation (3.18) by η̃3γ−1

r rσ(α+i−1)/2, square the spatial L2-norm of the
product and use (2.13) to give∥∥∥r2σ α+i+1

2 ∂jt ∂
i+1
r ζ + (i+ 3)rσ

α+i+1
2 ∂jt ∂

i
rζ + (α + i) r2σ

α+i−1
2 σr∂

j
t ∂

i
rζ
∥∥∥2

.(1 + t)2
(∥∥∥r2σ α+i−1

2 ∂j+2
t ∂i−1

r ζ
∥∥∥2 + ∥∥∥r2σ α+i−1

2 ∂j+1
t ∂i−1

r ζ
∥∥∥2)

+ (1 + t)2
(∥∥∥rσ α+i−1

2 P1

∥∥∥2 + ∥∥∥rσ α+i−1
2 P2

∥∥∥2) .
Similar to the derivation of (3.16) and (3.17), we can then obtain

(1 + t)−2jEj,i(t) =
∥∥∥r2σ α+i+1

2 ∂jt ∂
i+1
r ζ

∥∥∥2 + ∥∥∥rσ α+i−1
2 ∂jt ∂

i
rζ
∥∥∥2

.
∥∥∥r2σ α+i

2 ∂jt ∂
i
rζ
∥∥∥2 + (1 + t)2

(∥∥∥r2σ α+i−1
2 ∂j+2

t ∂i−1
r ζ

∥∥∥2 + ∥∥∥r2σ α+i−1
2 ∂j+1

t ∂i−1
r ζ

∥∥∥2)
+ (1 + t)2

(∥∥∥rσ α+i−1
2 P1

∥∥∥2 + ∥∥∥rσ α+i−1
2 P2

∥∥∥2) .
(3.21)

We will use this estimate to prove the following lemma by the mathematical induction.

Lemma 3.3 Assume that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1). Then
for j ≥ 0, i ≥ 1 and 2 ≤ i+ j ≤ l,

Ej,i(t) .
i+j∑
ι=0

Eι(t), t ∈ [0, T ]. (3.22)

16



Proof. We use the induction for i + j to prove this lemma. As shown in Lemma 3.2 we
know that (3.22) holds for i + j = 1. For 1 ≤ k ≤ l − 1, we make the induction hypothesis
that (3.22) holds for all j ≥ 0, i ≥ 1 and i+ j ≤ k, that is,

Ej,i(t) .
i+j∑
ι=0

Eι(t), j ≥ 0, i ≥ 1, i+ j ≤ k. (3.23)

It then suffices to prove (3.22) for j ≥ 0, i ≥ 1 and i + j = k + 1. (Indeed, there exists an
order of (i, j) for the proof. For example, when i + j = k + 1 we will bound Ek+1−ι,ι from
ι = 1 to k + 1 step by step.)

Before going to the estimate, we notice a fact that Ej,0 . Ej for j = 0, · · · , l. Indeed, it
follows from (3.6) that∫

Ib
σα−1

(
∂jt ζ
)2
dr .

∫
Ib
σα+1

[(
∂jt ζ
)2

+
(
∂jt ζr

)2]
dr

.
∫
Ib
σα+1

[
r2
(
∂jt ζ
)2

+ r4
(
∂jt ζr

)2]
dr ≤ (1 + t)−2jEj(t),

which implies

Ej,0(t) =(1 + t)2j
∫ [

r2σα−1
(
∂jt ζ
)2

+ r4σα+1
(
∂jt ζr

)2]
(r, t)dr

≤(1 + t)2j
[∫

Io
r2σα−1

(
∂jt ζ
)2

(r, t)dr +

∫
Ib
r2σα−1

(
∂jt ζ
)2

(r, t)dr

]
+ Ej(t)

.(1 + t)2j
[∫

Io
r2σα+1

(
∂jt ζ
)2

(r, t)dr +

∫
Ib
σα−1

(
∂jt ζ
)2

(r, t)dr

]
+ Ej(t)

.Ej(t), j = 0, 1, · · · , l.

(3.24)

This, together with the induction hypothesis (3.23), gives

Ej,i(t) .
i+j∑
ι=0

Eι(t), j ≥ 0, i ≥ 0, i+ j ≤ k. (3.25)

In what follows, we assume j ≥ 0, i ≥ 1 and i+ j = k+1 ≤ l. First, We estimate P1 and
P2 given by (3.19) and (3.20), respectively. For P1, it follows from (2.13) and σr = −2Br
that

|P1| .
j∑

ι=1

(1 + t)−1−ι
(∣∣rw∂j−ι

t ∂i+1
r ζ

∣∣+ ∣∣∂j−ι
t ∂irζ

∣∣)+ j∑
ι=0

i−1∑
m=1

(1 + t)−1−ι
∣∣∂j−ι

t ∂mr ζ
∣∣

+ (i− 1)

(∣∣∂j+2
t ∂i−2

r ζ
∣∣+ ∣∣∂j+1

t ∂i−2
r ζ

∣∣+ j∑
ι=0

(1 + t)−1−ι
∣∣∂j−ι

t ∂i−2
r ζ

∣∣)

+

j∑
ι=0

(1 + t)−1−ι
∣∣r∂j−ι

t ∂i−1
r ζ

∣∣ ,
17



which implies∥∥∥rσ α+i−1
2 P1

∥∥∥2 . j∑
ι=1

(1 + t)−2−2ι

(∥∥∥r2σ α+i+1
2 ∂j−ι

t ∂i+1
r ζ

∥∥∥2 + ∥∥∥rσ α+i−1
2 ∂j−ι

t ∂irζ
∥∥∥2)

+

j∑
ι=0

(1 + t)−2−2ι

(
i−1∑
m=1

∥∥∥rσ α+i−1
2 ∂j−ι

t ∂mr ζ
∥∥∥2 + ∥∥∥r2σ α+i−1

2 ∂j−ι
t ∂i−1

r ζ
∥∥∥2)

+(i− 1)2

(
j+2∑

ι=j+1

∥∥∥rσ α+i−1
2 ∂ιt∂

i−2
r ζ

∥∥∥2 + j∑
ι=0

(1 + t)−2−2ι
∥∥∥rσ α+i−1

2 ∂j−ι
t ∂i−2

r ζ
∥∥∥2) .

So,

∥∥∥rσ α+i−1
2 P1

∥∥∥2 .


(1 + t)−2−2j

(
j−1∑
ι=0

Eι,1 +
j∑

ι=0

Eι

)
(t), i = 1,

(1 + t)−2−2j

(
j−1∑
ι=0

Eι,i +
j∑

ι=0

i−1∑
m=1

Eι,m +

j+2∑
ι=0

Eι,i−2

)
(t), i ≥ 2.

(3.26)

For P2, it follows from (2.13), (3.1), (3.2) and σr = −2Br that

|P2| .
j∑

n=0

i−1∑
m=0

Knm

(∣∣∂j−n
t ∂i−1−m

r (σrζrr)
∣∣+ ∣∣∂j−n

t ∂i−1−m
r (σζr)

∣∣
+
∣∣∂j−n

t ∂i−1−m
r (σrrζr)

∣∣+ ∣∣∂j−n
t ∂i−1−m

r (σrζ)
∣∣)

.
j∑

n=0

i−1∑
m=0

Knm

(∣∣σr∂j−n
t ∂i−m+1

r ζ
∣∣+ i−m∑

ι=0

∣∣∂j−n
t ∂ιrζ

∣∣) =:

j∑
n=0

i−1∑
m=0

P2nm,

where

K00 = ϵ0(1 + t)−1− 1
3γ−1 ;

K10 = ϵ0(1 + t)−2− 1
3γ−1 , K01 = (1 + t)−1− 1

3γ−1
(
ϵ0 + |r∂2r ζ|

)
;

K20 = ϵ0(1 + t)−3− 1
3γ−1 + (1 + t)−1− 1

3γ−1

∣∣r∂2t ∂rζ∣∣ ,
K11 = (1 + t)−2− 1

3γ−1
(
ϵ0 +

∣∣r∂2r ζ∣∣)+ (1 + t)−1− 1
3γ−1

∣∣r∂t∂2r ζ∣∣ ,
K02 = (1 + t)−1− 1

3γ−1
(∣∣∂2r ζ∣∣+ ∣∣r∂3r ζ∣∣)+ (1 + t)−1− 2

3γ−1

(
ϵ20 +

∣∣r∂2r ζ∣∣2) .
We do not list here Knm for n+m ≥ 3 since we can use the same method to estimate P2nm

for n+m ≥ 3 as that for n+m ≤ 2. Easily, P200 and P210 can be bounded by∥∥∥rσ α+i−1
2 P200

∥∥∥2 .ϵ20(1 + t)−2

(∥∥∥r2σ α+i+1
2 ∂jt ∂

i+1
r ζ

∥∥∥2 + i∑
ι=0

∥∥∥rσ α+i−1
2 ∂jt ∂

ι
rζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

(
Ej,i +

i−1∑
ι=0

Ej,ι

)
(t),
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∥∥∥rσ α+i−1
2 P210

∥∥∥2 .ϵ20(1 + t)−4

(∥∥∥r2σ α+i+1
2 ∂j−1

t ∂i+1
r ζ

∥∥∥2 + i∑
ι=0

∥∥∥rσ α+i−1
2 ∂j−1

t ∂ιrζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

i∑
ι=0

Ej−1,ι(t).

For P201, we use (3.1) to get |σ1/2∂2r ζ| . ϵ0 and then obtain∥∥∥rσ α+i−1
2 P201

∥∥∥2 .ϵ20(1 + t)−2

(∥∥∥r2σ α+i
2 ∂jt ∂

i
rζ
∥∥∥2 + i−1∑

ι=0

∥∥∥rσ α+i−2
2 ∂jt ∂

ι
rζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

i−1∑
ι=0

Ej,ι(t),

For P220, we use (3.1) again to get |rσ1/2∂2t ∂rζ| . ϵ0(1 + t)−2 and then achieve∥∥∥rσ α+i−1
2 P220

∥∥∥2 .ϵ20(1 + t)−6

(∥∥∥r2σ α+i
2 ∂j−2

t ∂i+1
r ζ

∥∥∥2 + i∑
ι=0

∥∥∥rσ α+i−2
2 ∂j−2

t ∂ιrζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

i+1∑
ι=0

Ej−2,ι(t),

because it can be derived from (3.6) that∥∥∥rσ α+i−2
2 ∂j−2

t ∂irζ
∥∥∥2 = ∫

Io
r2σα+i−2

∣∣∂j−2
t ∂irζ

∣∣2 dr + ∫
Ib
r2σα+i−2

∣∣∂j−2
t ∂irζ

∣∣2 dr
.
∫
Io
r2σα+i−1

∣∣∂j−2
t ∂irζ

∣∣2 dr + ∫
Ib
σα+i−2

∣∣∂j−2
t ∂irζ

∣∣2 dr
.
∫
Io
r2σα+i−1

∣∣∂j−2
t ∂irζ

∣∣2 dr + ∫
Ib
σα+i

(∣∣∂j−2
t ∂irζ

∣∣2 + ∣∣∂j−2
t ∂i+1

r ζ
∣∣2) dr

.
∫
Io
r2σα+i−1

∣∣∂j−2
t ∂irζ

∣∣2 dr + ∫
Ib
σα+i

(
r2
∣∣∂j−2

t ∂irζ
∣∣2 + r2

∣∣∂j−2
t ∂i+1

r ζ
∣∣2) dr

.
∫
r2σα+i−1

∣∣∂j−2
t ∂irζ

∣∣2 dr + ∫ r2σα+i
∣∣∂j−2

t ∂i+1
r ζ

∣∣2 dr.
Similar to the estimate for P220, we can obtain∥∥∥rσ α+i−1

2 P211

∥∥∥2 .ϵ20(1 + t)−4

(∥∥∥r2σ α+i−1
2 ∂j−1

t ∂irζ
∥∥∥2 + i−1∑

ι=0

∥∥∥rσ α+i−3
2 ∂j−1

t ∂ιrζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

i∑
ι=0

Ej−1,ι(t),

∥∥∥rσ α+i−1
2 P202

∥∥∥2 .ϵ20(1 + t)−2

(∥∥∥r2σ α+i−2
2 ∂jt ∂

i−1
r ζ

∥∥∥2 + i−2∑
ι=0

∥∥∥rσ α+i−4
2 ∂jt ∂

ι
rζ
∥∥∥2)

.ϵ20(1 + t)−2−2j

i−1∑
ι=0

Ej,ι(t).
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It should be noted that P211 and P202 appear when i ≥ 2 and i ≥ 3, respectively. This
ensures the application of the Hardy inequality (3.6). Other cases can be done similarly,
since the leading term of Knm is

n∑
q=0

(1 + t)−1− 1
3γ−1

−q
(∣∣r∂n−q

t ∂m+1
r ζ

∣∣+ ∣∣∂n−q
t ∂mr ζ

∣∣)
and

j∑
n=0

i−1∑
m=0

n∑
q=0

(1 + t)−2−2q
∥∥∥rσ α+i−1

2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣) (∣∣σr∂j−n

t ∂i−m+1
r ζ

∣∣
+

i−m∑
ι=0

∣∣∂j−n
t ∂ιrζ

∣∣)∥∥∥∥∥
2

. ϵ20(1 + t)−2−2j

(
Ej,i +

∑
0≤ι≤j, p≥0, ι+p≤i+j−1

Eι,p

)
(t).

(3.27)

(Estimate (3.27) will be verified in the Appendix.) Now, we may conclude that∥∥∥rσ α+i−1
2 P2

∥∥∥2 .ϵ20(1 + t)−2−2j

(
Ej,i +

∑
0≤ι≤j, p≥0, ι+p≤i+j−1

Eι,p

)
(t). (3.28)

Substitute (3.26) and (3.28) into (3.21) gives, for suitably small ϵ0, that

Ej,i(t) .


Ej(t) + Ej+1(t) +

∑
ι≥0, p≥0, ι+p≤j

Eι,p(t) +
j∑

ι=0

Eι(t), i = 1,

Ej,i−1(t) + Ej+2,i−2(t) + Ej+1,i−2(t) +
∑

0≤ι≤j, p≥0, ι+p≤i+j−1

Eι,p(t), i ≥ 2.

(3.29)

Now, we use estimate (3.25), derived from the induction hypothesis (3.23), and (3.29) to
show that (3.22) holds for i+ j = k + 1. First, choosing j = k and i = 1 in (3.29) gives

Ek,1(t) .
k+1∑
ι=0

Eι(t) +
∑

ι≥0, p≥0, ι+p≤k

Eι,p(t) .
k+1∑
ι=0

Eι(t). (3.30)

We choose j = k − 1 and i = 2 in (3.29) and use (3.24)-(3.25) to show

Ek−1,2(t) . Ek−1,1(t) + Ek+1,0(t) + Ek,0(t) +
∑

0≤ι≤k−1, p≥0, ι+p≤k

Eι,p(t) .
k+1∑
ι=0

Eι(t).

For Ek−2,3, it follows from (3.29), (3.25) and (3.30) to obtain

Ek−2,3(t) . Ek−2,2(t) + Ek,1(t) + Ek−1,1(t) +
∑

0≤ι≤k−2, p≥0, ι+p≤k

Eι,p(t) .
k+1∑
ι=0

Eι(t).

The other cases can be handled similarly. So we have proved (3.22) when i+ j = k+1. This
finishes the proof of Lemma 3.3. 2
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3.3 Nonlinear weighted energy estimates

In this section, we show that the weighted energy Ej(t) can be bounded by the initial date
for all t ∈ [0, T ].

Proposition 3.4 Suppose that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1).
Then it holds that for t ∈ [0, T ],

Ej(t) .
j∑

ι=0

Eι(0), j = 0, 1, · · · , l. (3.31)

The proof of this proposition consists of Lemma 3.5 and Lemma 3.6.

3.3.1 Basic energy estimates

Lemma 3.5 Assume that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1). Then,

E0(t) +
∫ t

0

∫ [
(1 + s)−1r2ρ̄γ0

(
ζ2 + (rζr)

2)+ (1 + s)r4ρ̄0ζ
2
s

]
drds . E0(0), t ∈ [0, T ]. (3.32)

Proof. Multiplying (2.16) by r3ζt, and integrating the product with respect to the spatial
variable, we obtain, using the integration by parts, that

d

dt

∫
1

2
r4ρ̄0ζ

2
t dr +

∫
r4ρ̄0ζ

2
t dr +

∫
ρ̄γ0L1dr = 0 (3.33)

where

L1 := − (η̃r + ζ)−2γ (η̃r + ζ + rζr)
−γ [r3 (η̃r + ζ)2 ζt

]
r
+ η̃2−3γ

r

(
r3ζt

)
r
=: −L11 + L12.

For L11, note that[
r3 (η̃r + ζ)2 ζt

]
r

=3r2 (η̃r + ζ)2 ζt + 2r2 (η̃r + ζ) (rζr) ζt + r2 (η̃r + ζ)2 (rζrt)

=2r2 (η̃r + ζ) (η̃r + ζ + rζr) ζt + r2 (η̃r + ζ)2 (ζ + rζr)t ,

thus,

L11 =2r2 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
1−γ ζt + r2 (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ (ζ + rζr)t

=
r2

1− γ

[
(η̃r + ζ)2−2γ (η̃r + ζ + rζr)

1−γ]
t

− r2
[
2 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)

1−γ + (η̃r + ζ)2−2γ (η̃r + ζ + rζr)
−γ] η̃rt.

Clearly, L12 can be rewritten as

L12 = r2 (3ζ + rζr)t η̃
2−3γ
r = r2

[
(3ζ + rζr) η̃

2−3γ
r

]
t
− (2− 3γ)r2 (3ζ + rζr) η̃

1−3γ
r η̃rt.
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Substitute these calculations into (3.33) to give

d

dt

∫ (
1

2
r4ρ̄0ζ

2
t + r2ρ̄γ0Ẽ0

)
dr +

∫
r4ρ̄0ζ

2
t dr +

∫
r2ρ̄γ0 η̃rtFdr = 0, (3.34)

where

Ẽ0 :=
1

γ − 1

[
(η̃r + ζ)2−2γ (η̃r + ζ + rζr)

1−γ − η̃3−3γ
r + (γ − 1) (3ζ + rζr) η̃

2−3γ
r

]
,

F :=2 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
1−γ + (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ

− 3η̃2−3γ
r − (2− 3γ) (3ζ + rζr) η̃

1−3γ
r .

It follows from the Taylor expansion, the smallness of ζ and rζr which is a consequence of
(3.1), and (2.13) that

Ẽ0 =η̃
1−3γ
r

[
3

2
(3γ − 2)ζ2 + (3γ − 2)ζrζr +

γ

2
(rζr)

2

]
+O(1)η̃−3γ

r (|ζ|+ |rζr|)
(
ζ2 + (rζr)

2)
∼η̃1−3γ

r

(
ζ2 + (rζr)

2) ∼ (1 + t)−1
(
ζ2 + (rζr)

2) ,
F ≥(3γ − 1)η̃−3γ

r

[
3

2
(3γ − 2)ζ2 + (3γ − 2)ζrζr +

γ

2
(rζr)

2

]
− Cη̃−3γ−1

r (|ζ|+ |rζr|)
(
ζ2 + (rζr)

2)
≥(1 + t)−

3γ
3γ−1

(
ζ2 + (rζr)

2) ≥ 0.

Here and thereafter the notation O(1) represents a finite number could be positive or nega-
tive. We then have, by integrating (3.34) with respect to the temporal variable, that∫ (

1

2
r4ρ̄0ζ

2
t + r2ρ̄γ0Ẽ0

)
(r, s)dr

∣∣∣∣t
s=0

+

∫ t

0

∫
r4ρ̄0ζ

2
sdrds ≤ 0

and ∫ [
r4ρ̄0ζ

2
t + (1 + t)−1r2ρ̄γ0

(
ζ2 + (rζr)

2)] (r, t)dr + ∫ t

0

∫
r4ρ̄0ζ

2
sdrds

.
∫ [

r4ρ̄0ζ
2
t + r2ρ̄γ0

(
ζ2 + (rζr)

2)] (r, 0)dr. (3.35)

Multiplying (2.16) by r3ζ, and integrating the product with respect to the spatial variable,
we have, using the integration by parts, that

d

dt

∫
r4ρ̄0

(
1

2
ζ2 + ζζt

)
dr +

∫
ρ̄γ0L2dr =

∫
r4ρ̄0ζ

2
t dr, (3.36)

where
L2 := − (η̃r + ζ)−2γ (η̃r + ζ + rζr)

−γ [r3 (η̃r + ζ)2 ζ
]
r
+ η̃2−3γ

r

(
r3ζ
)
r
,
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which can be rewritten as

L2 =− 2r2 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
1−γ ζ − r2 (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ

× (ζ + rζr) + r2η̃2−3γ
r (3ζ + rζr)

=r2
[
3η̃2−3γ

r − 2 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
1−γ − (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ] ζ
+ r2

[
η̃2−3γ
r − (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ] rζr.
Again, we use the Taylor expansion, (3.2) and (3.1) to obtain

L2 &r2(1 + t)−1
[
3(3γ − 2)ζ2 + 2(3γ − 2)ζrζr + γ (rζr)

2]
− Cr2(1 + t)−

3γ
3γ−1 (|ζ|+ |rζr|)

(
ζ2 + (rζr)

2)
&r2(1 + t)−1

[
3(3γ − 2)ζ2 + 2(3γ − 2)ζrζr + γ (rζr)

2 − Cϵ0
(
ζ2 + (rζr)

2)]
&r2(1 + t)−1

(
ζ2 + (rζr)

2) ,
provide that ϵ0 is suitably small. It then follows from (3.36), the Cauchy inequality and
(3.35) that∫ (

r4ρ̄0ζ
2
)
(r, t)dr +

∫ t

0

∫
(1 + s)−1r2ρ̄γ0

(
ζ2 + (rζr)

2) drds
.
∫ (

r4ρ̄0
(
ζ2 + ζ2t

))
(r, 0)dr +

∫ (
r4ρ̄0ζ

2
t

)
(r, t)dr +

∫ t

0

∫
r4ρ̄0ζ

2
sdrds

.
∫ [

r4ρ̄0
(
ζ2 + ζ2t

)
+ r2ρ̄γ0

(
ζ2 + (rζr)

2)] (r, 0)dr = E0(0).

(3.37)

Next, we show the time decay of the energy norm. Multiply equation (3.34) by (1+t)
and integrate the product with respect to the temporal variable to get

(1 + t)

∫ (
1

2
r4ρ̄0ζ

2
t + r2ρ̄γ0Ẽ0

)
(r, t)dr +

∫ t

0

(1 + s)

∫
r4ρ̄0ζ

2
sdrds

≤
∫ (

1

2
r4ρ̄0ζ

2
t + r2ρ̄γ0Ẽ0

)
(r, 0)dr +

∫ t

0

∫ (
1

2
r4ρ̄0ζ

2
s + Ẽ0

)
drds

.
∫ (

1

2
r4ρ̄0ζ

2
t + r2ρ̄γ0Ẽ0

)
(r, 0)dr +

∫ t

0

∫ [
r4ρ̄0ζ

2
s + (1 + s)−1r2ρ̄γ0

(
ζ2 + (rζr)

2)] drds
.
∫ [

r4ρ̄0
(
ζ2 + ζ2t

)
+ r2ρ̄γ0

(
ζ2 + (rζr)

2)] (r, 0)dr = E0(0),

where estimates (3.35) and (3.37) have been used to derive the last inequality. This means∫ [
(1 + t)r4ρ̄0ζ

2
t + r2ρ̄γ0

(
ζ2 + (rζr)

2)] (r, t)dr + ∫ t

0

(1 + s)

∫
r4ρ̄0ζ

2
sdrds . E0(0),

which, together with (3.37), gives (3.32). This finishes the proof of Lemma 3.5. 2
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3.3.2 Higher-order energy estimates

Equation (2.16) reads

rρ̄0ζtt + rρ̄0ζt +
[
ρ̄γ0 (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ]
r
− η̃2−3γ

r (ρ̄γ0)r

− 2ρ̄γ0 (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
−γ ζr = 0.

Let k ≥ 1 be an integer and take the k-th time derivative of the equation above. One has

rρ̄0∂
k
t ζtt + rρ̄0∂

k
t ζt +

[
ρ̄γ0
(
w1∂

k
t ζ + w2r∂

k
t ζr +K1

)]
r
+ ρ̄γ0

[
(3w2 − w1)∂

k
t ζr +K2

]
−2ρ̄γ0

(
w3ζr∂

k
t ζ +K3

)
+ ∂k−1

t

{
ρ̄γ0 η̃rt

[
w1 − (2− 3γ)η̃1−3γ

r

]}
r
− 2ρ̄γ0∂

k−1
t (η̃rtw3ζr) = 0.

(3.38)

Here

w1 =(2− 2γ) (η̃r + ζ)1−2γ (η̃r + ζ + rζr)
−γ − γ (η̃r + ζ)2−2γ (η̃r + ζ + rζr)

−γ−1 ,

w2 =− γ (η̃r + ζ)2−2γ (η̃r + ζ + rζr)
−γ−1 ,

w3 =(1− 2γ) (η̃r + ζ)−2γ (η̃r + ζ + rζr)
−γ − γ (η̃r + ζ)1−2γ (η̃r + ζ + rζr)

−γ−1 ;

and

K1 =∂
k−1
t (w1ζt + w2rζtr)−

(
w1∂

k
t ζ + w2r∂

k
t ζr
)
,

K2 =∂
k−1
t [(3w2 − w1)ζtr]− (3w2 − w1)∂

k
t ζr,

K3 =∂
k−1
t (w3ζrζt)− w3ζr∂

k
t ζ.

It should be noted that K1, K2 and K3 contain lower-order terms involving ∂ιt(ζ, ζr) with
ι = 0, · · · , k − 1; and w1, w2 and w3 can be expanded, according to the Taylor expansion
and the smallness of ζ and rζr which is a consequence of (3.1), as follows

w1 =(2− 3γ)η̃1−3γ
r + (3γ − 1)η̃−3γ

r [(3γ − 2)ζ + γrζr] + w̄1

w2 =− γη̃1−3γ
r + γη̃−3γ

r [(3γ − 1)ζ + (γ + 1)rζr] + w̄2,

w3 =(1− 3γ)η̃−3γ
r + w̄3.

(3.39)

Here w̄i satisfies

|w̄1|+ |w̄2| . η̃−3γ−1
r

(
|ζ|2 + |rζr|2

)
, and |w̄3| . η̃−3γ−1

r (|ζ|+ |rζr|) . (3.40)

In particular, K1 = K2 = K3 = 0 when k = 1.

Lemma 3.6 Assume that (3.1) holds for suitably small positive number ϵ0 ∈ (0, 1). Then
for all j = 1, · · · , l,

Ej(t) +
∫ t

0

∫ [
(1 + s)2j−1r2ρ̄γ0

∣∣∂js (ζ, rζr)∣∣2 + (1 + s)2j+1r4ρ̄0
(
∂jsζs

)2]
drds

.
j∑

ι=0

Eι(0), t ∈ [0, T ].

(3.41)
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Proof. We use induction to prove (3.41). As shown in Lemma 3.5, we know that (3.41)
holds for j = 0. For 1 ≤ k ≤ l, we make the induction hypothesis that (3.41) holds for all
j = 0, · · · , k − 1, that is,

Ej(t) +
∫ t

0

∫ [
(1 + s)2j−1r2ρ̄γ0

∣∣∂js (ζ, rζr)∣∣2 + (1 + s)2j+1r4ρ̄0
(
∂jsζs

)2]
drds

.
j∑

ι=0

Eι(0) for all j = 0, 1, · · · , k − 1.

(3.42)

It suffices to prove (3.41) holds for j = k under the induction hypothesis (3.42).
Step 1. In this step, we prove that

d

dt

[∫
1

2
r4ρ̄0

(
∂kt ζt

)2
dr + Ek

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr

.(ϵ0 + δ)(1 + t)−2k−2Ek(t) +
(
ϵ0 + δ−1

)
(1 + t)−2k−2

k−1∑
ι=0

Eι(t),
(3.43)

for any positive number δ > 0 which will be specified later, where Ek :=
∫
r2ρ̄γ0Ẽkdr +M2.

Here Ẽk and M2 are defined by (3.49) and (3.47), respectively. Moreover, we show that Ek

satisfies the following estimates:

Ek ≥ C−1(1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr − C(1 + t)−2k−1

k−1∑
ι=0

Eι(t), (3.44)

Ek . (1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + (1 + t)−2k−1

k−1∑
ι=0

Eι(t). (3.45)

We start with integrating the production of (3.38) and r3∂kt ζt with respect to the spatial
variable which gives

d

dt

∫
1

2
r4ρ̄0

(
∂kt ζt

)2
dr +

∫
r4ρ̄0

(
∂kt ζt

)2
dr +N1 +N2 = 0, (3.46)

where

N1 :=−
∫
ρ̄γ0
(
w1∂

k
t ζ + w2r∂

k
t ζr
) (
r3∂kt ζt

)
r
dr +

∫
r2ρ̄γ0(3w2 − w1)

(
r∂kt ζr

)
∂kt ζtdr

− 2

∫
r2ρ̄γ0w3 (rζr)

(
∂kt ζ
)
∂kt ζtdr,

N2 :=−
∫
ρ̄γ0
{
K1 + ∂k−1

t

[
η̃rt
(
w1 − (2− 3γ)η̃1−3γ

r

)]} (
r3∂kt ζt

)
r
dr

+

∫
r2ρ̄γ0

(
∂kt ζt

) [
r(K2 − 2K3)− 2∂k−1

t (η̃rtw3rζr)
]
dr.
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Note that N1 and N2 can be rewritten as

N1 = −1

2

∫
r2ρ̄γ0

[
(3w1 + 2w3rζr)

[(
∂kt ζ
)2]

t
+ 2w1

[(
∂kt ζ
)
r∂kt ζr

]
t
+ w2

[(
r∂kt ζr

)2]
t

]
dr

= −1

2

d

dt

∫
r2ρ̄γ0

[
(3w1 + 2w3rζr)

(
∂kt ζ
)2

+ 2w1

(
∂kt ζ
)
r∂kt ζr + w2

(
r∂kt ζr

)2]
dr + Ñ1,

N2 =
d

dt
M2 +

∫
ρ̄γ0
{
K1t + ∂kt

[
η̃rt
(
w1 − (2− 3γ)η̃1−3γ

r

)]} (
r3∂kt ζ

)
r
dr

−
∫
r2ρ̄γ0

(
∂kt ζ
) [
r(K2 − 2K3)t − 2∂kt (η̃rtw3rζr)

]
dr =:

d

dt
M2 + Ñ2,

where

Ñ1 :=
1

2

∫
r2ρ̄γ0

[
(3w1 + 2w3rζr)t

(
∂kt ζ
)2

+ 2w1t

(
∂kt ζ
)
r∂kt ζr + w2t

(
r∂kt ζr

)2]
dr,

M2 :=−
∫
ρ̄γ0
{
K1 + ∂k−1

t

[
η̃rt
(
w1 − (2− 3γ)η̃1−3γ

r

)]} (
r3∂kt ζ

)
r
dr

+

∫
r2ρ̄γ0

(
∂kt ζ
) [
r(K2 − 2K3)− 2∂k−1

t (η̃rtw3rζr)
]
dr.

(3.47)

It then follows from equation (3.46) that

d

dt

[∫ (
1

2
r4ρ̄0

(
∂kt ζt

)2
+ r2ρ̄γ0Ẽk

)
dr +M2

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr = −Ñ1 − Ñ2, (3.48)

where

Ẽk := −1

2

[
(3w1 + 2w3rζr)

(
∂kt ζ
)2

+ 2w1

(
∂kt ζ
)
r∂kt ζr + w2

(
r∂kt ζr

)2]
(3.49)

which satisfies

Ẽk =η̃
1−3γ
r

[
3

2
(3γ − 2)

(
∂kt ζ
)2

+ (3γ − 2)
(
∂kt ζ
)
r∂kt ζr +

γ

2

(
r∂kt ζr

)2]
+O(1)η̃−3γ

r (|ζ|+ |rζr|)
((
∂kt ζ
)2

+
(
r∂kt ζr

)2)
∼η̃1−3γ

r

[(
∂kt ζ
)2

+
(
r∂kt ζr

)2] ∼ (1 + t)−1
[(
∂kt ζ
)2

+
(
r∂kt ζr

)2]
.

(3.50)

Here we have used (3.39), (2.13) and the smallness of ζ and rζr which is a consequence of
(3.1) to derive the above equivalence. We will show later that M2 can be bounded by the

integral of Ẽk and lower-order terms, see (3.65).

In what follows, we analyze the terms on the right-hand side of (3.48). Clearly, −Ñ1 can
be bounded by

−Ñ1 ≤(1− 3γ)

∫
r2ρ̄γ0 η̃

−3γ
r η̃rt

[(
9

2
γ − 3

)(
∂kt ζ
)2

+ (3γ − 2)
(
∂kt ζ
) (
r∂kt ζr

)
+
γ

2

(
r∂kt ζr

)2]
dr + C

∫
r2ρ̄γ0 η̃

−3γ
r

[
η̃−1
r η̃rt (|ζ|+ |rζr|)

+
(
1 + η̃−1

r (|ζ|+ |rζr|)
)
(|ζt|+ |rζrt|)

] ((
∂kt ζ
)2

+
(
r∂kt ζr

)2)
dr.
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It should be noted that the first integral on the right-hand side of the inequality above is
non-positive due to η̃rt ≥ 0. Thus, we have by use of (2.13) and (3.1) that

−Ñ1 . ϵ0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ0

((
∂kt ζ
)2

+
(
r∂kt ζr

)2)
dr. (3.51)

To control Ñ2, we may rewrite it as

Ñ2 =

∫
r2ρ̄γ0

{(
3∂kt ζ + r∂kt ζr

)
∂kt
[
η̃rt
(
w1 − (2− 3γ)η̃1−3γ

r

)]
+ 2

(
∂kt ζ
)
∂kt (η̃rtw3rζr)

}
dr

+

∫
r2ρ̄γ0

[
K1t

(
3∂kt ζ + r∂kt ζr

)
− r(K2 − 2K3)t

(
∂kt ζ
)]
dr =: Ñ21 + Ñ22.

For Ñ21, note that

∂kt
[
η̃rt
(
w1 − (2− 3γ)η̃1−3γ

r

)]
=(3γ − 1)∂kt

[
η̃rtη̃

−3γ
r ((3γ − 2)ζ + γrζr)

]
+ ∂kt (η̃rtw̄1)

=(3γ − 1)η̃rtη̃
−3γ
r

(
(3γ − 2)∂kt ζ + γr∂kt ζr

)
+O(1)

k∑
ι=1

∣∣∂ιt (η̃rtη̃−3γ
r

)∣∣ ∣∣∂k−ι
t (ζ, rζr)

∣∣+ ∂kt (η̃rtw̄1) .

and

∂kt (η̃rtw3rζr) = (1− 3γ)∂kt
(
η̃rtη̃

−3γ
r rζr

)
+ ∂kt (η̃rtw̄3rζr)

= (1− 3γ)η̃rtη̃
−3γ
r

(
r∂kt ζr

)
+O(1)

k∑
ι=1

∣∣∂ιt (η̃rtη̃−3γ
r

)∣∣ ∣∣r∂k−ι
t ζr

∣∣+ ∂kt (η̃rtw̄3rζr) .

Thus,

−Ñ21 ≤(1− 3γ)

∫
r2ρ̄γ0 η̃

−3γ
r η̃rt

[
(9γ − 6)

(
∂kt ζ
)2

+ (6γ − 4)
(
∂kt ζ
) (
r∂kt ζr

)
+γ
(
r∂kt ζr

)2]
dr + C

∫
r2ρ̄γ0

(∣∣∂kt ζ∣∣+ ∣∣r∂kt ζr∣∣)
×

[
k∑

ι=1

∣∣∂ιt (η̃rtη̃−3γ
r

)∣∣ ∣∣∂k−ι
t (ζ, rζr)

∣∣+ ∣∣∂kt (η̃rtw̄1, η̃rtw̄3rζr)
∣∣] dr.

(3.52)

For Ñ22, note that

K1t =(k − 1)
(
w1t∂

k
t ζ + w2tr∂

k
t ζr
)
+O(1)

k∑
ι=2

|∂ιt (w1, w2)|
∣∣∂k+1−ι

t (ζ, rζr)
∣∣ ,

rK2t =(k − 1) (3w2 − w1)t
(
r∂kt ζr

)
+O(1)

k∑
ι=2

|∂ιt (w1, w2)|
∣∣∂k+1−ι

t (rζr)
∣∣ ,

rK3t =(k − 1) (w3rζr)t
(
∂kt ζ
)
+O(1)

k∑
ι=2

|∂ιt (w3rζr)|
∣∣∂k+1−ι

t ζ
∣∣ .
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Thus,

Ñ22 ≥2(k − 1)Ñ1 − C

∫
r2ρ̄γ0

(∣∣∂kt ζ∣∣+ ∣∣r∂kt ζr∣∣)
×

k∑
ι=2

|∂ιt (w1, w2, w3rζr)|
∣∣∂k+1−ι

t (ζ, rζr)
∣∣ dr. (3.53)

In a similar way to dealing with Ñ1 shown in (3.51), we have, with the aid of (3.52) and
(3.53), that

−Ñ2 .ϵ0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ0

((
∂kt ζ
)2

+
(
r∂kt ζr

)2)
dr

+

∫
r2ρ̄γ0

(∣∣∂kt ζ∣∣+ ∣∣r∂kt ζr∣∣)Qdr. (3.54)

where

Q =
k∑

ι=1

∣∣∂ιt (η̃rtη̃−3γ
r

)∣∣ ∣∣∂k−ι
t (ζ, rζr)

∣∣+ ∣∣∂kt (η̃rtw̄1, η̃rtw̄3rζr)
∣∣

+
k∑

ι=2

|∂ιt (w1, w2, w3rζr)|
∣∣∂k+1−ι

t (ζ, rζr)
∣∣ . (3.55)

Therefore, it produces from (3.48), (3.51) and (3.54) that

d

dt

[∫ (
1

2
r4ρ̄0

(
∂kt ζt

)2
+ r2ρ̄γ0Ẽk

)
dr +M2

]
+

∫
r4ρ̄0

(
∂kt ζt

)2
dr

.ϵ0(1 + t)−2− 1
3γ−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + ∫ r2ρ̄γ0
∣∣∂kt (ζ, rζr)∣∣Qdr. (3.56)

We are to bound the last term on the right-hand side of (3.56). It follows from (2.13)
and (3.1) that

Q .ϵ0(1 + t)−2− 1
3γ−1

∣∣∂kt (ζ, rζr)∣∣+ Q̃, (3.57)

where

Q̃ :=
k∑

ι=1

(1 + t)−2−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣+ (1 + t)−1− 1

3γ−1

∣∣∂2t (ζ, rζr)∣∣ ∣∣∂k−1
t (ζ, rζr)

∣∣
+ (1 + t)−2− 1

3γ−1

∣∣∂2t (ζ, rζr)∣∣ ∣∣∂k−2
t (ζ, rζr)

∣∣+ (1 + t)−1− 1
3γ−1

∣∣∂3t (ζ, rζr)∣∣ ∣∣∂k−2
t (ζ, rζr)

∣∣
+
[
(1 + t)−1− 1

3γ−1

∣∣∂4t (ζ, rζr)∣∣+ (1 + t)−2− 1
3γ−1

∣∣∂3t (ζ, rζr)∣∣+ (1 + t)−3− 1
3γ−1

×
∣∣∂2t (ζ, rζr)∣∣+ (1 + t)−1− 2

3γ−1

∣∣∂2t (ζ, rζr)∣∣2] ∣∣∂k−3
t (ζ, rζr)

∣∣+ l.o.t.. (3.58)

Here and thereafter the notation l.o.t. is used to represent the lower-order terms involving
∂ιt (ζ, rζr) with ι = 2, · · · , k−4. It should be noticed that the second term on the right-hand
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side of (3.58) only appears as k − 1 ≥ 2, the third term as k − 2 ≥ 2, the fourth term as
k − 2 ≥ 3, and so on. Clearly, we use (3.1) again to obtain

Q̃ .
k∑

ι=1

(1 + t)−2−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣+ ϵ0σ

− 1
2 (1 + t)−3− 1

3γ−1

∣∣∂k−1
t (ζ, rζr)

∣∣
+ ϵ0σ

−1(1 + t)−4− 1
3γ−1

∣∣∂k−2
t (ζ, rζr)

∣∣+ ϵ0σ
− 3

2 (1 + t)−5− 1
3γ−1

∣∣∂k−3
t (ζ, rζr)

∣∣+ l.o.t.,

if k ≥ 7. Similarly, we can bound l.o.t. and achieve

Q̃ .
k∑

ι=1

(1 + t)−2−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣+ ϵ0

[(k−1)/2]∑
ι=1

σ− ι
2 (1 + t)−2−ι− 1

3γ−1

∣∣∂k−ι
t (ζ, rζr)

∣∣ ,
which implies∫

r2ρ̄γ0
∣∣∂kt (ζ, rζr)∣∣ Q̃dr . k∑

ι=1

(1 + t)−2−ι

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣ ∣∣∂k−ι
t (ζ, rζr)

∣∣ dr
+ϵ0

[(k−1)/2]∑
ι=1

(1 + t)−2−ι

∫
r2ρ̄γ0σ

− ι
2

∣∣∂kt (ζ, rζr)∣∣ ∣∣∂k−ι
t (ζ, rζr)

∣∣ dr =: Q̃1 + Q̃2. (3.59)

Easily, it follows from the Cauchy-Schwarz inequality that for any δ > 0,

Q̃1 .δ(1 + t)−2

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + δ−1

k∑
ι=1

(1 + t)−2−2ι

∫
r2ρ̄γ0

∣∣∂k−ι
t (ζ, rζr)

∣∣2 dr
.δ(1 + t)−2−2kEk(t) + δ−1(1 + t)−2−2k

k−1∑
ι=0

Eι(t) (3.60)

and

Q̃2 .ϵ0(1 + t)−2

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr
+ ϵ0

[(k−1)/2]∑
ι=1

(1 + t)−2−2ι

∫
r2ρ̄γ0σ

−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣2 dr. (3.61)

In view of the Hardy inequality (3.6), we see that for ι = 1, · · · , [(k − 1)/2],∫
Ib
σα+1−ι

∣∣∂k−ι
t (ζ, ζr)

∣∣2 dr . ∫
Ib
σα+3−ι

∣∣∂k−ι
t (ζ, ζr, ζrr)

∣∣2 dr . · · ·

.
ι+1∑
i=0

∫
Ib
σα+1+ι

∣∣∂k−ι
t ∂irζ

∣∣2 dr . ι+1∑
i=0

∫
Ib
r4σα+1+ι

∣∣∂k−ι
t ∂irζ

∣∣2 dr
.(1 + t)2ι−2k

(
Ek−ι +

ι∑
i=1

Ek−ι,i

)
(t) . (1 + t)2ι−2k

k∑
ι=0

Eι(t),
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due to α+1− ι ≥ α− [([α]+1)/2] ≥ 0 for k ≤ l, which ensures the application of the Hardy
inequality. Here the last inequality follows from the elliptic estimate (3.7). Thus, we can
obtain for ι = 1, · · · , [(k − 1)/2],∫

r2ρ̄γ0σ
−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣2 dr = ∫ r2σα+1−ι

∣∣∂k−ι
t (ζ, rζr)

∣∣2 dr
=

∫
Io
r2σα+1−ι

∣∣∂k−ι
t (ζ, rζr)

∣∣2 dr + ∫
Ib
r2σα+1−ι

∣∣∂k−ι
t (ζ, rζr)

∣∣2 dr
.
∫
Io
r2σα+1

∣∣∂k−ι
t (ζ, rζr)

∣∣2 dr + ∫
Ib
σα+1−ι

∣∣∂k−ι
t (ζ, ζr)

∣∣2 dr
.(1 + t)2ι−2k

k∑
ι=0

Eι(t). (3.62)

This, together with (3.61), implies

Q̃2 . ϵ0(1 + t)−2−2k

k∑
ι=0

Eι(t). (3.63)

So, it yields from (3.57), (3.59), (3.60) and (3.63) that for δ > 0,∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣Qdr . (1 + t)−2k−2

[
(ϵ0 + δ)Ek(t) +

(
ϵ0 + δ−1

) k−1∑
ι=0

Eι(t)

]
.

Substitute this into (3.56) to give (3.43).

To prove (3.44) and (3.45), we adopt a similar but much easier way to dealing with Ñ2

as shown in (3.54) to show

|M2| .
∫
r2ρ̄γ0

(∣∣∂kt ζ∣∣+ ∣∣r∂kt ζr∣∣)Pdr, (3.64)

where

P =
k−1∑
ι=0

∣∣∂ιt (η̃rtη̃−3γ
r

)∣∣ ∣∣∂k−1−ι
t (ζ, rζr)

∣∣+ ∣∣∂k−1
t (η̃rtw̄1, η̃rtw̄3rζr)

∣∣
+

k−1∑
ι=1

|∂ιt (w1, w2, w3rζr)|
∣∣∂k−ι

t (ζ, rζr)
∣∣ .

In view of (2.13) and (3.1), we have

P .
k−1∑
ι=0

(1 + t)−2−ι
∣∣∂k−1−ι

t (ζ, rζr)
∣∣+ ∣∣∂k−2

t (ζ, rζr)
∣∣ (1 + t)−1− 1

3γ−1

∣∣∂2t (ζ, rζr)∣∣
+
∣∣∂k−3

t (ζ, rζr)
∣∣ [(1 + t)−1− 1

3γ−1

∣∣∂3t (ζ, rζr)∣∣+ (1 + t)−2− 1
3γ−1

∣∣∂2t (ζ, rζr)∣∣]+ l.o.t.,

30



which implies

P .
k−1∑
ι=0

(1 + t)−2−ι
∣∣∂k−1−ι

t (ζ, rζr)
∣∣+ ϵ0

[k/2]∑
ι=2

σ
1−ι
2 (1 + t)−1−ι− 1

3γ−1

∣∣∂k−ι
t (ζ, rζr)

∣∣ .
Similar to the derivation of (3.62), we can use the Hardy inequality (3.6) and elliptic estimate
(3.7) to obtain

∫
r2ρ̄γ0P

2dr .(1 + t)−2−2k

k−1∑
ι=0

Eι(t) + ϵ20

[k/2]∑
ι=2

(1 + t)−2−2ι

∫
r2ρ̄γ0σ

1−ι
∣∣∂k−ι

t (ζ, rζr)
∣∣2 dr

.(1 + t)−2−2k

k−1∑
ι=0

Eι(t).

It then gives from the Cauchy inequality and (3.64) that for any δ > 0,

|M2| .δ(1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + δ−1(1 + t)

∫
r2ρ̄γ0P

2dr

.δ(1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + δ−1(1 + t)−1−2k

k−1∑
ι=0

Eι(t).
(3.65)

This, together with (3.50), proves (3.44) (by choosing suitably small δ) and (3.45).

Step 2. To control the fist term on the right-hand side of (3.43), we will prove that

d

dt
Ek +

∫ [
(1 + t)−1r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 + r4ρ̄0
(
∂kt ζt

)2]
dr

.(1 + t)−1−2k

k−1∑
ι=0

(1 + t)2ι
∫ [

r2ρ̄γ0 |∂ιt (ζ, rζr)|
2 + (1 + t)r4ρ̄0 (∂

ι
tζt)

2] dr, (3.66)

where

Ek :=

∫
r4ρ̄0

[(
∂kt ζt

)2
+
(
∂kt ζ
)
∂kt ζt +

1

2

(
∂kt ζ
)2]

dr + 2Ek.

We start with integrating the product of (3.38) and r3∂kt ζ with respect to r to give

d

dt

∫
r4ρ̄0

((
∂kt ζ
)
∂kt ζt +

1

2

(
∂kt ζ
)2)

dr −
∫
r4ρ̄0

(
∂kt ζt

)2
dr +M1 +M2 = 0, (3.67)

where

M1 =−
∫
ρ̄γ0
(
w1∂

k
t ζ + w2r∂

k
t ζr
) (
r3∂kt ζ

)
r
dr +

∫
r2ρ̄γ0(3w2 − w1)

(
r∂kt ζr

)
∂kt ζdr

− 2

∫
r2ρ̄γ0w3 (rζr)

(
∂kt ζ
)2
dr

31



and M2 is defined in (3.47). A direct calculation shows that M1 is positive and can be
bounded from below as follows

M1 =−
∫
r2ρ̄γ0

[
(3w1 + 2w3rζr)

(
∂kt ζ
)2

+ 2w1

(
∂kt ζ
) (
r∂kt ζr

)
+ w2

(
r∂kt ζr

)2]
dr

≥
∫
r2ρ̄γ0 η̃

1−3γ
r

{
(9γ − 6)

(
∂kt ζ
)2

+ (6γ − 4)
(
∂kt ζ
) (
r∂kt ζr

)
+ γ

(
r∂kt ζr

)2
−C (|ζ|+ |rζr|)

[(
∂kt ζ
)2

+
(
r∂kt ζr

)2]}
dr

&
∫
r2ρ̄γ0 η̃

1−3γ
r

[(
∂kt ζ
)2

+
(
r∂kt ζr

)2]
dr & (1 + t)−1

∫
r2ρ̄γ0

[(
∂kt ζ
)2

+
(
r∂kt ζr

)2]
dr,

due to (3.39), the smallness of ζr and rζr and (2.13). We then obtain, by making a summation
of 2× (3.43) and (3.67), that

d

dt
Ek +

∫
r4ρ̄0

(
∂kt ζt

)2
dr + (1 + t)−1

∫
r2ρ̄γ0

[(
∂kt ζ
)2

+
(
r∂kt ζr

)2]
dr

.δ(1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr + (ϵ0 + δ)(1 + t)−2k−2Ek(t)

+ δ−1(1 + t)−1−2k

k−1∑
ι=0

Eι(t) +
(
ϵ0 + δ−1

)
(1 + t)−2k−2

k−1∑
ι=0

Eι(t),

(3.68)

because of (3.65). Notice from the Hardy inequality (3.6) that for j = 0, 1, · · · , l,∫
r4ρ̄0

(
∂jt ζ
)2
dr =

∫
Io
r4σα

(
∂jt ζ
)2
dr +

∫
Ib
r4σα

(
∂jt ζ
)2
dr .

∫
Io
r2σα+1

(
∂jt ζ
)2
dr

+

∫
Ib
σα
(
∂jt ζ
)2
dr .

∫
Io
r2σα+1

(
∂jt ζ
)2
dr +

∫
Ib
σα+2

[(
∂jt ζ
)2

+
(
∂jt ζr

)2]
dr

.
∫
r2σα+1

(
∂jt ζ
)2
dr +

∫
Ib
σα+1

[
r2
(
∂jt ζ
)2

+ r4
(
∂jt ζr

)2]
dr .

∫
r2ρ̄γ0

∣∣∂jt (ζ, rζr)∣∣2 dr.
Thus,

Ej(t) . (1 + t)2j
∫ [

r2ρ̄γ0
∣∣∂jt (ζ, rζr)∣∣2 + (1 + t)r4ρ̄0

(
∂jt ζt

)2]
dr, j = 0, · · · , l. (3.69)

This finishes the proof of (3.66), by using (3.68) and (3.69), choosing suitably small δ and
noting the smallness of ϵ0. Moreover, it follows from (3.44) and (3.45) that

Ek ≥C−1

∫
r4ρ̄0

∣∣∂kt (ζ, ζt)∣∣2 dr + C−1(1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr
− C(1 + t)−2k−1

k−1∑
ι=0

Eι(t),
(3.70)

Ek .
∫
r4ρ̄0

∣∣∂kt (ζ, ζt)∣∣2 dr + (1 + t)−1

∫
r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2 dr
+ (1 + t)−2k−1

k−1∑
ι=0

Eι(t).
(3.71)
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Step 3. In this step, we show the time decay of the norm. We integrate (3.66) and use
the induction hypothesis (3.42) to show, noting (3.70) and (3.71), that∫ [

r4ρ̄0
∣∣∂kt (ζ, ζt)∣∣2 + (1 + t)−1r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2] (r, t)dr
+

∫ t

0

∫ [
(1 + s)−1r2ρ̄γ0

∣∣∂ks (ζ, rζr)∣∣2 + r4ρ̄0
(
∂ks ζs

)2]
drds

.
k∑

ι=0

Eι(0) +
k−1∑
ι=0

∫ t

0

(1 + s)2ι−1−2k

∫ [
r2ρ̄γ0 |∂ιs (ζ, rζr)|

2 + (1 + s)r4ρ̄0 (∂
ι
sζs)

2] dr
.

k∑
ι=0

Eι(0).

Multiply (3.66) by (1 + t)p and integrate the product with respect to the temporal variable
from p = 1 to p = 2k step by step to get

(1 + t)2k
∫ [

r4ρ̄0
∣∣∂kt (ζ, ζt)∣∣2 + (1 + t)−1r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2] (r, t)dr
+

∫ t

0

(1 + s)2k
∫ [

(1 + s)−1r2ρ̄γ0
∣∣∂ks (ζ, rζr)∣∣2 + r4ρ̄0

(
∂ks ζs

)2]
drds

.
k∑

ι=0

Eι(0) +
k−1∑
ι=0

∫ t

0

(1 + s)2ι−1

∫ [
r2ρ̄γ0 |∂ιs (ζ, rζr)|

2 + (1 + s)r4ρ̄0 (∂
ι
sζs)

2] dr
.

k∑
ι=0

Eι(0).

(3.72)

With this estimate at hand, we finally integrate (1+t)2k+1(3.43) with respect to the temporal
variable and use (3.69), (3.42) and (3.72) to show

(1 + t)2k
∫ [

(1 + t)r4ρ̄0
∣∣∂kt ζt∣∣2 + r2ρ̄γ0

∣∣∂kt (ζ, rζr)∣∣2] (r, t)dr
+

∫ t

0

(1 + s)2k+1

∫
r4ρ̄0

(
∂ks ζs

)2
drds

.
k∑

ι=0

Eι(0) +
k∑

ι=0

∫ t

0

(1 + s)2ι−1

∫ [
r2ρ̄γ0 |∂ιs (ζ, rζr)|

2 + (1 + s)r4ρ̄0 (∂
ι
sζs)

2] dr
.

k∑
ι=0

Eι(0).

(3.73)

It finally follows from (3.72) and (3.73) that

Ek(t) +
∫ t

0

∫
(1 + s)2k−1

[
r2ρ̄γ0

∣∣∂ks (ζ, rζr)∣∣2 + (1 + s)2r4ρ̄0
(
∂ks ζs

)2]
drds .

k∑
ι=0

Eι(0).

This completes the proof of Lemma 3.6. 2
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3.4 Verification of the a priori assumption

In this subsection, we prove the following lemma.

Lemma 3.7 Suppose that E(t) is finite, then it holds that

2∑
j=0

(1 + t)2j
∥∥∂jt ζ(·, t)∥∥2L∞ +

1∑
j=0

(1 + t)2j
∥∥∂jt ζr(·, t)∥∥2L∞ +

∑
i+j≤l−2, 2i+j≥3

(1 + t)2j

×
∥∥∥σ 2i+j−3

2 ∂jt ∂
i
rζ(·, t)

∥∥∥2
L∞

+
∑

i+j=l−1

(1 + t)2j
∥∥∥rσ 2i+j−3

2 ∂jt ∂
i
rζ(·, t)

∥∥∥2
L∞

+
∑
i+j=l

(1 + t)2j
∥∥∥r2σ 2i+j−3

2 ∂jt ∂
i
rζ(·, t)

∥∥∥2
L∞

. E(t). (3.74)

Once this lemma is proved, the a priori assumption (3.1) is then verified and the proof of
Theorem 2.1 is finished, since it follows from the elliptic estimate (3.7) and the nonlinear
weighted energy estimate (3.31) that

E(t) . E(0), t ∈ [0, T ].

Proof. The proof consists of two steps. In Step 1, we derive the L∞-bounds away from the
boundary, that is,∑

i+j≤l−2

∥∥∂jt ∂irζ∥∥2L∞(Io)
+

∑
i+j=l−1

∥∥r∂jt ∂irζ∥∥2L∞(Io)
+

∑
i+j=l−2

∥∥r2∂jt ∂irζ∥∥2L∞(Io)

. (1 + t)−2jE(t). (3.75)

Away from the origin, we show in Step 2 the following L∞-estimates:

3∑
j=0

(1 + t)2j
∥∥∂jt ζ∥∥2L∞(Ib)

+
1∑

j=0

(1 + t)2j
∥∥∂jt ζr∥∥2L∞(Ib)

. E(t), (3.76)

∥∥∥σ 2i+j−3
2 ∂jt ∂

i
rζ
∥∥∥2
L∞(Ib)

. (1 + t)−2jE(t) when 2i+ j ≥ 4. (3.77)

We obtain (3.74) by using (3.75)-(3.77) and noting the facts l ≥ 4 and I = Io∪Ib. It suffices
to show (3.75)-(3.77).

To this end, we first notice some facts. It follows from (3.24) that Ej,0 . Ej for j = 0, · · · , l,
which implies

l∑
j=0

(
Ej(t) +

l−j∑
i=0

Ej,i(t)

)
. E(t). (3.78)

The following embedding (cf. [1]): H1/2+δ(I) ↪→ L∞(I) with the estimate

∥F∥L∞(I) ≤ C(δ)∥F∥H1/2+δ(I), (3.79)
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for δ > 0 will be used in the rest of the proof.
Step 1 (away from the boundary). It follows from (3.78) that for j = 0, 1, · · · , l,

(1 + t)2j

[
l−j∑
i=0

∫
Io
r2
(
∂jt ∂

i
rζ
)2
dr +

∫
Io
r4
(
∂jt ∂

l−j+1
r ζ

)2
dr

]
.

l−j∑
i=0

Ej,i(t) ≤ E(t), (3.80)

which implies, using (3.4), that for j = 0, 1, · · · , l − 1,

∥∥∂jt ζ∥∥2Hl−j−1(Io)
.
∥∥∂jt ζ∥∥2H2,l−j(Io)

=

l−j∑
i=0

∫
Io
dist2(r, ∂Io)

(
∂jt ∂

i
rζ
)2
dr

≤
l−j∑
i=0

∫
Io
r2
(
∂jt ∂

i
rζ
)2
dr ≤ (1 + t)−2jE(t). (3.81)

In view of (3.79) and (3.81), we see that for j = 0, 1, · · · , l − 2,

l−j−2∑
i=0

∥∥∂jt ∂irζ∥∥2L∞(Io)
.

l−j−2∑
i=0

∥∥∂jt ∂irζ∥∥2H1(Io)
.
∥∥∂jt ζ∥∥2Hl−j−1(Io)

. (1 + t)−2jE(t). (3.82)

It gives from (3.79), (3.80) and (3.81) that for j = 0, 1, · · · , l − 1,∥∥r∂jt ∂l−j−1
r ζ

∥∥2
L∞(Io)

.
∥∥r∂jt ∂l−j−1

r ζ
∥∥2
H1(Io)

.
∥∥∂jt ∂l−j−1

r ζ
∥∥2
L2(Io)

+
∥∥r∂jt ∂l−j

r ζ
∥∥2
L2(Io)

.(1 + t)−2jE(t) (3.83)

and for j = 0, 1, · · · , l,∥∥r2∂jt ∂l−j
r ζ

∥∥2
L∞(Io)

.
∥∥r2∂jt ∂l−j

r ζ
∥∥2
H1(Io)

.
∥∥r∂jt ∂l−j

r ζ
∥∥2
L2(Io)

+
∥∥r2∂jt ∂l−j+1

r ζ
∥∥2
L2(Io)

.(1 + t)−2jE(t). (3.84)

So that we can derive (3.75) from (3.82)-(3.84).
Step 2 (away from the origin). We set

db(r) := dist(r, ∂Ib) ≤
√
A/B − r . σ(r), r ∈ Ib. (3.85)

It follows from (3.4) and (3.85) that for j ≤ 5 + [α]− α,∥∥∂jt ζ∥∥2H 5−j+[α]−α
2 (Ib)

=
∥∥∂jt ζ∥∥2Hl−j+1− l−j+1+α

2 (Ib)
.
∥∥∂jt ζ∥∥2Hl−j+1+α,l−j+1(Ib)

=

l−j+1∑
k=0

∫
Ib
dα+1+l−j
b (r)|∂kr ∂

j
t ζ|2dr .

l−j+1∑
k=0

∫
Ib
σα+1+l−j|∂kr ∂

j
t ζ|2dr

.
l−j+1∑
k=0

∫
Ib
σα+k|∂kr ∂

j
t ζ|2dr .

l−j+1∑
k=0

∫
Ib
r4σα+k|∂kr ∂

j
t ζ|2dr

≤(1 + t)−2j

(
Ej(t) +

l−j∑
k=1

Ej,k(t)

)
≤ (1 + t)−2jE(t).
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This, together with (3.79), gives (3.76).
To prove (3.77), we denote

ψ := σ
2i+j−3

2 ∂jt ∂
i
rζ.

In what follows, we assume 2i+ j ≥ 4 and i+ j ≤ l and show that

∥ψ∥2L∞(Ib) . (1 + t)−2jE(t). (3.86)

The estimate (3.86) will be proved by separating the cases when α is or is not an integer.
Case 1 (α ̸= [α]). When α is not an integer, we choose σ2(l−i−j)+α−[α] as the spatial

weight. A simple calculation yields

|∂rψ| .
∣∣∣σ 2i+j−3

2 ∂jt ∂
i+1
r ζ

∣∣∣+ ∣∣∣σ 2i+j−3
2

−1∂jt ∂
i
rζ
∣∣∣ ,∣∣∂2rψ∣∣ . ∣∣∣σ 2i+j−3

2 ∂jt ∂
i+2
r ζ

∣∣∣+ ∣∣∣σ 2i+j−3
2

−1∂jt ∂
i+1
r ζ

∣∣∣+ ∣∣∣σ 2i+j−3
2

−2∂jt ∂
i
rζ
∣∣∣ ,

· · · · · ·∣∣∂krψ∣∣ . k∑
p=0

∣∣∣σ 2i+j−3
2

−p∂jt ∂
i+k−p
r ζ

∣∣∣ for k = 1, 2, · · · , l + 1− j − i. (3.87)

It follows from (3.87) that for 1 ≤ k ≤ l + 1− i− j,∫
Ib
σ2(l−i−j)+α−[α]

∣∣∂krψ∣∣2 dr . k∑
p=0

∫
Ib
σα+l−j+1−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr
.
∫
Ib
σl−i−j+1−k

1∑
p=0

σα+i+k−2p
∣∣∂jt ∂i+k−p

r ζ
∣∣2 dr + k∑

p=2

∫
Ib
σα+l−j+1−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr
.

1∑
p=0

∫
Ib
r4σα+i+k−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr + k∑
p=2

∫
Ib
σα+l−j+1−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr
.(1 + t)−2jEj,i+k−1 +

k∑
p=2

∫
Ib
σα+l−j+1−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr.
To bound the 2nd term on the right-hand side of the inequality above, notice that

α + l − j + 1− 2p

=2(l + 1− i− j − k) + 2(k − p) + (α− [α]) + (2i+ j − 4)− 1 > −1
(3.88)

for p ∈ [2, k], due to α > [α] and 2i + j ≥ 4. We then have, with the aid of the Hardy
inequality (3.6), that for p ∈ [2, k],∫

Ib
σα+l−j+1−2p

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr . ∫
Ib
σα+l−j+1−2p+2

1∑
ι=0

∣∣∂jt ∂i+k−p+ι
r ζ

∣∣2 dr . · · ·

.
∫
Ib
σα+l−j+1

p∑
ι=0

∣∣∂jt ∂i+k−p+ι
r ζ

∣∣2 dr = p∑
ι=0

∫
Ib
σ(l+1−i−j−k)+(p−ι)σα+i+k−p+ι

∣∣∂jt ∂i+k−p+ι
r ζ

∣∣2 dr
.

p∑
ι=0

∫
Ib
r4σα+i+k−p+ι

∣∣∂jt ∂i+k−p+ι
r ζ

∣∣2 dr ≤ i+k−1∑
ι=i+k−p

(1 + t)−2jEj,ι.
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That yields, for 1 ≤ k ≤ l + 1− i− j,∫
Ib
σ2(l−i−j)+α−[α]

∣∣∂krψ∣∣2 dr .(1 + t)−2jEj,i+k−1 +
k∑

p=2

i+k−1∑
ι=i+k−p

(1 + t)−2jEj,ι

.(1 + t)−2j

i+k−1∑
ι=i

Ej,ι.

Therefore, it follows from (3.85) and (3.78) that

∥ψ∥2H2(l−i−j)+α−[α], l+1−i−j(Ib) =

l+1−i−j∑
k=0

∫
Ib
d
2(l−i−j)+α−[α]
b

∣∣∂krψ∣∣2 dr
.

l+1−i−j∑
k=0

∫
Ib
σ2(l−i−j)+α−[α]

∣∣∂krψ∣∣2 dr . ∫
Ib
σα+l−j+1

∣∣∂jt ∂irζ∣∣2 dr + (1 + t)−2j

l−j∑
ι=i

Ej,ι

.
∫
Ib
r4σα+i+1

∣∣∂jt ∂irζ∣∣2 dr + (1 + t)−2j

l−j∑
ι=i

Ej,ι . (1 + t)−2j

l−j∑
ι=i

Ej,ι ≤ (1 + t)−2jE(t).

When α is not an integer, α− [α] ∈ (0, 1). So, it follows from (3.79) and (3.4) that

∥ψ∥2L∞(Ib) . ∥ψ∥2
H1−α−[α]

2 (Ib)
. ∥ψ∥2H2(l−i−j)+α−[α], l+1−i−j(Ib) . (1 + t)−2jE(t). (3.89)

Case 2 (α = [α]). In this case α is an integer, we choose σ2(l−i−j)+1/2 as the spatial weight.
As shown in Case 1, we have for 1 ≤ k ≤ l + 1− i− j,∫

Ib
σ2(l−i−j)+1/2

∣∣∂krψ∣∣2 dr . (1 + t)−2jEj,i+k−1 +
k∑

p=2

∫
Ib
σα+l−j+1−2p+1/2

∣∣∂jt ∂i+k−p
r ζ

∣∣2 dr.
Note that for 1 ≤ k ≤ l + 1− i− j and 2 ≤ p ≤ k,

α + l − j + 1− 2p+
1

2
= 2(l + 1− i− j − k) + 2(k − p) + (2i+ j − 4)− 1

2
≥ −1

2
.

We can then use the Hardy inequality (3.6) to obtain∫
Ib
σ2(l−i−j)+1/2

∣∣∂krψ∣∣2 dr . (1 + t)−2j

i+k−1∑
ι=i

Ej,ι, k = 1, 2, · · · , l − j + 1− i,

which, together with (3.85) and (3.78), implies that

∥ψ∥2H2(l−i−j)+1/2, l+1−i−j(Ib) . (1 + t)−2j

l−j∑
ι=i

Ej,ι ≤ (1 + t)−2jE(t).

Therefore, it follows from (3.79) and (3.4) that

∥ψ∥2L∞(Ib) . ∥ψ∥2H3/4(Ib) . ∥ψ∥2H2(l−i−j)+1/2, l+1−i−j(Ib) . (1 + t)−2jE(t). (3.90)

In view of (3.89) and (3.90), we obtain (3.86) or equivalently (3.77). This completes the
proof of Lemma 3.7. 2
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4 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. First, it follows from (2.3), (2.6), (1.6), (2.9), (2.2)
and (2.8) that for (r, t) ∈ I × [0,∞),

ρ(η(r, t), t)− ρ̄(η̄(r, t), t) =
r2ρ̄0(r)

η2(r, t)ηr(r, t)
− r2ρ̄0(r)

η̄2(r, t)η̄r(r, t)

and
u(η(r, t), t)− ū(η̄(r, t), t) = ηt(r, t)− η̄t(r, t).

Then, we have, using (2.15), (2.11), (2.9), (3.2), (2.14) and (2.17) that

|ρ(η(r, t), t)− ρ̄(η̄(r, t), t)| . (A−Br2)
1

γ−1 (1 + t)−
4

3γ−1

[√
E(0) + (1 + t)−

3γ−2
3γ−1 ln(1 + t)

]
and

|u(η(r, t), t)− ū(η̄(r, t), t)| . r(1 + t)−1
[√

E(0) + (1 + t)−
3γ−2
3γ−1 ln(1 + t)

]
.

This gives the proof of (2.18) and (2.19).
For the boundary behavior, it follows from (2.5), (2.15), (2.11) and (2.9) that

R(t) =η
(√

A/B, t
)
= (η̃ + rζ)

(√
A/B, t

)
= (η̄ + rh+ rζ)

(√
A/B, t

)
= [r (η̄r + h+ ζ)]

(√
A/B, t

)
=
√
A/B

[
(1 + t)1/(3γ−1) + h(t) + ζ(t)

]
which, together with (2.17) and (2.14) that

R(t) ≥
√
A/B

[
(1 + t)

1
3γ−1 − C

√
E(0)

]
and

R(t) ≤
√
A/B

[
(1 + t)

1
3γ−1 + C(1 + t)−

3γ−2
3γ−1 ln(1 + t) + C

√
E(0)

]
.

Thus, (2.20) follows from the smallness of E(0). Notice that for k = 1, 2, 3,

dkR(t)

dtk
= ∂kt η̃

(√
A/B, t

)
+
(
r∂kt ζ

) (√
A/B, t

)
.

Therefore, (2.21) follows from (2.13) and (2.17).
We are to verify the physical vacuum condition, (2.22). It follows from (2.3), (2.6), (2.15)

that

(
ργ−1

)
η
(η, t) =

(fγ−1)r (r, t)

ηr(r, t)
=

1

ηr

[
ρ̄γ−1
0

(
r2

η2ηr

)γ−1
]
r

=
1

ηr

{
ρ̄γ−1
0

[
ρ̄γ−1
0

(
r2

η2ηr

)γ−1
]
r

− 2Br

(
r2

η2ηr

)γ−1
}

=(1− γ)ρ̄γ−1
0

[
2
(η
r

)1−2γ

η−γ
r ζr +

(η
r

)2−2γ

η−γ−1
r (2ζr + rζrr)

]
− 2Br

(η
r

)2−2γ

η−γ
r ,
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which implies, with the aid of (3.3) and (2.17), that∣∣∣(ργ−1
)
η
(η, t)

∣∣∣ .(1 + t)−1
√

E(0) + r(1 + t)−1+ 1
3γ−1 (4.1)

and ∣∣∣(ργ−1
)
η
(η, t)

∣∣∣ ≥2Br
(η
r

)2−2γ

η−γ
r − C(1 + t)−1

√
E(0)

≥C−1r(1 + t)−1+ 1
3γ−1 − C(1 + t)−1

√
E(0).

(4.2)

In view of (3.3), we see that

η(r, t) ∼ (1 + t)
1

3γ−1 r,

which, together with (2.20), (4.1) and (4.2), gives for R(t)/2 ≤ η ≤ R(t),

C−1(1 + t)−
3γ−2
3γ−1 − C(1 + t)−1

√
E(0) ≤

∣∣∣(ργ−1
)
η
(η, t)

∣∣∣ . (1 + t)−1
√

E(0) + (1 + t)−
3γ−2
3γ−1 .

Thus, (2.22) follows from the smallness of E(0). This finishes the proof of Theorem 2.2. 2

5 Appendix

Proof of (2.13)1. We may write (2.10) as the following system
ht = z,

zt = −z −
[
η̄2−3γ
r − (η̄r + h)2−3γ

]
/(3γ − 1)− η̄rtt

(h, z)(t = 0) = (0, 0).

(5.1)

Recalling that η̄r(t) = (1 + t)1/(3γ−1), thus η̄rtt < 0. A simple phase plane analysis shows
that there exist 0 < t0 < t1 < t2 such that, starting from (h, z) = (0, 0) at t = 0, h and z
increases in the interval [0, t0] and z reaches its positive maxima at t0; in the interval [t0, t1],
h keeps increasing and reaches its maxima at t1, z decreases from its positive maxima to 0;
in the interval [t1, t2], both h and z decrease, and z reaches its negative minima at t2; in
the interval [t2,∞), h decreases and z increases, and (h, z) → (0, 0) as t → ∞. This can be
summarized as follows:

z(t) ↑0, h(t) ↑0, t ∈ [0, t0]

z(t) ↓0, h(t) ↑, t ∈ [t0, t1]

z(t) ↓0, h(t) ↓, t ∈ [t1, t2]

z(t) ↑0, h(t) ↓0, t ∈ [t2,∞).

It gives from the above analysis that there exists a finite constant C = C(γ,M) such that

0 ≤ h(t) ≤ C for t ≥ 0. (5.2)

In view of (2.9) and (2.11), we then see that

(1 + t)1/(3γ−1) ≤ η̃r(t) ≤ K (1 + t)1/(3γ−1) .

39



On the other hand, equation (2.10) can be rewritten as

η̃rtt + η̃rt − η̃2−3γ
r /(3γ − 1) = 0, t > 0,

η̃r(t = 0) = 1, η̃rt(t = 0) = 1/(3γ − 1).
(5.3)

Then, we have by solving (5.3) that

η̃rt(t) =
1

3γ − 1
e−t +

1

3γ − 1

∫ t

0

e−(t−s)η̃2−3γ
r (s)ds ≥ 0. 2 (5.4)

Proof of (2.13)2. We use the mathematical induction to prove (2.13)2. First, it follows from
(5.4) that

(3γ − 1)η̃rt(t) =e
−t +

∫ t/2

0

e−(t−s)η̃2−3γ
r (s)ds+

∫ t

t/2

e−(t−s)η̃2−3γ
r (s)ds

≤e−t + e−t/2

∫ t/2

0

(1 + s)
2−3γ
3γ−1ds+

(
1 +

t

2

) 2−3γ
3γ−1

∫ t

t/2

e−(t−s)ds

≤e−t + Ce−t/2

(
1 +

t

2

) 1
3γ−1

+

(
1 +

t

2

) 2−3γ
3γ−1

≤C (1 + t)
2−3γ
3γ−1 , t ≥ 0,

(5.5)

for some constant C independent of t. This proves (2.13)2 when k = 1. Suppose that (2.13)2
holds for all k = 1, 2, · · · ,m− 1, that is,∣∣∣∣dkη̃r(t)dtk

∣∣∣∣ ≤ C(m) (1 + t)
1

3γ−1
−k , k = 1, 2, · · · ,m− 1. (5.6)

It suffices to prove (2.13)2 holds for k = m. We derive from (5.3) that for m = 1, · · · , k,

dm+1

dtm+1
η̃r(t) +

dm

dtm
η̃r(t)−

1

3γ − 1

dm−1

dtm−1
η̃2−3γ
r (t) = 0, t ≥ 0,

so that

dm

dtm
η̃r(t) = e−t d

m

dtm
η̃r(0) +

1

3γ − 1

∫ t

0

e−(t−s)d
m−1η̃2−3γ

r

dsm−1
(s)ds, t ≥ 0, (5.7)

where (dm/dtm)η̃r(0) is finite, which can be determined by the equation inductively. In view
of (2.13)1 and (5.6), we see that∣∣∣∣ ddtη̃2−3γ

r (t)

∣∣∣∣ . ∣∣∣∣η̃1−3γ
r (t)

d

dt
η̃r(t)

∣∣∣∣ . (1 + t)
1

3γ−1
−2,

∣∣∣∣ d2dt2 η̃2−3γ
r (t)

∣∣∣∣ .
∣∣∣∣∣η̃−3γ

r (t)

(
d

dt
η̃r(t)

)2
∣∣∣∣∣+
∣∣∣∣η̃1−3γ

r (t)
d2

dt2
η̃r(t)

∣∣∣∣ . (1 + t)
1

3γ−1
−3
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· · ·∣∣∣∣ dm−1

dtm−1
η̃2−3γ
r (t)

∣∣∣∣ ≤ C(γ,m)(1 + t)
1

3γ−1
−m. (5.8)

Similar to deriving (5.5), we can obtain, noting (5.7) and (5.8), that∣∣∣∣dmη̃r(t)dtm

∣∣∣∣ ≤ C(γ,m) (1 + t)
1

3γ−1
−m .

This finishes the proof of (2.13)2. 2

Proof of (2.14). We may write the equation for h, (2.10), as

ht +
1

3γ − 1
(1 + t)−

3γ−2
3γ−1

[
1−

(
1 + (1 + t)−

1
3γ−1h

)2−3γ
]
= −η̃rtt, t > 0 (5.9)

Notice that(
1 + (1 + t)−

1
3γ−1h

)2−3γ

≤ 1 + (2− 3γ)(1 + t)−
1

3γ−1h+
(2− 3γ)(1− 3γ)

2
(1 + t)−

2
3γ−1h2,

due to h ≥ 0. We then obtain, in view of (2.13)2, that

ht +
3γ − 2

3γ − 1
(1 + t)−1h ≤ 3γ − 2

2
(1 + t)−

3γ
3γ−1h2 + C(1 + t)

1
3γ−1

−2.

Thus,

h(t) ≤ C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

2
3γ−1h2(s) + (1 + s)−1

)
ds. (5.10)

We use an iteration to prove (2.14). First, since h is bounded due to (5.2), we have

h(t) ≤ C(1 + t)−
3γ−2
3γ−1

∫ t

0

(1 + s)−
2

3γ−1ds ≤ C(1 + t)−
1

3γ−1 . (5.11)

Substituting this into (5.10), we obtain

h(t) ≤ C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

4
3γ−1 + (1 + s)−1

)
ds;

which implies

h(t) ≤

{
C(1 + t)−

3γ−2
3γ−1 ln(1 + t) if γ ≤ 5/3,

C(1 + t)−
3

3γ−1 if γ > 5/3.

If γ ≤ 5/3, then the first part of (2.14) has been proved. If γ > 5/3, we repeat this procedure
and obtain

h(t) ≤ C(1 + t)−
3γ−2
3γ−1

∫ t

0

(
(1 + s)−

8
3γ−1 + (1 + s)−1

)
ds;
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which implies

h(t) ≤

{
C(1 + t)−

3γ−2
3γ−1 ln(1 + t) if γ ≤ 3,

C(1 + t)−
7

3γ−1 if γ > 3.

For general γ, we repeat this procedure k times to obtain

h(t) ≤ C(1 + t)−
3γ−2
3γ−1 ln(1 + t).

This, together with (5.2), proves the first part of (2.14), which in turn implies the second
part of (2.14), by virtue of (5.9) and (2.13)2. 2

Proof of (3.27). Recall that j ≥ 0, i ≥ 1 and i + j ≤ l. Let n ∈ [0, j], m ∈ [0, i − 1] and
q ∈ [0, n] be integers. Denote

H :=

∥∥∥∥∥rσ α+i−1
2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)(∣∣σr∂j−n

t ∂i−m+1
r ζ

∣∣+ i−m∑
ι=0

∣∣∂j−n
t ∂ιrζ

∣∣)∥∥∥∥∥
2

.

Case 1. Assume 2n+ 4m ≥ 2i+ j + q. We first note that

α + (2m+ n)− (i+ j) + 2 ≥ α− j

2
+
q

2
+ 2 ≥ α− l − 1

2
+ 2 ≥ 0, (5.12)

i+ j − (n+m) ≤ l − 2. (5.13)

(Indeed, if i + j − (n +m) = l, then i + j = l and n +m = 0, so that it is a contradiction
due to

0 = 4(n+m) ≥ 2n+ 4m ≥ 2i+ j + q ≥ i+ j = l;

if i+ j − (n+m) = l − 1, then i+ j = l − 1 and n+m = 0 or i+ j = l and n+m = 1, so
that it is also a contradiction because of

0 = 4(n+m) ≥ 2n+ 4m ≥ 2i+ j + q ≥ i+ j = l − 1 > 0

or
4 = 4(n+m) ≥ 2n+ 4m ≥ 2i+ j + q ≥ i+ i+ j ≥ 1 + l = 5 + [α] ≥ 5.

So, (5.13) holds.)
When 2i+ j ≤ 2m+ n+ 3, it follows from (3.1) and (5.13) that

H .ϵ20(1 + t)2n−2j
∥∥∥rσ α+i−1

2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2

.ϵ20(1 + t)2q−2j (En−q,m+1 + En−q,m) .
(5.14)

When 2i+ j ≥ 2m+ n+ 4, it follows from (3.1) and (5.13) that

H .ϵ20(1 + t)2n−2j
∥∥∥rσ α+i−1

2
− j+2i−(n+2m)−3

2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2

=ϵ20(1 + t)2n−2j
∥∥∥rσ α+m+(n+m−(i+j)+2)

2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2 ;
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which implies for n+m− (i+ j) + 2 ≥ 0,

H .ϵ20(1 + t)2n−2j
∥∥∥rσ α+m

2

(∣∣r∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2

.ϵ20(1 + t)2q−2j (En−q,m+1 + En−q,m)
(5.15)

and for n+m− (i+ j) + 2 ≤ −1,

H .ϵ20(1 + t)2n−2j
(∥∥r2∂n−q

t ∂m+1
r ζ

∥∥2
L2(Io)

+
∥∥r∂n−q

t ∂mr ζ
∥∥2
L2(Io)

+
∥∥∥σ α+m+(n+m−(i+j)+2)

2

(∣∣∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2

L2(Ib)

)
.ϵ20(1 + t)2n−2j

(∥∥∥r2σ α+m+1
2 ∂n−q

t ∂m+1
r ζ

∥∥∥2
L2(Io)

+
∥∥∥rσ α+m−1

2 ∂n−q
t ∂mr ζ

∥∥∥2
L2(Io)

)
+ϵ20(1 + t)2q−2j

i+j−n+q−1∑
h=m

En−q,h . ϵ20(1 + t)2q−2j

i+j−n+q−1∑
h=m

En−q,h.

(5.16)

Here we have used (5.12) and the Hardy inequality (3.6) to derive∥∥∥σ α+m+(n+m−(i+j)+2)
2

(∣∣∂n−q
t ∂m+1

r ζ
∣∣+ ∣∣∂n−q

t ∂mr ζ
∣∣)∥∥∥2

L2(Ib)

.
1∑

h=0

∥∥∥σ α+m+(n+m−(i+j)+2)
2 ∂n−q

t ∂m+h
r ζ

∥∥∥2
L2(Ib)

.
2∑

h=0

∥∥∥σ α+m+(n+m−(i+j)+2)+2
2 ∂n−q

t ∂m+h
r ζ

∥∥∥2
L2(Ib)

. · · · .
i+j−(n+m)+q∑

h=0

∥∥∥σ α+m+(n+m−(i+j)+2)+2(i+j−(n+m)+q−1)
2 ∂n−q

t ∂m+h
r ζ

∥∥∥2
L2(Ib)

=

i+j−(n+m)+q∑
h=0

∥∥∥σ α+i+j−n+2q
2 ∂n−q

t ∂m+h
r ζ

∥∥∥2
L2(Ib)

.
i+j−(n+m)+q∑

h=0

∥∥∥r2σ α+i+j−n+q
2 ∂n−q

t ∂m+h
r ζ

∥∥∥2
L2(Ib)

. (1 + t)2q−2n

i+j−n+q−1∑
h=m

En−q,h,

which implies (5.16). Therefore, it gives from (5.14), (5.15) and (5.16) that

H . ϵ20(1 + t)2q−2j

(
En−q,m + En−q,m+1 +

i+j−n+q−1∑
h=m

En−q,h

)
. (5.17)

Case 2. Assume 2n+4m < 2i+j+q. In this case, we can use the similar way to dealing
with Case 1 to obtain

H . ϵ20(1 + t)2q−2j

i+n−j∑
h=0

Ej−n,h(t). (5.18)

In view of (5.17) and (5.18), we prove (3.27). 2
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