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Abstract

We construct a local Lax-Friedrichs type positivity-preserving flux for compress-
ible Navier-Stokes equations, which can be easily extended to high dimensions
for generic forms of equations of state, shear stress tensor and heat flux. With
this positivity-preserving flux, any finite volume type schemes including discon-
tinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta
time discretizations satisfy a weak positivity property. With a simple and effi-
cient positivity-preserving limiter, high order explicit Runge-Kutta DG schemes
are rendered preserving the positivity of density and internal energy without los-
ing local conservation or high order accuracy. Numerical tests suggest that the
positivity-preserving flux and the positivity-preserving limiter do not induce ex-
cessive artificial viscosity, and the high order positivity-preserving DG schemes
without other limiters can produce satisfying non-oscillatory solutions when
the nonlinear diffusion in compressible Navier-Stokes equations is accurately
resolved.

Keywords: discontinuous Galerkin method, high order accuracy, gas
dynamics, compressible Navier-Stokes, positivity-preserving, high speed flows

1. Introduction

1.1. Gas dynamics equations in conservative form

The compressible viscous fluid dynamics equations without external forces
in conservative form can be written as

Ut +∇ · Fa = ∇ · Fd. (1)

The conservative variables are U = (ρ, ρu, ρv, ρw,E)t = (ρ, ρut, E)t where ρ is
the density, u = (u, v, w)t denotes the velocity, E is the total energy and the
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superscript t denotes transpose of a vector. The advection and diffusion fluxes
are

Fa =

 ρu
ρu⊗ u + pI

(E + p)u

 ,Fd =

 0
τ

u · τ − q


where p is pressure, I is the unit tensor, the shear stress tensor is

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 ,

and q denotes the heat diffusion flux. The total energy can be written as
E = 1

2ρ‖u‖
2 + ρe where e denotes the internal energy. The relations between

conserved variables U and temperature T and pressure p are given by equations
of state (EOS).

With the Newtonian approximation, the shear stress tensor is given by τ =
η(∇u + (∇u)t) + (ηb − 2

3η)(∇ · u)I with coefficient of shear viscosity η and
the coefficient of bulk viscosity ηb. The shear viscosity coefficient η strongly

depends on the temperature T , e.g., Sutherland formula η = C1

√
T

1+C2/T
for a wide

range of temperature. The dependence of η on pressure p cannot be neglected
for high temperatures. The Stokes hypothesis states that ηb = 0, which can be
used for monatomic gases however no longer holds for polyatomic gases [1].

With Fourier’s heat conduction law, the heat flux is given by q = −κ∇T
where the thermal conductivity coefficient κ is proportional to η in molecular
theory. Assuming the specific heat at constant pressure cp is a constant, the
dimensionless quantity Prandtl number Pr ≡ cpη

κ is a constant.
For simplicity, we will use the dimensionless form of equations for ideal gases

as an example in this paper. Assuming ηb = 0, the dimensionless stress tensor
is given by τ = 1

Re (∇u + (∇u)t− 2
3 (∇·u)I) where Re is the Reynolds number.

For a calorically ideal gas one has p = (γ − 1)ρe and T = e
cv

where the specific

heat capacity cv and ratio of specific heats γ =
cp
cv

are constants.
The following two-dimensional dimensionless compressible Navier-Stokes equa-

tions for ideal gases in [2] is considered here as an example even though the key
discussions throughout this paper do not rely on the specific definitions of shear
stress tensor, heat flux and pressure function:
ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

(E + p)u


x

+


ρv
ρvu

ρv2 + p
(E + p)v


y

=
1

Re


0
τxx
τyx

τxxu+ τyxv + γex
Pr


x

+
1

Re


0
τxy
τyy

τxyu+ τyyv +
γey
Pr


y

,

(2a)
with

e =
1

ρ

(
E − 1

2
ρu2 − 1

2
ρv2

)
, (2b)

p = (γ − 1)ρe, (2c)
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and

τxx =
4

3
ux −

2

3
vy,

τxy = τyx = uy + vx,

τyy =
4

3
vy −

2

3
ux. (2d)

In this paper, we will use γ = 1.4 and Pr = 0.72 for air.

1.2. Objective and motivation

For numerical schemes solving gas dynamics equations (1), it is imperative
to preserve positivity of density and pressure (or internal energy). Not only is
positivity-preserving needed for physically meaningful numerical solutions, but
more importantly it is also well known to be critical for the sake of robustness
of numerical computation.

For the ideal gas equation of state (2c), the eigen-values of ∂Fa

∂U contains

the sound speed
√
γp/ρ. With the presence of negative density or pressure,

eigen-values of ∂Fa

∂U become imaginary thus the linearized compressible Euler
system is no longer hyperbolic, which implies ill-posedness of the initial value
problem of (1). In practice, emergence of negative density or pressure may eas-
ily result in blow-ups in numerical simulations by high order schemes. In some
demanding problems involving low density or low pressure, e.g., high Mach
number astrophysical jets, even popular robust high resolution and high or-
der schemes including Monotonic Upstream-Centered Scheme for Conservation
Laws (MUSCL) type schemes (without special positivity treatment) and clas-
sical Weighted Essentially Non-Oscillatory (WENO) schemes may blow up due
to emergence of negative pressure [3].

The simplest ad-hoc approach of truncating negative values to zero or small
positive ones may work in certain problems. But in a lot of other problems,
especially high speed flows with presence of low pressure, the brutal truncation
will eventually result in blow-ups because total mass or total energy is increased
every time a negative density or pressure value is set to zero. In other words,
both conservation and positivity must be satisfied for robustness. For example,
a conservative finite volume scheme solving (1) satisfies the global conservation
(up to proper boundary conditions)

∑
i ρ
n
i =

∑
i ρ
n+1
i , where ρni denotes the cell

average of density on the i-th cell at time level n. If the scheme is positivity-
preserving, then |ρni | = ρni for any n and i. Thus global conservation and
positivity imply L1-stability:

∑
i |ρ

n
i | =

∑
i |ρ

n+1
i |. Similarly, we can have L1-

stability for total energy.
Towards robustness, it is desired to construct conservative schemes that

are positivity-preserving of density and pressure (or internal energy). We will
consider a general equation of state which satisfies p > 0 ⇐⇒ e > 0. Then we
will focus on the positivity of internal energy instead of pressure because the
internal energy has the same definition (2b) for any equation of state. We define
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the set of admissible states as

G =

U =

 ρ
ρu
E

 : ρ > 0, ρe(U) = E − 1

2
ρ‖u‖2 > 0.

 . (3)

It is straightforward to check that the eigenvalues of the Hessian matrix ∂2

∂U2 ρe
are nonpositive if and only ρ > 0. Thus ρe is a concave function with respect to
U and it satisfies a Jensen’s inequality: ∀U1,U2 ∈ G,∀λ1, λ2 ≥ 0, λ1 +λ2 = 1,

ρe(λ1U1 + λ2U2) ≥ λ1ρe(U1) + λ2ρe(U2). (4)

Therefore, G is a convex set.
The main objective in this paper is to construct conservative positivity-

preserving high order accurate schemes solving (1), which is in general a difficult
problem.

1.3. Positivity-preserving high order schemes for compressible Euler equations

Quite a few first order finite volume schemes are positivity-preserving for
compressible Euler equations with EOS (2c), including the Godunov scheme,
the Lax-Friedrichs scheme [4], and the HLLE [5, 6] schemes and kinetic schemes
[7, 8]. Roughly speaking, to prove the positivity in Godunov and HLLE schemes,
one must take advantage of the exact solution for Riemann problems, which is
not available for a generic EOS. On the other hand, the positivity-preserving
property of the Lax-Friedrichs scheme is an algebraic fact [9, 10]. Thus it is
straightforward to show that the Lax-Friedrichs scheme is positivity-preserving
for compressible Euler equations with a generic EOS [11].

   

 

 

 

 

 

 

   

   

 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An illustration of the weak monotonicity/positivity of third order finite volume
and discontinuous Galerkin schemes using quadratic polynomials on 1D, 2D rectangular and
triangular cells. Red points are quadrature points for computing the line integral of numerical
fluxes along the cell boundary. Red points and blues points form a special quadrature and
they are the points in the weak monotonicity/positivity.

To construct positivity-preserving higher order accurate schemes, there are
a handful of efforts in the literature, e.g., [4, 12, 13, 14, 15, 16]. One of the
most successful approaches is the methodology proposed in [17, 10, 18, 19]. The
details of this approach will be reviewed later. Here we first take a look at

4



the critical feature of this methodology, which is an intrinsic weak positivity
property of arbitrarily high order finite volume and discontinuous Galerkin (DG)
spatial discretizations. Let K be a polygonal cell with edges ei (i = 1, · · · , E)
in a two-dimensional mesh. Consider a high order finite volume scheme solving
two-dimensional equations Ut + ∇ · Fa = 0 on the cell K with forward Euler
time discretization,

U
n+1

K = U
n

K −
∆t

|K|

∫
∂K

F̂a · n ds = U
n

K −
∆t

|K|

E∑
i=1

∫
ei

F̂a · n ds, (5)

where U
n

K is the cell average on K at time step n, n is the unit outward normal

vector to ∂K, |K| denotes the area ofK and F̂a · n is a positivity-preserving flux.
Positivity-preserving fluxes are those which make first order schemes positivity-
preserving , e.g., Godunov, Lax-Friedrichs and HLLE fluxes, etc. For simplicity,
we only consider a local Lax-Friedrichs flux for Fa in this paper,

F̂a · n(U−,U+)
∣∣∣
ei

=
1

2

[(
Fa(U−) + Fa(U+)

)
· n− αi(U+ −U−)

]
, (6)

where U− and U+ denote the approximations to U on ∂K from interior of K
and exterior of K respectively, and αi = max

∣∣∂Fa
∂U

∣∣ with the maximum being

taken over all U−,U+ along ei. Here
∣∣∂Fa
∂U

∣∣ denotes the largest magnitude of

the eigenvalues of the Jacobian matrix ∂Fa

∂U , which is equal to the wave speed

|u · n|+
√
γ pρ for the ideal gas EOS (2c).

The positivity property holds for the first order Lax-Friedrichs scheme under

a CFL condition ∆t |∂K||K| max
∣∣∂Fa
∂U

∣∣ ≤ 2 where |∂K| denotes the length of the

boundary ∂K. In the high order scheme (5), ρn+1
K is not a monotone function

of independent degree freedoms such as ρnK and the boundary values of ρnK
along ∂K for any positive ∆t, but under a suitable CFL condition ρn+1

K is a
monotone function with respect to certain dependent degree of freedoms, e.g.,
some redundant point values of reconstruction or approximation polynomials
illustrated in Figure 1. We call this property weak monotonicity, which was
first explored in [17] for scalar conservation laws. Via Jensen’s inequality (4),
the weak monotonicity can be extended to weak positivity for pressure and
internal energy: if the same set of point values as illustrated in Figure 1 for
the conserved variable vector U belong to the set of admissible states G, then

U
n+1

K ∈ G in the scheme (5) using approximation polynomials of degree k under
the CFL constraint

∆t
|ei|
|K|

αi ≤ a
1

N(N − 1)
, ∀i, (7)

where N = d(k + 3)/2e, i.e., N is smallest integer satisfying 2N − 3 ≥ k, and
a = 1

2 for rectangular cells and a = 2
3 for triangular cells in a two-dimensional

case.
The weak positivity property implies that we only need to filter or limit

negative point values as illustrated in Figure 1 to ensure the positivity of cell
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averages in forward Euler, which makes construction of a conservative positivity-
preserving high order scheme possible. A simple efficient scaling limiter can be
used to modify negative point values to small positive ones without changing
cell averages. For smooth solutions with a uniform positive lower bound on
pressure p ≥ m > 0, high order local truncation errors in spatial discretiza-
tion of this limiter, can be rigorously justified. High order time accuracy can
be achieved by Strong Stability Preserving (SSP) Runge-Kutta and multistep
time discretizations [20], which are convex combinations of formal forward Euler
schemes thus preserve the positivity if forward Euler is positivity-preserving.

In a nutshell, the key difference of the approach in [17, 10, 18] from all
other positivity-preserving methods is the weak positivity, which allows not
only rigorous justification of high order accuracy, but also easy constructions of
explicit schemes with any order of accuracy, easy extensions to three dimensions
[21] and general shapes of computational cells [22].

1.4. From Euler to Navier-Stokes: monotonicity in discrete Laplacian

To extend positivity-preserving schemes for Euler system to Navier-Stokes
system, we only need to focus on the pressure or internal energy since the
mass conservation equations in two systems are the same. However, it is much
more difficult to guarantee positivity of the internal energy in compressible
Navier-Stokes system. Positivity-preserving discretizations must be used for
the nonlinear diffusion operator.

Consider a simple toy model ut = uxx. The simplest finite difference scheme
solving it is un+1

i = uni + ∆t
∆x2 (uni−1 − 2uni + uni+1). For that the right hand side

of this scheme is a monotone function of uni and uni±1 if ∆t
∆x2 ≤ 1

2 , we call the

second order accurate central difference ui−1−2ui+ui+1

∆x2 a monotone approxima-
tion to uxx. By Taylor expansion, it is straightforward to prove that higher
order accurate linear finite difference approximating the second order derivative
cannot be monotone. In Appendix A, we will show that the second order central
difference is positivity-preserving for the one-dimensional form of (2). However,
it is difficult to extend positivity of this scheme to high dimensions since finite
difference approximations for mixed second order derivatives are much more
complicated.

In other words, it is already nontrivial to preserve the positivity of inter-
nal energy for second order schemes without losing conservation of total en-
ergy in high dimensions. There are few such results in the literature. In [23],
an unconditionally stable staggered pressure correction second order accurate
positivity-preserving implicit scheme was constructed for (2). The positivity in
this scheme is heavily dependent upon the monotonicity of second order discrete
Laplacian and the specific form of shear stress tensor (2d).

It is interesting to explore any weak monotonicity in diffusion discretizations.
Unfortunately, weak monotonicity holds only up to second order accuracy for
any linear finite volume scheme and most DG schemes [24], see Appendix D. Sur-
prisingly, it is still possible to construct a third order linear DG scheme satisfying
the weak monotonicity. With special parameters, the direct DG (DDG) method,
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which is a generalized version of interior penalty DG method, indeed satisfies a
weak monotonicity up to third order accuracy [25, 26, 27, 28]. However, if we
use Taylor expansion to examine the local truncation error in the numerical flux
of this scheme, only second order accuracy is obtained. Nonetheless, third order
error estimate in the semi-discrete DDG scheme can be proven [29, 30, 31]. This
phenomenon of inconsistency between the orders of local truncation error and
actual error in DG methods is referred as supraconvergence [32], different from
superconvergence. To fully understand how the second order errors are canceled
out, we need the error estimate for the fully discretized scheme, which is not
available. On the other hand, the supraconvergence in DDG method satisfying
the weak monotonicity does not seem to reach beyond third order accuracy. One
possible approach to construct positivity-preserving schemes for Navier-Stokes
is to take advantage of the weak monotonicity in DDG. However, it is still quite
difficult to extend the weak monotonicity to weak positivity of internal energy
in high dimensions.

1.5. A different perspective: a positivity-preserving flux for nonlinear diffusion

In all approaches mentioned in the previous subsection, we regard ∇ ·Fd as
a diffusion term when seeking monotonicity. Unfortunately, monotonicity and
the weak monotonicity hold for finite difference, finite volume and most DG
discretizations approximating Laplacian only up to second order accuracy. On
the other hand, we can regard F = Fa − Fd as a single flux and formally treat
∇ · F as a convection. This is perhaps a more natural perspective since the
system (1) is derived from integral equations in the first place:

∫∫
K

Ut dV =
−
∫
∂K

F · n ds. A finite volume scheme with forward Euler approximating this
integral equation takes the form,

U
n+1

K = U
n

K −
∆t

|K|

∫
∂K

F̂ · n ds. (8)

If F̂ · n is a positivity-preserving flux, then (8) would satisfy the same weak posi-
tivity of pressure as for (5). The major challenge now boils down to construction

of a positivity-preserving flux F̂ · n.
In this paper, we introduce a simple positivity-preserving flux for the non-

linear diffusion in the Navier-Stokes system, for which the design is inspired
by the positivity-preserving property of the Lax-Friedrichs flux for Euler equa-
tions. Recall that the local Lax-Friedrichs flux (6) is positivity-preserving with

αi = max
(
|u · n|+

√
γ pρ

)
for the ideal gas EOS (2c). For a generic EOS,

we can use αi > max
(
|u · n|+

√
p2

2ρ2e

)
to ensure positivity of internal energy,

which will be reviewed.
Since the shear stress tensor and heat flux in the diffusion flux Fd are depen-

dent on the derivatives of conserved variables U, we introduce an auxiliary vari-
able S as an approximation to ∇U. Now consider the following Lax-Friedrichs
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type flux for the diffusion in Navier-Stokes equations,

F̂d · n(U−,S−,U+,S+)
∣∣∣
ei

=
1

2

[(
Fd(U−,S−) + Fd(U+,S+)

)
· n + βi(U

+ −U−)
]
,

(9a)
where βi is a nonnegative number. We will show that this flux is positivity-
preserving if

βi > max
1

2ρ2e

(√
ρ2|q · n|2 + 2ρ2e‖τ · n‖2 + ρ|q · n|

)
, (9b)

where the maximum is taken over U−,S−,U+,S+ along ei. Here a positivity-

preserving flux F̂d · n means that a first order finite volume scheme with such
a flux for solving the formal diffusion system Ut = ∇ · Fd(U,S) is positivity-
preserving.

Then we have a positivity-preserving flux in (8): F̂ · n = F̂a · n − F̂d · n
where F̂a · n is any positivity-preserving flux for compressible Euler system and

F̂d · n is given in (9). Another slightly different positivity-preserving flux will be
introduced in Section 2.4. Following the results in [10, 18], it becomes straight-
forward to show exactly the same weak positivity as illustrated in Figure 1 holds
for (8) thus it is straightforward to construct positivity-preserving arbitrarily
high order finite volume and DG schemes for (1).

1.6. Positivity-preserving DG schemes for compressible Navier-Stokes equations

In this paper, we discuss the construction of positivity-preserving DG schemes.
For solving the compressible Navier-Stokes system (1), there are quite a few DG
type schemes, e.g., the pioneering work by Bassi and Rebay [33, 34], the scheme
by Baumann and Oden [35], Compact DG [36], correction procedure via recon-
struction (CPR) [37, 38], Hybrid DG [39] and Embedded DG [40], etc. The
major differences among these DG methods include how to approximate the
derivatives of the solution and the choice of numerical fluxes, which are derived
from various perspectives.

As a demonstration, we focus on one of the most popular approaches in [33].
For the derivatives of U, an auxiliary variable S = ∇U is introduced. After
multiplying the following system by test functions and integration by parts on
a polygonal cell K, {

S−∇U = 0

Ut +∇ · Fa(U)−∇ · Fd(U,S) = 0
,

we obtain the following general form of a DG scheme,
∫∫

K

Shφh dV = −
∫∫

K

Uh∇φh dV +

∫
∂K

Ûnφh ds∫∫
K

d

dt
Uhψh dV =

∫∫
K

(Fa − Fd)∇ · ψh dV −
∫
∂K

(F̂a · n− F̂d · n)ψh ds

,

(10)
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where Uh and Sh are vectors of polynomials of degree k on K and φh and

ψh are the polynomial of degree k test functions. The advection flux F̂a · n is
the same ones as mentioned above, e.g., the local Lax-Friedrichs flux. Central

fluxes were used for the other two fluxes in [33], F̂d · n(U−,S−,U+,S+) =
1
2

[
Fd(U−,S−) + Fd(U+,S+)

]
· n and

Ûn(U−,U+) =
1

2
(U− + U+)n, (11)

where − and + denote the approximations on ∂K from interior of K and exterior
of K respectively.

To render this high order DG scheme satisfying the weak positivity property,

we can simply replace the central flux F̂d · n by (9). Compared to the central
flux, the extra term 1

2β(U+ −U−) in (9) contributes to the DG scheme (10)
as an interior penalty term. In other words, we can add a nonlinear penalty
defined by (9b) to the DG scheme in [33] so that it satisfies a weak positivity
property under some CFL constraint. A slightly different positivity-preserving
flux discussed in Section 2.4 can also be used to achieve the weak positivity
property.

1.7. CFL constraints, implementation, and numerical performance

For the positivity-preserving flux (6) and (9) solving (1) with a generic EOS,
the following time step constraint is a sufficient condition to ensure the weak
positivity in a high order finite volume scheme (8),

∆t
|ei|
|K|

max {αi, βi} ≤
1

2
a

1

N(N − 1)
, ∀i, (12)

where a = 1
2 for rectangular cells and a = 2

3 for triangular cells.
To better understand (12), consider DG schemes solving a very smooth so-

lution of one-dimensional form of (2). The linear stability on a simplified model
ut = 1

Reuxx would require ∆t = O(Re ∆x2) for an explicit scheme where ∆x
denotes the mesh size in the spatial discretization, whereas (12) roughly re-
duces to ∆t = O(∆x). When shocks are present, (12) are roughly around
∆t = O(Re ∆x2). The inconsistency between the linear stability CFL and a
nonlinear stability CFL (12) for smooth solutions implies that we also need to
enforce the linear stability CFL beyond a positivity induced CFL. After all,
the weak positivity property is a very weak stability, i.e., only cell averages are
guaranteed to be positive in one time step in (8).

Numerical tests suggest that the linear stability CFL constraint ∆t = O(Re ∆x2)
must be satisfied. Otherwise errors may grow exponentially even though the L1

stability for density and total energy is still valid. There is no contradiction
since stability itself does not guarantee convergence for nonlinear equations. In
this paper, we only pursue nonlinear stability by enforcing positivity of density
and internal energy in high order schemes for Navier-Stokes equations. Another
approach towards nonlinear stability of high order schemes is to enforce entropy
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bounds [41, 42, 43]. For convergence of high order schemes, entropy inequalities
should be considered, which is in general a much harder problem than stability.
Nonetheless, positivity is the first step towards entropy stability and entropy
inequalities.

On the other hand, (7) and (12) should be not strictly enforced in Runge-
Kutta time discretizations for several reasons:

1. The constraint (12) is hardly a necessary condition for U
n+1

K ∈ G in (8)
in practice.

2. It is very difficult to accurately predict wave speeds for all stages in a
Runge-Kutta time discretization. For example, to enforce (7), we need to
estimate max(|u| +

√
γp/ρ) in all inner stages before computing them in

a high order Runge-Kutta time discretization. Similar difficulty arises in
(12).

3. Artificial stiffness may arise in low density or low pressure problems. For
instance, if density and internal energy are numerically close to zero, it is

difficult to accurately evaluate the sound speed
√
γ pρ due to the round-

off errors. The wave speed computed in a low density region might be
significantly larger than the actual one, which results in a much smaller
time step numerically computed by (7) than a necessary time step for
positivity. Similar difficulty arises in (12) due to the presence of density
and internal energy in the denominator in (9b).

Instead, we can enforce the time step constraint (12) only when larger time

steps give U
n+1

K /∈ G. For each time step of Runge-Kutta discretization, we can
start with a usually used time step for explicit schemes, e.g., ∆t = O(Re ∆x2).
If density or internal energy of the cell average becomes negative, then we restart
the computation with a smaller time step, e.g., a time step halved. The suf-
ficiency of CFL (12) for the weak positivity excludes the possibility of endless
loops. This ad hoc implementation was used in [44] for Euler equations with
chemical reactions and works well in practice.

To implement an explicit positivity-preserving high order DG scheme for (1),
we can do the following simple modifications to the scheme in [33],

1. Use SSP Runge-Kutta time discretizations.

2. Use a positivity-preserving flux for the advection, e.g., (6). Use the
positivity-preserving flux (9) for the nonlinear diffusion. In other words,
add an interior penalty term to the scheme in [33] with nonlinear penalty
parameter defined by (9b).

3. Add a simple limiter to filter negative point values at quadrature points,
e.g., Gauss quadrature, for computing all integrals in the DG scheme (10).
We emphasize that we do not use the quadrature in Figure 1 to compute
any integral in the actual implementation. The blue points in Figure 1
are highly redundant in high dimensions and are not used explicitly in the
implementation.

4. Time stepping will be discussed in detail in Section 5.3.
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(a) Without other limiters. Re =∞. (b) With TVB limiter. Re =∞.

Figure 2: Mach 10 shock passing a sharp corner. The DG scheme with positivity-preserving
local Lax-Friedrichs flux (6), the positivity-preserving limiter, and the third order SSP Runge-
Kutta on unstructured triangular meshes solving compressible Euler equations with ideal gas
EOS. The mesh size is 1

80
. P 2 basis.

(a) Without other limiters. Re = 100. (b) Without other limiters. Re = 1000.

Figure 3: Mach 10 shock passing a sharp corner. The DG scheme with positivity-preserving
fluxes (6) and (9), the positivity-preserving limiter, and the third order SSP Runge-Kutta on
unstructured triangular meshes solving Navier-Stokes equations (2). The mesh size is 1

80
. P 2

basis.
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To have a glance at the numerical performance of the high order DG scheme
implemented as above, we consider the problem of Mach 10 shock diffracted at
a sharp corner in [18]. This is quite a representative test problem since shocks,
low density/pressure and fine structures from Kelvin-Helmholtz instability are
all involved. See Figure 2 for the results of compressible Euler equations. The
positivity-preserving RKDG scheme may produce oscillations, which is not a
surprise because only positivity is guaranteed. To reduce oscillations, other type
of limiters towards a non-oscillatory property should be used. For instance, a
TVB limiter was used in [18]. We emphasize that other types of high order
accurate limiters without the positivity-preserving limiter cannot stabilize the
DG scheme for this low pressure problem. On the other hand, we can observe
that the TVB limiter also smears out some interesting features such as roll-
ups due to the Kelvin-Helmholtz instability, which is an indication of excessive
numerical viscosity of the TVB limiter. For compressible Euler equations, the
RKDG scheme with only the positivity-preserving limiter may produce excessive
oscillations affecting the shock locations on finer mesh or with higher order basis
for this problem. WENO type limiters [45, 46, 47] are less diffusive thus more
suitable for reducing oscillations with a better resolution.

However, a very interesting observation is that no other limiters are
needed to reduce oscillations for positivity-preserving DG scheme
solving Navier-Stokes equations. See Figure 3 for results of DG with only
the positivity-preserving limiter solving compressible Navier-Stokes equations
(2). In Figure 2 (a), we can see that the local Lax-Friedrichs flux for advection
and positivity-preserving limiter do not contribute excessive artificial viscosity.
In Figure 3 (a), the main source of additional artificial viscosity is the extra
term 1

2β(U+ −U−) in (9). On the other hand, the result for higher Reynolds
number in Figure 3 (b) is a strong evidence that the flux (9) does not contribute
excessive artificial viscosity either. With these observations and numerical evi-
dence, we may conclude that the physical nonlinear diffusion starts to smooth
out the numerical oscillations in high order positivity-preserving DG schemes
when it is accurately resolved.

1.8. Contributions and organization of the paper

The main contributions of this paper include the construction of positivity-
preserving flux (9) for the nonlinear diffusion in (1) and the construction and im-
plementation of the very first high order schemes for compressible Navier-Stokes
equations (1) in two dimensions, which can preserve positivity of internal energy
without losing the conservation of total energy. For implementing positivity-
preserving DG schemes, it is straightforward to add a nonlinear penalty term
and the positivity-preserving limiter to the DG scheme in [33]. The interior
penalty plays an essential role in stabilizing DG method solving diffusion prob-
lems. We have revealed how it may affect the nonlinear stability in terms of the
positivity-preserving property for compressible Navier-Stokes equations.

An interesting and important observation is that only the positivity-preserving
limiter is needed for high order DG schemes to produce non-oscillatory solutions

12



for compressible Navier-Stokes equations (2) even when strong shocks are in-
volved, which is not the case for compressible Euler equations.

The high order positivity-preserving scheme in this paper has the following
advantages and features:

• The construction of the positivity-preserving flux (9) depends on neither
the specific form of the shear stress tensor τ , heat flux q and equations of
state nor how the derivatives ∇U are approximated in a scheme.

• Extensions to arbitrarily high order polynomial basis, multiple dimensions
and unstructured meshes are straightforward.

• The full scheme is explicit with the time step constraint ∆t = O(Re ∆x2)
thus it is more suitable for high Reynolds number flows.

• For compressible Navier-Stokes equations, only positivity-preserving fluxes
and the positivity-preserving limiter are needed to stabilize the high order
DG scheme producing non-oscillatory solutions. Numerical evidence sug-
gests that the proposed high order positivity-preserving DG scheme does
not produce excessive artificial viscosity.

The paper is organized as follows: we review the weak positivity property
of high order finite volume schemes solving compressible Euler equations in
one dimension then introduce two positivity-preserving fluxes for compressible
Navier-Stokes equations in one dimension in Section 2. We discuss the weak pos-
itivity property of high order finite volume schemes with a positivity-preserving
flux for compressible Navier-Stokes equations in two dimensions in Section 3.
For compressible Euler equations, the CFL condition for triangular cells derived
in Section 3 is slightly better than the one in [18]. Then we review the positivity-
preserving limiter and an efficient implementation in Section 4. We emphasize
that all the discussions in Sections 2, 3 and 4 apply to any finite volume type
scheme including the scheme satisfied by cell averages in DG methods. Imple-
mentation details for DG schemes are discussed in Section 5. Numerical tests
are given in Section 6. Section 7 consists of concluding remarks.

2. The weak positivity of high order schemes in one dimension

We will first review the positivity-preserving flux and the weak positivity for
high order finite volume schemes solving compressible Euler equations. Then we
construct two positivity-preserving fluxes for compressible Navier-Stokes equa-
tions and discuss the weak positivity for high order finite volume schemes.

2.1. The positivity of first order schemes for compressible Euler equations

For the one dimensional compressible Euler system Ut + Fa(U)x = 0 with
U = (ρ, ρu,E)t and the flux function in one dimension defined by Fa =

13



(ρu, ρu2 + p, (E + p)u)t, we first consider a first order finite volume scheme
on a cell Ij = [xj− 1

2
, xj+ 1

2
] with cell size ∆x,

Un+1
j = Un

j −
∆t

∆x

[
F̂a(Un

j ,U
n
j+1)− F̂a(Un

j−1,U
n
j )
]
,

with the local Lax-Friedrichs flux defined by

F̂a(Un
j ,U

n
j+1) =

1

2

[
Fa(Un

j ) + Fa(Un
j+1)− αj+ 1

2
(Un

j+1 −Un
j )
)
, (13)

where Un
j is the approximation to the average of U on Ij at time level n and

αj+ 1
2

is a positive number dependent upon Un
j and Un

j+1. With the assumption
Un
j ,U

n
j±1 ∈ G, we want to find a proper αj+ 1

2
and a CFL condition so that

Un+1
j ∈ G. The scheme can be rewritten as

Un+1
j =

(
1− 1

2
αj− 1

2

∆t

∆x
− 1

2
αj+ 1

2

∆t

∆x

)
Un
j +

1

2
αj+ 1

2

∆t

∆x

(
Un
j+1 − α−1

j+ 1
2

Fa(Un
j+1)

)
+

1

2
αj− 1

2

∆t

∆x

(
Un
j−1 + α−1

j− 1
2

Fa(Un
j−1)

)
. (14)

By Lemma 6 in Appendix B, if we set αj+ 1
2
> max

Un
j ,U

n
j+1

(
|u|+

√
p2

2ρ2e

)
, e.g.,

αj+ 1
2

= max
Un
j ,U

n
j+1

(
|u|+

√
γ pρ

)
for the ideal gas EOS (2c) with γ > 0, then we

have Un
j+1 − α

−1
j+ 1

2

Fa(Un
j+1) ∈ G, and Un

j−1 + α−1
j− 1

2

Fa(Un
j−1) ∈ G. Under the

CFL condition ∆t
∆x maxj αj+ 1

2
≤ 1, Un+1

j in (14) is a convex combination of

three vectors in G thus Un+1
j ∈ G.

2.2. The weak positivity of high order schemes for compressible Euler equations

Consider a (k + 1)-th order finite volume type scheme with reconstruction
polynomials or approximation polynomials of degree k. For one dimensional
compressible Euler system with forward Euler time discretization on Ij , it takes
the form,

U
n+1

j = U
n

j −
∆t

∆x

[
F̂a(U−

j+ 1
2

,U+
j+ 1

2

)− F̂a(U−
j− 1

2

,U+
j− 1

2

)
]
, (15a)

where U
n

j is the cell average on Ij at time level n, U−
j+ 1

2

and U+
j+ 1

2

are approxi-

mations to the point value of U at xj+ 1
2

and time level n from the left and from
the right respectively. The local Lax-Friedrichs flux is

F̂a(U−
j+ 1

2

,U+
j+ 1

2

) =
1

2

[
Fa(U−

j+ 1
2

) + Fa(U+
j+ 1

2

)− αj+ 1
2
(U+

j+ 1
2

−U−
j+ 1

2

)
]
,

(15b)

αj+ 1
2
> max

U−
j+1

2

,U+

j+1
2

(
|u|+

√
p2

2ρ2e

)
. (15c)
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Let N = d(k + 3)/2e, i.e., N is smallest integer satisfying 2N − 3 ≥ k. We
consider an N -point Legendre Gauss-Lobatto quadrature rule on the interval
Ij = [xj− 1

2
, xj+ 1

2
], which is exact for integrals of polynomials of degree up to

2N − 3. Denote these quadrature points on Ij as

Sj = {xj− 1
2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂Nj = xj+ 1
2
}. (16)

Let ω̂µ be the quadrature weights for the interval [− 1
2 ,

1
2 ] such that

N∑
µ=1

ω̂µ = 1.

Let Pj(x) be the reconstruction or approximation polynomials of degree k in

the high order scheme (15a) on Ij with cell average U
n

j and nodal values U−
j+ 1

2

and U+
j− 1

2

at two cell ends, then

U
n

j =
1

∆x

∫
Ij

Pj(x) dx =

N∑
µ=1

ω̂µPj(x̂
µ
j ) =

N−1∑
µ=2

ω̂µPj(x̂
µ
j ) + ω̂1U

+
j− 1

2

+ ω̂NU−
j+ 1

2

.

(17)
By plugging (17) into the scheme (15a), we obtain

U
n+1

j = (ω̂1 −
1

2

∆t

∆x
αj− 1

2
)

(
U+
j− 1

2

+
1

2

∆t

∆x
(ω̂1 −

1

2

∆t

∆x
αj− 1

2
)−1Fa(U+

j− 1
2

)

)
+ (ω̂N −

1

2

∆t

∆x
αj+ 1

2
)

(
U−
j+ 1

2

− 1

2

∆t

∆x
(ω̂N −

1

2

∆t

∆x
αj+ 1

2
)−1Fa(U−

j+ 1
2

)

)
+

1

2

∆t

∆x
αj− 1

2

(
U−
j− 1

2

+ α−1
j− 1

2

Fa(U−
j− 1

2

)
)

+
1

2

∆t

∆x
αj+ 1

2

(
U+
j+ 1

2

− α−1
j+ 1

2

Fa(U+
j+ 1

2

)
)

+

N−1∑
µ=2

ω̂µPj(x̂
µ
j ). (18)

Let ω̂ denote the smallest weight in ω̂µ, i.e., ω̂ = ω̂1 = ω̂N . For Gauss-Lobatto
quadrature with N points, ω̂ = 1

N(N−1) . Notice the fact that ∆t
∆xα ≤ ω̂ if and

only if 0 ≤ 1
2

∆t
∆x (ω̂ − 1

2
∆t
∆xα)−1 ≤ α−1 for positive numbers ∆t

∆x , α and ω̂. By

Lemma 6 in Appendix B, under the CFL condition ∆t
∆x maxj αj+ 1

2
≤ ω̂, we have

U−
j− 1

2

,U+
j+ 1

2

∈ G⇒ U−
j− 1

2

+ α−1
j− 1

2

F(U−
j− 1

2

),U+
j+ 1

2

− α−1
j+ 1

2

F(U+
j+ 1

2

) ∈ G,

U+
j− 1

2

∈ G⇒ U+
j− 1

2

+
1

2

∆t

∆x
(ω̂1 −

1

2

∆t

∆x
αj− 1

2
)−1Fa(U+

j− 1
2

) ∈ G,

U−
j+ 1

2

∈ G⇒ U−
j+ 1

2

− 1

2

∆t

∆x
(ω̂N −

1

2

∆t

∆x
αj+ 1

2
)−1Fa(U−

j+ 1
2

) ∈ G.

Moreover, (18) is a convex combination under the same CFL condition. Thus
we get the weak positivity for the high order scheme (15),
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Theorem 1. A sufficient condition for U
n+1

j ∈ G in the scheme (15) with
reconstruction or approximation polynomials of degree k is

U±
j± 1

2

∈ G and Pj(x̂
µ
j ) ∈ G (µ = 2, · · · , N − 1), ∀j, (19)

under the CFL condition

∆t

∆x
max
j
αj+ 1

2
≤ ω̂ =

1

N(N − 1)
, N = d(k + 3)/2e . (20)

Remark 1. If using
∑N−1
µ=2 ω̂µPj(x̂

µ
j ) = (1−ω̂1−ω̂N )

∑N−1
µ=2

ω̂µ
1−ω̂1−ω̂N Pj(x̂

µ
j ) =

(1−2ω̂)
∑N−1
µ=2

ω̂µ
1−2ω̂Pj(x̂

µ
j ) in (18), we obtain a weaker sufficient condition than

(19) for U
n+1

j ∈ G in the scheme (15),

U±
j± 1

2

∈ G and

N−1∑
µ=2

ω̂µ
1− 2ω̂

Pj(x̂
µ
j ) ∈ G, ∀j, (21)

under the same CFL constraint (20).

2.3. A positivity-preserving flux for the nonlinear diffusion

It is straightforward to construct a first order positivity-preserving scheme
for the one-dimensional form of (2) since mixed second order derivatives do
not appear in the one-dimensional equations. As a matter of fact, the sim-
plest second order finite difference scheme is positivity-preserving for the one-
dimensional compressible Navier-Stokes equations, see Appendix A. However,
it is difficult to extend such a result to two dimensions due to the mixed second
order derivatives. In this subsection, we introduce a simple positivity-preserving
flux for the diffusion flux Fd which can be easily extended to high dimensions.

We first formally consider the diffusion system Ut − Fd(U,S)x = 0 with
S = Ux and the flux function in one dimension defined by Fd = (0, τ, uτ − q)t.
Let Snj denote the approximation Ux on Ij at time step n. Consider a first
order finite volume scheme on Ij ,

Un+1
j = Un

j +
∆t

∆x

[
F̂d(Un

j ,S
n
j ,U

n
j+1,S

n
j+1)− F̂d(Un

j−1,S
n
j−1,U

n
j ,S

n
j )
]
.

Consider a Lax-Friedrichs type flux defined by

F̂d(Un
j ,S

n
j ,U

n
j+1,S

n
j+1) =

1

2

[
Fd(Un

j ,S
n
j ) + Fd(Un

j+1,S
n
j+1) + βj+ 1

2
(Un

j+1 −Un
j )
]
,

(22a)
where βj+ 1

2
is positive number dependent upon Un

j , Snj , Un
j+1 and Snj+1. With

the assumption Un
j ,U

n
j±1 ∈ G, we want to find a proper βj+ 1

2
and a CFL

condition so that Un+1
j ∈ G. By Lemma 6 in Appendix B, if we set

βj+ 1
2
> max

Un
j ,S

n
j ,U

n
j+1,S

n
j+1

1

2ρ2e

(√
ρ2q2 + 2ρ2e|τ |2 + ρ|q|

)
, (22b)
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then we have Un
j+1+β−1

j+ 1
2

Fd(Un
j+1,S

n
j+1) ∈ G, and Un

j−1−β
−1
j− 1

2

Fd(Un
j−1,S

n
j−1) ∈

G. The scheme can be rewritten as

Un+1
j =

(
1− 1

2
βj− 1

2

∆t

∆x
− 1

2
βj+ 1

2

∆t

∆x

)
Un
j +

1

2
βj+ 1

2

∆t

∆x

(
Un
j+1 + β−1

j+ 1
2

Fd(Un
j+1,S

n
j+1)

)
+

1

2
βj− 1

2

∆t

∆x

(
Un
j−1 − β−1

j− 1
2

Fd(Un
j−1,S

n
j−1)

)
.

Under the CFL condition ∆t
∆x maxj βj+ 1

2
≤ 1, Un+1

j in the scheme above is a

convex combination of three vectors in G thus Un+1
j ∈ G.

For the compressible Navier-Stokes equations Ut+Fa(U)x−Fd(U,S)x = 0,
it is straightforward to construct a first order positivity-preserving scheme,

Un+1
j =

1

2

(
Un
j − 2

∆t

∆x

[
F̂a(Un

j ,U
n
j+1)− F̂a(Un

j−1,U
n
j )
])

+
1

2

(
Un
j + 2

∆t

∆x

[
F̂d(Un

j ,S
n
j ,U

n
j+1,S

n
j+1)− F̂d(Un

j−1,S
n
j−1,U

n
j ,S

n
j )
])

,

where F̂a is any positivity-preserving flux for Euler system, e..g, Godunov and

HLLE fluxes, and F̂d is the flux constructed above. The right hand side of
this scheme is an average of the two formal schemes for Ut + Fa(U)x = 0 and

Ut − Fd(U)x = 0. If F̂a is (13) and F̂d is (22), then the positivity-preserving

CFL constraints are ∆t
∆x max

{
αj+ 1

2
, βj+ 1

2

}
≤ 1

2 for all j.

2.4. Another positivity-preserving flux for compressible Navier-Stokes equations

By treating two fluxes Fa and Fd separately, we surely overlook the in-
teraction of two fluxes, which may give more information thus possibly better
CFL constraints. To this end, consider the following finite volume scheme for
the compressible Navier-Stokes equations in the form Ut + F(U,S)x = 0 with
F = Fa − Fd,

Un+1
j = Un

j −
∆t

∆x

[
F̂(Un

j ,S
n
j ,U

n
j+1,S

n
j+1)− F̂(Un

j−1,S
n
j−1,U

n
j ,S

n
j )
]
.

Consider a Lax-Friedrichs type flux defined by

F̂(Un
j ,S

n
j ,U

n
j+1,S

n
j+1) =

1

2

[
F(Un

j ,S
n
j ) + F(Un

j+1,S
n
j+1)− βj+ 1

2
(Un

j+1 −Un
j )
]
,

(23)
where βj+ 1

2
is a positive number dependent upon Un

j ,Snj , Un
j+1 and Snj+1.

With the assumption Un
j ,U

n
j±1 ∈ G, we want to find a proper βj+ 1

2
and a CFL

condition so that Un+1
j ∈ G. The scheme can be rewritten as

Un+1
j =

(
1− 1

2
βj− 1

2

∆t

∆x
− 1

2
βj+ 1

2

∆t

∆x

)
Un
j +

1

2
βj+ 1

2

∆t

∆x

(
Un
j+1 − β−1

j+ 1
2

F(Un
j+1,S

n
j+1)

)
+

1

2
βj− 1

2

∆t

∆x

(
Un
j−1 + β−1

j− 1
2

F(Un
j−1,S

n
j−1)

)
. (24)
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By Lemma 6 in Appendix B, if we set

βj+ 1
2
> max

Un
j ,S

n
j ,U

n
j+1,S

n
j+1

[
|u|+ 1

2ρ2e

(√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|

)]
,

then we have Un
j+1−β

−1
j+ 1

2

F(Un
j+1,S

n
j+1) ∈ G, and Un

j−1+β−1
j− 1

2

F(Un
j−1,S

n
j−1) ∈

G. Under the CFL condition ∆t
∆x maxj βj+ 1

2
≤ 1, Un+1

j in (24) is a convex

combination of three vectors in G thus Un+1
j ∈ G.

2.5. The weak positivity of high order schemes for compressible Navier-Stokes
equations

Consider a (k + 1)-th order finite volume type scheme for one dimensional
compressible Navier-Stokes system with forward Euler time discretization on Ij ,

U
n+1

j = U
n

j−
∆t

∆x

[
F̂(U−

j+ 1
2

,S−
j+ 1

2

,U+
j+ 1

2

,S+
j+ 1

2

)− F̂(U−
j− 1

2

,S−
j− 1

2

,U+
j− 1

2

,S+
j− 1

2

)
]
,

(25a)

where F̂ is a positivity-preserving flux. We can use either F̂ = F̂a−F̂d with any

positivity-preserving flux F̂a for the Euler system and F̂d as defined in (22a), or

the flux F̂ as as defined in (23). For simplicity, we only discuss the latter one,

F̂(U−
j+ 1

2

,S−
j+ 1

2

,U+
j+ 1

2

,S+
j+ 1

2

) =
1

2

[
F(U−

j+ 1
2

,S−
j+ 1

2

) + F(U+
j+ 1

2

,S+
j+ 1

2

)− βj+ 1
2
(U+

j+ 1
2

−U−
j+ 1

2

)
]
,

(25b)

βj+ 1
2
> max

U−
j+1

2

,S−
j+1

2

,U+

j+1
2

,S+

j+1
2

[
|u|+ 1

2ρ2e

(√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|

)]
.

(25c)
Plugging the cell average decomposition (17) into the scheme (25a), we ob-

tain

U
n+1

j = (ω̂1 −
1

2

∆t

∆x
βj− 1

2
)

(
U+
j− 1

2

+
1

2

∆t

∆x
(ω̂1 −

1

2

∆t

∆x
βj− 1

2
)−1F(U+

j− 1
2

,S+
j− 1

2

)

)
+ (ω̂N −

1

2

∆t

∆x
βj+ 1

2
)

(
U−
j+ 1

2

− 1

2

∆t

∆x
(ω̂N −

1

2

∆t

∆x
βj+ 1

2
)−1F(U−

j+ 1
2

,S−
j+ 1

2

)

)
+

1

2

∆t

∆x
βj− 1

2
(U−

j− 1
2

+ β−1
j− 1

2

F(U−
j− 1

2

,S−
j− 1

2

))

+
1

2

∆t

∆x
βj+ 1

2
(U+

j+ 1
2

− β−1
j+ 1

2

F(U+
j+ 1

2

,S+
j+ 1

2

))

+

N−1∑
µ=2

ω̂µPj(x̂
µ
j ). (26)

By Lemma 6 in Appendix B, under the CFL condition ∆t
∆x maxj βj+ 1

2
≤ ω̂, we

have

U−
j− 1

2

,U+
j+ 1

2

∈ G⇒ U−
j− 1

2

+β−1
j− 1

2

F(U−
j− 1

2

,S−
j− 1

2

),U+
j+ 1

2

−β−1
j+ 1

2

F(U+
j+ 1

2

,S+
j+ 1

2

) ∈ G,
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U+
j− 1

2

∈ G⇒ U+
j− 1

2

+
1

2

∆t

∆x
(ω̂1 −

1

2

∆t

∆x
βj− 1

2
)−1F(U+

j− 1
2

,S+
j− 1

2

) ∈ G,

U−
j+ 1

2

∈ G⇒ U−
j+ 1

2

− 1

2

∆t

∆x
(ω̂N −

1

2

∆t

∆x
βj+ 1

2
)−1F(U−

j+ 1
2

,S−
j+ 1

2

) ∈ G.

Moreover, (26) is a convex combination under the same CFL condition. Thus
we get the weak positivity for the high order scheme (25),

Theorem 2. A sufficient condition for U
n+1

j ∈ G in the scheme (25) with
reconstruction or approximation polynomials of degree k is

U±
j± 1

2

∈ G and Pj(x̂
µ
j ) ∈ G (µ = 2, · · · , N − 1), ∀j, (27)

under the CFL condition

∆t

∆x
max
j
βj+ 1

2
≤ ω̂ =

1

N(N − 1)
, N = d(k + 3)/2e . (28)

Following Remark 1, a weaker condition to replace (27) is

U±
j± 1

2

∈ G and

N−1∑
µ=2

ω̂µ
1− 2ω̂

Pj(x̂
µ
j ) ∈ G, ∀j, (29)

Remark 2. For a very smooth solution, |u|+ 1
2ρ2e

(√
ρ2q2 + 2ρ2e|τ − p|2 + ρ|q|

)
=

O(1) thus the CFL constraint (28) implies ∆t = O(∆x), which is inconsistent
with the time step constraint suggested by a linear stability analysis. For explicit
schemes solving (2), we should take ∆t = O(Re ∆x2) as implied by the linear
stability analysis on a toy model ut = 1

Reuxx. The weak positivity property
is a very weak nonlinear stability, which does not necessarily imply the linear
stability. In numerical tests, if (28) is satisfied but ∆t = O(Re ∆x2) is violated,
we observe that errors may grow exponentially in time for smooth solutions of
(2), even though the weak positivity still holds.

3. The weak positivity of high order schemes in two dimensions

As we have seen in the previous section, the discussion of positivity of first
order schemes and weak positivity of high order schemes for Euler equations is
similar to the ones for the diffusion operator and the Navier-Stokes equations.
For simplicity, we only discuss the positivity of the Lax-Friedrichs type flux
(23) for the Navier-Stokes equations Ut +∇ ·F(U,S) = 0 with S = ∇U in two
dimensions in this section. All discussions in this section also apply to the flux
(13) for Euler equations Ut +∇·Fa(U) = 0 and the flux (22a) for the diffusion
equations Ut −∇ · Fd(U,S) = 0.
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❑❑✶
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❑✸

❑✹

(a) A rectangular mesh.

❑

❑✶

❑✷ ❑✸

(b) An unstructured triangular mesh.

Figure 4: An illustration of a computational cell K in two dimensions.

3.1. The positivity of first order schemes

Let K be a polygonal cell with edges ei (i = 1, · · · , E) in a mesh and
Ki be the adjacent cell which shares the edge ei with K. For simplicity, we
only consider a rectangular mesh or an unstructured triangular mesh, e.g., as
illustrated in Figure 4. Let |ei| denote the length of the edge ei. For the two
dimensional compressible Navier-Stokes system Ut +∇ ·F(U,S) = 0, consider
a first order finite volume scheme on the cell K,

Un+1
K = Un

K −
∆t

|K|

E∑
i=1

|ei|F̂ · n(Un
K ,S

n
K ,U

n
Ki ,S

n
Ki),

with the numerical flux defined by

F̂ · n(Un
K ,S

n
K ,U

n
Ki ,S

n
Ki) =

1

2

[
F(Un

K ,S
n
K) · ni + F(Un

Ki ,S
n
Ki) · ni − βi(U

n
Ki −Un

K)
]
,

where Un
K ,S

n
K are the approximation to the average of U,S on K at time level

n, ni is the unit vector normal to ei pointing outward of K, and βi is a positive
number dependent upon Un

K and Un
Ki

. With the assumption Un
K ,U

n
Ki
∈ G,

we want to find a proper βi and a CFL condition so that Un+1
K ∈ G.

We have
∑E
i=1 F(Un

K ,S
n
K) · ni|ei| = 0 due to the fact that

∑E
i=1 f · ni|ei| =∫

∂K
f · n ds =

∫∫
K
∇ · fdV = 0 for any constant vector f . Thus the scheme can

be rewritten as

Un+1
K =

(
1− 1

2

∆t

|K|

E∑
i=1

|ei|βi

)
Un
K+

1

2

∆t

|K|

E∑
i=1

|ei|βi
[
Un
Ki − β

−1
i F(Un

Ki ,S
n
Ki) · ni

]
,

which is a convex combination of Un
K and Un

Ki
− β−1

i F(Un
Ki
,SnKi) · ni under

the CFL constraint ∆t |∂K||K| maxi βi ≤ 2 with |∂K| =
∑E
i=1 |ei|. We emphasize
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that the CFL condition ∆t |∂K||K| maxi βi ≤ 2 derived here is better than the one

derived following discussions in [4, 18], which is ∆t |∂K||K| maxi βi ≤ 1.

By Lemma 6 in Appendix B, we have Un
Ki
− β−1

i F(Un
Ki
,SnKi) ·ni ∈ G if we

take

βi > max

[
|u · ni|+

1

2ρ2e

(√
ρ2|q · ni|2 + 2ρ2e‖τ · ni − pnti‖2 + ρ|q · ni|

)]
,

where the maximum is taken over Un
K ,S

n
K ,U

n
Ki
,SnKi .

3.2. High order schemes for the compressible Navier-Stokes equations

Consider a (k + 1)-th order finite volume type scheme with reconstruction
polynomials or approximation polynomials of degree k. For the two dimensional
compressible Euler system, with forward Euler time discretization on K, it takes
the form (5). Assume we use the L-point Gauss quadrature for integrals along
each edge ei. Let wν (ν = 1, · · · , L) denotes the L-point Gauss quadrature

weights on interval [− 1
2 ,

1
2 ], so that

∑L
ν=1 wν = 1. Let xν,i denote the ν-th

Gauss quadrature point on the i-th edge. Replacing the integrals by the Gauss
quadrature, we obtain

U
n+1

K = U
n

K −
∆t

|K|

E∑
i=1

|ei|
L∑
ν=1

wνF̂ · n(Uν,i
K ,Sν,iK ,Uν,i

Ki
,Sν,iKi), (30a)

where U
n

K is the cell average on K at time level n, Uν,i
K and Uν,i

Ki
are approxima-

tions to U(xν,i, t
n) from K and from Ki respectively. The local Lax-Friedrichs

flux is

F̂ · n(Uν,i
K ,Sν,iK ,Uν,i

Ki
,Sν,iKi) =

1

2

[(
F(Uν,i

K ,Sν,iK ) + F(Uν,i
Ki
,Sν,iKi)

)
· ni − βi(Uν,i

Ki
−Uν,i

K )
]
,

(30b)

βi > max

[
|u · ni|+

1

2ρ2e

(√
ρ2|q · ni|2 + 2ρ2e‖τ · ni − pnti‖2 + ρ|q · ni|

)]
,

(30c)
where the maximum is taken over Uν,i

K ,Sν,iK ,Uν,i
Ki
,Sν,iKi for ν = 1, · · · , L.

Next, assume there exists a quadrature on K satisfying the following prop-
erties:

1. It is exact for integrals of polynomials of degree k on K.

2. The quadrature points include xν,i for all ν and i.

3. The smallest quadrature weight must be strictly positive.

This quadrature will play the same role in two dimensions as the Gauss-Lobatto
quadrature in Section 2.2 so that we can decompose the cell average as a convex
combination of certain point values. The existence of such a quadrature rule is
not obvious due to the third constraint above. For rectangular cells, we can use
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the tensor product of Gauss quadrature and Gauss-Lobatto quadrature [17, 10].
For triangular cells, we can construct it by a Dubinar transform from rectangles
to triangles [18]. For more general polygonal cells, see [22]. In [21], a more
straightforward construction was discussed, but the quadrature weights for xν,i
on triangles are smaller.

Assume we have a M -point quadrature rule satisfying the three constraints
above. Let xν,i (ν = 1, · · · , L, i = 1, · · · , E) and xλ (λ = EL+1, · · · ,M) denote
the M quadrature points on K. See Figure 1 for an illustration, where the red
points are xν,i and blue points are xλ. Let ων,i and ωλ denote the corresponding

normalized quadrature weights so that
∑L
ν=1

∑E
i=1 ων,i +

∑M
λ=EL+1 ωλ = 1.

Consider a rectangular cell K with sides parallel to x-axis and y-axis. As-
sume lengths of sides are ∆x and ∆y. To construct a suitable quadrature,
we use U

n

K = ∆x
∆x+∆yU

n

K + ∆y
∆x+∆yU

n

K . Following [17, 10], for the integral in
∆x

∆x+∆yU
n

K = ∆x
∆x+∆y

1
|K|
∫∫
K

PK(x) dxdy, we can use the tensor product of L-

point Gauss quadrature for x-variable and N -point Gauss-Lobatto quadrature
for y-variable. For the integral in ∆y

∆x+∆yU
n

K = ∆y
∆x+∆y

1
|K|
∫∫
K

PK(x) dxdy, we

can use the tensor product of L-point Gauss quadrature for y-variable and
N -point Gauss-Lobatto quadrature for x-variable. Take the union of these
two tensor products, we get a quadrature rule needed and we have ων,i/wν =
|ei|

∆x+∆y ω̂ = |ei|
∆x+∆y

1
N(N−1) for any ν = 1, · · · , L. For a triangular cell, we can

use the quadrature constructed in [18], which is also based on N -point Gauss-
Lobatto quadrature and ων,i/wν = 2

3 ω̂ = 2
3

1
N(N−1) for any ν = 1, · · · , L. For

both cases, we have
E∑
i=1

L∑
ν=1

ων,i = 2ω̂.

Let PK(x) be the reconstruction or approximation polynomial of degree k
in the (k + 1)-th order finite volume type scheme (30a), i.e., the cell average of
PK(x) is U

n

K and Uν,i
K = PK(xν,i). Then we have

U
n

K =
1

|K|

∫∫
K

PK(x) dV =

E∑
j=1

L∑
ν=1

ων,jU
ν,j
K +

M∑
λ=EL+1

ωλPK(xλ).
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Plugging the cell average decomposition above into (30a), we obtain,

U
n+1

K =

M∑
λ=EL+1

ωλPK(xλ) +

E∑
i=1

L∑
ν=1

[
ων,iU

ν,i
K −∆t

|ei|
|K|

wνF̂ · n(Uν,i
K ,Sν,iK ,Uν,i

Ki
,Sν,iKi)

]

=

M∑
λ=EL+1

ωλPK(xλ) +
1

2

E∑
i=1

L∑
ν=1

∆t
|ei|
|K|

wνβi

(
Uν,i
Ki
− β−1

i F(Uν,i
Ki
,Sν,iKi) · ni

)

+

E∑
i=1

L∑
ν=1

[
ων,iU

ν,i
K −

1

2
∆t
|ei|
|K|

wν

(
βiU

ν,i
K + F(Uν,i

K ,Sν,iK ) · ni
)]

=

M∑
λ=EL+1

ωλPK(xλ) +

E∑
i=1

L∑
ν=1

Λν,iβi

(
Uν,i
Ki
− β−1

i F(Uν,i
Ki
,Sν,iKi) · ni

)

+

E∑
i=1

L∑
ν=1

(ων,i − Λν,iβi)
[
Uν,i
K − Λν,i (ων,i − Λν,iβi)

−1
F(Uν,i

K ,Sν,iK ) · ni
]
,

(31)

where Λν,i = 1
2∆t |ei||K|wν .

Notice the fact that Λν,i(ων,i−Λν,iβi)
−1 ≤ β−1

i if and only if 0 ≤ ∆t |ei||K|βi ≤
ων,i
wν

. By Lemma 6 in Appendix B, under the CFL constraint ∆t |ei||K| maxi βi ≤
mini,ν

ων,i
wν

, we have

Uν,i
K ∈ G⇒ Uν,i

K − Λν,i (ων,i − Λν,iβi)
−1

F(Uν,i
K ,Sν,iK ) · ni ∈ G,

Uν,i
Ki
∈ G⇒ Uν,i

Ki
− β−1

i F(Uν,i
Ki
,Sν,iKi) · ni ∈ G.

Thus we obtain the weak positivity for the high order scheme (30).

Theorem 3. Consider the scheme (30) with reconstruction or approximation

polynomials of degree k. Let N = d(k + 3)/2e. A sufficient condition for U
n+1

j ∈
G in is

Uν,i
K ,Uν,i

Ki
∈ G and PK(xλ) ∈ G (λ = EL+ 1, · · · ,M), (32)

under the CFL condition

∆t

(
1

∆x
+

1

∆y

)
βi ≤ ω̂ =

1

N(N − 1)
, on a rectangular cell K,

∆t
|ei|
|K|

βi ≤
2

3
ω̂ =

2

3

1

N(N − 1)
, on a triangular cell K. (33)

Following Remark 1, with the fact

M∑
λ=EL+1

ωλ

1−
E∑
i=1

L∑
ν=1

ων,i

PK(xλ) =

M∑
λ=EL+1

ωλ
1− 2ω̂

PK(xλ),
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we get a weaker sufficient condition to replace (32) as,

Uν,i
K ,Uν,i

Ki
∈ G and

M∑
λ=EL+1

ωλ
1− 2ω̂

PK(xλ) ∈ G. (34)

Remark 3. The discussion of weak positivity in this section, i.e., (31), is dif-
ferent from the one in [18] for triangular cells. Following the discussion in [18],

we would get a constraint ∆t
∑E
i=1 |ei|
|K| βi ≤ 2

3 ω̂ for a triangular cell. The CFL

condition (33) is certainly a better one, even though these CFL constraints are
sufficient rather than necessary conditions for the weak positivity.

4. Review of the positivity-preserving limiter

To enforce the sufficient conditions for the weak positivity in Theorem 1,
Theorem 2 and Theorem 3, we can use the simple positivity-preserving limiter
in [17, 10, 18, 44]. In this section, we review this limiter in one dimension but
all discussions can be extended to higher dimensions in a straightforward way.
We will describe the limiter for DG schemes in two dimensions in Section 5.

4.1. A simple limiter to enforce bounds

We first discuss a simpler case of enforcing bounds of a piecewise polynomial
approximation to a scalar function. Consider piecewise polynomials pj(x) on
each interval Ij = [xj− 1

2
, xj+ 1

2
] approximating a smooth function u(x). Let m

and M be the minimum and the maximum of u(x), i.e., u(x) ∈ [m,M ] for any x.
Assume the cell averages pj = 1

∆xj

∫
Ij
pj(x) dx ∈ [m,M ]. If pj(x) /∈ [m,M ] for

some x ∈ Ij , then we seek a modified approximation polynomial p̃j(x) satisfying
p̃j(x) ∈ [m,M ] for any x ∈ Ij , with the same cell average 1

∆xj

∫
Ij
p̃j(x) dx =

1
∆xj

∫
Ij
pj(x) dx. For instance, if pj(x) is the L2 projection of u(x) onto the

vector space of polynomials of degree k on the Ij , then we have pj ∈ [m,M ] but
not necessarily pj(x) ∈ [m,M ] for any x ∈ Ij .

The following limiter was first discussed in [48]:

p̃j(x) = θ
[
pj(x)− pj

]
+ pj , θ = min

{
1,

∣∣∣∣M − pjMj − pj

∣∣∣∣ , ∣∣∣∣ m− pjmj − pj

∣∣∣∣} , (35a)

Mj = max
x∈Ij

pj(x),mj = min
x∈Ij

pj(x). (35b)

It is straightforward to see that p̃j(x) ∈ [m,M ] for any x ∈ Ij and the cell
average of p̃j(x) is still pj . On the other hand, this simple limiter does not
destroy the approximation accuracy of pj(x).

Theorem 4. For the modified polynomial of degree k in the limiter (35), we
have |pj(x)− p̃j(x)| ≤ Ck maxx∈Ij |pj(x) − u(x)|, where Ck is a constant de-
pending only on the polynomial degree k.
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Proof. We only need to discuss the case that pj(x) is not a constant and

θ =
∣∣∣ M−pjMj−pj

∣∣∣. The other cases are similar. Since pj ≤M and pj ≤Mj , we have

θ = (M − pj)/(Mj − pj). Therefore,

p̃j(x)− pj(x) = θ[pj(x)− pj ] + pj − pj(x)

= (θ − 1)[pj(x)− pj ]

=
M −Mj

Mj − pj
[pj(x)− pj ]

= (M −Mj)
pj(x)− pj
Mj − pj

.

Thus |p̃j(x) − pj(x)| ≤ |M −Mj |
∣∣∣pj(x)−pj
Mj−pj

∣∣∣ . The assumption θ =
∣∣∣ M−pjMj−pj

∣∣∣ im-

plies the overshoot Mj > M . Suppose pj(x
∗) = Mj for some x∗ ∈ Ij , then

u(x∗) ≤ M < Mj = pj(x
∗). Thus we have |M −Mj | ≤ |u(x∗) − pj(x

∗)| ≤
maxx∈Ij |pj(x)− u(x)|. We need to show

∣∣∣pj(x)−pj
Mj−pj

∣∣∣ ≤ Ck.

Consider a new polynomial q(x) = pj

(
x∆x+ xj− 1

2

)
− pj . Then q =∫ 1

0
q(x) dx = 0, max

x∈[0,1]
q(x) = max

x∈Ij
pj(x) − pj and min

x∈[0,1]
q(x) = min

x∈Ij
pj(x) − pj .

We have∣∣∣∣pj(x)− pj
Mj − pj

∣∣∣∣ =
|q(x)|

max
x∈[0,1]

q(x)
≤

max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
= max


max
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)
,

− min
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)

 .

Thus we only need to prove
max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x) ≤ Ck or

∣∣∣∣ min
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)

∣∣∣∣ ≤ Ck. For quadratic

polynomials k = 2 in one dimension, Ck = 3 was proven by explicit calculations
in [48]. For general k and higher dimensions, see Appendix C.

Remark 4. The proof above can be easily extended to any kind of cells in any
dimensions.

In practice, the limiter (35) is not very interesting since evaluating the maxi-
mum and the minimum of a high order polynomial in (35b) is computationally
demanding in high dimensions. A practical limiter is (35) with Mj and mj

redefined as

p̃j(x) = θ
[
pj(x)− pj

]
+ pj , θ = min

{
1,

∣∣∣∣M − pjMj − pj

∣∣∣∣ , ∣∣∣∣ m− pjmj − pj

∣∣∣∣} , (36a)

Mj = max
x∈Sj

pj(x),mj = min
x∈Sj

pj(x), (36b)

where Sj are Gauss-Lobatto quadrature points (16). The simplified limiter (36)
was first used in [17] to enforce the sufficient conditions for the weak monotonic-
ity in any high order finite volume schemes with monotone fluxes solving scalar
conservation laws. Since (35) is a more stringent limiter than (36), Theorem 4
also applies to the simplified limiter (36).
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4.2. A simple limiter to enforce positivity

To enforce the condition (19), we can apply the limiter (36) to the density and
extend such a limiter to enforce the positivity of internal energy. Let Pj(x) =
(ρj(x), ρuj(x), Ej(x))t be a vector of polynomials of degree k on Ij with the
cell average Pj = (ρj , ρuj , Ej)

t. Define ρej = Ej − 1
2ρu

2
j/ρj . Assume Pj has

positive density and internal energy, i.e., ρj > 0, ρej > 0. Let ε be a small
positive number as the desired lower bound for density and internal energy,
e.g., ε = 10−8 or ε = 10−13.

Numerically the set of admissible states is

Gε =

U =

 ρ
ρu
E

 : ρ ≥ ε, ρe(U) ≥ ε.

 .

Assume Pj ∈ Gε. If Pj(x̂
µ
j ) /∈ Gε for some µ = 1, · · · , N , then we seek a

modified polynomial P̃j(x) with the same cell average so that P̃j(x̂
µ
j ) ∈ Gε for

all µ.
We first modify density to enforce the positivity by,

ρ̂j(x) = θρ(ρj(x)− ρj) + ρj , θρ = min

1,
ρj − ε

ρj − min
µ=1,··· ,N

ρj(x̂
µ
j )

 . (37a)

Then let P̂j(x) = (ρ̂j(x), ρuj(x), Ej(x))t. Let ρ̂ej(x) = Ej(x)− 1
2ρuj(x)2/ρ̂j(x).

To enforce the positivity of internal energy, we can use the simplified limiter in
[44],

P̃j(x) = θe(P̂j(x)−Pj)+Pj , θe = min

1,
ρej − ε

ρej − min
µ=1,··· ,N

ρ̂ej(x̂
µ
j )

 . (37b)

By the convex combination Pj =
∑N
µ=1 ω̂µPj(x̂

µ
j ) and the Jensen’s inequal-

ity (4), we have min
µ=1,··· ,N

ρj(x̂
µ
j ) ≤ ρj and min

µ=1,··· ,N
ρ̂ej(x̂

µ
j ) ≤ ρej , which implies

0 ≤ θρ, θe ≤ 1. By the Jensen’s inequality (4), it is straightforward to check

that P̃j(x̂
µ
j ) ∈ Gε for µ = 1, · · · , N .

Now consider the polynomial Pj(x) approximating a smooth solution U(x) =
(ρ(x), ρu(x), E(x))t ∈ Gε for all x. If ρ(x) ≥ ε for any x, then the accuracy of
the limiter on density (37a) can be understood in the sense of Theorem 4.

Suppose the smooth solution U(x) satisfies ρe(x) = E(x)− 1
2ρu(x)2/ρ(x) = ε

for some x, then the limiter (37b) may induce at least a second order error
O(∆x2) around the minimum of ρe(x), see [43] for a discussion on a similar
issue when enforcing entropy bounds. In other words, (37b) is a crude limiter if
the smooth solution U(x) lies on the boundary of the convex set Gε for some x.

If the internal energy of U(x) is uniformly bounded away from ε, then (37b)
is still a high order accurate limiter as ∆x goes to zero. Assume ρe(x) ≥ m
for any x and m > 2ε. Assume ‖Pj(x) −U(x)‖ = O(∆xk+1) for any x, then
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‖P̂j(x)−U(x)‖ = O(∆xk+1) for any x by Theorem 4. Since ‖Pj(x)−U(x)‖ =
O(∆xk+1), we have ρej = 1

∆x

∫
Ij
ρe(x) dx + O(∆xk+1). Thus ρej ≥ 1

2m > ε

if ∆x is small enough. Without loss of generality, assume θe =
ρej−ε

ρej−ρ̂ej(x̂1
j )

,

then ρ̂ej(x̂
1
j ) < ε thus ρej − ρ̂ej(x̂

1
j ) > m/2 − ε > 0. Therefore, 1 − θe =

ε−ρ̂ej(x̂
1
j )

ρej−ρ̂ej(x̂1
j )
≤ ρ̂ej(x̂

1
j )−ε

m/2−ε . On the other hand, ‖P̂j(x) − U(x)‖ = O(∆xk+1)

implies the undershoot ρ̂ej(x̂
1
j )−ε = O(∆xk+1) thus 1−θe = O(∆xk+1) if ∆x is

small enough. So we get ‖P̃j(x)−Pj(x)‖ = ‖(1−θe)[Pj(x)−Pj ]‖ = O(∆xk+1).
In a nutshell, for smooth solutions without vacuum, i.e., the internal energy or
pressure is uniformly bounded away from zero, the limiter on internal energy
(37b) is a high order accurate limiter.

We remark that it is straightforward to define an optimal limiter in terms
of accuracy as an optimization problem, i.e., finding a polynomial P̃j(x) to

minimize ‖P̃j(x) − Pj(x)‖ under the constraints
∫
Ij

P̃j(x) dx =
∫
Ij

Pj(x) dx

and P̃j(x̂
µ
j ) ∈ Gε. But accurately solving such a convex optimization problem

is much more computationally demanding.

4.3. An efficient implementation of the positivity-preserving limiter

In the limiter (37), we have to evaluate Pj(x̂
µ
j ) for µ = 2, · · · , N − 2, which

are the blue point values as illustrated in Figure 1. In two and higher dimensions,
these blue point values are not needed in any standard finite volume and DG
schemes. It will be a more efficient implementation if we can avoid evaluating
these redundant point values in the limiter. To this end, we can enforce (29)
instead of (27).

Given polynomials Pj(x) with cell averages Pj ∈ Gε, we seek polynomials

P̃j(x) with the same cell averages so that P̃j(x̂
1
j ), P̃j(x̂

N
j ),

∑N−1
µ=2

ω̂µ
1−2ω̂ P̃j(x̂

µ
j ) ∈

Gε.
By the Mean Value Theorem, the convex combination

∑N−1
µ=2

ω̂µ
1−2ω̂ρj(x̂

µ
j ) is

equal to ρj(x
∗
j ) where x∗j is some point in the cell Ij . The convex combination

ρj =
∑N
µ=1 ω̂µρj(x̂

µ
j ) implies ρj = ω̂ρj(x̂

1
j ) + ω̂ρj(x̂

N
j ) + (1 − 2ω̂)ρj(x

∗
j ). Even

though the value of x∗j is unknown, we can compute the point value of ρj(x) at

x∗j as ρj(x
∗
j ) = 1

1−2ω̂ (ρj − ω̂ρj(x̂1
j )− ω̂ρj(x̂Nj )). We first modify density by,

ρ̂j(x) = θρ(ρj(x)− ρj) + ρj , θρ = min

1,
ρj − ε

ρj − min
x∈{x̂1

j ,x̂
N
j ,x
∗
j }
ρj(x)

 . (38a)

Notice that we have the convex combination ρj = ω̂ρj(x̂
1
j ) + ω̂ρj(x̂

N
j ) + (1 −

2ω̂)ρj(x
∗
j ), so ρj ≥ min{ρj(x̂1

j ), ρj(x̂
N
j ), ρj(x

∗
j )} thus θρ ∈ [0, 1]. It is straightfor-

ward to see that the limiter (38a) is a more relaxed one than (37a), thus Theorem
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4 also applies to the limiter (38a). Moreover, we have ρ̂j(x̂
1
j ), ρ̂j(x̂

N
j ) ≥ ε and

N−1∑
µ=2

ω̂µ
1− 2ω̂

ρ̂j(x̂
µ
j ) =

N−1∑
µ=2

ω̂µ
1− 2ω̂

[θρ(ρj(x̂
µ
j )− ρj) + ρj ]

= θρ

(
N−1∑
µ=2

ω̂µ
1− 2ω̂

ρj(x̂
µ
j )− ρj

)
+ ρj

= θρ
(
ρj(x

∗
j )− ρj

)
+ ρj ≥ ε.

Let P̂j(x) = (ρ̂j(x), ρuj(x), Ej(x))t and ρ̂ej(x) = Ej(x) − 1
2ρuj(x)2/ρ̂j(x).

By the Mean Value Theorem, the convex combination
∑N−1
µ=2

ω̂µ
1−2ω̂ P̂j(x̂

µ
j ) is

equal to (ρ̂j(x
∗,1
j ), ρuj(x

∗,2
j ), Ej(x

∗,3
j ))t, where x∗,1j , x∗,2j , x∗,3j are three different

points in the cell Ij . We abuse the notation by using P̂j(x
∗∗
j ) to denote the

vector (ρ̂j(x
∗,1
j ), ρuj(x

∗,2
j ), Ej(x

∗,3
j ))t. Then P̂j(x

∗∗
j ) =

∑N−1
µ=2

ω̂µ
1−2ω̂ P̂j(x̂

µ
j ) and

we compute its value by P̂j(x
∗∗
j ) = 1

1−2ω̂ (Pj − ω̂Pj(x̂
1
j ) − ω̂Pj(x̂

N
j )). For any

vector U = (ρ, ρu,E)t, define the internal energy function as,

Ψ(U) = E − 1

2

|ρu|2

ρ
.

The internal energy of the vector P̂j(x
∗∗
j ) is denoted by ρ̂ej(x

∗∗
j ) = Ψ

(
P̂j(x

∗∗
j )
)

.

To enforce the positivity of internal energy, we define a limiter as,

P̃j(x) = θe(P̂j(x)−Pj) + Pj , θe = min

1,
ρej − ε

ρej − min
x∈{x̂1

j ,x̂
N
j ,x
∗∗
j }

ρ̂ej(x)

 .

(38b)

Since the cell average of P̂j(x) is still Pj , we have the convex combination

Pj =
∑N
µ=1 ω̂µP̂j(x̂

µ
j ) = ω̂P̂j(x̂

1
j ) + ω̂P̂j(x̂

N
j ) + (1− 2ω̂)P̂j(x

∗∗
j ). The Jensen’s

inequality (4) implies,

ρej ≥ ω̂ρ̂ej(x̂1
j ) + ω̂ρ̂ej(x̂

N
j ) + (1− 2ω̂)ρ̂ej(x

∗∗
j ).

So ρej ≥ min{ρ̂ej(x̂1
j ), ρ̂ej(x̂

N
j ), ρ̂ej(x

∗∗
j )} thus θe ∈ [0, 1]. It is straightfor-

ward to see that the limiter (38b) is a more relaxed one than (37b) because of

ρ̂ej(x
∗∗
j ) ≥

∑N−1
µ=2

ω̂µ
1−2ω̂ ρ̂ej(x̂

µ
j ) implied by the Jensen’s inequality (4). There-

fore, (38b) is also a high order accurate limiter for approximating a smooth
solution U(x) with ρe(x) having a positive uniform lower bound.

Moreover, it is straightforward to check P̃j(x̂
1
j ), P̃j(x̂

N
j ) ∈ Gε. Let P̃j(x) =

28



(ρ̃j(x), ρ̃uj(x), Ẽj(x))t and ρ̃ej(x) = Ẽj(x)− 1
2 ρ̃uj(x)2/ρ̃j(x). Then we have

Ψ

(
N−1∑
µ=2

ω̂µ
1− 2ω̂

P̃j(x̂
µ
j )

)
= Ψ

(
N−1∑
µ=2

ω̂µ
1− 2ω̂

[θe(P̂j(x̂
µ
j )−Pj) + Pj ]

)

= Ψ

(
θe

[
N−1∑
µ=2

ω̂µ
1− 2ω̂

P̂j(x̂
µ
j )−Pj

]
+ Pj

)
= Ψ

(
θe

[
P̂j(x

∗∗
j )−Pj

]
+ Pj

)
= Ψ

(
θeP̂j(x

∗∗
j ) + (1− θe)Pj

)
≥ θeΨ

(
P̂j(x

∗∗
j )
)

+ (1− θe)Ψ
(
Pj

)
= θeρ̂ej(x

∗∗
j ) + (1− θe)ρej ≥ ε.

Therefore, the limiter (38) returns a P̃j(x) satisfying the condition (29) without
evaluating the point values at x̂µj for µ = 2, · · · , N − 2.

5. Implementation of positivity-preserving high order DG schemes

5.1. DG schemes

For solving the compressible Navier-Stokes system (1), there are quite a few
very different DG type schemes, e.g., the pioneering work by Bassi and Rebay
[33, 34], the scheme by Baumann and Oden [35], Compact DG [36], correction
procedure via reconstruction (CPR) [37, 38], Hybrid DG [39] and Embedded
DG [40], etc. In this paper, we focus on the mixed finite element formulation

(10) used in [33, 34]. Let F = Fa − Fd and F̂ · n = F̂a · n − F̂d · n, then (10)
becomes 

∫∫
K

Shφh dV = −
∫∫

K

Uh∇φh dV +

∫
∂K

Ûnφh ds∫∫
K

d

dt
Uhψh dV =

∫∫
K

F∇ · ψh dV −
∫
∂K

F̂ · nψh ds
,

where Uh and Sh are vectors of polynomials of degree k and φh and ψh are the
polynomial of degree k test functions defined on K, which is a two-dimensional
cell as illustrated in Figure 4.

For evaluating the flux Fd(U,S) in (2), we need to compute the derivatives of
velocity and internal energy based on the derivatives of the conserved variables,
which can be done by the following formulas obtained from applying product
and quotient rules to ρu and e = 1

ρ

(
E − 1

2ρu
2 − 1

2ρv
2
)

= E
ρ −

1
2u

2 − 1
2v

2:

ux =
1

ρ
[(ρu)x − ρxu], ex =

1

ρ2
[Exρ− ρxE]− uux − vvx. (39)

Assume we use the L-point Gauss quadrature for each edge ei in integrals
along ∂K. Let wν (ν = 1, · · · , L) denotes the L-point Gauss quadrature weights

29



on interval [− 1
2 ,

1
2 ], so that

∑L
ν=1 wν = 1. Let xν,i denote the ν-th Gauss

quadrature point on the i-th edge. Let UK(x) and UKi(x) denote the solution
polynomials restricted on the elements K and Ki respectively, i.e., UK(x) =
Uh(x)|K and UKi(x) = Uh(x)|Ki . Let Uν,i

K = UK(xν,i) and Uν,i
Ki

= UKi(xν,i).
Replacing the line integrals by Gauss quadrature, we obtain

∫∫
K

Shφh dV = −
∫∫

K

Uh∇φh dV +

E∑
i=1

|ei|
L∑
ν=1

wνÛn(Uν,i
K ,Uν,i

Ki
)φh(xν,i)

∫∫
K

d

dt
Uhψh dV =

∫∫
K

F∇ · ψh dV −
E∑
i=1

|ei|
L∑
ν=1

wνF̂ · n(Uν,i
K ,Sν,iK ,Uν,i

Ki
,Sν,iKi)ψh(xν,i)

.

(40)

Following [33], the numerical flux Ûn in (40) can be taken as a centered one

Ûn(Uν,i
K ,Uν,i

Ki
) =

1

2
(Uν,i

K + Uν,i
Ki

)n.

To render the high order DG scheme satisfying the weak positivity property,

the numerical flux F̂ · n = F̂a · n − F̂d · n should be positivity-preserving. For

instance, F̂a · n can be any positivity-preserving flux for compressible Euler

equations and F̂d · n can be taken as one similar to (22). For simplicity, we
simply use the local Lax-Friedrichs type positivity-preserving flux (30b) and
(30c).

By setting the test function ψh ≡ 1 in the scheme (40), we obtain the
scheme satisfied by the cell averages, the forward Euler discretization of which
is precisely (30a). Thus Theorem 3 also applies to the high order DG scheme
(40) with the flux (30b) and (30c).

5.2. The positivity-preserving limiter in two dimensions

To enforce the condition in (34) in Theorem 3, we can use the limiter as
described in Section 4.3 to avoid evaluating point values at highly redundant
blues points as illustrated in Figure 1. Let PK(x) = (ρK(x), ρuK(x), EK(x))t

denote the DG polynomial on the element K. Assume its cell average PK =
(ρK , ρuK , EK)t ∈ Gε. Let xm (m = 1, · · · , P ) be quadrature points used for
computing integrals

∫∫
K

F∇ · ψh dV in the scheme (40). In practice, it is also
preferred to have PK(xm) ∈ Gε. To this end, we can include the points xm

(m = 1, · · · , P ) in the positivity-preserving limiter.
By the Mean Value Theorem, there exists x∗ ∈ K such that

ρK(x∗) =

M∑
λ=EM+1

ω̂λ
1− 2ω̂

ρK(xλ).

Let

Sρ = {xν,i : ν = 1, · · · , L; i = 1, · · · , E} ∪ {xm : m = 1, · · · , P} ∪ {x∗}.
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In other words, the set Sρ contains x∗ and all quadrature points for comput-
ing line integrals along ∂K and double integrals over K in the DG scheme
(40). Given only point values of ρK(x) at xν,i(ν = 1, · · · , L; i = 1, · · · , E) and
xm(m = 1, · · · , P ), we can compute

ρK(x∗) =
1

1− 2ω̂

(
ρK −

E∑
i=1

L∑
ν=1

ων,iρK(xν,i)

)
,

and

ρ̂K(x) = θρ(ρK(x)− ρK) + ρK , θρ = min

1,
ρK − ε

ρK − min
x∈Sρ

ρK(x)

 . (41a)

Let P̂K(x) = (ρ̂K(x), ρuK(x), EK(x))t. Let ρ̂eK(x) = EK(x)− 1
2‖ρuK(x)‖2/ρ̂K(x)

where ‖ · ‖ denotes the standard l2 norm of a vector. By abusing the notation,
we define

P̂K(x∗∗) =

M∑
λ=EM+1

ω̂λ
1− 2ω̂

P̂K(xλ),

even though the point x∗∗ may not exist. Let

Se = {xν,i : ν = 1, · · · , L; i = 1, · · · , E} ∪ {xm : m = 1, · · · , P} ∪ {x∗∗}.

Define ρeK = EK− 1
2‖ρuK‖

2/ρK . Given only point values of ρ̂eK(x) at xν,i(ν =
1, · · · , L; i = 1, · · · , E) and xm(m = 1, · · · , P ), we can compute

P̂(x∗∗) =
1

1− 2ω̂

(
PK −

E∑
i=1

L∑
ν=1

ων,iP̂K(xν,i)

)
,

and

P̃K(x) = θe(P̂K(x)−PK)+PK , θe = min

1,
ρeK − ε

ρeK − min
x∈Se

ρ̂eK(x)

 . (41b)

5.3. Time discretizations

We discretize the semi-discrete DG scheme (40) in time by a SSP Runge-
Kutta method. Let d

dtUh = L(Uh) denote (40), then the third order SSP
Runge-Kutta method used in this paper is given by,

U
(1)
h = Un

h + ∆tL(Un
h),

U
(2)
h = 3

4Un
h + 1

4 (U
(1)
h + ∆tL(U

(1)
h )),

Un+1
h = 1

3Un
h + 2

3 (U
(2)
h + ∆tL(U

(2)
h )).

(42)

By Theorem 3, the DG scheme with forward Euler is positivity-preserving
under the suitable CFL condition (33) with βi defined in (30c). But we should
not simply use a time step suggested by (33) for compressible Navier-Stokes
equations due to the following reasons:
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1. The constraint (33) may not be a necessary condition for U
n+1

K ∈ G in
practice.

2. To enforce (33) for three stages in (42), we need to estimate maxi βi for
each stage. Given DG solutions Un

h at time step n, it is hard to accurately

estimate maxi βi with βi defined in (30c) for the two inner time stages U
(1)
h

and U
(2)
h in a third order Runge-Kutta method.

3. Artificial stiffness may result in unnecessarily small time steps. The wave

speed
√
γ pρ for the ideal gas EOS may not be accurately evaluated nu-

merically for low density or low pressure problems as explained in the
introduction. Another type of artificial stiffness may emerge near a very
strong shock. Notice that τ and q defined in (2) contains the derivatives
of U, which are not well defined near discontinuities of U. Numerically
τ and q could contain huge numbers near strong shocks, thus βi com-
puted in (30c) might be a huge number, which is still necessary in the
preserving-positivity flux though. But the time step computed by (33)
could be unnecessarily small for preserving positivity.

4. For smooth solutions, (33) is inconsistent with a time step implied by the
linear stability analysis. See Remark 2.

Instead, we can use the following simple time-stepping strategy: for each
Runge-Kutta step, start with some desired time step, then restart the computa-
tion with a time step halved when negative cell averages emerge in any stage of
Runge-Kutta. This ad hoc approach can be applied to any scheme, but Theo-
rem 3 ensures that there will be no endless loops for such a positivity-preserving
scheme. In other words, the recomputation will be ended at least when ∆t is
small enough to satisfy (33) for each of the three time stages. For high order
schemes, it is nontrivial to find the largest time step for positivity to hold, see
[49] for such an effort.

We implement the positivity-preserving high order DG scheme (40) using the
flux (30b) and (30c) with the third order SSP Runge-Kutta (42) for equations
(2) as follows:

1. At time level n, in each cell K, we are given DG polynomials Un
K(x)

with the cell average U
n

K ∈ Gε, where ε be a parameter of desired
lower bound for density and internal energy, e.g., ε = 10−13 or ε =
min{10−13, ρK , ρeK}. Apply the limiter (41) to Un

K(x) and we obtain

Ũn
K(x).

2. Compute the wave speed αi = max
ν=1,··· ,L

max
Uν,i
K ,Uν,i

Ki

(
|u · ni|+

√
γ pρ

)
for the

ideal gas EOS (2c), and αi > max
ν=1,··· ,L

max
Uν,i
K ,Uν,i

Ki

[
|u · ni|+

√
p2

2ρ2e

]
for a

generic EOS based on Ũn
K(x) for each edge in the mesh. Let α∗ = maxi αi

where the maximum is taken over all edges in the mesh. For each cell K,

let eK denote its longest edge. By abusing notation, let ∆x = minK
|K|
|eK |
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in a triangular mesh. Set the time step

∆t = min

{
a

1

α∗
∆x, bRe ∆x2

}
, (43)

where a and b are two parameters. For instance, (33) implies we can set
a = 2

3 ω̂ for a triangular cell K. Since we do not enforce (33) by using
(43), we may use larger a, e.g., a = 2ω̂. We choose not to use a time step
dependent on βi defined in (30c) mainly because of the artificial stiffness
for strong shocks.

3. Compute the first stage based on Ũn
K(x), denoted by U

(1)
K .

• If the cell averages U
(1)

K ∈ Gε, then proceed to next step.

• Otherwise, then recompute the first stage with either a halved time
step or the stringent CFL (33), e.g., ∆t = 2

3
ω̂
β∗∆x for a triangular

mesh where β∗ = maxi βi with βi defined in (30c). Notice that

Theorem 3 guarantees that the cell averages U
(1)

K ∈ Gε if (33) is
used.

4. Given the DG polynomials U
(1)
K (x) with cell averages U

(1)

K ∈ Gε, apply

the limiter (41) to U
(1)
K (x) and we obtain Ũ

(1)
K (x). Compute the second

stage U
(2)
K based on Ũ

(1)
K (x).

• If the cell averages U
(2)

K ∈ Gε, then proceed to next step.

• Otherwise, then return to Step 3 and restart the computation with
a time step halved. Notice that even if the time step (33) is used in

Step 3, there is no guarantee that U
(2)

K ∈ Gε because (33) is based

on Ũn
K rather than Ũ

(1)
K .

5. Given the DG polynomials U
(2)
K (x) with cell averages U

(2)

K ∈ Gε, apply

the limiter (41) to U
(2)
K (x) and we obtain Ũ

(2)
K (x). Compute Un+1

K (x).

• If the cell averages U
n+1

K ∈ Gε, then computation to time step n+ 1
is done.

• Otherwise, then return to Step 3 and restart the computation with
a time step halved.

6. Numerical tests

6.1. Preliminaries

We test the high order DG schemes (40) with the positivity-preserving local
Lax-Friedrichs type flux (30b) and (30c) and the third order SSP Runge-Kutta
(42) for the two-dimensional compressible Navier-Stokes equations with the ideal
gas EOS (2) and its one-dimensional version (A.1). We use P k or Qk basis on
rectangular cells and P k basis on triangular cells, where P k denotes polynomials
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of degree k and Qk denotes tensor products of one-dimensional polynomials of
degree k.

In the equations (2) and (A.1), we set the parameters as γ = 1.4, η = 4
3 and

Pr = 0.72.
In the evaluation of the flux function F, we need to compute u = ρu

ρ and

(39) with density in the denominator, we may encounter numerical problems
if density is close to zero. To this end, if ρ < ε∗ where ε∗ is a small positive
number, we need to modify the definition of velocity and (39). In the following
numerical tests, we use ε∗ = 10−8 and an ad hoc modification by setting velocity,
internal energy and their derivatives as zero when ρ < ε∗.

In all numerical tests in this section, only the positivity-preserving limiter
(41) is used. For the compressible Euler equations, i.e, (2) with Re = ∞,
high order DG schemes with only the positivity-preserving limiter in general
may produce highly oscillatory numerical solutions, thus other type of limiters
[45, 46, 47] should also be used to reduce oscillations. For the compressible
Navier-Stokes equations, as we will see in the following examples, high order
DG schemes with only the positivity-preserving limiter can produce satisfying
non-oscillatory solutions when the mesh size is small enough or polynomial basis
order is high enough so that the nonlinear diffusion is accurately resolved.

6.2. One-dimensional case

Example 1. Accuracy test of the positivity-preserving flux for com-
pressible Navier-Stokes equations. We test the accuracy of one-dimensional
DG scheme with the positivity-preserving flux (25b) and (25c) for the equations
(A.1) with Re = 100. We compare it with the central flux for the diffusion Fd

used in [33], i.e., we can use the local Lax-Friedrichs flux for convection (15b)

and (15c), and the central flux for diffusion F̂d(U−
j+ 1

2

,S−
j+ 1

2

,U+
j+ 1

2

,S+
j+ 1

2

) =

1
2

[
Fd(U−

j+ 1
2

,S−
j+ 1

2

) + Fd(U+
j+ 1

2

,S+
j+ 1

2

)
]
. The initial data is ρ = 1, u = 0,

E = 12
γ−1 + 1

2 exp(−4 cosx2). Boundary conditions are periodic on the inter-

val [0, 2π]. Reference solution was generated by a Fourier collocation spectral
method using 1024 points. L∞ error over k+1 Gauss-Lobatto quadrature points
in each cell at time T = 0.1 is listed in Table 1. The difference in L2 errors
between the two schemes is less than 0.1%.

Table 1: Example 1. L∞ error in total energy for DG schemes with Pk basis. The mesh size
h = 2π

10
.

central fluxes for diffusion positivity-preserving flux for diffusion
k h h/2 order h/4 order h h/2 order h/4 order
2 1.92E-2 3.43E-3 2.49 4.45E-4 2.94 1.92E-2 3.43E-3 2.49 4.45E-4 2.94
3 2.10E-3 4.78E-4 2.13 3.67E-5 3.70 2.10E-3 4.78E-4 2.13 3.67E-5 3.70
4 1.51E-3 5.29E-5 4.84 1.73E-6 4.93 1.51E-3 5.29E-5 4.84 1.73E-6 4.93
5 2.49E-4 5.53E-6 5.49 9.39E-8 5.88 2.49E-4 5.53E-6 5.49 9.39E-8 5.88
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Example 2. The Lax shock tube problem. We test the performance of
the positivity-preserving DG scheme for the Lax shock tube problem. The initial
condition can be found in [50]. See Figure 5 for the numerical solutions for
compressible Euler equations, where oscillations can be observed. See Figure 6
for the numerical solutions for compressible Navier-Stokes equations, where the
reference solution was generated by the second order finite difference scheme
discussed in Appendix A using a fifth order positivity-preserving WENO flux
for Fa in [51] with the second order approximation for diffusion on a mesh of
64000 grid points. For compressible Euler equations, the time step (43) for this
example is replaced by ∆t = 1

4
1

N(N−1)
1
α∗∆x. For compressible Navier-Stokes

equations, the two parameters in the time step (43) for this example are set as
a = 1

4
1

N(N−1) and b = 0.001.

Example 3. Double rarefaction. This is a Riemann problem with the initial
condition asρu

p

 =

 7
−1
0.2

 if x ≤ 0;

ρu
p

 =

 7
1

0.2

 if x > 0.

The exact solution for the compressible Euler equations contains zero density
and zero pressure, see [10, 44]. See Figure 7 for the numerical solutions for
compressible Navier-Stokes equations with Re = 1000, which contains low den-
sity and low pressure. The reference solution was generated by the second order
finite difference scheme discussed in the Appendix Appendix A on a mesh of
32000 points. The two parameters in the time step (43) for this example are set
as a = 1

4
1

N(N−1) and b = 0.001.

6.3. Two-dimensional case

Example 4. An accuracy test of the positivity-preserving limiter. Con-
sider an isentropic vortex evolution problem for 2D Euler equations, i.e., (2) with

Re =∞, and the following exact solution: ρ(γ−1) = 1− (γ−1)ε2

8γπ2 exp (1− r2), p =

ργ , u = 1 − ε
2π exp 0.5(1− r2)(y − 5 − t), v = 1 + ε

2π exp 0.5(1− r2)(x − 5 − t),
where r2 = (x−5− t)2 +(y−5− t)2 and the vortex strength ε is a constant. We
test the accuracy of the positivity-preserving limiter (41) on DG schemes at time
T = 0.1 on uniform rectangular meshes and unstructured triangular meshes for
a square [0, 10] × [0, 10]. The vortex strength is taken as ε = 9.5 and the low-
est density and pressure of the exact solution is 4.22 × 10−3 and 4.74 × 10−4

respectively. We check the error for the α-optimized nodal values [52] in each
triangular cell and (k + 1)2 uniform grid point values in each rectangular cell
in the region [2, 8]× [2, 8] for polynomials of degree k. See Table 2 and Table 3,
where L1 error is defined as the average of the magnitude of errors over these
points.

Example 5. An accuracy test of the positivity-preserving flux for com-
pressible Navier-Stokes equations. Consider the compressible Navier-Stokes

35



x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P2DG

x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P3DG

x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P4DG

x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P5DG

x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P6DG

x

d
en

si
ty

-6 -4 -2 0 2 4 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Reference
P7DG

Figure 5: Example 2. DG using Pk basis with only the positivity-preserving limiter on 200
uniform cells for compressible Euler equations. Only cell averages are plotted.
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(a) Re = 100.
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(b) Re = 1000.
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(c) Re = 100.
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(d) Re = 1000.
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(e) Re = 100.
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(f) Re = 1000.

Figure 6: Example 2. DG using Pk basis with only the positivity-preserving limiter on 200
uniform cells for compressible Navier-Stokes equations. Only cell averages are plotted.
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(a) Density on 200 uniform cells.
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(b) Pressure on 200 uniform cells.
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(c) Density on 200 uniform cells.

x

p
re

ss
u

re

-0.4 -0.2 0 0.2 0.4 0.6
0

0.002

0.004

Reference
P2DG
P3DG
P4DG
P5DG

(d) Pressure on 200 uniform cells.
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(e) Density on 400 uniform cells.

x

p
re

ss
u

re

-0.4 -0.2 0 0.2 0.4 0.6
0

0.002

0.004

Reference
P2DG
P3DG
P4DG
P5DG

(f) Pressure on 400 uniform cells.

Figure 7: Example 3. DG with Pk basis for 1D double rarefaction wave, Re = 1000. Only
cell averages are plotted.
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Table 2: Example 4. L1 error in total energy for positivity-preserving DG schemes with Pk

basis on unstructured triangular meshes. The mesh sizes of three unstructured triangular
meshes are around h, h/2 and h/4 respectively, where h = 10

16
.

k Mesh1 Mesh2 order Mesh3 order
2 2.86E-3 3.70E-4 2.95 5.11E-5 2.86
3 3.87E-4 2.30E-5 4.08 1.49E-6 3.94
4 5.29E-5 1.68E-6 4.98 5.92E-8 4.83
5 7.68E-6 1.20E-7 6.00 1.84E-9 6.03

Table 3: Example 4. L1 error in total energy for positivity-preserving DG schemes with Pk

basis on uniform rectangular meshes. The mesh size h = 10
16

.

k h h/2 order h/4 order
2 3.35E-3 4.35E-4 2.95 5.51E-5 2.98
3 1.61E-3 5.19E-5 4.96 2.79E-6 4.22
4 5.11E-4 4.88E-6 6.71 1.64E-7 4.90
5 2.50E-5 4.76E-7 5.71 8.58E-9 5.79

equations (2) with the initial condition: ρ = 1, u = v = 0, E = 12
γ−1 +

1
2 exp(−4 cos(x2 )2− 4 cos(y2 )2) and periodic boundary conditions. on the domain
[0, 2π] × [0, 2π]. The reference solution was generated by a Fourier collocation
spectral method on a 512× 512 grid.

For compressible Euler equations, the time step (43) for this example is
replaced by ∆t = 1

2
1

N(N−1)
1
α∗∆x on uniform rectangular meshes with ∆x =

∆y, and by ∆t = 2
3

1
N(N−1)

1
α∗∆x on unstructured triangular meshes (∆x =

minK
|K|
eK

). For compressible Navier-Stokes equations, the two parameters in

the time step (43) for this example are set as a = 1
2

1
N(N−1) and b = 0.001

on uniform rectangular meshes, and a = 2
3

1
N(N−1) and b = 1 on unstructured

triangular meshes.
For P k basis and Qk basis on rectangles, L∞ error is defined as the maximum

pointwise error for uniform (k+1)2 points in each cell. For P k basis on triangles,
L∞ error is defined as the maximum pointwise error for the α-optimized nodal
values [52] in each triangle. See the errors at time T = 0.1 in Table (4).

Example 6. Sedov blast wave. We use a uniform 160 × 160 rectangular
mesh for the domain [0, 1.1]×[0, 1.1]. The initial condition is set up as piecewise
constants: density is constant 1 and velocity is zero everywhere; the pressure is
10−5 on all cells except the one in the lower left corner; the total energy in the
cell of lower left corner is 0.244816/∆x2 where the mesh size ∆x = 1.1

160 . The
physical meaning of this initial condition for compressible Navier-Stokes system
is very limited. Nonetheless, this is a good low density and low pressure test for
a positivity-preserving scheme.

The boundary conditions for the left and bottom edges of the domain is re-
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Table 4: Example 5. L∞ error in total energy for DG schemes with the positivity-preserving
flux (30b) and (30c) on uniform rectangular meshes and unstructured triangular meshes. The
mesh size for the coarsest uniform rectangular mesh is h = 2π

8
. The maximum edge length in

three unstructured triangular meshes are around h, h/2 and h/4 respectively.

P k basis on rectangular meshes
Euler equations, i.e., Re =∞ Navier-Stokes equations, Re = 100

k h h/2 order h/4 order h h/2 order h/4 order
2 1.19E-2 2.72E-3 2.13 3.57E-4 2.93 1.17E-2 2.58E-3 2.18 3.42E-4 2.92
3 5.14E-3 3.01E-4 4.09 2.49E-5 3.60 5.01E-3 2.91E-4 4.11 2.34E-5 3.64
4 6.34E-4 4.17E-5 3.93 1.29E-6 5.01 6.01E-4 3.87E-5 3.96 1.23E-6 4.98
5 1.91E-4 3.62E-6 5.72 7.48E-8 5.60 1.90E-4 3.41E-6 5.80 6.50E-8 5.71

Qk basis on rectangular meshes
Euler equations, i.e., Re =∞ Navier-Stokes equations, Re = 100

k h h/2 order h/4 order h h/2 order h/4 order
2 6.52E-3 1.49E-3 2.13 2.22E-4 2.75 6.61E-3 1.48E-3 2.16 2.21E-4 2.74
3 2.76E-3 1.23E-4 4.48 9.46E-6 3.70 2.59E-3 1.17E-4 4.46 8.91E-6 3.72
4 1.04E-4 1.09E-5 3.24 3.89E-7 4.82 1.07E-4 1.10E-5 3.28 3.88E-7 4.83
5 4.66E-5 5.54E-7 6.39 1.05E-8 5.72 4.47E-5 4.84E-7 6.53 8.78E-9 5.78

P k basis on unstructured triangular meshes
Euler equations, i.e., Re =∞ Navier-Stokes equations, Re = 100

k Mesh1 Mesh2 order Mesh2 order Mesh1 Mesh2 order Mesh3 order
2 1.29E-2 1.54E-3 3.06 1.32E-4 3.54 1.25E-2 1.44E-3 3.12 1.33E-4 3.43
3 1.52E-3 1.30E-4 3.55 8.32E-6 3.96 1.54E-3 1.21E-4 3.67 7.26E-6 4.05
4 3.28E-4 1.10E-5 4.90 2.33E-7 5.56 3.15E-4 1.03E-5 4.93 2.95E-7 5.12
5 3.90E-5 8.56E-7 5.51 1.09E-8 6.30 4.06E-5 8.40E-7 5.60 9.99E-9 6.39

flective, defined as follows: we extend the density, total energy and tangential
velocity of Uh in (40) as an even function across the boundary and extend the
normal velocity of Uh as an odd function across the boundary. For the auxiliary
variable Sh in (40) approximating derivatives of the conserved variables, we also
need to specify the boundary conditions. We extend the tangential derivatives
of conserved variables as an even function across the boundary. Then we ex-
tend the normal derivatives of density, total energy and tangential component of
momentum as an odd function and extend the normal derivatives of the normal
component of momentum as an even function. The reflective boundary condi-
tions mimic the symmetry of the solution across the left and bottom edges of the
domain in this example.

We test the DG scheme with only the positivity-preserving limiter for solv-
ing compressible Euler equations and compressible Navier-Stokes equations with
Re = 200. For compressible Navier-Stokes equations, the two parameters in
the time step (43) for this example are set as a = 1

2
1

N(N−1) and b = 0.002.

For compressible Euler equations in this example, we replace (43) by ∆t =
max{ 1

2
1

N(N−1)
1
α∗∆x, 2∆x2}. The exact solution of Sedov blast wave for com-

pressible Euler equations contains zero density, thus we do encounter the issue
of artificial stiffness due to low density/pressure since the wave speed

√
γp/ρ

may be a huge number numerically, which results in a much smaller time step
than a necessary one for positivity. The max with 2∆x2 in the time step above
is used to avoid this artificial stiffness.
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See Figure 8 for the plots of density for DG schemes with P 2, P 3 and P 4

bases.

Example 7. Shock diffraction. The initial condition is a pure right-moving
shock of Mach number 5.09, initially located at x = 0.5 and 6 ≤ y ≤ 11, moving
into undisturbed air ahead of the shock with a density of 1.4 and a pressure of 1.
See [53] for a more detailed description of the set up. The boundary conditions
are inflow at x = 0, 6 ≤ y ≤ 11, outflow at x = 13, 6 ≤ y ≤ 11, reflective at
0 ≤ x ≤ 1, y = 6 and at x = 1, 0 ≤ y ≤ 6. See Example 6 for the description of
the reflective boundary condition, which mimics a weakly imposed no-penetration
boundary condition in this example.

We use uniform rectangular meshes with ∆x = ∆y. For compressible Euler
equations, the time step (43) for this example is replaced by ∆t = 1

2
1

N(N−1)
1
α∗∆x.

For compressible Navier-Stokes equations, the two parameters in the time step
(43) for this example are set as a = 1

2
1

N(N−1) and b = 0.005.

No special treatment is done at the corner which is a singularity of the solu-
tion. It is well known that the diffraction of high speed shocks at a sharp corner
may result in low density and low pressure. See the plot of density at T = 2.3
in Figure 9 for DG using P k and Qk bases solving compressible Euler equations
and compressible Navier-Stokes equations with Re = 200. For Euler equations,
We can observe that high order DG schemes with only the positivity-preserving
limiter may produce highly oscillatory solutions and such oscillations may affect
the shock location. For instance, see DG with P 3 basis for compressible Euler
equations in Figure 9.

Example 8. Double Mach reflection of a Mach 10 shock. The set up of
the initial condition and boundary conditions are exactly the same as those in
[53], i.e., a Mach 10 shock initially making a sixty degree angle with a reflecting
wall. The same reflective boundary conditions as described in Example 6 are
used for the reflecting wall.

We use uniform rectangular meshes with ∆x = ∆y. For compressible Euler
equations, the time step (43) for this example is replaced by ∆t = 1

2
1

N(N−1)
1
α∗∆x.

For compressible Navier-Stokes equations, the two parameters in the time step
(43) for this example are set as a = 1

2
1

N(N−1) and b = 0.0001.

For compressible Euler equations, see Figure 10 for DG schemes with only the
positivity-preserving limiter. Compared to the numerical results of DG schemes
with high order TVB limiter in [53], DG schemes with only the positivity-
preserving limiter can capture more detailed structure in the blown-up region
shown in Figure 10 (e), which suggests the low numerical dissipation of the
positivity-preserving limiter. However, the solutions for DG schemes with only
the positivity-preserving limiter solving compressible Euler equations are more
oscillatory on a finer mesh or with a higher order basis. Figure 10 (c) sug-
gests that other type limiters must also be used to reduce oscillations
for compressible Euler equations.

On the other hand, the performance of the DG schemes with only the positivity-
preserving limiter for compressible Navier-Stokes equations is somehow the op-
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(a) P 2 basis. Re =∞. (b) P 2 basis. Re = 200.

(c) P 3 basis. Re =∞. (d) P 3 basis. Re = 200.

(e) P 4 basis. Re =∞. (f) P 4 basis. Re = 200.

Figure 8: Sedov blast wave in Example 6. DG schemes using Pk basis with only the
positivity-preserving limiter on a 160×160 rectangular mesh. 50 exponentially distributed
contour lines of density from 0.001 to 6. Left column are results for compressible Euler
equations. Right column are results for compressible Navier-Stokes equations with Re = 200.
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Figure 9: Example 7. DG schemes using Pk and Qk bases with only the positivity-
preserving limiter on a uniform rectangular mesh with mesh size 1

64
. Plot of density: 20

equally spaced contour lines from 0.066227 to 7.0668. Left column are results for compressible
Euler equations. Right column are results for compressible Navier-Stokes equations with
Re = 200. From top to bottom: P 2 basis, P 3 basis, Q2 basis and Q3 basis.
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posite: solutions are less oscillatory on a finer mesh or with a higher order
basis. This is a strong numerical evidence that the physical diffusion starts to
smooth the numerical solutions when it is marginally resolved on a fine enough
mesh or by an accurate enough scheme. See similar observations in [54]. It
also indicates that no excessive artificial viscosity is added to high order DG
schemes by the positivity-preserving local Lax-Friedrichs type flux (30b) and
(30c) and the positivity-preserving limiter. See Figure 11 for numerical solu-
tions for Re = 100, and Figure 12 and Figure 13 for numerical solutions for
Re = 500.

Example 9. Mach 10 Shock reflection and diffraction. The domain is

a wedge is bounded by segments connecting the points (0.1, 0), (0.2, 0), (1.2,
√

3
3 ),

(1.2, 0), (2.8, 0), (2.8, 2.0), (0.1, 2). See Figure 14 for an illustration of the do-
main. The initial condition is a right-moving Mach 10 shock located at the line
x = 0.2. For the area where x > 0.2, (ρ, u, p) = (1.4, 0, 1). The boundary condi-
tions are set up as follows: the exact solution of a right-moving Mach 10 shock
for compressible Euler equations is used for the top edge; inflow and outflow
boundary conditions are used for the left and right edges respectively; reflec-
tive boundary conditions as described in Example 6 are used to weakly impose a
no-penetration boundary condition for the rest of boundary.

The right-moving shock will be first reflected by the wall making sixty degree
to the shock, which is exactly the same setup as in Example 8. After the shock
passing the sharp corner, diffraction happens, which is similar to the set up
in Example 7. In a nutshell, this test case is a combination of Example 8
and Example 7 involving not only shocks but also low density, low pressure
and complicated fine structure due to the Kelvin Helmholtz instability generated
in the shock reflection. These features make this test quite a representative
numerical test for a positivity-preserving high order scheme.

For compressible Euler equations, the time step (43) is replaced by ∆t =
max{ 1

N(N−1)
1
α∗∆x, 10∆x2} where the max with 10∆x2 is to avoid artificial

stiffness induced by the low density/pressure. For compressible Navier-Stokes
equations, the two parameters in the time step (43) for this example are set as
a = 1

N(N−1) and b = 0.01.

See Figure 2 first for the effect of the TVB limiter. The TVB limiter suc-
cessfully reduces the oscillations, even though DG schemes with only the TVB
limiter are not stable for this example due to emergence of negative density
or negative pressure. On the other hand, the TVB limiter induces more ar-
tificial viscosity than the positivity-preserving limiter, which smears interesting
fine features generated by the Kelvin-Helmholtz instability on the relatively coarse
mesh in Figure 2. See Figure 15 for more results of DG schemes with only the
positivity-preserving limiter on an unstructured triangular mesh for compress-
ible Euler equations. As we have seen in previous examples, the solutions are
more oscillatory on a finer mesh or with a higher order basis.

See Figure 16 for the results for compressible Navier-Stokes equations with
Re = 100. We observe no Kelvin-Helmholtz instability and consistent numerical
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(a) P 2 basis. ∆x = 1
240

.

(b) P 2 basis. ∆x = 1
480

.

(c) P 3 basis. ∆x = 1
240

.

(d) P 2 basis. ∆x = 1
240

. (e) P 2 basis. ∆x = 1
480

.

Figure 10: Double Mach Reflection in Example 8. DG schemes using Pk basis with only the
positivity-preserving limiter on a uniform rectangular mesh with ∆x = ∆y for compress-
ible Euler equations. Plot of density: 30 equally spaced contour lines from 1.3965 to 22.682.
The solutions are more oscillatory on a finer mesh or with a higher order basis.
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(a) P 2 basis. Mesh size is ∆x = 1
240

.

(b) P 3 basis. Mesh size is ∆x = 1
192

.

(c) P 4 basis. Mesh size is ∆x = 1
192

.

Figure 11: Double Mach Reflection in Example 8. DG schemes using Pk basis with only
the positivity-preserving limiter on a uniform rectangular mesh with ∆x = ∆y for com-
pressible Navier-Stokes equations with Re = 100. Plot of density: 30 equally spaced contour
lines from 1.3965 to 22.682.
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(a) P 2 basis. Mesh size is ∆x = 1
240

.

(b) P 2 basis. Mesh size is ∆x = 1
480

.

(c) P 3 basis. Mesh size is ∆x = 1
480

.

(d) P 2 basis. Mesh size is ∆x = 1
480

. (e) P 3 basis. Mesh size is ∆x = 1
480

.

Figure 12: Double Mach Reflection in Example 8. DG schemes using Pk basis with only
the positivity-preserving limiter on a uniform rectangular mesh with ∆x = ∆y for com-
pressible Navier-Stokes equations with Re = 500. Plot of density: 30 equally spaced contour
lines from 1.3965 to 22.682.
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(a) P 2 basis. Mesh size is 1
480

. (b) P 3 basis. Mesh size is 1
480

.

Figure 13: Double Mach Reflection in Example 8. DG schemes using Pk basis with only
the positivity-preserving limiter on a uniform rectangular mesh with ∆x = ∆y for com-
pressible Navier-Stokes equations with Re = 500. Color contour of density for the blown-up
region.

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

Figure 14: Example 9. An illustration of the domain and an unstructured triangular mesh
with mesh size (the maximum edge length) equal to 1

20
.
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results from DG schemes using different polynomial bases on different meshes.
A higher order scheme on a finer mesh produces less oscillatory solutions.

See Figure 17 for the results for compressible Navier-Stokes equations with
Re = 1000. The numerical results from different DG schemes are at least quali-
tatively comparable. A higher order scheme on the same mesh also produces less
oscillatory solutions.

(a) P 2 basis. Mesh size is 1
160

. (b) P 2 basis. Mesh size is 1
160

.

(c) P 4 basis. Mesh size is 1
80

. (d) P 4 basis. Mesh size is 1
80

.

Figure 15: Example 9. DG schemes using Pk basis with only the positivity-preserving
limiter on an unstructured triangular mesh for compressible Euler equations. Plot of density:
50 equally spaced contour lines from 0.05 to 25. Compared to Figure 2, the solutions are more
oscillatory on a finer mesh or with a higher order basis.

7. Concluding remarks

In this paper, we have constructed a positivity-preserving local Lax-Friedrichs
type flux for compressible Navier-Stokes equations. Finite volume and DG
schemes with this flux satisfy the same weak positivity property as in [10, 18, 19],
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(a) P 2 basis. Mesh size is 1
160

. (b) P 8 basis. Mesh size is 1
40

.

(c) P 2 basis. Mesh size is 1
80

. (d) P 3 basis. Mesh size is 1
80

.

(e) P 4 basis. Mesh size is 1
80

. (f) P 5 basis. Mesh size is 1
80

.

Figure 16: Example 9. DG schemes using Pk basis with only the positivity-preserving
limiter on an unstructured triangular mesh for compressible Navier-Stokes equations with
Re = 100. Plot of density: 50 equally spaced contour lines from 0.05 to 25.
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(a) P 4 basis. Mesh size is 1
160

. (b) P 4 basis. Mesh size is 1
160

.

(c) P 5 basis. Mesh size is 1
160

. (d) P 5 basis. Mesh size is 1
160

.

(e) P 7 basis. Mesh size is 1
160

. (f) P 7 basis. Mesh size is 1
160

.

Figure 17: Example 9. DG schemes using Pk basis with only the positivity-preserving
limiter on an unstructured triangular mesh for compressible Navier-Stokes equations with
Re = 1000. Plot of density: 50 equally spaced contour lines from 0.05 to 25. Solutions of
higher order schemes are less oscillatory.
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i.e., the cell averages in a forward Euler time discretization will have positive
density and positive internal energy if certain initial point values have posi-
tive density and internal energy under a suitable time step constraint. Higher
order time discretizations are achieved by SSP Runge-Kutta methods. The
weak positivity property makes it possible to construct a conservative positivity-
preserving high order scheme.

We demonstrate that a high order DG scheme with a simple positivity-
preserving flux and an efficient positivity-preserving limiter is conservative,
positivity-preserving and high order accurate. This approach of constructing
positivity-preserving high order schemes has the following features:

• The scheme is fully explicit and in practice time step must be not larger
than O(Re ∆x2), which makes the scheme more suitable for high Reynolds
number flows.

• It applies to arbitrarily high order polynomial basis on cells of general
shapes.

• The construction of the positivity-preserving flux does not depend on how
derivatives of solutions are approximated in numerical schemes or specific
forms of the equations of state, the stress tensor and the heat flux.

Numerical tests suggest that the proposed DG scheme does not induce ex-
cessive artificial viscosity even if strong shocks are present. In particular, for
compressible Navier-Stokes equations, a higher order positivity-preserving DG
scheme is less oscillatory, which is an indication that the physical diffusion may
properly smooth numerical solutions.

Appendix A.

Consider the one-dimensional compressible Navier-Stokes equations in the
nondimensional form: ρ

ρu
E


t

+

 ρu
ρu2 + p

(E + p)u


x

=
1

Re

 0
τ

τu+ γ
Prex


x

,

with

e =
1

ρ

(
E − 1

2
ρu2 − 1

2
ρv2

)
, p = (γ − 1)ρe, and τ = ηux,

and γ,Pr, η are positive constants. It can be rewritten as ρ
ρu
E


t

+

 ρu
ρu2 + p

(E + p)u


x

=
η

Re

 0
u

u2

2 + γ
Pr η e


xx

. (A.1)
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We will show that the standard second order central difference for the diffusion
term in the right hand side can preserve the positivity under a suitable time
step constraint.

Consider the equation

Ut =
η

Re
rxx (A.2)

where U = (ρ, ρu,E)t and r = (0, u, u
2

2 + γ
Pr η e)

t. With forward Euler in time
and central difference for the spatial derivative, we obtain a finite difference
scheme,

Un+1
i = Un

i +
∆t

∆x2

η

Re
(rni−1 − 2rni + rni+1), (A.3)

where the superscripts denote the time step and the subscripts denote the spatial
index. For convenience, we drop the superscript n in the right hand side. Let
µ = 2 ∆t

∆x2
η

Re , then we have

Un+1
i =

 ρ
ρu
E


i

+
µ

2


 0

u
u2

2 + γ
Pr η e


i−1

− 2

 0
u

u2

2 + γ
Pr η e


i

+

 0
u

u2

2 + γ
Pr η e


i+1


=

 ρ
ρu
E


i

+
µ

2


 1

u
u2

2 + γ
Pr η e


i−1

− 2

 1
u

u2

2 + γ
Pr η e


i

+

 1
u

u2

2 + γ
Pr η e


i+1


=

µ

2

 1
u

u2

2 + γ
Pr η e


i−1

+
µ

2

 1
u

u2

2 + γ
Pr η e


i+1

+


 ρ
ρu
E


i

− µ

 1
u

u2

2 + γ
Pr η e


i


For any vector U = (ρ, ρu,E)t, define the function

χ(U) = ρE − 1

2
|ρu|2.

Thus a vector U ∈ G if and only if its first component and χ(U) are positive.

Assuming Ui ∈ G for all i then it is obvious that

 1
u

u2

2 + γ
Pr η e


i±1

∈ G. Con-

sider V =

 ρ
ρu
E

− µ
 1

u
u2

2 + γ
Pr η e

 with

 ρ
ρu
E

 ∈ G, then the first component

of V is ρ− µ ≥ 0 if

2
∆t

∆x2

η

Re
≤ min

i
ρi. (A.4)
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For the internal energy, we have

χ(V) = (ρ− µ)

(
E − µ(

u2

2
+

γ

Pr η
e)

)
− 1

2
(ρu− µu)2

= ρE − µρ(
u2

2
+

γ

Pr η
e)− µE + µ2(

u2

2
+

γ

Pr η
e)− 1

2
ρ2u2 − 1

2
µ2u2 + ρµu2

=
γ

Pr η
eµ2 − (1 +

γ

Pr η
)ρeµ+ ρ2e

= e(µ− ρ)(
γ

Pr η
µ− ρ).

With (A.4), we now have χ(Vi) ≥ 0 if Ui ∈ G and γ
Pr ηµ− ρi ≤ 0, i.e.,

2
∆t

∆x2

γ

Pr Re
≤ min

i
ρi. (A.5)

We have proved the following fact,

Lemma 5. For the second order finite difference scheme (A.3) solving (A.2),
if Un

i ∈ G for all i, then Un+1
i ∈ G under the CFL constraint,

∆t ≤ 1

2
min

{
1

η
,

Pr

γ

}
min
i
ρi Re ∆x2.

Unfortunately, the proof of Lemma 5 heavily relies on the special structure
of the one-dimensional equations and second order finite difference operator.
It is highly nontrivial to extend it directly to higher dimensions or higher or-
der accuracy if not impossible. Nonetheless, it allows us to easily construct a
positivity-preserving scheme for (A.1). Let Fa = (ρu, ρu2 + p, (E + p)u)t and
consider any finite difference scheme in the form of

Un+1
i = Un

i −
∆t

∆x
(F̂ai+ 1

2
− F̂ai− 1

2
) +

∆t

∆x2
(rni−1 − 2rni + rni+1), (A.6)

where F̂a is a positivity-preserving numerical flux, e.g., (13). See [51] for how to

construct a fifth order accurate positivity-preserving numerical flux F̂a by high
order WENO reconstruction. With third order SSP Runge-Kutta in time (42),
we can easily construct a positivity-preserving finite difference scheme that is
fifth order accurate for the advection and second order accurate for the diffusion.
We have used this scheme to generate some reference solutions in Section 6.2.

Appendix B.

Lemma 6. Consider any U = (ρ, ρu, ρv, ρw,E)t = (ρ, ρut, E)t ∈ G, and

Fa(U) =

 ρu
ρu⊗ u + pI

(E + p)u

 ,Fd(U) =

 0
τ

u · τ − q

 ,
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where p, τ and q are not necessarily dependent on U. Let e = 1
ρ (E − 1

2ρ‖u‖
2).

For any unit vector n = (n1, n2, n3)t, let v = u · n, q = q · n and ~τ = n · τ .
Then we have the following

(a) αU± Fa(U) · n ∈ G if and only if α > |v|+
√

p2

2ρ2e ,

(b) βU± Fd(U) · n ∈ G if and only if β > 1
2ρ2e

(√
ρ2q2 + 2ρ2e‖~τ‖2 + ρ|q|

)
.

(c) βU± (Fa(U)− Fd(U)) · n ∈ G if and only if

β > |v|+ 1

2ρ2e

(√
ρ2q2 + 2ρ2e‖~τ − pn‖2 + ρ|q|

)
.

Proof. For any U = (ρ, ρut, E)t, define the function

χ(U) = ρE − 1

2
‖ρu‖2.

Thus a vector U ∈ G if and only if its first component and χ(U) are positive.

(a) First we have

Fa(U) · n =

 ρu
ρu⊗ u + pI

(E + p)u

 · n =

 ρv
ρvu + pn
(E + p)v

 ,

thus

αU±Fa(U)·n = (α±v)

 ρ
ρu
E

±
 0
pn
pv

 = α

 ρ
ρu
E

±
 0
pn
pv

 =

 αρ
αρu± pn
αE ± pv

 .

where α denotes α± v for convenience. Finally we have

χ(αU± Fa(U) · n) = α2ρE ± αρpv − 1

2
‖αρu± pn‖2

= α2ρ(E − 1

2
ρ‖u‖2)− 1

2
p2 = α2ρ2e− 1

2
p2.

(b) First we have

Fd(U) · n =

 0
τ

u · τ − q

 · n =

 0
~τ

u · ~τ − q

 ,

thus

βU± Fd(U) · n = β

 ρ
ρu
E

±
 0

~τ
u · ~τ − q

 =

 βρ
βρu± ~τ

βE ± u · ~τ ∓ q

 .
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Then we get

χ(βU± Fd(U) · n) = β2ρE ± βρu · ~τ ∓ βρq− 1

2
‖βρu± ~τ‖2

= β2ρ(E − 1

2
ρ‖u‖2)∓ βρq− 1

2
‖~τ‖2

= ρ2eβ2 ∓ ρqβ − 1

2
‖~τ‖2,

which are two quadratic forms of β. Since ρ2e is assumed to be posi-
tive and ‖~τ‖2 ≥ 0, either quadratic equation has at least one nonneg-
ative root. Let β0 be the largest root among the four roots for two
quadratic equations, then ρ2eβ2 ∓ ρqβ − 1

2‖~τ‖
2 > 0 if β > β0. And

β0 = 1
2ρ2e

(√
ρ2q2 + 2ρ2e‖~τ‖2 + ρ|q|

)
.

(c) First we have

βU± (Fa(U)− Fd(U)) · n = (β ± v)

 ρ
ρu
E

±
 0

pn− ~τ
pv − u · ~τ + q


=

 βρ

βρu± (pn− ~τ)

βE ± (pv − u · ~τ + q)

 .

where β denotes β ± v for convenience. Then we get

χ(βU± (Fa(U)− Fd(U)) · n)

= β
2
ρE ± βρpv ∓ βρu · ~τ ± βρq− 1

2
‖βρu± (pn− ~τ)‖2

= β
2
ρ(E − 1

2
ρ‖u‖2)± βρq− 1

2
‖pn− ~τ‖2

= ρ2eβ
2 ± ρqβ − 1

2
‖pn− ~τ‖2.

Following the same arguments as in (b), we obtain the conditions on β
such that χ(βU± (Fa(U)− Fd(U)) · n) > 0.

Appendix C.

Lemma 7. Let q(x) be a non-constant polynomial of degree k with
∫ 1

0
q(x) dx =

0, then ∣∣∣∣∣∣
min
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)

∣∣∣∣∣∣ ≤ (k2 + k − 1)Λk+1[0, 1],

where Λk+1[0, 1] is the Lebesgue constant for the (k + 1)-point Gauss-Lobatto
quadrature points on the interval [0, 1].
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Proof. Let M ′ = max
x∈[0,1]

q(x) and m′ = min
x∈[0,1]

q(x), then M ′ > 0 and m′ < 0.

If M ′ ≤ −m′, then
∣∣∣M ′m′ ∣∣∣ ≤ 1. Next we consider the case M ′ > −m′.

Let xj (j = 1, · · · , k+1) denote the (k+1)-point Gauss-Lobatto quadrature
points for the interval [0, 1] and ω̂j (j = 1, · · · , k + 1) denote the correspond-
ing weights. Let lj(x) (j = 1, · · · , k + 1) denote the Lagrange interpolation
polynomials at points xj (j = 1, · · · , k + 1). Then

q(x) =

k+1∑
j=1

q(xj)lj(x).

Let M ′′ = maxj q(xj) and m′′ = minj q(xj). If q(xj) = 0 for all j, then

q(x) =
k+1∑
j=1

q(xj)lj(x) = 0, which is impossible for a non-constant polynomial

q(x). On the other hand,
∑k+1
j=1 ω̂jq(xj) =

∫ 1

0
q(x)dx = q = 0. Thus we have

m′′ < 0 < M ′′.
Then

q(x) ≤
k+1∑
j=1

|q(xj)||lj(x)| < max{M ′′,−m′′}
k+1∑
j=1

|lj(x)|.

ThusM ′ ≤ max{M ′′,−m′′} max
x∈[0,1]

k+1∑
j=1

|lj(x)| = max{M ′′,−m′′}Λk+1[0, 1] where

Λk+1[0, 1] = max
x∈[0,1]

k+1∑
j=1

|lj(x)| is the Lebesgue constant. So we have

m′ ≤ m′′ < 0 < M ′ ≤ max{M ′′,−m′′}Λk+1[0, 1].

Without loss of generality, assume q(x1) = maxj q(xj) = M ′′. Since
k+1∑
j=1

ω̂jq(xj) =

0, we get ω̂1M
′′ = ω̂1q(x1) = −

k+1∑
j=2

ω̂jq(xj) ≤ −
k+1∑
j=2

ω̂jm
′′ = −m′′

k+1∑
j=2

ω̂j , thus

M ′′

−m′′
≤ 1

ω̂1

k+1∑
j=2

ω̂j ≤
1

min
j
ω̂j

k+1∑
j=2

ω̂j ≤
1−min

j
ω̂j

min
j
ω̂j

.

Therefore,

0 <
M ′

−m′
≤ max{M ′′,−m′′}Λk+1[0, 1]

−m′′
≤ max

{
M ′′

−m′′
, 1

}
Λk+1[0, 1] ≤

1−min
j
ω̂j

min
j
ω̂j

Λk+1[0, 1].

Moreover,

1−min
j
ω̂j

min
j
ω̂j

Λk+1[0, 1] =
1− 1

(k+1)k

1
(k+1)k

Λk+1[0, 1] = (k2 + k − 1)Λk+1[0, 1].
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Thus we have proved
∣∣∣M ′m′ ∣∣∣ ≤ (k2 +k−1)Λk+1[0, 1]. By replacing q(x) by −q(x)

in the proof above, we can get
∣∣∣m′M ′ ∣∣∣ ≤ (k2 + k − 1)Λk+1[0, 1].

Remark 5. To extend Lemma 7 to multiple dimensions, one would need a
quadrature rule with positive weights for Lagrangian interpolation points on a
multidimensional cell, which is in general nontrivial.

The following result can be easily extended to any cells in multiple dimen-
sions, the proof of which is similar to the proof of the equivalence of any two
norms of a finite dimensional vector space.

Lemma 8. Let q(x) be a non-constant polynomial of degree k with
∫ 1

0
q(x) dx =

0, then
max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
≤ Ck,

where Ck is a constant depending only on k.

Proof. Let V denote the k−dimensional vector space consisting of all poly-
nomials of degree k whose averages on the interval [0, 1] are zero. For any

q(x) ∈ V , define three functionals on V by f1[q] =

∣∣∣∣ max
x∈[0,1]

q(x)

∣∣∣∣ = max
x∈[0,1]

q(x),

f2[q] =

∣∣∣∣ min
x∈[0,1]

q(x)

∣∣∣∣ = − min
x∈[0,1]

q(x) and f0[q] = max
x∈[0,1]

|q(x)| = max{f1[q], f2[q]}.

Let ei (i = 1, · · · , k) be a basis of V . For any vector c =
[
c1 · · · ck

]T ∈ Rk,

define f j(c) = fj

[∑
i

ciei

]
for j = 0, 1, 2. Notice that f0[·] is a norm of V and

can be denoted as f0[q] = ‖q‖∞ on the interval [0, 1].
For any p(x), q(x) ∈ V , f1 satisfies the following properties (similar ones

hold for f2):

1. ∀a > 0, f1[aq(x)] = max
x∈[0,1]

aq(x) = af1[q(x)].

2. f1[−q] =

∣∣∣∣ max
x∈[0,1]

−q(x)

∣∣∣∣ = max
x∈[0,1]

−q(x) = − min
x∈[0,1]

q(x) = f2[q].

3. f1[p+ q] = max
x∈[0,1]

(p+ q) ≤ max
x∈[0,1]

p+ max
x∈[0,1]

q = f1[p] + f1[q].

4. f1[q] = 0⇒ q ≡ 0.

Thus, for any c, d ∈ Rk, we have

f1(c) ≤ f1(d) + f1(c− d) ≤ f1(d) + f0(c− d),

and

f1(c) ≥ f1(d)− f1(d− c) = f1(d)− f2(c− d) ≥ f1(d)− f0(c− d),
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which implies

|f1(c)−f1(d)| ≤ f0(c−d) = f0

[∑
i

(ci − di)ei

]
≤
∑
i

|ci−di|‖ei‖∞ ≤
√∑

i

|ci − di|2
√
‖ei‖2∞.

Therefore, f1(c) is uniformly continuous w.r.t. the variable c. Notice that the
unit sphere S1 = {c ∈ Rk : ‖c‖ = 1} is a compact set, so f1 attains its maximum
and minimum values on S1:

D1 ≤ f1(d) ≤ D2, ∀d ∈ S1,

where D1 and D2 are constants. If there exists d ∈ S1 such that f1(d) = 0,
then d = 0 by Property 4 above, which is a contradiction to d ∈ S1. So we have
D1 > 0. By Property 1, we get f1(c/‖c‖) = f1(c)/‖c‖, thus we have

0 < D1‖c‖ ≤ f1(c) ≤ D2‖c‖, ∀c ∈ Rk, c 6= 0.

Notice that f0(c) is a norm of Rk, thus by the equivalence of any two norms of
Rk, we get

0 < D3‖c‖ ≤ f0(c) ≤ D4‖c‖, ∀c ∈ Rk, c 6= 0.

Therefore, for q =
∑
i ciei, we have

max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
=
f0[q]

f1[q]
=
f0(c)

f1(c)
≤ D4

D1
.

Appendix D.

We briefly explain why the weak monotonicity holds only up to second order
accuracy in a local truncation error analysis for explicit linear finite volume type
schemes solving the heat equation. Consider a uniform mesh with grid points
xj and a finite volume type scheme with forward Euler in time for ut = uxx on
an interval Ij = [xj− 1

2
, xj+ 1

2
],

ūn+1
j = ūnj +

∆t

∆x
(q̂j+ 1

2
− q̂j− 1

2
), (D.1)

where ūnj is the cell average on Ij and q̂j+ 1
2

approximates ux at xj+ 1
2
. For a

linear scheme, without loss of generality, consider q̂j+ 1
2

as a linear function

q̂j+ 1
2

= aluj−l+al−1uj−l+1+· · ·+a1uj−1+a0uj+b1uj+1+· · ·+bmuj+m, (D.2)

where uj is the approximation to the solution at xj at time step n and the
coefficients ai and bi are constants. Then

q̂j− 1
2

= aluj−l−1 +al−1uj−l+1 + · · ·+a1uj−2 +a0uj−1 + b1uj + · · ·+ bmuj+m−1,

(D.3)
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We rewrite the right hand side of (D.1) by plugging (D.2) and (D.3) in and
rewriting ūnj as a linear combination of point values of u on the interval Ij , e.g.,
Gauss-Lobatto quadrature points on Ij . The scheme (D.1) is said to be weakly
monotone if the rewritten right hand side of (D.1) is a monotonically increasing
function of all point values involved. By requiring the right hand side of (D.1)
to have nonnegative partial derivatives with respect to all point values involved,
we get

b1 ≥ b2 ≥ · · · ≥ bm−1 ≥ bm ≥ 0, a1 ≤ a2 ≤ · · · ≤ al−1 ≤ al ≤ 0.

With the constraint above, it is straightforward to check that q̂j+ 1
2

in (D.2) can
be at best a second order approximation to ux at xj+ 1

2
by Taylor expansion.
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near low densities, Journal of Computational Physics 92 (2) (1991) 273–295.

[6] P. Batten, N. Clarke, C. Lambert, D. Causon, On the choice of wavespeeds
for the HLLC Riemann solver, SIAM Journal on Scientific Computing
18 (6) (1997) 1553–1570.

[7] B. Perthame, Second-order Boltzmann schemes for compressible Euler
equations in one and two space dimensions, SIAM Journal on Numerical
Analysis 29 (1) (1992) 1–19.

60

http://dx.doi.org/10.1063/1.857813
http://dx.doi.org/10.1063/1.857813
http://dx.doi.org/10.1007/978-3-322-87873-1_14
http://dx.doi.org/10.1007/978-3-322-87873-1_14


[8] T. Tao, K. Xu, Gas-kinetic schemes for the compressible Euler equations:
positivity-preserving analysis, Zeitschrift für angewandte Mathematik und
Physik ZAMP 50 (2) (1999) 258–281.

[9] H.-Z. Tang, K. Xu, Positivity-preserving analysis of explicit and implicit
Lax–Friedrichs schemes for compressible Euler equations, Journal of Scien-
tific Computing 15 (1) (2000) 19–28.

[10] X. Zhang, C.-W. Shu, On positivity-preserving high order discontinuous
Galerkin schemes for compressible Euler equations on rectangular meshes,
Journal of Computational Physics 229 (23) (2010) 8918–8934. doi:10.

1016/j.jcp.2010.08.016.

[11] X. Zhang, C.-W. Shu, Positivity-preserving high order discontinuous
Galerkin schemes for compressible Euler equations with source terms, Jour-
nal of Computational Physics 230 (4) (2011) 1238–1248.

[12] J. Estivalezes, P. Villedieu, High-order positivity-preserving kinetic schemes
for the compressible Euler equations, SIAM Journal on Numerical Analysis
33 (5) (1996) 2050–2067.

[13] T. Linde, P. L. Roe, Robust Euler codes, in: Thirteenth Computational
Fluid Dynamics Conference, AIAA Paper-97-2098, 1997.

[14] J. Gressier, P. Villedieu, J.-M. Moschetta, Positivity of flux vector splitting
schemes, Journal of Computational Physics 155 (1) (1999) 199–220.

[15] X. Y. Hu, N. A. Adams, C.-W. Shu, Positivity-preserving method for high-
order conservative schemes solving compressible Euler equations, Journal
of Computational Physics 242 (2013) 169–180.

[16] T. Xiong, J.-M. Qiu, Z. Xu, Parametrized positivity preserving flux limiters
for the high order finite difference WENO scheme solving compressible
Euler equations, Journal of Scientific Computing (2014) 1–23.

[17] X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order schemes
for scalar conservation laws, Journal of Computational Physics 229 (9)
(2010) 3091–3120. doi:10.1016/j.jcp.2009.12.030.

[18] X. Zhang, Y. Xia, C.-W. Shu, Maximum-principle-satisfying and positivity-
preserving high order discontinuous Galerkin schemes for conservation laws
on triangular meshes, Journal of Scientific Computing 50 (1) (2012) 29–62.
doi:10.1007/s10915-011-9472-8.

[19] X. Zhang, C.-W. Shu, Maximum-principle-satisfying and positivity-
preserving high-order schemes for conservation laws: survey and new devel-
opments, in: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, Vol. 467, The Royal Society, 2011, pp.
2752–2776.

61

http://dx.doi.org/10.1016/j.jcp.2010.08.016
http://dx.doi.org/10.1016/j.jcp.2010.08.016
http://dx.doi.org/10.1016/j.jcp.2009.12.030
http://dx.doi.org/10.1007/s10915-011-9472-8


[20] S. Gottlieb, D. I. Ketcheson, C.-W. Shu, Strong stability preserving Runge-
Kutta and multistep time discretizations, World Scientific, 2011.

[21] Y. Lv, M. Ihme, Entropy-bounded discontinuous Galerkin scheme for Euler
equations, Journal of Computational Physics 295 (2015) 715–739.

[22] F. Vilar, C.-W. Shu, P.-H. Maire, Positivity-preserving cell-centered La-
grangian schemes for multi-material compressible flows: From first-order
to high-orders, Journal of Computational Physics 312 (2016) 385–415.

[23] D. Grapsas, R. Herbin, W. Kheriji, J.-C. Latché, An unconditionally stable
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