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In this paper, we apply positivity-preserving local discontinuous Galerkin (LDG) methods 
to solve parabolic equations with blow-up solutions. This model is commonly used in 
combustion problems. However, previous numerical methods are mainly based on a second 
order finite difference method. This is because the positivity-preserving property can hardly 
be satisfied for high-order ones, leading to incorrect blow-up time and blow-up sets. 
Recently, we have applied discontinuous Galerkin methods to linear hyperbolic equations 
involving δ-singularities and obtained good approximations. For nonlinear problems, some 
special limiters are constructed to capture the singularities precisely. We will continue 
this approach and study parabolic equations with blow-up solutions. We will construct 
special limiters to keep the positivity of the numerical approximations. Due to the Dirichlet 
boundary conditions, we have to modify the numerical fluxes and the limiters used in the 
schemes. Numerical experiments demonstrate that our schemes can capture the blow-up 
sets, and high-order approximations yield better numerical blow-up time.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we will develop and analyze the positivity-preserving high-order local discontinuous Galerkin methods for 
parabolic equations with reaction terms in one space dimension

ut = (uα)xx + s(u), x ∈ [xa, xb],
u0(x) = u(x,0) ≥ 0, x ∈ [xa, xb], (1)

as well as its two dimensional extension, where α ≥ 1 is a parameter and s(u) ≥ 0. We consider Dirichlet boundary condi-
tions

u(xa, t) = g1(t), and u(xb, t) = g2(t).

The source term s(u) is chosen to be superlinear, i.e. s(u) = um with m ≥ 1. The initial condition u = u0(x) is assumed to 
be non-negative. By a maximum-principle, the exact solution u ≥ 0 for t ∈ (0, T ). Here (0, T ) is the maximal time interval 
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of existence of the solution u. The time T may be finite or infinite. When T is infinite, we say that the solution u exists 
globally. When T is finite, the solution u develops a singularity in finite time, namely

lim
t→T − ‖u(·, t)‖∞ = ∞,

where ‖u‖∞ is the standard L∞-norm of u on [xa, xb]. In this case, we say that the solution u blows up in finite time and 
the time T is called the blow-up time of the solution u, and {x ∈ [xa, xb]|u(x, t) → ∞ as T → T −} is called the blow-up set. 
In this paper, we assume the boundary is not included in the blow-up set. Therefore, the exact solution at the boundary 
should be smaller than the values nearby.

We can regard (1) as a mathematical model of combustion, and the unknown variable u can be interpreted as the 
temperature. We can rewrite (1) as

ut = (a(u)ux)x + s(u), x ∈ [xa, xb],
u(x,0) ≥ 0, x ∈ [xa, xb], (2)

with a(u) = αuα−1, which can be considered as a nonlinear heat conduction coefficient of the medium. If α = 1, (2) reduces 
to the well-studied semilinear heat equation [4]. Such problems have been investigated by many authors and existence and 
uniqueness of a classical solution have been proved (see e.g. [26,34,6,5,20,21,29,25,41] for some recent works). Under some 
assumptions, it is also shown that the classical solution blows up in finite time and the blow-up time has been estimated. 
Moreover, many numerical methods are also been studied in [11,8,9,28,13,22,35,2,7,31,10,1,27]. However, to the best knowl-
edge of the authors, all the previous methods are based on second-order finite difference methods, which guarantee the 
positivity of the numerical approximations automatically under some special requirements for the meshes. For high-order 
methods, strong oscillations near the singularities may send physically positive quantities negative, and negative coefficient 
of the diffusion term will make the numerical solution blow up immediately, leading to wrong blow-up time and blow-up 
sets. In this paper, we would like to apply high-order positivity-preserving local discontinuous Galerkin methods to such 
problems, and numerically study the blow-up time, blow-up locations and the behavior of the solutions before blow-up. 
We will also use numerical experiments to demonstrate the significance of the positivity-preserving technique.

The study of the blow-up solutions is important and challenging. Since the exact solutions may not be smooth or 
bounded at finite time, the numerical schemes might yield poor approximations. Recently, we [38] have applied discontin-
uous Galerkin (DG) methods to obtain good approximations for PDEs with δ-singularity, one special unbounded singularity. 
In [38], we proved the superconvergence results for linear hyperbolic equations with singular initial data and singular source 
terms. Moreover, several numerical examples were also given in [38–40] to demonstrate the advantages of the DG scheme 
in approximating δ-singularities for both linear and nonlinear hyperbolic equations. In this paper, we will continue this 
approach, and use the high-order DG methods to solve parabolic PDEs with blow-up solutions.

The DG method was first introduced in 1973 by Reed and Hill [30], in the framework of neutron linear transport. 
Later, the method was applied by Johnson and Pitkäranta to a scalar linear hyperbolic equation and the L p-norm error 
estimate was proved [24]. Subsequently, Cockburn et al. developed Runge–Kutta discontinuous Galerkin (RKDG) methods 
for hyperbolic conservation laws in a series of papers [16,15,14,17]. In [18], Cockburn and Shu first introduced the LDG 
method to solve the convection–diffusion equation. Their idea was motivated by Bassi and Rebay [3], where the compressible 
Navier–Stokes equations were successfully solved.

The idea of the positivity-preserving technique we would like to apply in this paper is different from the one used before 
in [43–45]. In [45], the authors construct second-order positivity-preserving DG schemes and argued that it was impossi-
ble to construct a third-order positivity-preserving DG scheme following the same approach. Recently, in [36], the author 
applied the flux limiter and constructed maximum-principle-satisfying finite difference methods, which further generalized 
to high-order positivity-preserving DG methods for convection diffusion problems. The DG method applied in [36] is based 
on Ultra-weak DG [12]. We will consider LDG method and study the positivity-preserving technique. Another related work 
can be found in [42], where the positivity-preserving technique for porous medium equations have been analyzed. However, 
only a second-order scheme was considered and the technique can hardly be extended to high-order schemes. Another 
crucial problem is the boundary treatment for the LDG method. Numerical experiments demonstrate that the general LDG 
method will degenerate accuracy when solving problems with Dirichlet boundary conditions. Following [19], we would like 
to add a penalty term in the flux at the boundary. With the penalty term, the convergence rate is optimal. Moreover, we will 
also theoretically prove that the penalty term is required for the positivity-preserving technique.

The organization of this paper is as follows. In Section 2, we will present the positivity-preserving high-order LDG 
methods in one and two space dimensions, and the implementation of the Dirichlet boundary condition. Some numerical 
experiments will be given in Section 3. We will end in Section 4 with some concluding remarks and remarks on future 
work.

2. Positivity-preserving high-order local discontinuous Galerkin methods

In this section, we present the positivity-preserving technique applied to the LDG methods for parabolic equations subject 
to Dirichlet boundary conditions. We first introduce the LDG methods and discuss how to enforce the Dirichlet boundary 
conditions. Then we describe how to apply the positivity-preserving flux limiter to the numerical fluxes in the scheme. 
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We discuss the Euler-forward time discretization, and the high-order ones are straightforward extendable. The flux limiter 
will be applied to guarantee the positivity of the numerical cell averages at time level n + 1, provided the numerical 
approximations are positive at time level n. However, the numerical approximations may not be positive at time level 
n + 1. Therefore, we would like to modify the numerical approximation with some slope limiters, keeping the cell averages 
untouched. We will show the procedure in one and two space dimensions.

2.1. Local discontinuous Galerkin method

In this subsection, we will develop the LDG method in one space dimension and study (2). To construct the LDG scheme, 
we consider a partition for the spatial domain [xa, xb] given as

xa = x 1
2

< x 3
2

< · · · < xN− 1
2

< xN+ 1
2

= xb, (3)

and define

I j = (x j− 1
2
, x j+ 1

2
)

to be the cell. For simplicity, we use uniform mesh only, and the mesh size is denoted as �x. The finite element space is 
given as

Vh =
{

u ∈ Pk(I j)| j = 1,2, · · · , N
}

,

where Pk(I j) denotes the space of polynomials of degree at most k on the interval I j . To construct the LDG scheme for (2), 
we introduce an auxiliary variable

q = a�(u)ux, with a�(u) = √
a(u),

then (2) can be written into a first-order system

ut = (a�(u)q)x + s(u), (4)

q = (g(u))x, (5)

where g(u) = ∫ u a�(τ )dτ . For simplicity, we omit the subscript h in Subsections 2.1 and 2.2, and use u and q for uh and qh , 
respectively. Then the general formulation of the LDG scheme is to find u, q ∈ Vh , such that for any test function v, w ∈ Vh∫

I j

ut vdx = −
∫
I j

a�(u)qvxdx + ( ̂a�(u)qv−) j+ 1
2

− ( ̂a�(u)qv+) j− 1
2

+
∫
I j

s(u)vdx, (6)

∫
I j

qwdx = −
∫
I j

g(u)wxdx + (̂g(u)w−) j+ 1
2

− (̂g(u)w+) j− 1
2
, (7)

where ̂a�(u)q and ̂g(u) in (6)–(7) are the numerical fluxes which are defined at the cell interfaces. In this paper, we consider 
alternating fluxes only, i.e.

( ̂a�(u)q) j+ 1
2

=
( [g(u)]

[u] q+
)

j+ 1
2

+
C j+ 1

2

�x
[u] j+ 1

2
, (̂g(u)) j+ 1

2
= g(u−

j+ 1
2
), (8)

or

( ̂a�(u)q) j+ 1
2

=
( [g(u)]

[u] q−
)

j+ 1
2

+
C j+ 1

2

�x
[u] j+ 1

2
, (̂g(u)) j+ 1

2
= g(u+

j+ 1
2
), (9)

where u+
j+ 1

2
is the right limit of u at x = x j+ 1

2
. Likewise for u−

j+ 1
2

, q+
j+ 1

2
and q−

j+ 1
2

. Moreover, we denote [u] j+ 1
2

= u+
j+ 1

2
−

u−
j+ 1

2
as the jump of u at the cell interface x j+ 1

2
. C j+ 1

2
is the coefficient for the penalty term. Due to the boundary condition, 

we have to take u−
1
2

= g1(t) and u+
N+ 1

2
= g2(t), i.e. we have to take (8) for j = 0 and (9) for j = N . In this paper, we would 

like to use (8) for all the other j’s, and in practice, we can take C j+ 1
2

= 0, j = 0, 1, · · · , N − 1 (see Lemma 2.1). However, 
if we choose C j+ 1

2
= 0 for all j, the scheme is problematic. In [19], the author studied the steady-state problem, and 

argued that it is necessary to have all the C ’s to be zero expect the one at x = xN+ 1
2

, otherwise the numerical solution 
is not solvable. For time-dependent problems, even though the numerical solutions can be solved without the penalty 
term, numerical experiments demonstrated that, at x = xN+ 1

2
, the first-order numerical approximations are inconsistent 

with the exact solutions, even though they are sufficiently smooth. For high-order approximations, we cannot observe the 
inconsistency, but the order of accuracy may not be optimal. On this other hand, with the penalty, we will use numerical 
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experiments to demonstrate the optimality of the error estimates. Following the same idea in [19], we want CN+ 1
2

> 0. 
Therefore, the flux at the right boundary (x = xN+ 1

2
= xb) is different from those elsewhere. We will discuss how to choose 

the parameter later.

2.2. Positivity-preserving technique

In this subsection, we will demonstrate the positivity-preserving technique. For simplicity we do not consider the con-
tribution from the source, and assume s(u) = 0. We can make such an assumption because the source will never make 
negative contribution to the positivity of the cell averages for explicit time discretizations. The whole procedure can be 
divided into three steps. First, we need to prove the positivity of the first-order approximations. Then apply the flux limiter 
to high-order approximations to obtain positive cell averages. Finally, we modify the numerical approximations, keeping the 
cell averages untouched. With Euler forward time discretization, the first-order LDG scheme can be written as

un+1
j = un

j + �t

�x
(( ̂a�(un)qn) j+ 1

2
− ( ̂a�(un)qn) j− 1

2
),

qn
j = 1

�x
( ̂g(un) j+ 1

2
− ̂g(un) j− 1

2
).

Here �t is the time mesh size. un
j , a constant, is the numerical approximation at time level n in cell I j . Likewise for qn

j . 
For simplicity, if we consider the numerical approximations at time level n, then the correspondence index will be omitted. 
If we choose the penalty parameters to be large enough, then there exists sufficient small �t such that the first-order 
approximations are positive. The result is given below.

Lemma 2.1. We can take CN+ 1
2

and CN− 1
2

satisfy (12) and (13), and λ = �t
�x2 satisfies (10), (11) and (14), then the numerical 

approximation from the first order scheme is positive.

Proof. We consider three different cases. For convenience, we define u0 = g1(t) and uN+1 = g2(t).

1. For j = 1, 2, · · · , N − 2, ̂g(u) j− 1
2

= g(u j−1) and q j = 1
�x (g(u j) − g(u j−1)). Therefore,

un+1
j = u j + �t

�x

(
g(u j+1) − g(u j)

u j+1 − u j
q j+1 − g(u j) − g(u j−1)

u j − u j−1
q j

)
= u j + λ

(
(g(u j+1) − g(u j))

2

u j+1 − u j
− (g(u j) − g(u j−1))

2

u j − u j−1

)

= u j + λ

(
f 2

j+ 1
2
(u j+1 − u j) − f 2

j− 1
2
(u j − u j−1)

)
= λ f 2

j+ 1
2

u j+1 +
(

1 − λ( f 2
j+ 1

2
+ f 2

j− 1
2
)

)
u j + λ f 2

j− 1
2

u j−1,

where

f j+ 1
2

= g(u j+1) − g(u j)

u j+1 − u j

is positive. Therefore, if we take

λ( f 2
j+ 1

2
+ f 2

j− 1
2
) ≤ 1, (10)

we have un+1
j ≥ 0.

2. For j = N − 1, C j+ 1
2

may not be zero. Follow the same analysis above, we have

un+1
j = λ f 2

j+ 1
2

u j+1 +
(

1 − λ( f 2
j+ 1

2
+ f 2

j− 1
2
)

)
u j + λ f 2

j− 1
2

u j−1 + λC j+ 1
2
(u j+1 − u j)

= λ

(
f 2

j+ 1
2

+ C j+ 1
2

)
u j+1 +

(
1 − λ( f 2

j+ 1
2

+ f 2
j− 1

2
+ C j+ 1

2
)

)
u j + λ f 2

j− 1
2

u j−1.

Therefore, if we take

λ( f 2
j+ 1

2
+ f 2

j− 1
2

+ C j+ 1
2
) ≤ 1, (11)

we have un+1 ≥ 0.
j
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3. For j = N , the analysis is quite different.

qN = g(uN+1) − g(uN−1)

�x
= 1

�x

(
f N+ 1

2
(uN+1 − uN) + f N− 1

2
(uN − uN−1)

)
and

un+1
N = uN + λ

((
f N+ 1

2
− f N− 1

2

)
qN�x + CN+ 1

2
(uN+1 − uN) − CN− 1

2
(uN − uN−1)

)
= AN+1uN+1 + AN uN + AN−1uN−1,

where

AN+1 = λ
(

f N+ 1
2
( f N+ 1

2
− f N− 1

2
) + CN+ 1

2

)
,

AN = 1 − λ
(
( f N+ 1

2
− f N− 1

2
)2 + CN− 1

2
+ CN+ 1

2

)
,

AN−1 = λ
(

CN− 1
2

− f N− 1
2
( f N+ 1

2
− f N− 1

2
)
)

.

Therefore, we have to take

CN− 1
2

≥ f N− 1
2
( f N+ 1

2
− f N− 1

2
), (12)

CN+ 1
2

≥ − f N+ 1
2
( f N+ 1

2
− f N− 1

2
), (13)

and

λ
(
( f N+ 1

2
− f N− 1

2
)2 + CN− 1

2
+ CN+ 1

2

)
≤ 1, (14)

to obtain un+1
j > 0. �

Remark 1. Since f j+ 1
2

is positive, therefore in (12) and (13), we only need to have one nonzero parameter C . Based on the 
assumption that the blow-up never occurs at the boundary, the exact solution at the boundary should be bounded and is 
smaller than the values nearby. Therefore, we can take CN− 1

2
= 0 and CN+ 1

2
to be a bounded constant, and this will be 

verified by numerical experiments in Section 3.

Remark 2. If α = 1, then f j+ 1
2

= 1 for all j = 0, 1, · · · , N . Therefore, to construct positive numerical cell averages, we can 

take all the penalty parameters to be zero, and λ ≤ 1
2 . However, due to the boundary effect, CN+ 1

2
> 0 is also required.

With the above lemma, we can proceed to construct positive numerical cell averages for high-order approximations. 
We take the test function v = 1 and divided by �x on both sides of (6) to obtain the equation satisfied by the numerical 
cell averages ū j

ūn+1
j = ūn

j + �t

�x
(Ĥ j+ 1

2
− Ĥ j− 1

2
), (15)

where the flux Ĥ = ̂a�(u)q. The numerical cell averages computed form (15) might be negative, and we have to apply a 
positivity-preserving flux limiter on the flux Ĥ . The idea is to apply Lemma 2.1 to construct a first-order numerical flux ĥ
based on the numerical cell average at time level n and x = x j+ 1

2
. The next step is to modify the numerical flux to obtain a 

new one

H̃ j+ 1
2

= θ j+ 1
2
(Ĥ j+ 1

2
− ĥ j+ 1

2
) + ĥ j+ 1

2
. (16)

The parameter θ j+ 1
2

is designed to ensure ūn+1
j to be positive. Actually, we can choose θ j+ 1

2
to be nonnegative, since if we 

take θ j+ 1
2

= 0, then ūn+1
j is obtained from the first-order numerical scheme, which is proved to yield a positive numerical 

solution in Lemma 2.1. In [37], the author gave an idea to choose θ j+ 1
2

. The goal is to have

ūn+1
j = ūn

j + �t

�x
(H̃ j+ 1

2
− H̃ j− 1

2
) > ε,

where ε = 10−13 is a small positive number related to machine precision. The above equation further yields

λ̃θ 1 F 1 − λ̃θ 1 F 1 − 
 j ≥ 0, (17)
j+ 2 j+ 2 j− 2 j− 2
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where λ̃ = �t
�x , F j± 1

2
= Ĥ j± 1

2
− ĥ j± 1

2
and 
 j = ε − (ūn

j + λ̃(ĥ j+ 1
2

− ĥ j− 1
2
)). The parameters θ j± 1

2
can be obtained as fol-

lows [37]. We want

θ j− 1
2

∈ [0,�− 1
2 ,I j

], θ j+ 1
2

∈ [0,� 1
2 ,I j

],
where �± 1

2 ,I j
are designed to keep (17) correct.

• If F j+ 1
2

≥ 0 and F j− 1
2

≤ 0, then

(� 1
2 ,I j

,�− 1
2 ,I j

) = (1,1).

• If F j+ 1
2

< 0 and F j− 1
2

≤ 0, then

(� 1
2 ,I j

,�− 1
2 ,I j

) =
(

min
(

1,

 j

λ̃F j+ 1
2

)
,1

)
.

• If F j+ 1
2

≥ 0 and F j− 1
2

> 0, then

(� 1
2 ,I j

,�− 1
2 ,I j

) =
(

1,min
(

1,− 
 j

λ̃F j− 1
2

))
.

• If F j+ 1
2

< 0 and F j− 1
2

> 0, then

– If Eq. (17) is satisfied with (θ j+ 1
2
, θ j− 1

2
) = (1, 1), then

(� 1
2 ,I j

,�− 1
2 ,I j

) = (1,1).

– If not, then

(� 1
2 ,I j

,�− 1
2 ,I j

) =
( 
 j

(̃λF j+ 1
2

− λ̃F j− 1
2
)
,


 j

(̃λF j+ 1
2

− λ̃F j− 1
2
)

)
.

The local parameter θ j+ 1
2

can be chosen as

θ j+ 1
2

= min(� 1
2 ,I j

,�− 1
2 ,I j+1

).

Follow the above steps, we have ūn+1
j > 0, provided un

j > 0 where un
j is the polynomial at most degree k in the cell I j at 

the time level n.
Finally, we have to modify the numerical approximations at time level n +1, since they may not be positive, even though 

the cell averages are positive. The idea is to use the modified ũn+1
j to replace the numerical solution un+1

j , and ũn+1
j can be 

obtained as follows. In the cell I j

ũn+1
j = ūn+1

j + � j(un+1
j − ūn+1

j ) ≥ ε,

where

� j = min
( ūn+1

j − ε

ūn+1
j − mn+1

j

,1
)
,

with

mn+1
j = min

x∈I j

un+1
j (x).

In [44], the author argued that such a limiter does not degenerate accuracy.

2.3. High-order time discretizations

All the previous analyses are based on Euler-forward time discretization. However, we can also apply high-order Strong-
Stability-Preserving (SSP) time discretizations to solve the ODE system ut = L(u). More details of these time discretizations 
can be found in [33,32,23]. In this paper, we use the third-order SSP Runge–Kutta method [33]

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4

(
u(1) + �tL(u(1))

)
,

un+1 = 1
un + 2 (

u(2) + �tL(u(2))
)

, (18)

3 3
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and the third-order SSP multi-step method [32]

un+1 = 16

27

(
un + 3�tL(un)

) + 11

27

(
un−3 + 12

11
�tL(un−3)

)
. (19)

Since an SSP time discretization is a convex combination of Euler forwards, by using the limiter mentioned in Section 2.2, 
the numerical solutions obtained from the fully-discrete scheme are also positive.

2.4. Two dimensional case

In this subsection, we will develop the positivity-preserving LDG method in two space dimensions, and study the fol-
lowing problem:

ut = (uα)xx + (uβ)yy + um, (x, y) ∈ [xa, xb] × [ya, yb],
u(x, y,0) ≥ 0, (x, y) ∈ [xa, xb] × [ya, yb]. (20)

We consider Dirichlet boundary conditions

u(xa, y, t) = gx
a(y, t), u(xb, y, t) = gx

b(y, t), u(x, ya, t) = g y
a (x, t), u(x, yb, t) = g y

b (x, t).

The rectangular domain [xa, xb] × [ya, yb] can be discretized into Nx × N y rectangular meshes

xa = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= xb, ya = y 1
2

< y 3
2

< · · · < yN y− 1
2

< yN y+ 1
2

= yb, (21)

with the cell Ki, j = Ii × J j , where Ii = [xi− 1
2
, xi+ 1

2
] and J j = [y j− 1

2
, y j+ 1

2
]. We also consider uniform meshes only, and the 

mesh size in x and y directions are denoted as �x and �y, respectively. For simplicity, if we consider the cell Ki, j , then 
the subscript will be omitted. We define the finite element space as

Vh = {uh : uh|K ∈ Pk(K ),1 ≤ i ≤ Nx,1 ≤ j ≤ N y},
where Pk(K ) denotes the polynomials of degree at most k on the element K .

To construct the local discontinuous Galerkin method, firstly we need to rewrite (20) into a first-order system as follows

ut = (a�(u)p)x + (b�(u)q)y + um, (22)

p = ( f (u))x, (23)

q = (g(u))y, (24)

where a�(u) = √
αuα−1, b�(u) = √

βuβ−1, f (u) = ∫ u a�(s)ds and g(u) = ∫ u b�(s)ds. In this subsection, we also denote the 
numerical solution uh , ph and qh by u, p and q, respectively. Then the general formulation of the LDG scheme is to find 
u, p, q ∈ Vh , such that∫

K

ut vdxdy = −
∫
K

a�(u)pvxdxdy +
∫
J j

(( ̂a�(u)pv−)i+ 1
2 , j − ( ̂a�(u)pv+)i− 1

2 , j)dy

−
∫
K

b�(u)qv ydxdy +
∫
Ii

(( ̂b�(u)qv−)i, j+ 1
2

− ( ̂b�(u)qv+)i, j− 1
2
)dx,+

∫
K

um vdxdy (25)

∫
K

pwdxdy = −
∫
K

f (u)wxdxdy +
∫
J j

((̂f (u)w−)i+ 1
2 , j − (̂f (u)w+)i− 1

2 , j)dy, (26)

∫
K

qτdxdy = −
∫
K

g(u)τydxdy +
∫
Ii

((̂g(u)τ−)i, j+ 1
2

− (̂g(u)τ+)i, j− 1
2
)dx, (27)

for any test function v, w, τ ∈ Pk(K ) and i = 1, · · · , Nx , j = 1, · · · , N y . Here ̂a�(u)p, ̂b�(u)q, ̂f (u) and ̂g(u) in (25)–(27) are 
the numerical fluxes which are functions defined on the cell interfaces and should be designed to ensure stability. In this 
paper, the fluxes are chosen to be

( ̂a�(u)p)i+ 1
2 , j =

( [ f (u)]
[u] p+

)
i+ 1

2 , j
+

Ci+ 1
2 , j

�x
[u]i+ 1

2 , j, (̂f (u))i+ 1
2 , j = f (u−

i+ 1
2 , j

), (28)

( ̂b�(u)q)i, j+ 1
2

=
( [g(u)]

[u] q+
)

1
+

Ci, j+ 1
2

�y
[u]i, j+ 1

2
, (̂g(u))i, j+ 1

2
= g(u−

i, j+ 1
2
), (29)
i, j+ 2
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or

( ̂a�(u)p)i+ 1
2 , j =

( [ f (u)]
[u] p−

)
i+ 1

2 , j
+

Ci+ 1
2 , j

�x
[u]i+ 1

2 , j, (̂f (u))i+ 1
2 , j = f (u+

i+ 1
2 , j

), (30)

( ̂b�(u)q)i, j+ 1
2

=
( [g(u)]

[u] q−
)

i, j+ 1
2

+
Ci, j+ 1

2

�y
[u]i, j+ 1

2
, (̂g(u))i, j+ 1

2
= g(u+

i, j+ 1
2
), (31)

where u+
i+ 1

2 , j
= u(x+

i+ 1
2
, y) is the limit from the right cell Ki+1, j and u+

i, j+ 1
2

= u(x, y+
i+ 1

2
) is the limit from the cell Ki, j+1. 

Likewise for all the other limits. Due to the Dirichlet boundary condition, we will use (28) and (29) for i = 0, · · · , Nx − 1 and 
j = 0, · · · , N y − 1, and use (30) and (31) for i = Nx and j = N y , respectively. Ci+ 1

2 , j and Ci, j+ 1
2

are non-negative constants. 
Similar to the one dimensional case, in practice most of the C ’s are zero, except those with i = Nx −1, Nx and j = N y −1, N y . 
[u]i+ 1

2 , j = u+
i+ 1

2 , j
− u−

i+ 1
2 , j

and [u]i, j+ 1
2

= u+
i, j+ 1

2
− u−

i, j+ 1
2

are the jump of u at the cell interface {xi+ 1
2
} × J j and Ii × {y j+ 1

2
}, 

respectively.
Then we will present the positivity-preserving technique. Since the source term um would not make negative contribu-

tion, we can assume the source to be zero for simplicity. We consider high-order LDG schemes only and want to keep the 
positivity of cell averages of u, i.e. ∀i, j

ūi, j = 1

�x�y

∫
Ki, j

udxdy ≥ 0.

The equation satisfied by the numerical cell averages is given as

d

dt
ūi, j + 1

�x

⎛⎜⎝ 1

�y

∫
I j

Ĥ(xi+ 1
2
, y)dy − 1

�y

∫
I j

Ĥ(xi− 1
2
, y)dy

⎞⎟⎠
+ 1

�y

⎛⎜⎝ 1

�x

∫
Ii

Ĝ(x, y j+ 1
2
)dx − 1

�x

∫
Ii

Ĝ(x, y j− 1
2
)dx

⎞⎟⎠ = 0, (32)

where the fluxes Ĥ(xi+ 1
2
, y) = −( ̂a�(u)p)i+ 1

2 , j and Ĝ(x, y j+ 1
2
) = −( ̂b�(u)q)i, j+ 1

2
. Actually p, q are functions of u since p, q

can be computed from Eqs. (26)–(27). Therefore Ĥ and Ĝ are functions of u. Then we apply the positivity-preserving flux 
limiter on the fluxes Ĥ and Ĝ .

Similar to the one dimensional case, we will apply Euler forward time discretization for (32) for simplicity,

ūn+1
i, j = ūn

i, j − λx(Ĥi+ 1
2 , j − Ĥi− 1

2 , j) − λy(Ĝ i, j+ 1
2

− Ĝ i, j− 1
2
), (33)

where λx = �t
�x and λy = �t

�y . Ĥi+ 1
2 , j is the integral of the numerical flux Ĥ(xi+ 1

2
, y) along the cell interface {xi+ 1

2
} × I j . 

Likewise for Ĝ i, j+ 1
2

. We compute the integral by a six-point Gaussian quadrature.

The next step is to modify the numerical fluxes Ĥi+ 1
2 , j and Ĝ i, j+ 1

2
to be

H̃i+ 1
2 , j = θi+ 1

2 , j(Ĥi+ 1
2 , j − ĥi+ 1

2 , j) + ĥi+ 1
2 , j, (34)

G̃ i, j+ 1
2

= θi, j+ 1
2
(Ĝ i, j+ 1

2
− ĝi, j+ 1

2
) + ĝi, j+ 1

2
, (35)

where ĥi+ 1
2 , j and ĝi, j+ 1

2
are the first order numerical fluxes based on the numerical cell averages at time level n which can 

obtain similarly as the one dimensional case. If we choose the parameters in the penalty terms to be large and the time 
mesh size �t to be small, then the numerical approximations from the first-order scheme are positive. The proof is the 
same as in Lemma 2.1 with some minor changes, so we omit it. The parameter θi+ 1

2 , j and θi, j+ 1
2

are designed such that 

ūn+1
i, j is greater than ε, where ε is a small positive number related to machine precision, then we have

θi+ 1
2 , j F i+ 1

2 , j + θi− 1
2 , j F i− 1

2 , j + θi, j+ 1
2

Fi, j+ 1
2

+ θi, j− 1
2

Fi, j− 1
2

− 
i, j ≥ 0, (36)

where

Fi+ 1
2 , j = −λx(Ĥi+ 1

2 , j − ĥi+ 1
2 , j),

F 1 = λx(Ĥ 1 − ĥ 1 ),
i− 2 , j i− 2 , j i− 2 , j
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Fi, j+ 1
2

= −λy(Ĝ i, j+ 1
2

− ĝi, j+ 1
2
),

Fi, j− 1
2

= λy(Ĝ i, j− 1
2

− ĝi, j− 1
2
),

and


i, j = ε − (ūn
i, j − λx(ĥi+ 1

2 , j − ĥi− 1
2 , j) − λy(ĝi, j+ 1

2
− ĝi, j− 1

2
)).

For the parameter θi, j± 1
2

and θi± 1
2 , j can be obtained as follows by the equality (36) and the details can be found in [36]. 

Assume

θi+ 1
2 , j ∈ [0,�R,i, j], θi− 1

2 , j ∈ [0,�L,i, j], θi, j+ 1
2

∈ [0,�U ,i, j], θi, j− 1
2

∈ [0,�D,i, j],
where �R,i, j , �L,i, j , �U ,i, j and �D,i, j are designed based on (36).

The procedure to determine the parameters �R,i, j , �L,i, j , �U ,i, j and �D,i, j are as follows.

• Calculate the values of Fi+ 1
2 , j , Fi− 1

2 , j , Fi, j+ 1
2

and Fi, j− 1
2

. If all the values are positive, then we take �R,i, j = �L,i, j =
�U ,i, j = �D,i, j = 1, otherwise go to the next step.

• Pick the negative values among Fi+ 1
2 , j , Fi− 1

2 , j , Fi, j− 1
2

and Fi, j− 1
2

. According to the negative values, the parameters can 
be defined. For instance, if Fi+ 1

2 , j < 0, Fi− 1
2 , j < 0 and Fi, j+ 1

2
≥ 0, Fi, j− 1

2
≥ 0, then

�R,i, j,�L,i, j = min
( 
i, j

F i+ 1
2 , j + Fi− 1

2 , j

,1
)
,

�U ,i, j,�D,i, j = 1.

Other cases are similar to define.

The local parameter θi+ 1
2 , j and θi, j+ 1

2
can be determined to be

θi+ 1
2 , j = min(�R,i, j,�L,i+1, j),

θi, j+ 1
2

= min(�U ,i, j,�D,i, j+1).

Follow the above step, we have ūn+1
i, j > 0 provided un

i, j > 0 where un
i, j is the numerical approximation in Ki, j at time level n.

Finally, we have to modify the numerical simulations at time level n + 1. The idea is the same as the one dimensional 
case. We use the modified ũn+1

i, j to replace the numerical solution un+1
i, j , and ũn+1

i, j can be obtained as follows. In each cell 
Ki, j ,

ũn+1
i, j = ūn+1

i, j + �i, j(un+1
i, j − ūn+1

i, j ) ≥ ε,

where

�i, j = min
( ūn+1

i, j − ε

ūn+1
i, j − mn+1

i, j

,1
)
,

with

mn+1
i, j = min

(x,y)∈Ki, j

un+1
i, j (x, y).

3. Numerical results

In this section, we give some numerical experiments to illustrate the good performance of the preserving positivity LDG 
method. We first test the effect of the penalty term given in the numerical fluxes in (8) and (9), and then consider other 
examples with blow-up solutions. For the examples with blow-up, ε should be a relatively small parameter, one example 
could be ε = 10−13umax, where umax is the global maximum of the solution. Moreover, we also need to take steps to 
determine the blow-up time numerically. Following [27], the time steps are chosen to be

�t = �x2 min
(

cfl,
umax

s(umax)

)
and �t = min(�x2,�y2)min

(
cfl,

umax

s(umax)

)
,

for one and two space dimensions, respectively. The parameter cfl is the constant to ensure the stability for the diffusion 
term and in these experiments we let cfl = 0.1, 0.05, 0.01 with the degree of polynomials k = 0, 1, 2 respectively. And all 
the penalty parameters are 1. Since the source s(u) = um with m > 1, the larger the u, the smaller the �t , and we consider 
the numerical blow-up occurs when �t < 10−13. In this section, to plot the figures, we use the numerical cell average to be 
the point value at the middle point in each cell.
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Table 1
Example 3.1, accuracy test with penalty at time T = 0.1.

N L2 error order L∞ error order

P 0 10 1.17E−01 – 2.70E−01 –
20 5.90E−02 0.99 1.37E−01 0.98
40 2.95E−02 1.00 6.86E−02 1.00
80 1.48E−02 1.00 3.43E−02 1.00

P 1 10 4.69E−03 – 1.28E−02 –
20 1.13E−03 2.05 3.23E−03 1.99
40 2.82E−04 2.01 8.07E−04 2.00
80 7.05E−05 2.00 2.02E−04 2.00

P 2 10 1.12E−04 – 3.32E−04 –
20 1.42E−05 2.99 4.18E−05 2.99
40 1.77E−06 3.00 5.23E−06 3.00
80 2.22E−07 3.00 6.54E−07 3.00

Table 2
Example 3.1, accuracy test without penalty at time T = 0.1.

N L2 error order L∞ error order

P 0 10 1.32E−01 – 3.68E−01 –
20 6.27E−02 1.07 1.85E−01 0.99
40 3.05E−02 1.04 9.29E−02 1.00
80 1.48E−02 1.00 3.43E−02 1.00

P 1 10 5.04E−02 – 2.20E−01 –
20 1.80E−02 1.49 1.11E−01 1.00
40 6.38E−03 1.50 5.57E−02 1.00
80 2.25E−03 1.50 2.79E−02 1.00

P 2 10 3.45E−04 – 1.72E−03 –
20 3.22E−05 3.43 2.16E−04 2.98
40 3.11E−06 3.37 2.70E−05 3.00
80 3.17E−07 3.30 3.38E−06 3.00

3.1. One-dimensional case

In this subsection, we numerically solve (2) with different parameters α and m. First, we give one example to test the 
accuracy and the effect of the penalty term of the scheme and then show some blow-up experiments.

Example 3.1. We take α = m = 1 and consider the following problem

ut = uxx + (π2 − 1)u, x ∈ [0,1],
u(x,0) = sin(πx), x ∈ [0,1],

with the homogeneous Dirichlet boundary condition. The exact solution is

u(x, t) = e−t sin(πx).

We compute the L2- and L∞-norm error estimates with different degrees of polynomials. Table 1 shows the result 
with penalty CN+ 1

2
= 1 and the positivity-preserving technique while Table 2 gives that computed directly without any 

special modification of the scheme. From Table 1, we can observe that the scheme with penalty can achieve optimal rate 
of convergence, and the positivity-preserving flux limiter does not degenerate the accuracy. However, the scheme without 
penalty is problematic. If we plot the result obtained from the first-order numerical scheme with N = 80, we can observe 
the phenomenon of inconsistency. In Fig. 1, we can observe a tale at x = 1, i.e. the numerical approximation at the right 
boundary is bigger than that in the cell next to it. Such a phenomenon disappears if we add the penalty to the scheme.

Example 3.2. We take α = 1, m = 2 and study the following problem

ut = uxx + u2, x ∈ [0,1],
with the initial condition u0(x) = 20 sin(πx) and homogeneous Dirichlet boundary condition.

We use this example to demonstrate that high-order numerical scheme yields better numerical blow-up time. In this 
example, we use polynomials of degree k = 0, 1, 2 and compute the blow-up time, which has been given in Table 3. From the 
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Fig. 1. Example 3.1: First-order numerical approximations with (right) and without (left) penalty. Other parameters are taken to be N = 80.

Table 3
Example 3.2, the blow-up time T with different meshes and different degrees of polynomials.

N T

p0 p1 p2

10 8.32162E−02 8.24457E−02 8.24406E−02
20 8.26315E−02 8.24391E−02 8.24375E−02
40 8.24856E−02 8.24376E−02 8.24374E−02
80 8.24493E−02 8.24374E−02 8.24373E−02

160 8.24399E−02 8.24371E−02 8.24371E−02

Fig. 2. Example 3.2: Numerical approximations u (left) vs. log(u) (right) at the blow-up time with P 2 polynomials and N = 160.

table we can observe that no matter which k we choose, the numerical blow-up time converges during the mesh refinement. 
For a fixed mesh size, the third scheme yields better numerical blow-up time. Especially, for N > 20, the numerical blow-up 
obtained from the third-order scheme do not vary much. This clearly shows that for high-order schemes, we can use a 
relatively coarse mesh to obtain accurate numerical blow-up time. In this example, we consider the reference blow-up time 
to be T = 8.24371 × 10−2. Clearly, the blow-up time computed from the first-order scheme is still somehow different from 
the reference one when N = 160. We also plot the numerical approximation at the blow-up time in Fig. 2, we can see that 
the blow-up set contains only one point x = 0.5.

Example 3.3. We take α = 1.5, m = 2 and consider the following problem

ut = u1.5
xx + u2, x ∈ [−15,15],

u(−15, t) = u(15, t) = 1, t ∈ [0, T ),

u(x,0) = 152 − x2 + 1, x ∈ [−15,15].
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Fig. 3. Example 3.3: Numerical approximation u (left) vs. log(u) (right) at the blow-up time with P 2 polynomials and N = 1280.

Fig. 4. Example 3.4: Left: The time evolution of the numerical approximation u (left) vs. log(u) (right) with P 2 polynomials and N = 320.

This example is used to check the necessity of the positivity-preserving technique. We first solve Example 3.3 based 
on the positivity-preserving LDG method. We use the third-order numerical scheme and take N = 1280. The numerical 
blow-up time is T = 4.43243 × 10−3. We also plot the numerical approximation at T = 4.43243 × 10−3 in Fig. 3, which 
shows the blow-up set is x = 0. However, without the positivity-preserving technique, the numerical approximation blows 
up at T = 4.39810 × 10−3, which is quite different the one given by the positivity-preserving LDG method.

In each the previous examples, the blow-up set contains one point only. However, our scheme can also be used to 
capture the phenomenon of regional blow-up.

Example 3.4. We take α = m = 1.5, and study the following problem

ut = u1.5
xx + u1.5, x ∈ [−15,15],

u(−15, t) = u(15, t) = 1, t ∈ [0, T ),

u(x,0) = 152 − x2 + 1, x ∈ [−15,15].
Different from the previous two, the two parameters α and m are the same in this example. In this case, the blow-up 

set is an interval and such a phenomenon is called regional blow-up. We would like to use the positivity-preserving LDG 
method to capture the blow-up set. Therefore, we plot the numerical approximation at the blow-up time in log scale. 
We also use the third-order numerical scheme and take N = 320. The blow-up time is T = 0.1382. From Fig. 4, we can find 
that the blow-up set is roughly at (−9.42, 9.42) ≈ (−3π, 3π).

3.2. Two-dimensional case

In this subsection, numerical experiments in two space dimensions are designed to show the performance of the 
positivity-preserving LDG scheme in solving (20). We take different sets of parameters α, β and m. First, we give one 
example to test the accuracy and then show some examples with blow-up solutions.
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Table 4
Example 3.5, accuracy test at time T = 0.1.

Nx × N y L2 error order L∞ error order

P 0 4 × 4 2.31E−01 – 5.31E−01 –
8 × 8 1.44E−01 0.68 3.34E−01 0.67
16 × 16 7.34E−02 0.97 1.71E−01 0.97
32 × 32 3.69E−02 0.99 8.57E−02 0.99

P 1 4 × 4 5.23E−02 – 1.94E−01 –
8 × 8 1.09E−02 2.26 4.10E−02 2.24
16 × 16 2.67E−03 2.04 1.13E−02 1.85
32 × 32 6.66E−04 2.00 2.91E−03 1.96

P 2 4 × 4 7.75E−03 – 4.64E−02 –
8 × 8 8.00E−04 3.28 4.05E−03 3.52
16 × 16 9.56E−05 3.06 5.13E−04 2.98
32 × 32 1.17E−05 3.03 6.44E−05 2.99

Table 5
Example 3.6, the blow-up time T with different meshes and different degrees of polynomials.

Nx × N y T

p0 p1 p2

8 × 8 4.81935E−02 4.72074E−02 4.71102E−02
16 × 16 4.70453E−02 4.68389E−02 4.68125E−02
32 × 32 4.68009E−02 4.67537E−02 4.67468E−02
64 × 64 4.67440E−02 4.67328E−02 4.67311E−02
128 × 128 4.67303E−02 4.67277E−02 4.67272E−02

Example 3.5. We take α = β = m = 1 and consider the following problem

ut = uxx + u yy + (2π2 − 1)u, (x, y) ∈ [0,1] × [0,1],
with the homogeneous Dirichlet boundary condition.

The exact solution is

u(x, y, t) = e−t sin(πx) sin(π y).

We solve this example with polynomials of degree k = 0, 1, 2, and compute the error between the exact solution and the 
numerical solution in L2- and L∞-norms. From Table 4, we can observe optimal rate of convergence. This example illustrates 
that the flux limiter and the penalty term do not kill the accuracy.

Example 3.6. We take α = β = 1, m = 2 and consider the following problem

ut = uxx + u yy + u2, (x, y) ∈ [0,1] × [0,1],
with the initial condition u0(x, y) = 40 sin(πx) sin(π y) and homogeneous Dirichlet boundary condition.

Table 5 shows the numerical blow-up time with different mesh sizes and different polynomial degrees. We can see that, 
for each fixed order of accuracy, the numerical blow-up time decreases and converges during mesh refinement. For each 
fixed mesh size, higher-order approximation yields better numerical blow-up time. Therefore, we can use a relatively coarse 
mesh to obtain accurate numerical blow-up time. Moreover, we also plot the numerical approximation at T = 4.67272 ×
10−2. In Fig. 5, we can find the blow-up set contains only one point (x, y) = ( 1

2 , 12 ).

Example 3.7. We take α = 1, β = 1.5, m = 2 and consider the following problem

ut = uxx + u1.5
yy + u2, (x, y) ∈ [0,1] × [0,1],

with the initial condition u0(x, y) = 200 sin(πx) sin(π y) and homogeneous Dirichlet boundary condition.

We use this example to test the positivity-preserving technique. We first solve the problem by using the positivity-
preserving LDG method proposed in this paper. The numerical blow-up time is approximately T = 1.82378 × 10−2 with the 
P 2 polynomial and a uniform mesh with 64 × 64 rectangles. We also plot the numerical solution at T = 1.82378 × 10−2, 
and the result is given in Fig. 6. From the figure, we can observe that the blow-up set contains one point (x, y) = ( 1

2 , 12 ). 
It will blow up at T = 1.22168 × 10−6 which actually blow up after one time step without positivity-preserving limiter with 
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Fig. 5. Example 3.6: Numerical approximations u (left) vs. log(u) (right) at the blow-up time with P 2 polynomials and Nx = N y = 128. (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 6. Example 3.7: Numerical approximations u (left) vs. log(u) (right) at the blow-up time with P 2 polynomials and Nx = N y = 64. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

the same polynomial and mesh size. Different from Example 3.6, in this example, α �= β . Therefore, the decay rate in x-
and y-directions are quite different. This can be observed from Fig. 6. If we observe from the x-axis, the singularity is much 
sharper.

4. Conclusion

In this paper, we developed the positivity-preserving high-order LDG method to solve parabolic equations with blow-up 
solutions subject to Dirichlet boundary conditions. The penalty terms are added to maintain the optimal convergence rates 
and special limiters are applied to obtain positive numerical approximations. Numerical experiments demonstrated that, 
without the positivity-preserving technique, the numerical blow-up time might be different from the correct one. Moreover, 
high-order numerical schemes yield better numerical blow-up time, and the schemes can also capture the blow-up set 
precisely.
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