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Abstract
Local discontinuous Galerkin (LDG) methods are popular for convection-diffusion equations. In

LDG methods, we introduce an auxiliary variable p to represent the derivative of the primary variable
u, and solve them on the same mesh. It is well known that the maximum-principle-preserving (MPP)
LDG method is only available up to second-order accuracy. Recently, we introduced a new algorithm,
and solve u and p on different meshes, and obtained stability and optimal error estimates. In this
paper, we will continue this approach and construct MPP third-order LDG methods for convection-
diffusion equations on overlapping meshes. The new algorithm is more flexible and does not increase
any computational cost. Numerical evidence will be given to demonstrate the accuracy and good
performance of the third-order MPP LDG method.

Key Words: Convection-diffusion equations, Maximum-principle-preserving, Local discontinuous
Galerkin method, Overlapping mesh.

1 Introduction

In this paper, we aim to construct maximum-principle-preserving (MPP) third-order local discontin-
uous Galerkin (LDG) schemes for solving the following convection-diffusion equation

ut + f(u)x = b(u)xx, (1.1)

or equivalently
ut + f(u)x = (a2(u)ux)x, (1.2)

as well as their two-dimensional versions, where a2(u) = b′(u) ≥ 0. We also assume that a(u) ≥ 0 and
periodic boundary conditions. The initial condition is given as u(x, 0) = u0(x). It is well known that
the exact solution satisfies a strict maximum-principle, i.e.,

u(x, t) ∈ [m,M ], ∀x ∈ R, ∀t ≥ 0,

where m = minx u0(x) and M = maxx u0(x). In particular, if m = 0, the exact solution will maintain
non-negative for all time, resulting in the positivity-preserving (PP) property.

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and Hill [22] in the
framework of neutron linear transport. Subsequently, Cockburn et al. developed Runge-Kutta discon-
tinuous Galerkin (RKDG) methods for hyperbolic conservation laws in a series of papers [6, 4, 5, 7].
In [8], Cockburn and Shu introduced the LDG method to solve the convection-diffusion equations.
Their idea was motivated by Bassi and Rebay [1], where the compressible Navier-Stokes equations
were successfully solved. Recently, in [27], genuinely MPP high-order DG schemes for scalar conserva-
tion laws and two-dimensional incompressible flows in vorticity-streamfunction formulation have been
constructed. Subsequently, PP high-order DG schemes for compressible Euler equations were given
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in [28, 29]. Later, the technique was applied to other hyperbolic systems, such as pressureless Euler
equations [26], Extended MHD equations [31], relativistic hydrodynamics [21], etc, and the L1 stability
was demonstrated. For parabolic equations, the extension was given in [30], where second-order MPP
discontinuous Galerkin methods were demonstrated, and the construction of high-order schemes seem
to be not straightforward. Later another approach based on the flux limiter were discussed in [25, 15].
In [2], the third-order MPP direct DG method was introduced. However, the scheme was not easy to
implement and we need to add two penalty terms. In this paper, we will introduce the modified LDG
method on overlapping meshes and construct MPP third-order LDG methods.

As in traditional LDG methods, we introduce an auxiliary variable p to represent a(u)ux and thus
can rewrite (1.2) into the following system of first order equations{

ut + f(u)x = (a(u)p)x,
p = A(u)x,

(1.3)

where A(u) =
∫ u

0 a(τ)dτ . Usually, u and p are solved on the same mesh. In [11], we introduced a new
algorithm and solve u and p on the primitive and dual meshes, respectively, where the dual mesh is
generated from the primitive one. There are several advantages of the new algorithm.

1. The fluxes for the convection terms are easy to construct.

It is well known that due to the discontinuity of the numerical approximations across the cell
interfaces, we need to introduce the numerical fluxes. For convection-diffusion equations, the
fluxes for the diffusion terms seem to be easy to construct and in most cases we can simply
choose the alternating ones [8]. However, the fluxes for the convection terms are not easy to
construct. Especially for some convection-diffusion systems such as the chemotaxis model [17, 20]
and miscible displacements in porous media [9, 10], where the convection terms are the products
of one of the primary variables and the derivatives of another primary variable. Due to the
discontinuity nature of the DG methods, most of the well established numerical fluxes, such as
the upwind fluxes, cannot be applied, since the coefficients of the convection terms turn out to
be discontinuous after the spatial discretization. It is well known that hyperbolic equations with
discontinuous coefficients are in general not well-posed [12, 16]. Therefore, the DG schemes may
not be stable when applied to those model equations. To make the numerical solutions to be
physically relevant, we have to add very large penalty terms which depend on the numerical
approximations of the derivatives of the primary variables [18, 14]. With the new algorithm, the
derivatives, solving on the dual mesh, are continuous across the cell interfaces on the primitive
mesh, hence the upwind fluxes can be applied.

2. The new algorithm is more flexible without increasing the computational cost.

It is well know that to avoid the numerical fluxes, some modification of DG methods have been
introduced, such as the Central DG (CDG) methods [19] and Staggered DG (SDG) methods
[3]. For CDG methods, we have to solve each equation in (1.3) on both the primitive and dual
meshes, which doubles the computational cost. In our new method, we solve u on the primitive
mesh and p on the dual mesh, respectively. Therefore, the computational cost is exactly the
same as the original LDG method. Moreover, different from the SDG methods, we do not require
any continuity conditions across the cell interfaces for u on the primitive cells or p on the dual
meshes. Therefore, the new LDG method is more flexible and it is very convenient to apply
limiters.

3. Most importantly, we can construct third-order MPP schemes.

In [30], the authors demonstrated that the original MPP LDG methods are only available up
to second-order accuracy. In the new algorithm, we add a mild penalty, which does not depend
on the numerical approximations, in the equation of u, and construct third-order MPP schemes.
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Since the dual mesh can be moved arbitrarily, we will show that if the dual mesh agree with the
primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our algorithm does
not violate the results given in [30]. Finally, the new algorithm is stable and easy to understand
and construct [11]. It is able to be generated to higher order schemes. For convection-diffusion
equations, the rates of accuracy are optimal. However, numerical experiments demonstrate a
suboptimal rate of convergence if odd order polynomials were applied to pure diffusion equations.
In [11], we have introduced a couple of ways to recover optimal convergence rates. Therefore,
we will not discuss the error estimates in this paper, and focus on the MPP technique only.

The organization of this paper is as follows. In Section 2, we construct the new LDG scheme
for one dimensional nonlinear convection-diffusion equations on overlapping meshes. In Section 3, we
introduced the MPP technique in one space dimension. Generations of the new LDG scheme and the
MPP technique to two space dimensions will be given in Section 4. Numerical experiments in one and
two space dimensions will be given in Section 5 to demonstrate the accuracy and good performance
of the new third-order MPP LDG scheme. Finally, we will end in Section 6 with concluding remarks
and remarks for future works.

2 LDG scheme on overlapping meshes in one space dimension

In this section, we first illustrate the generation of overlapping meshes in one space dimension as well
as some notations in Section 2.1, and then show how to construct LDG methods on the generated
overlapping meshes in Section 2.2. For simplicity, we consider the periodic boundary condition. The
analyses for other boundary conditions will be discussed in the future.

2.1 Overlapping meshes

Figure 2.1 is an illustration of the overlapping meshes. The mesh on the top in this figure is the
primitive mesh on which the original variable u is solved, while the one in the bottom is the dual mesh
on which the auxiliary variable p is solved.

Figure 2.1: Overlapping meshes

We first show how to define the primitive mesh. It is just a regular decomposition of the compu-
tational domain [0, 1], which can be non-uniform. We denote the i-th cell as

Ii = [xi− 1
2
, xi+ 1

2
], i = 1, · · · , Nx.

The cell length and the cell center of Ii are denoted as

4xi = xi+ 1
2
− xi− 1

2
, xi =

xi− 1
2

+ xi+ 1
2

2
,
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respectively. Based on the primitive mesh, we move each cell center within the corresponding cell to
obtain a new mesh called the P-mesh, which is used to solve the auxiliary variable p, i.e. in each cell
Ii, we choose a point x̃i given as

x̃i = xi +
4xi

2
ξi0, ξi0 ∈ [−1, 1], i = 1, · · · , Nx. (2.1)

For simplicity, we consider ξi0 to be a constant independent of i and denoted as ξ0 ∈ [−1, 1]. It is easy
to check x̃i ∈ [xi− 1

2
, xi+ 1

2
]. The (i− 1

2)-th cell of the dual mesh is defined as

Pi− 1
2

= [x̃i−1, x̃i], i = 1, · · · , Nx,

where we denote x̃0 = x̃Nx − 1. We further denote the cell length and the cell center of Pi− 1
2

as

4x̃i− 1
2

= x̃i − x̃i−1, x̃i− 1
2

=
x̃i−1 + x̃i

2
,

respectively. Notice that when ξ0 = 0, we have x̃i = xi and Pi+ 1
2

= [xi, xi+1]. In this case, the cell

interfaces of the dual mesh are exactly the cell centers of the primitive mesh. Due to the periodic
boundary condition, we can also define P 1

2
= [0, x̃1] ∪ [x̃Nx , 1]. Therefore, we regard a function on P 1

2

as a function on [x̃0, x̃1]. We define the dual mesh to be the P-mesh which consists of all these P cells.
This kind of mesh is the most commonly used overlapping mesh, such as in the CDG method [19].
When ξ0 = −1, we have x̃i = xi− 1

2
and hence the P-mesh is the same as the primitive mesh.

2.2 LDG method on overlapping meshes

Base on the previous defined overlapping meshes, we are ready to construct the LDG method for (1.3).
The finite element space on each mesh consists of piecewise polynomials:

Vh := {uh : uh|Ii ∈ P k(Ii), i = 1, · · · , Nx},
Ph := {ph : ph|P

i− 1
2

∈ P k(Pi− 1
2
), i = 1, · · · , Nx},

where P k(Ii) and P k(Pi− 1
2
) are the sets of all polynomials of degree up to k defined on the cell Ii and

Pi− 1
2
, respectively.

We multiply the first equation in (1.3) with a test function v ∈ Vh and integrate this equation
on the primitive mesh. Similarly, we multiply the second equation with a test function w ∈ Ph and
integrate it on the dual mesh. By using integration by parts, our new LDG method on overlapping
meshes is defined as follows: to find (uh, ph) ∈ Vh×Ph, such that for any test functions (v, w) ∈ Vh×Ph
and any i, we have∫

Ii

(uh)tvdx =−
∫
Ii

(a(uh)ph − f(uh)) vxdx

+ (âi+ 1
2
p̂i+ 1

2
− f̂i+ 1

2
)v−
i+ 1

2

− (âi− 1
2
p̂i− 1

2
− f̂i− 1

2
)v+
i− 1

2

, (2.2)∫
P
i− 1

2

phwdx =−
∫
P
i− 1

2

A(uh)wxdx+A(uh(x̃i))w
−
i −A(uh(x̃i−1))w+

i−1, (2.3)

where v−
i+ 1

2

= v−(xi+ 1
2
) and w−i = w−(x̃i). Likewise for v+

i− 1
2

and w+
i−1. For simplicity, we denote

v−1
2

= v−
Nx+ 1

2

and v+
Nx+ 1

2

= v+
1
2

. The numerical flux â at the point xi+ 1
2

is taken as

âi+ 1
2

=
[A(uh)]i+ 1

2

[uh]i+ 1
2

,
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where [s]i+ 1
2

:= s+
i+ 1

2

− s−
i+ 1

2

denotes the jump of a function s across the cell interface x = xi+ 1
2
.

Similarly, we can also denote the jump of w across x = x̃i on the P-mesh as [w]i = w+
i − w

−
i . For

simplicity, if [uh] = 0, we define â = a(uh). The flux for the convection term f̂i+ 1
2

= f̂(u−
i+ 1

2

, u+
i+ 1

2

) is

the usual monotone flux used in the traditional DG methods. More details for the suitable numerical
fluxes can be found in [27]. ph is defined as a piecewise polynomial on the dual mesh and it is
continuous at the cell interfaces of the primitive mesh, hence ph(xi+ 1

2
) is well-defined. We take

p̂i+ 1
2

= ph(xi+ 1
2
) +

αi+ 1
2

4x̃i+ 1
2

[A(uh)]i+ 1
2
,

where the parameter αi+ 1
2

is chosen by MPP technique.

3 MPP third-order LDG scheme in one space dimension

In this section, we proceed to demonstrate the MPP technique and consider the third-order scheme
only, i.e. k = 2.

We apply Euler forward time discretization and use unh as the numerical solution at time level
n and use ūni to denote the cell average of unh on Ii. For simplicity, if we consider the numerical
approximation at time level n, then the superscript will be omitted. Taking v = 1 in (2.2), we obtain
the equation satisfied by the numerical cell average ūi

ūn+1
i =

(
1

2
ūni −

4t
4xi

(f̂i+ 1
2
− f̂i− 1

2
)

)
+

(
1

2
ūni +

4t
4xi

(âi+ 1
2
p̂i+ 1

2
− âi− 1

2
p̂i− 1

2
)

)
:=

1

2
Ci +

1

2
Di, (3.1)

where

Ci = ūni −
24t
4xi

(f̂i+ 1
2
− f̂i− 1

2
), and Di = ūni +

24t
4xi

(âi+ 1
2
p̂i+ 1

2
− âi− 1

2
p̂i− 1

2
) (3.2)

are the convection and diffusion terms, respectively. In this section, we assume unh ∈ [m,M ] and aim
to find sufficient conditions to make Ci, Di ∈ [m,M ], and thus ūn+1

i ∈ [m,M ]. The technique for Ci
has been discussed in [27] and the result is given below

Lemma 3.1. Suppose m ≤ unh ≤M , then we have m ≤ Ci ≤M , under the condition

∆t ≤
minβ wβ

2 maxu |f ′(u)|
min
i

∆xi, (3.3)

where w′βs are the quadrature weights for the 3-point Legendre Gauss-Lobatto quadrature for the interval

[−1
2 ,

1
2 ].

The rest of this section will focus on the MPP technique for the diffusion term Di. We divide the
whole algorithm into five steps and demonstrate the implementation of the technique in the end.

Step 1: Computation of ph(xi+ 1
2
) and ph(xi− 1

2
)

We need to solve ph(xi+ 1
2
) and ph(xi− 1

2
) by (2.3) and thus can rewrite Di as a function of unh. For

simplicity, we map x ∈ Pi+ 1
2

= [x̃i, x̃i+1] onto the standard element ξ ∈ [−1, 1] as

x = x̃i+ 1
2

+
4x̃i+ 1

2

2
ξ, ξ =

2x− 2x̃i+ 1
2

4x̃i+ 1
2

:= ξi+
1
2 (x), (3.4)
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where in the second equation we can view ξ as a function of x and denote this function as ξi+
1
2 (x).

Moreover, we denote Legendre polynomial functions on [−1, 1] as

L0 = 1, L1(ξ) = ξ, L2(ξ) =
1

2
(3ξ2 − 1), (3.5)

and represent ph|P
i+1

2

on the standard element as

ph(x(ξ)) = p0(ξ) = a0L0 + a1L1(ξ) + a2L2(ξ), ξ ∈ [−1, 1].

Notice that xi+ 1
2
∈ [x̃i, x̃i+1], by simple computations, we know that

xi+ 1
2

= x̃i+ 1
2

+
4x̃i+ 1

2

2
ξi+ 1

2
,

where

ξi+ 1
2

=
−ξ0(dxi+ 1

2
+ 1) + (dxi+ 1

2
− 1)

ξ0(1− dxi+ 1
2
) + (dxi+ 1

2
+ 1)

∈ [−1, 1], (3.6)

and dxi+ 1
2

= 4xi
4xi+1

. Hence, we have

ph(xi+ 1
2
) = p0(ξi+ 1

2
) = a0 + a1ξi+ 1

2
+
a2

2
(3ξ2

i+ 1
2

− 1). (3.7)

By using the orthogonal property of Legendre polynomial basis functions, we can get

a0 =
1

2

∫ 1

−1
p0L0dξ, a1 =

3

2

∫ 1

−1
p0L1dξ, a2 =

5

2

∫ 1

−1
p0L2dξ. (3.8)

Substituting (3.8) into the (3.7), we obtain

ph(xi+ 1
2
) =

1

2

∫ 1

−1
p0(ξ)si+

1
2 (ξ)dξ, (3.9)

where si+
1
2 is a function of ξ defined as

si+
1
2 (ξ) = 1 + 3ξi+ 1

2
ξ +

5

4
(3ξ2

i+ 1
2

− 1)(3ξ2 − 1), ξ ∈ [−1, 1]. (3.10)

We then revert back to the physical element Pi+ 1
2
. By using (2.3), we get

ph(xi+ 1
2
) =

1

2

∫ 1

−1
p0(ξ)si+

1
2 (ξ)dξ =

1

4x̃i+ 1
2

∫
P
i+1

2

ph(x)si+
1
2

(
ξi+

1
2 (x)

)
dx

=
1

4x̃i+ 1
2

[
−
∫ x̃i+1

x̃i

A(uh)si+
1
2

(
ξi+

1
2 (x)

)
x
dx+A(uh(x̃i+1))si+

1
2 (1)−A(uh(x̃i))s

i+ 1
2 (−1)

]
=

1

4x̃i+ 1
2

[
−
∫ x

i+1
2

x̃i

A(uh)si+
1
2

(
ξi+

1
2 (x)

)
x
dx−A(uh(x̃i))s

i+ 1
2 (−1)

]

+
1

4x̃i+ 1
2

∫ x̃i+1

x
i+1

2

A(uh)xs
i+ 1

2

(
ξi+

1
2 (x)

)
dx+A(u+

h (xi+ 1
2
))si+

1
2 (ξi+ 1

2
)

 . (3.11)

Similarly, we can compute ph(xi− 1
2
) as

ph(xi− 1
2
) =

1

4x̃i− 1
2

[∫ x
i− 1

2

x̃i−1

A(uh)xs
i− 1

2

(
ξi−

1
2 (x)

)
dx−A(u−h (xi− 1

2
))si−

1
2 (ξi− 1

2
)

]

+
1

4x̃i− 1
2

−∫ x̃i

x
i− 1

2

A(uh)si−
1
2

(
ξi−

1
2 (x)

)
x
dx+A(uh(x̃i))s

i− 1
2 (1)

 . (3.12)
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Step 2: Decomposition of Di

We consider the decomposition of Di. Substituting (3.11) and (3.12) into (3.2), we can decompose Di

as

Di = ūni +
2âi+ 1

2
4t

4xi

[
ph(xi+ 1

2
) +

αi+ 1
2

4x̃i+ 1
2

[A]i+ 1
2

]
−

2âi− 1
2
4t

4xi

[
ph(xi− 1

2
) +

αi− 1
2

4x̃i− 1
2

[A]i− 1
2

]

= ūni +
24t
4xi

Ui +
24tâi+ 1

2

4xi4x̃i+ 1
2

Ui+1 +
24tâi− 1

2

4xi4x̃i− 1
2

Ui−1, (3.13)

where

Ui =
âi+ 1

2

4x̃i+ 1
2

[
−
∫ x

i+1
2

x̃i

A(uh)si+
1
2

(
ξi+

1
2 (x)

)
x
dx−A(uh(x̃i))s

i+ 1
2 (−1)− αi+ 1

2
A(u−h (xi+ 1

2
))

]

−
âi− 1

2

4x̃i− 1
2

−∫ x̃i

x
i− 1

2

A(uh)si−
1
2

(
ξi−

1
2 (x)

)
x
dx+A(uh(x̃i))s

i− 1
2 (1) + αi− 1

2
A(u+

h (xi− 1
2
))

 , (3.14)

Ui+1 =

∫ x̃i+1

x
i+1

2

A(uh)xs
i+ 1

2

(
ξi+

1
2 (x)

)
dx+A(u+

h (xi+ 1
2
))
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.15)

Ui−1 = −
∫ x

i− 1
2

x̃i−1

A(uh)xs
i− 1

2

(
ξi−

1
2 (x)

)
dx+A(u−h (xi− 1

2
))
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.16)

Step 3: PP technique for linear case

Now we will discuss the PP technique for linear diffusion terms, i.e. A(u) = u, m = 0 and M = ∞.
Then (3.14)-(3.16) can be written as

Ui =
1

4x̃i+ 1
2

[
−
∫ x

i+1
2

x̃i

uhs
i+ 1

2

(
ξi+

1
2 (x)

)
x
dx− uh(x̃i)s

i+ 1
2 (−1)− αi+ 1

2
u−h (xi+ 1

2
)

]

− 1

4x̃i− 1
2

−∫ x̃i

x
i− 1

2

uhs
i− 1

2

(
ξi−

1
2 (x)

)
x
dx+ uh(x̃i)s

i− 1
2 (1) + αi− 1

2
u+
h (xi− 1

2
)

 , (3.17)

Ui+1 =

∫ x̃i+1

x
i+1

2

(uh)xs
i+ 1

2

(
ξi+

1
2 (x)

)
dx+ u+

h (xi+ 1
2
)
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.18)

Ui−1 = −
∫ x

i− 1
2

x̃i−1

(uh)xs
i− 1

2

(
ξi−

1
2 (x)

)
dx+ u−h (xi− 1

2
)
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.19)

We will consider Ui first and the result is given below.

Lemma 3.2. Suppose uh ≥ 0 in Ii, then ūi + 24t
4xiUi ≥ 0 under the condition

4t ≤ 4x2

12
[
maxi h(|ξi+ 1

2
|) + 3`(ξ0) + 3 maxi αi+ 1

2

] , (3.20)

where 4x = mini{4x̃i+ 1
2
,4xi},

h(ξ) =

{
ξ
(
1 + 5

2(3ξ2 − 1)
)
, if 3ξ2 − 1 ≥ 0

ξ − 5
2(3ξ2 − 1), if 3ξ2 − 1 < 0

(3.21)

and

`(ξ) = max

{
5

2
(3ξ2 − 1) + 3|ξ|+ 1, 1− 3ξ2

5(3ξ2 − 1)
− 5

4
(3ξ2 − 1)

}
. (3.22)
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Proof. When Ui ≥ 0, it is obvious that ūni + 4t
4xiUi ≥ 0. Hence we only need to consider the case with

Ui < 0. In this case, we need to require 4t ≤ ūni
−Ui/4xi . Next, we try to find an upper bound of − Ui

4xi .

− Ui
4xi

=
1

4xi4x̃i+ 1
2

∫ x
i+1

2

x̃i

uhs
i+ 1

2

(
ξi+

1
2 (x)

)
x
dx− 1

4xi4x̃i− 1
2

∫ x̃i

x
i− 1

2

uhs
i− 1

2

(
ξi−

1
2 (x)

)
x
dx

+

(
si+

1
2 (−1)

4xi4x̃i+ 1
2

+
si−

1
2 (1)

4xi4x̃i− 1
2

)
uh(x̃i) +

αi+ 1
2

4xi4x̃i+ 1
2

u−h (xi+ 1
2
) +

αi− 1
2

4xi4x̃i− 1
2

u+
h (xi− 1

2
). (3.23)

For simplicity, we denote ti+
1
2 (x) := si+

1
2

(
ξi+

1
2 (x)

)
x
. By using the chain rule, we know that

ti+
1
2 (x) = s

i+ 1
2

ξ ξ
i+ 1

2
x =

2

4x̃i+ 1
2

(
3ξi+ 1

2
+ 15(3ξ2

i+ 1
2

− 1)
x− x̃i+ 1

2

4x̃i+ 1
2

)
.

Notice that ti+
1
2 (x) is linear in x, and it is easy to get

max
x∈[x̃i,xi+1

2
]
ti+

1
2 (x) =

6

4x̃i+ 1
2

h(ξi+ 1
2
), max

x∈[x
i− 1

2
,x̃i]
{−ti−

1
2 (x)} =

6

4x̃i− 1
2

h(−ξi+ 1
2
),

Also, it is obvious that

h(ξ) ≤ h(|ξ|), ξ ∈ [−1, 1].

Hence, the upper bound for the integration terms in (3.23) can be estimated as

1

4xi4x̃i+ 1
2

∫ x
i+1

2

x̃i

uht
i+ 1

2 (x)dx− 1

4xi4x̃i− 1
2

∫ x̃i

x
i− 1

2

uht
i− 1

2 (x)dx

≤
∫ xi+1

2
x̃i

uh dx

4xi
max

x∈[x̃i,xi+1
2

]

ti+
1
2 (x)

4x̃i+ 1
2

+

∫ x̃i
x
i− 1

2

uh dx

4xi
max

x∈[x
i− 1

2
,x̃i]

−ti−
1
2 (x)

4x̃i− 1
2

≤ 6ūni
4x2

max
i
h(|ξi+ 1

2
|). (3.24)

For the other terms in (3.23), we can use the same idea for solving ph(xi+ 1
2
) in (3.9) and map x ∈ Ii

onto the standard element η ∈ [−1, 1]. Then we can compute the point value of uh as an integration

uh(x(η0)) := u0(η0) =
1

2

∫ 1

−1
u0(η)r(η0, η)dη, ∀η0 ∈ [−1, 1],

where

r(η0, η) = 1 + 3η0η +
5

4
(3η2

0 − 1)(3η2 − 1).

Hence, the test terms in (3.23) become(
si+

1
2 (−1)

4xi4x̃i+ 1
2

+
si−

1
2 (1)

4xi4x̃i− 1
2

)
uh(x̃i) +

αi+ 1
2

4xi4x̃i+ 1
2

u−h (xi+ 1
2
) +

αi− 1
2

4xi4x̃i− 1
2

u+
h (xi− 1

2
)

=
1

24xi

∫ 1

−1
u0(η)R(η)dη ≤ ūni

4xi
max

η∈[−1,1]
R(η), (3.25)

where

R(η) =

[
si+

1
2 (−1)

4x̃i+ 1
2

+
si−

1
2 (1)

4x̃i− 1
2

]
r(ξ0, η) +

αi+ 1
2

4x̃i+ 1
2

r(1, η) +
αi− 1

2

4x̃i− 1
2

r(−1, η).

8



By simple computations, we know that

max
η∈[−1,1]

|r(η0, η)| ≤ `(η0) ≤ 9, η0 ∈ [−1, 1].

Since si+
1
2 (ξ) = r(ξi+ 1

2
, ξ), we have

R(η) ≤

[
|r(ξi+ 1

2
,−1)|

4x̃i+ 1
2

+
|r(ξi− 1

2
, 1)|

4x̃i− 1
2

]
|r(ξ0, η)|+

αi+ 1
2

4x̃i+ 1
2

|r(1, η)|+
αi− 1

2

4x̃i− 1
2

|r(−1, η)|

≤ 18

4x
`(ξ0) +

18

4x
max
i
αi+ 1

2
. (3.26)

Combing Eqs. (3.23), (3.24), (3.25), and (3.26), we have

− Ui
4xi

≤ 6ūni
4x2

[
max
i
h(|ξi+ 1

2
|) + 3`(ξ0) + 3 max

i
αi+ 1

2

]
, (3.27)

and thus can obtain the conclusion.

Remark 3.1. Notice that we have only given a very rough estimate of the upper bound of − Ui
4xi in

(3.27) to show that ūni + 4t
4xiUi can be non-negative with a small 4t. In practice, the real upper bound

of − Ui
4xi may be much smaller and hence 4t can be much larger than the one in (3.20).

Now, we proceed to analyze Ui+1 and Ui−1. In this step, we need to find the requirement on αi+ 1
2

to make Ui+1 ≥ 0. We assume that uh(x) ≥ 0 in Ii+1 = [xi+ 1
2
, xi+ 3

2
]. For simplicity, we map x ∈ Ii+1

onto the standard element [−1, 1]:

x = xi+1 +
4xi+1

2
η, η ∈ [−1, 1],

and consider uh as a function of η on the standard element:

uh(x(η)) = u1(η) = a0 + a1L1(η) + a2L2(η), η ∈ [−1, 1].

Notice that Ui+1 is linear with respect to uh and

a0 =
1

2

∫ 1

−1
u1(x(η))dη ≥ 0,

We only need to consider the case with

u1(η) = 1 + a1L1(η) + a2L2(η), η ∈ [−1, 1].

We first illustrate a lemma to show the equivalent requirement on a1 and a2 when u1 ≥ 0.

Lemma 3.3. u1(η) = 1 + a1L1(η) + a2L2(η) ≥ 0 for any η ∈ [−1, 1] if and only if{
1± a1 + a2 ≥ 0, when |a1| ≥ 3a2,
a21
3 + (a2 − 1)2 ≤ 1, when |a1| < 3a2.

Proof. If the parabola u1(η) opens downward, i.e. a2 ≤ 0, then u1(η) ≥ 0 in [−1, 1] if and only if

u1(−1) = 1− a1 + a2 ≥ 0 and u1(1) = 1 + a1 + a2 ≥ 0. (3.28)

9



If the parabola u1(η) opens upward and the symmetry axis − a1
3a2

lies out of [−1, 1], i.e a2 > 0 and
|a1|
3a2
≥ 1, then u1(η) ≥ 0 in [−1, 1] if and only if (3.28) is satisfied. Finally, if the parabola u1(η) opens

upward and the symmetry axis lies within [−1, 1], i.e. a2 > 0 and |a1|3a2
< 1, then u1 ≥ 0 if and only if

minu1 = 1− 3a22+a21
6a2

≥ 0, that is

a2
1

3
+ (a2 − 1)2 ≤ 1.

Combing all the cases above, we get the conclusion.

Figure 3.1: Corresponding region in a1a2 plane when u1(η) ≥ 0 for η ∈ [−1, 1].

We can easily see that (a1, a2) falls into the shaded region in Figure 3.1 when the requirements in
the above lemma are satisfied. Since this region is convex and Ui+1 is linear with respect to uh, we
only need to consider the following two special cases.

1. Case 1: a1 = 0 and a2 = −1.

In this case, we can get

Ui+1 =
3(ξ0 + 1)

16

[
45ξ4

i+ 1
2

+ 30ξ3
i+ 1

2

− 14ξi+ 1
2
− 2ξi+ 1

2
+ 13− 3(ξi+ 1

2
+ 1)2(5ξ2

i+ 1
2

+ 1)ξ0

]
.

To make Ui+1 ≥ 0, we need

ξ0 ≤ min
ξ
i+1

2
∈[−1,1]

45ξ4
i+ 1

2

+ 30ξ3
i+ 1

2

− 14ξ2
i+ 1

2

− 2ξi+ 1
2

+ 13

3(ξi+ 1
2

+ 1)2(5ξ2
i+ 1

2

+ 1)
=

29

9
− 26

√
6

27
≈ 0.8635. (3.29)

Notice that ξi+ 1
2

is a function of ξ0 and 4xi
4xi+1

as shown in (3.6), we would like to adjust ξ0 such

that Ui+1 ≥ 0 for any ξi+ 1
2
∈ [−1, 1]. That is, we do not restrict the mesh sizes ratio 4xi

4xi+1
.

2. Case 2: the boundary of the ellipse, i.e.,
a21
3 + (a2 − 1)2 = 1.

10



In this case, we have

Ui+1 =
ξ0 + 1

4
(Γ + b1a1 + b2a2) ,

where

Γ =
4

ξ0 + 1

[
αi+ 1

2
+ 1 + 3ξ2

i+ 1
2

+
5

4
(3ξ2

i+ 1
2

− 1)2

]
,

b1 = ξi+ 1
2
(ξi+ 1

2
+ 1)(15ξ2

i+ 1
2

+ 1) + 4− Γ,

b2 = Γ− 3

4

(
45ξ4

i+ 1
2

+ 30ξ3
i+ 1

2

− 14ξ2
i+ 1

2

− 2ξi+ 1
2

+ 13
)

+
9ξ0

4
(ξi+ 1

2
+ 1)2(5ξ2

i+ 1
2

+ 1).

To make Ui+1 ≥ 0, we need

Γ + b1a1 + b2a2 = Γ + b2 + b1a1 + b2(a2 − 1) ≥ 0,

i.e.

Γ + b2 ≥ −[b1a1 + b2(a2 − 1)].

Since
a21
3 + (a2 − 1)2 = 1, we need to have

Γ + b2 ≥
√

3b21 + b22,

which is equivalent to the following requirement on the penalty coefficient

αi+ 1
2
≥

[ξi+ 1
2
(ξi+ 1

2
+ 1)(15ξ2

i+ 1
2

+ 1) + 4]2

6(5ξ2
i+ 1

2

+ 1)(ξi+ 1
2

+ 1)2
− 5

4
(3ξ2

i+ 1
2

− 1)2 − 3ξ2
i+ 1

2

− 1

:= g(dxi+ 1
2
, ξ0). (3.30)

where we have used (3.6) and represent ξi+ 1
2

as a function of xi0 and dxi+ 1
2
. The analysis above can

be summarized as the following lemma.

Lemma 3.4. Suppose uh ≥ 0 in Ii+1 and the conditions in (3.29) and (3.30) are satisfied, then
Ui+1 ≥ 0. Similarly, if uh ≥ 0 in Ii−1 and

ξ0 ≥
26
√

6

27
− 29

9
and αi− 1

2
≥ g(1/dxi− 1

2
,−ξ0), (3.31)

then we have Ui−1 ≥ 0.

Based on the above lemma, we should choose ξ0 ∈ [26
√

6
27 −

29
9 ,

29
9 −

26
√

6
27 ]. Also, αi+ 1

2
at a fixed

boundary xi+ 1
2

should satisfy

αi+ 1
2
≥ max{g(dxi+ 1

2
, ξ0), g(1/dxi+ 1

2
,−ξ0)} := g̃(dxi+ 1

2
, ξ0). (3.32)

Now we assume dxi+ 1
2

is a given constant, and try to find ξ0 such that αi+ 1
2

can be minimized. By

simple computations, we have

min
ξ0

g̃(dxi+ 1
2
, ξ0) = 1/4,
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and there are two critical points

ξ1
0 =

dx2
i+ 1

2

− 2
√

3dxi+ 1
2
− 1

dx2
i+ 1

2

+ 4dxi+ 1
2

+ 1
, ξ2

0 =
dx2

i+ 1
2

+ 2
√

3dxi+ 1
2
− 1

dx2
i+ 1

2

+ 4dxi+ 1
2

+ 1
.

Figure 3.2 shows the plots of g̃(dxi+ 1
2
, ξ0) with respect to ξ0 ∈ [−1, 1] for different given dxi+ 1

2
. If

dxi+ 1
2

= 1, then the mesh is uniform and ξ1
0 and ξ2

0 are the roots of the Legendre polynomial of degree
two,

ξ1
0 = −

√
3

3
, ξ2

0 =

√
3

3
.

Also, for ξ0 = 0, i.e. the dual mesh is generated by the midpoint of the primitive mesh, we have

g̃(1, 0) = 5/12.

When dxi+ 1
2

= 2, we can take

ξ1
0 = −4

√
3− 3

13
, ξ2

0 =
4
√

3 + 3

13
.

When dxi+ 1
2

= 1/2, we can take

ξ1
0 = −4

√
3 + 3

13
, ξ2

0 =
4
√

3− 3

13
.

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(a) dxi+ 1
2
= 1

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(b) dxi+ 1
2
= 2

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(c) dxi+ 1
2
= 1/2

Figure 3.2: Plots of g̃(dxi+ 1
2
, ξ0) for different given dxi+ 1

2
.

Finally, we would like to point out that for fixed dxi+ 1
2
, g̃ →∞ as |ξ0| → 1. Therefore, we cannot

construct third-order MPP technique for the original LDG method, and our conclusion does not violate
that given in [30].

Step 4: PP technique for nonlinear case

In this step, we will discuss the PP technique for nonlinear problems. We assume uh ≥ 0 which
further implies A(uh) ≥ 0. To apply the same analysis for the linear case, we would like to replace
A(uh) in (2.3) by a piecewise quadratic polynomial Ã(x) ≥ 0 such that Ã(x)|Ii ∈ P 2(Ii) and for any
i = 1, · · · , Nx

Ã−
i+ 1

2

= A

(
(uh)−

i+ 1
2

)
, Ã+

i− 1
2

= A

(
(uh)+

i− 1
2

)
, ‖Ã‖L∞(Ii) ≤ C̃‖A(uh)‖L∞(Ii). (3.33)
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Then Ui, Ui+1 and Ui−1 in (3.14), (3.15) and (3.16) can be written as

Ui =
âi+ 1

2

4x̃i+ 1
2

[
−
∫ x

i+1
2

x̃i

Ãsi+
1
2

(
ξi+

1
2 (x)

)
x
dx−A(x̃i)s

i+ 1
2 (−1)− αi+ 1

2
Ã−
i+ 1

2

]

−
âi− 1

2

4x̃i− 1
2

−∫ x̃i

x
i− 1

2

Ãsi−
1
2

(
ξi−

1
2 (x)

)
x
dx+A(x̃i)s

i− 1
2 (1) + αi− 1

2
A+
i− 1

2

 , (3.34)

Ui+1 =

∫ x̃i+1

x
i+1

2

Ãxs
i+ 1

2

(
ξi+

1
2 (x)

)
dx+A+

i+ 1
2

[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.35)

Ui−1 = −
∫ x

i− 1
2

x̃i−1

Ãxs
i− 1

2

(
ξi−

1
2 (x)

)
dx+A−

i− 1
2

[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.36)

The construction of Ã will be discussed in the “Implementation”. Now, we can demonstrate the
positivity of Di in (3.13). Following the same proof of Lemma 3.4 we have

Lemma 3.5. Suppose Ui+1 and Ui−1 are given in (3.35) and (3.36), respectively, then Ui+1 ≥ 0 and
Ui−1 ≥ 0 under the conditions

26
√

6

27
− 29

9
≤ ξ0 ≤

29

9
− 26

√
6

27
and αi− 1

2
≥ max

{
g(1/dxi− 1

2
,−ξ0), g(dxi− 1

2
, ξ0)

}
, (3.37)

where g is defined in (3.30).

The estimate of Ui given in (3.34) can be obtained below.

Lemma 3.6. Suppose uh ≥ 0 in Ii, then ūh + 2∆t
∆xi

Ui ≥ 0 under the condition

4t ≤ µ24x2

12µ1C̃ maxu a2(u)
[
maxi h(|ξi+ 1

2
|) + 3`(ξ0) + 3 maxi αi+ 1

2

] , (3.38)

where h and ` were define in (3.21) and (3.22), respectively, and µ1 and µ2 are the parameters used
in the following norm equivalence for P 2 polynomials:

µ1‖uh‖L∞(Ii) ≥ ū
n
i ≥ µ2‖uh‖L∞(Ii).

Proof. Following the same analysis for (3.27), we have

− Ũi
4xi

≤ 6ūni maxu a(u)

4x2

[
max
i
h(|ξi+ 1

2
|) + 3`(ξ0) + 3 max

i
αi+ 1

2

]
.

Therefore, we have

Ã+
∆t

∆xi maxu a(u)
Ũi ≥ 0

under the condition (3.20). Now, we find the relationship between Ã and ūh:

Ã ≤ µ1‖Ã‖L∞(Ii) ≤ µ1C̃‖A(uh)‖L∞(Ii) ≤ µ1C̃ max
u

a(u)‖uh‖L∞(Ii) ≤
µ1C̃

µ2
max
u

a(u)ūh,

where in the first and last steps, we applied the norm equivalence, step two requires Lemma 3.7 and
the third step is the mean value theorem.

The above two lemmas yield a straightforward corollary.

Corollary 3.1. Suppose the conditions in the above two lemmas are satisfied, if unh ≥ 0, then ūn+1 ≥ 0.
Moreover, if unh ≤ 0, then ūn+1 ≤ 0.
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Step 5: MPP technique for the nonlinear case

Now we can proceed to the MPP technique. We also need to replace A(uh) in (2.3) with a piecewise
quadratic polynomial Ã(x) such that (3.33) is satisfied and∫ m

0
a(u) du ≤ Ã(x) ≤

∫ M

0
a(u) du.

and the result is given in the following theorem.

Theorem 3.1. Suppose m ≤ uh ≤ M , and the conditions in Lemmas 3.5 and 3.6 are satisfied, then
we have m ≤ ūn+1

i ≤M .

Proof. We only prove m ≤ ūn+1
i , since the other inequality can be obtained following the same lines

with minor changes. Define vh = uh −m, then vh ≥ 0 and define

B(vh) = A(uh) =

∫ uh

0
a(u) du =

∫ vh

−m
a(v +m) dv. (3.39)

Therefore, Di in (3.13) can be written as

Di −m = v̄ni +
24t
4xi

Vi +
24tâi+ 1

2

4xi4x̃i+ 1
2

Vi+1 +
24tâi− 1

2

4xi4x̃i− 1
2

Vi−1,

where

Vi =
âi+ 1

2

4x̃i+ 1
2

[
−
∫ x

i+1
2

x̃i

B(vh)si+
1
2

(
ξi+

1
2 (x)

)
x
dx−B(vh(x̃i))s

i+ 1
2 (−1)− αi+ 1

2
B(v−h (xi+ 1

2
))

]

−
âi− 1

2

4x̃i− 1
2

−∫ x̃i

x
i− 1

2

B(vh)si−
1
2

(
ξi−

1
2 (x)

)
x
dx+B(vh(x̃i))s

i− 1
2 (1) + αi− 1

2
B(v+

h (xi− 1
2
))

 ,
Vi+1 =

∫ x̃i+1

x
i+1

2

B(vh)xs
i+ 1

2

(
ξi+

1
2 (x)

)
dx+B(v+

h (xi+ 1
2
))
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
,

Vi−1 = −
∫ x

i− 1
2

x̃i−1

B(vh)xs
i− 1

2

(
ξi−

1
2 (x)

)
dx+B(v−h (xi− 1

2
))
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
.

It is easy to check that in the definition of B in (3.39), we can replace the lower limiter in the integral by
any constants without changing the value of Di. Therefore, we may assume B(vh) =

∫ vh
0 a(v+m) dv.

Now, following (3.33), we can replace B by B̃ to compute Di. Then the analyses in previous steps
can be applied directly to obtain Di −m ≥ 0, which further yield Di ≥ m. By Lemma 3.1, we have
m ≤ ūn+1

i .

Implementation

In this subsection, we will demonstrate how to implement the MPP LDG method. WLOG, we assume
A(u) =

∫ u
0 a(u) du and m ≤ u ≤M . To construct Ã, we follow steps listed below

1. Calculate a quadratic polynomial p2 ∈ P 2(Ii) such that p2 is the interpolation of A(uh) at
x = xi− 1

2
, x = xi and x = xi+ 1

2
.

2. Compute a linear function p1 ∈ P 1(Ii) such that p1 is the interpolation of A(uh) at x = xi− 1
2

and x = xi+ 1
2
.
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3. Apply a limiter to p2: p̃ = θp2 + (1− θ)p1.

4. Choose the largest possible θ ∈ [0, 1] such that
∫m

0 a(u) du ≤ p̃ ≤
∫M

0 a(u) du, and use p̃ as Ã.

Lemma 3.7. Suppose Ã is constructed above, then there exists a positive constant C such that

‖Ã‖L∞(Ii) ≤ C‖A(uh)‖L∞(Ii).

Proof. It is easy to see that

‖p2‖L∞(Ii) ≤ C‖A(uh)‖L∞(Ii), ‖p1‖L∞(Ii) ≤ ‖A(uh)‖L∞(Ii).

Finally, the conclusion follows from triangle inequality directly.

With Theorem 3.1, the numerical cell average ūn+1
i ∈ [m,M ]. However, the numerical approxima-

tion un+1
h may be out of the bounds. Therefore, we also need to apply some limiter to un+1

h and the
procedure is given below. For simplicity, we will drop the superscript n+ 1.

1. Set up a small number ε = 10−13.

2. If ūh ≤ m+ ε or ūh ≥M − ε, take uh = ūh. Then skip the following steps.

3. Define mi = minx∈Ii uh(x) and Mi = maxx∈Ii uh(x). Set θ = 1. If mi < m or Mi > M , then
take

θ = max

{
ūh −m− ε
ūh −mi

,
ūh −M + ε

ūh −Mi

}
.

4. Apply the slope limiter ũh = ūh + θ(uh − ūh), and use ũh as the new numerical approximation.

In [27], the authors have proved that the limiter keeps the high-order accuracy.

3.1 High-order time integrations

All the previous analyses are based on first-order Euler forward time discretization. We can also use
strong stability preserving (SSP) high-order time discretizations to solve the ODE system wt = Lw.
More details of these time discretizations can be found in [24, 23, 13]. In this paper, we use the
third-order SSP Runge-Kutta method [24]

w(1) = wn + ∆tL(wn),

w(2) =
3

4
wn +

1

4

(
w(1) + ∆tL(w(1))

)
, (3.40)

wn+1 =
1

3
wn +

2

3

(
w(2) + ∆tL(w(2))

)
,

and the third order SSP multi-step method [23]

wn+1 =
16

27
(wn + 3∆tL(wn)) +

11

27

(
wn−3 +

12

11
∆tL(wn−3)

)
. (3.41)
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4 LDG scheme on overlapping meshes in two space dimensions

In this section, we will construct the third-order MPP LDG scheme on overlapping meshes in two
space dimensions and, for simplicity, we study the following pure diffusion equation over the domain
Ω = [0, 1]× [0, 1], 

ut = (a(u)p)x + (b(u)q)y,
p = A(u)x,
q = B(u)y,

(4.1)

subject to periodic boundary conditions, where A(u) =
∫ u

a(t)dt and B(u) =
∫ u

b(t)dt.
We first define the primitive mesh for the primary variable u which is a regular rectangular de-

composition of Ω. Let 0 = x 1
2
< x 3

2
< · · · < xNx+ 1

2
= 1 and 0 = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= 1 be grid

points in x and y directions, respectively. We denote the i, j-th cell as

Iij = Ii × Jj , i = 1, · · · , Nx, j = 1, · · · , Ny.

where Ii = [xi− 1
2
, xi+ 1

2
] and Jj = [yj− 1

2
, yj+ 1

2
]. Moreover, we denote

∆xi = xi+ 1
2
− xi− 1

2
, xi =

xi− 1
2

+ xi+ 1
2

2
, ∆yj = yj+ 1

2
− yj− 1

2
, yj =

yj− 1
2

+ yj+ 1
2

2
.

Moreover, we define ∆x = mini ∆xi and ∆y = minj ∆yj . We also move each cell horizontally to
obtain the P-mesh: Pi+ 1

2
,j = Pi+ 1

2
× Jj , where

Pi+ 1
2

= [x̃i, x̃i+1], x̃i = xi +
∆xi

2
ξ0, ξ0 ∈ [−1, 1], i = 1, 2, · · · , Nx, (4.2)

with x̃0 = x̃Nx − 1. Similarly, we can define the Q-mesh: Qi,j+ 1
2

= Ii ×Qj+ 1
2
, where

Qj+ 1
2

= [ỹj , ỹj+1], ỹj = yj +
∆yj

2
η0, η0 ∈ [−1, 1], j = 1, 2, · · · , Ny, (4.3)

with ỹ0 = ỹNy − 1. The P-mesh and Q-mesh are used for the auxiliary variables p and q, respectively.
Similar to the problem in one space dimension, we can also define P 1

2
,j = ([0, x̃1] ∪ [x̃Nx , 1])× Jj and

Qj, 1
2

= Ii × ([0, ỹ1] ∪ [ỹNy , 1]).

We define the finite element spaces to be

Vh := {uh : uh|Iij ∈ Qk(Iij), i = 1, · · · , Nx, j = 1, · · · , Ny},
Ph := {ph : ph|P

i+1
2 ,j
∈ Qk(Pi+ 1

2
,j), i = 1, · · · , Nx, j = 1, · · · , Ny},

Qh := {qh : qh|Q
i,j+1

2

∈ Qk(Qi,j+ 1
2
), i = 1, · · · , Nx, j = 1, · · · , Ny},

where Qk is the tensor product polynomials of degree k. Given u ∈ Vh, we denote u+
i− 1

2
,j

, u−
i+ 1

2
,j

,

u+
i,j− 1

2

, u−
i,j+ 1

2

to be the traces of u on the four edges of Iij , respectively. Likewise for the traces of

Pi+ 1
2
,j and Qi,j+ 1

2
along x = x̃i, x = x̃i+1 and y = ỹj , y = ỹj+1, respectively. Moreover, we use

[u] = u+− u− and {u} = 1
2(u+ + u−) as the jump and average of u at the cell interfaces, respectively.

Now, we can introduce the LDG method on the overlapping meshes: to find (uh, ph, qh) ∈ Vh ×
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Ph ×Qh, such that for any test functions (v, w, z) ∈ Vh × Ph ×Qh, we have∫
Iij

(uh)tvdxdy =−
∫
Iij

a(uh)phvxdxdy +

∫
Jj

âi+ 1
2
,j p̂i+ 1

2
,jv
−
i+ 1

2
,j
dy −

∫
Jj

âi− 1
2
,j p̂i− 1

2
,jv

+
i− 1

2
,j
dy,

−
∫
Iij

b(uh)qhvydxdy +

∫
Ii

b̂i,j+ 1
2
q̂i,j+ 1

2
v−
i,j+ 1

2

dx−
∫
Ii

b̂i,j− 1
2
q̂i,j− 1

2
v+
i,j− 1

2

dx, (4.4)∫
P
i+1

2 ,j

phwdxdy =−
∫
P
i+1

2 ,j

A(uh)wxdxdy +

∫
Jj

A(uh(x̃i+1))w−i+1,jdy −
∫
Jj

A(uh(x̃i))w
+
i,jdy, (4.5)∫

Q
i,j+1

2

qhzdxdy =−
∫
Q

i,j+1
2

B(uh)zydxdy +

∫
Ii

B(uh(ỹj+1))z−i,j+1dx−
∫
Ii

B(uh(ỹj))z
+
i,jdx. (4.6)

The numerical flux â along x = xi+ 1
2

and b̂ along y = yj+ 1
2

are taken as

âi+ 1
2
,j =

[A(uh)]i+ 1
2
,j

[uh]i+ 1
2
,j

, b̂i,j+ 1
2

=
[B(uh)]i,j+ 1

2

[uh]i,j+ 1
2

,

where [s]i+ 1
2
,j := s+

i+ 1
2
,j
−s−

i+ 1
2
,j

denotes the jump of a function s across the cell boundary {xi+ 1
2
}×Jj .

Likewise for [s]i,j+ 1
2
. Moreover, we choose

p̂i+ 1
2
,j = ph(xi+ 1

2
, y) +

αi+ 1
2
,j

∆x̃i+ 1
2
,j

[uh]i+ 1
2
,j , q̂i,j+ 1

2
= qh(x, yj+ 1

2
) +

αi,j+ 1
2

∆x̃i,j+ 1
2

[uh]i,j+ 1
2
.

To approximate the integral on Ii and Jj in (4.4)-(4.6), we use the three-point Gaussian quadrature.
For each γ = 1, 2, 3, we can construct a quadratic polynomial ψγ(x) in Jj such that{

ψγ(yjσ) = 1, σ = γ,

ψγ(yjσ) = 0, σ 6= γ,

where yjσ, σ = 1, 2, 3 are the three quadrature points in the Gaussian quadrature for Jj . Likewise for
xiσ. In (4.5), we take w(x, y) = ψγ(y)w̃(x), where w̃(x) is a quadratic polynomial on Pi+ 1

2
, to obtain∫

P
i+1

2

ph(·, yjγ)w̃dx = −
∫
P
i+1

2

A(uh(·, yjγ))w̃xdx+A(uh(x̃i+1, y
j
γ))w̃−i+1 −A(uh(x̃i, y

j
γ))w̃+

i , (4.7)

which is similar to (2.3) and we can follow the same analyses in Section 3 to construct the MPP
technique of problems in two space dimensions. Therefore, we only demonstrate the algorithm as
follows and omit the proof.

1. Step 1: Modify A(uh) and B(uh). We only demonstrate how to modify A(uh) along the line
segment I = Ii×{yjγ} and the procedure can be applied to B(uh) with minor changes. WLOG,
we assume m ≤ u ≤M .

(a) Calculate a quadratic polynomial p2 ∈ P 2(I) such that p2 is the interpolation of A(uh) at
x = xi− 1

2
, x = xi, x = xi+ 1

2
along I.

(b) Compute a linear function p1 ∈ P 1(I) such that p1 is the interpolation of A(uh) at x = xi− 1
2

and x = xi+ 1
2

along I.

(c) Apply a limiter to p2: p̃ = θp2 + (1− θ)p1.
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(d) Choose the largest possible θ ∈ [0, 1] such that
∫m

0 a(u) du ≤ p̃ ≤
∫M

0 a(u) du, and use p̃ as

Ã.

2. Step 2: Compute ph(xi+ 1
2
, yγ). We use Ã to replace A in (4.7) to obtain∫

P
i+1

2

ph(·, yjγ)w̃dx = −
∫
P
i+1

2

Ã(uh(·, yjγ))w̃xdx+ Ã(x̃i+1, y
j
γ)w̃−i+1 − Ã(x̃i, y

j
γ)w̃+

i ,

and take suitable test function w̃ to obtain ph(xi+ 1
2
, yjγ). One example is (3.10).

3. Step 3: Update uh in (4.4). We use the values of ph(xi+ 1
2
, yjγ) and qh(xiγ , yj+ 1

2
) and three-point

Gaussian quadrature to approximate the integrals on the cell interfaces. Following Lemma 3.5,
we take

26
√

6

27
− 29

9
≤ ξ0, η0 ≤

29

9
− 26

√
6

27
,

and

αi− 1
2
,j ≥ max

{
g(1/dxi− 1

2
,−ξ0), g(dxi− 1

2
, ξ0)

}
, αi,j− 1

2
≥ max

{
g(1/dyj− 1

2
,−η0), g(dyj− 1

2
, η0)

}
,

where

dxi− 1
2

=
∆xi−1

∆xi
, dyj− 1

2
=

∆yj−1

∆yj
.

Moreover, following Lemma 3.6, we also need to choose

4t ≤ µ24x2

12µ1C̃ maxu a2(u)
[
maxi h(|ξi+ 1

2
|) + 3`(ξ0) + 3 maxi,j αi+ 1

2
,j

] ,
and

4t ≤ µ24y2

12µ1C̃ maxu b2(u)
[
maxi h(|ηi+ 1

2
|) + 3`(η0) + 3 maxi,j αi,j+ 1

2

] ,
then we can obtain m ≤ ūn+1

h ≤M.

4. Step 4: Apply the bound-preserving limiter.

(a) Set up a small number ε = 10−13.

(b) If ūh ≤ m+ ε or ūh ≥M − ε, take uh = ūh. Then skip the following steps.

(c) Define
mx
i,j = min

x∈Ii,γ=1,2,3
uh(x, yjγ), Mx

i,j = max
x∈Ii,γ=1,2,3

uh(x, yjγ).

We can also define my
i,j and My

i,j analogously. Let

mi,j = min{mx
i,j ,m

y
i,j}, Mi,j = max{Mx

i,j ,M
y
i,j},

and set θ = 1. If mi,j < m or Mi,j > M , then we take

θ = max

{
ūh −m− ε
ūh −mi,j

,
ūh −M + ε

ūh −Mi,j

}
.

(d) Compute ũh = ūh + θ(uh − ūh), and use ũh as the new numerical approximation.

Before, we finish this section, we would like to demonstrate the following remarks.
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Remark 4.1. In step 1, we use Ã to replace A(uh) along Ii × {yjγ}. We can also extend Ã to the
whole cell Ii,j such that Ã ∈ Vh, and use the new Ã as A in (4.5) to compute the integrals exactly.

Remark 4.2. For linear equations, we can take piecewise P k polynomials as the finite element space.
In this case, â is a constant, hence we only need to evaluate

∫
Jj
p(uh) dy instead of ph at the quadrature

points. Therefore, in (4.5), we can take w as a function of x only to evaluate
∫
Jj
p(uh) dy.

Remark 4.3. Due to the nature of overlapping meshes, it is not easy to extend the scheme to un-
structured meshes. The technique for triangular meshes will be discussed in the future.

5 Numerical examples

In this section, we provide numerical experiments to demonstrate the performance of the third-order
MPP LDG method. For simplicity, uniform primitive meshes (dxi+ 1

2
= 1 for all i) are used in all

numerical examples. In this case, all penalty parameters αi+ 1
2

at different cell boundaries are in fact

the same and hence we simply rewrite it as α. We test different offsets of the auxiliary mesh in each
numerical example. For ξ0 = 0, we take the penalty parameter as α = 0.42, and for ξ0 =

√
3/3, we

take α = 0.25. We use the third-order TVD Runge-Kutta method for time discretization and the
third-order LDG scheme on overlapping meshes for the space discretization.

5.1 One-dimensional numerical tests

Example 5.1. We consider the following linear heat equation{
ut = uxx,
u(x, 0) = sin(x) + 1,

(5.1)

on [0, 2π] with a 2π-periodic boundary condition.

The exact solution is u(x, t) = e−t sin(x) + 1. Numerical errors at T = 1 with different values of
ξ0 are listed in Table 5.1. We observe the expected third-order accuracy for our MPP scheme.

Table 5.1: Accuracy test for the linear heat equation

number of LDG without limiter LDG with limiter
cells L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0
10 3.05E-04 – 8.61E-04 – 2.33E-04 – 5.91E-04 –
20 3.85E-05 2.99 1.11E-04 2.95 2.84E-05 3.04 7.41E-05 2.99
40 4.83E-06 3.00 1.40E-05 2.99 3.52E-06 3.01 9.28E-06 3.00
80 6.04E-07 3.00 1.75E-06 3.00 4.39E-07 3.00 1.16E-06 3.00
160 7.55E-08 3.00 2.19E-07 3.00 5.49E-08 3.00 1.45E-07 3.00
320 9.43E-09 3.00 2.74E-08 3.00 6.86E-09 3.00 1.81E-08 3.00

ξ0 =
√

3/3
10 3.09E-04 – 1.03E-03 – 2.40E-04 – 7.63E-04 –
20 3.76E-05 3.04 1.26E-04 3.03 2.98E-05 3.01 9.62E-05 2.99
40 4.67E-06 3.01 1.57E-05 3.01 3.73E-06 3.00 1.20E-05 3.00
80 5.83E-07 3.00 1.96E-06 3.00 4.66E-07 3.00 1.51E-06 3.00
160 7.28E-08 3.00 2.44E-07 3.00 5.82E-08 3.00 1.88E-07 3.00
320 9.10E-09 3.00 3.05E-08 3.00 7.28E-09 3.00 2.35E-08 3.00
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Example 5.2. We consider the following nonlinear heat equation{
ut = (e0.2uux)x,
u(x, 0) = sin(x) + 1,

(5.2)

on [0, 2π] with a 2π-periodic boundary condition.

For this nonlinear problem, the exact solution is not easy to derive. However, when computing
the numerical error for N cells, we can treat the numerical solution with 2N cells as the reference
solution. Numerical errors at T = 1 are listed in Table 5.2. We can see that the MPP limiter and the
replacement of A by Ã will not harm the original third-order accuracy of the LDG method.

Table 5.2: Accuracy test for the nonlinear heat equation.

number of LDG without limiter LDG with limiter
cells L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0
10 2.32E-04 – 8.31E-04 – 1.84E-04 – 5.92E-04 –
20 2.93E-05 2.99 1.04E-04 2.99 2.22E-05 3.05 7.41E-05 3.00
40 3.67E-06 3.00 1.32E-05 2.98 2.75E-06 3.01 9.25E-06 3.00
80 4.59E-07 3.00 1.65E-06 3.00 3.43E-07 3.00 1.15E-06 3.00
160 5.74E-08 3.00 2.06E-07 3.00 4.29E-08 3.00 1.44E-07 3.00
320 7.20E-09 2.99 2.62E-08 2.98 5.36E-09 3.00 1.80E-08 3.00

ξ0 =
√

3/3
10 2.38E-04 – 9.79E-04 – 1.88E-04 – 7.32E-04 –
20 2.88E-05 3.04 1.19E-04 3.05 2.33E-05 3.01 9.31E-05 2.97
40 3.57E-06 3.01 1.48E-05 3.01 2.91E-06 3.00 1.16E-05 3.00
80 4.46E-07 3.00 1.84E-06 3.00 3.64E-07 3.00 1.45E-06 3.00
160 5.57E-08 3.00 2.30E-07 3.00 4.54E-08 3.00 1.82E-07 3.00
320 6.96E-09 3.00 2.89E-08 3.00 5.68E-09 3.00 2.27E-08 3.00

Example 5.3. We consider the following linear convection-diffusion equation{
ut + ux = εuxx,
u(x, 0) = sin(x),

(5.3)

on [0, 2π] with a 2π-periodic boundary condition.

The exact solution is u(x, t) = exp(−εt)sin(x− t). We take ε = 0.001. Numerical errors at T = 1
are listed in Table 5.3. We can also observe the expected third-order accuracy for the MPP LDG
scheme. Therefore, the technique also works for convection-diffusion equations.

Example 5.4. We consider the following porous medium equation

ut = (um)xx, m > 1. (5.4)

This is a classical example of degenerate parabolic equations. We use the Barenblatt solution

Bm(x, t) = t−k
[(

1− k(m− 1)

2m

|x|2

t2k

)
+

] 1
m−1

, (5.5)

where k = 1
m+1 . This is an exact solution to the porous medium equation in one space dimension

with compact support. The initial condition is taken to be Bm(x, 1), and the numerical solution is
computed to T = 2. We take ξ0 = 0 with α = 0.42, and ξ0 =

√
3/3 with α = 0.25, respectively.
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Table 5.3: Accuracy test for the linear convection-diffusion equation.

number of LDG without limiter LDG with limiter
cells L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0
10 8.56E-04 – 2.59E-03 – 8.57E-04 – 2.59E-03 –
20 1.06E-04 3.01 3.12E-04 3.05 1.06E-04 3.01 3.12E-04 3.05
40 1.32E-05 3.01 3.90E-05 3.00 1.32E-05 3.01 3.91E-05 3.00
80 1.63E-06 3.02 4.78E-06 3.03 1.64E-06 3.01 4.81E-06 3.02
160 1.99E-07 3.04 5.74E-07 3.06 2.01E-07 3.03 5.81E-07 3.05
320 2.37E-08 3.07 6.63E-08 3.11 2.42E-08 3.05 6.79E-08 3.10

ξ0 =
√

3/3
10 8.56E-04 – 2.59E-03 – 8.56E-04 – 2.59E-03 –
20 1.06E-04 3.01 3.11E-04 3.06 1.06E-04 3.01 3.12E-04 3.06
40 1.32E-05 3.01 3.88E-05 3.01 1.32E-05 3.01 3.88E-05 3.00
80 1.63E-06 3.02 4.73E-06 3.03 1.63E-06 3.02 4.75E-06 3.03
160 1.98E-07 3.04 5.64E-07 3.07 2.00E-07 3.03 5.68E-07 3.06
320 2.37E-08 3.06 6.46E-08 3.13 2.40E-08 3.06 6.53E-08 3.12

In Figure 5.1, we take m = 8 and compare the original numerical solutions without limiter and
the numerical solutions with the MPP limiter. For the numerical solutions without limiter, we can
see that there are significant undershoots near the foot of the solutions. While our MPP limiter
keeps the solutions strictly non-negative in the whole computational domain. Figure 5.2 shows the
numerical solutions with limiter for different values of m. We can see that the MPP LDG scheme
on overlapping meshes resolves the discontinuities in the solutions quite well and keeps the solution
strictly non-negative.

Example 5.5. We consider the following convection-diffusion Buckley-Leverett equation, which is
often used in reservoir simulations

ut + f(u)x = ε(ν(u)ux)x, x ∈ [0, 1],

where f(u) and ν(u) are given as

f(u) =
u2

u2 + (1− u)2
, ν(u) =

{
4u(1− u), 0 6 u 6 1,
0, otherwise.

The initial and boundary conditions are given as

u(x, 0) =

{
1− 3x, 0 6 x 6 1/3,
0, 1/3 6 x 6 1,

u(0, t) = 1.

We take ε = 0.01 and ξ0 = 0 in our numerical test. Numerical solutions at T = 0.2 with and
without limiter are shown in Figure 5.3. For the solution computed without limiter, there are some
undershoots near the foot of the solution. While our MPP limiter can eliminates all negative values.
Numerical results for ξ0 =

√
3/3 are similar, thus we will not show them here to save space.

5.2 Two-dimensional numerical tests

Example 5.6. We consider the following two-dimensional linear convection-diffusion equation{
ut +∇ · u = ε4u,
u(x, y, 0) = sin(2π(x+ y)),

(5.6)

on [0, 1]× [0, 1] with periodic boundary conditions.
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Figure 5.1: Porous medium equation with m = 8. Comparison of numerical solutions with
and without limiters.
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Figure 5.2: Porous medium equation with limiter. Different m.
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The exact solution is u(x, y, t) = exp(−8π2εt)sin(2π(x+ y − 2t)). We take ε = 0.0001. Numerical
errors at T = 0.1 are listed in Table 5.4. We observe the expected third-order rate of convergence.
Also, the MPP limiter does not harm the original third-order accuracy.

Table 5.4: Accuracy test for the linear convection-diffusion equation in 2D.

number of LDG without limiter LDG with limiter
cells L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0
10 8.68E-04 – 1.83E-03 – 8.68E-04 – 1.83E-03 –
20 1.15E-04 2.92 2.54E-04 2.85 1.15E-04 2.92 2.54E-04 2.85
40 1.42E-05 3.01 3.18E-05 3.00 1.43E-05 3.01 3.19E-05 3.00
80 1.76E-06 3.02 3.92E-06 3.02 1.77E-06 3.02 3.95E-06 3.01
160 2.14E-07 3.04 4.77E-07 3.04 2.16E-07 3.03 4.84E-07 3.03
320 2.52E-08 3.08 5.63E-08 3.08 2.59E-08 3.06 5.79E-08 3.06

ξ0 =
√

3/3
10 8.68E-04 – 1.83E-03 – 8.68E-04 – 1.83E-03 –
20 1.15E-04 2.92 2.54E-04 2.85 1.15E-04 2.92 2.54E-04 2.85
40 1.42E-05 3.01 3.17E-05 3.00 1.43E-05 3.01 3.18E-05 3.00
80 1.75E-06 3.02 3.91E-06 3.02 1.76E-06 3.02 3.93E-06 3.02
160 2.13E-07 3.04 4.75E-07 3.04 2.14E-07 3.04 4.79E-07 3.04
320 2.52E-08 3.08 5.60E-08 3.08 2.56E-08 3.07 5.69E-08 3.07

Example 5.7. We test the two-dimensional porous medium equation

ut = 4(u2), (5.7)

with a periodic boundary condition and the initial condition

u(x, y, 0) =

{
1, if (x, y) ∈ [−1

2 ,
1
2 ]× [−1

2 ,
1
2 ],

0, otherwise,
(5.8)

in the computational domain [−1, 1]× [−1, 1].
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(a) Solutions computed with and without limiter
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(b) Zoom in results near the corner of the solutions

Figure 5.3: Buckley-Leverett equation. ξ0 = 0.
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Following [30], we compared MPP LDG scheme with the one without limiters at time t = 0.0005,
as shown in Figure 5.4. We can see that without the MPP technique, the scheme will yield non-
physical negative values and the numerical approximations will blow up eventually, while the MPP
limiter keeps the numerical solution nonnegative. Numerical results with MPP limiter at a later time
T = 0.005 are shown in Figure 5.5. Here we take ξ0 = 0. Results for ξ0 =

√
3/3 are similar. We can

see that the numerical solution is nonnegative and the scheme is stable. Also, our scheme resolves the
discontinuities in the solutions quite well.
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(a) ξ0 = 0
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(b) ξ0 = 0, zoom in
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(c) ξ0 =
√

3
3

x
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0.15
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(d) ξ0 =
√
3
3
, zoom in

Figure 5.4: Porous medium equation at T = 0.0005. N = 40.

6 Conclusion

In this paper, we have constructed third-order MPP LDG methods on overlapped meshes. The penalty
in the scheme does not depend on the numerical approximation and tends to infinity if the dual mesh
moves towards the primitive mesh. Numerical experiments demonstrated the good performance of the
scheme.
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(a) surface of the solution

x

u
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0.8

1

(b) Cut along y = 0

Figure 5.5: Porous medium equation at T = 0.005. LDG with maximum-principle-satisfying
limiter. ξ0 = 0, N = 160.

References

[1] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numer-
ical solution of the compressible Navier-Stokes equations, Journal of Computational Physics, 131
(1997), 267-279.

[2] Z. Chen, H. Huang and J. Yan, Third order Maximum-principle-satisfying direct discontinuous
Galerkin methods for time dependent convection diffusion equations on unstructured triangular
meshes, Journal of Computational Physics, 308 (2016), 198-217.

[3] E. Chung and C.S. Lee A staggered discontinuous Galerkin method for the convectiondiffusion
equation, Journal of Numerical Mathematics, 20 (2012), 1-31.

[4] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws IV: the multidimensional case, Mathematics of Com-
putation, 54 (1990), 545-581.

[5] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws III: one-dimensional systems, Journal of Computa-
tional Physics, 84 (1989), 90-113.

[6] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws II: general framework, Mathematics of Computation, 52
(1989), 411-435.

[7] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation
laws V: multidimensional systems, Journal of Computational Physics, 141 (1998), 199-224.

[8] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time dependent
convection-diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), 2440-2463.

[9] J. Douglas, Jr., R.E. Ewing and M.F. Wheeler, A time-discretization procedure for a mixed finite
element approximation of miscible displacement in porous media, R.A.I.R.O. Analyse numérique,
17 (1983), 249-256.

26



[10] J. Douglas, Jr., R.E. Ewing and M.F. Wheeler, The approximation of the pressure by a mixed
method in the simulation of miscible displacement, R.A.I.R.O. Analyse numérique, 17 (1983),
17-33.

[11] J. Du, Y. Yang and E. Chung, Local discontinuous Galerkin methods for convection-diffusion
equations on overlapped meshes, submitted.

[12] I.M. Gelfand, Some questions of analysis and differential equations, American Mathematical So-
ciety Translations, 26 (1963), 201-219.

[13] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization
methods, SIAM Review, 43 (2001), 89-112.

[14] H. Guo and Y. Yang, Bound-preserving discontinuous Galerkin method for compressible miscible
displacement problem in porous media, SIAM Journal on Scientific Computing, 39 (2017), A1969-
A1990.

[15] L. Guo and Y. Yang, Positivity-preserving high-order local discontinuous Galerkin method for
parabolic equations with blow-up solutions, Journal of Computational Physics, 289 (2015), 181-
195.

[16] A.E. Hurd and D.H. Sattinger, Questions of existence and uniqueness for hyperbolic equations
with discontinuous coefficients, Transactions of the American Mathematical Society, 132 (1968),
159-174.

[17] E. F. Keller and L. A. Segel, Initiation on slime mold aggregation viewed as instability, Journal
of Theoretical Biology, 26 (1970), 399-415.

[18] X. Li, C.-W. Shu and Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemo-
taxis model, Journal of Scientific Computing, 73 (2017), 943-967.

[19] Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central local discontinuous Galerkin methods
on overlapping cells for diffusion equations, ESAIM: Mathematical Modelling and Numerical
Analysis (M2AN), 45 (2011), 1009-1032.

[20] C. Patlak, Random walk with persistence and external bias, The bulletin of mathematical bio-
physics, 15 (1953), 311338.

[21] T. Qin, C.-W. Shu and Y. Yang, Bound-preserving discontinuous Galerkin methods for relativistic
hydrodynamics, Journal of Computational Physics, 315 (2016), 323-347.

[22] W.H. Reed and T.R. Hill, Triangular mesh methods for the Neutron transport equation, Los
Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM, 1973.

[23] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM Journal on Scientific and Sta-
tistical Computing, 9 (1988), 1073-1084.

[24] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, Journal of Computational Physics, 77 (1988), 439-471.

[25] T. Xiong, J.-M. Qiu and Z. Xu, High order maximum-principle-preserving discontinuous Galerkin
method for convection-diffusion equations, SIAM Journal on Scientific Computing, 37 (2015),
A583-A608.

[26] Y. Yang, D. Wei and C.-W. Shu, Discontinuous Galerkin method for Krause’s consensus models
and pressureless Euler equations, Journal of Computational Physics, 252 (2013), 109-127.

27



[27] X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar con-
servation laws, Journal of Computational Physics, 229 (2010), 3091-3120.

[28] X. Zhang and C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes
for compressible Euler equations on rectangular meshes, Journal of Computational Physics, 229
(2010), 8918-8934.

[29] X. Zhang and C.-W. Shu, Positivity-preserving high order discontinuous Galerkin schemes for
compressible Euler equations with source terms, Journal of Computational Physics, 230 (2011),
1238-1248.

[30] Y. Zhang, X. Zhang and C.-W. Shu, Maximum-principle-satisfying second order discontinuous
Galerkin schemes for convection-diffusion equations on triangular meshes, Journal of Computa-
tional Physics, 234 (2013), 295-316.

[31] X. Zhao, Y. Yang and C. Seyler, A positivity-preserving semi-implicit discontinuous Galerkin
scheme for solving extended magnetohydrodynamics equations, Journal of Computational Physics,
278 (2014), 400-415.

28


