
TRACE THEOREMS FOR SOME NONLOCAL FUNCTION SPACES

WITH HETEROGENEOUS LOCALIZATION

XIAOCHUAN TIAN AND QIANG DU

Abstract. It is a classical result of Sobolev spaces that any H1 function has a well-defined
H1/2 trace on the boundary of a sufficient regular domain. In this work, we present stronger
and more general versions of such a trace theorem in a new nonlocal function space S(Ω)
satisfying H1(Ω) ⊂ S(Ω) ⊂ L2(Ω). The new space S(Ω) is associated with a nonlocal
norm characterized by a nonlocal interaction kernel that is defined heterogeneously with a
special localization feature on the boundary. Through the heterogeneous localization, we
are able to show that the H1/2 norm of the trace on the boundary can be controlled by the
nonlocal norm that are weaker than the classical H1 norm. In fact, the trace theorems can
be essentially shown without imposing any extra regularity of the function in the interior
of the domain other than being square integrable. Implications of the new trace theorems
to the coupling of local and nonlocal equations and possible further generalizations are
also discussed.

1. Introduction

On a domain Ω ∈ Rd with boundary ∂Ω, a trace operator T on a subset Γ of ∂Ω is
defined as

Tu = u|Γ ∀u ∈ C1(Ω̄) ,

where Ω̄ is the closure of Ω. It is a classical result of Gagliardo [15] that the linear operator
T can be extended continuously as a map from H1(Ω), the standard Sobolev space of L2

functions with square integrable derivatives, to H1/2(Γ). The purpose of this paper is to
show that the same trace map exists and is continuous on a nonlocal function space S(Ω)
that is the completion of C1(Ω̄) with respect to the norm

‖ · ‖S(Ω) = (‖ · ‖2L2(Ω) + | · |2S(Ω))
1/2,(1)

with the associated nonlocal semi-norm | · |S(Ω) defined by

|u|2S(Ω) =

ˆ
Ω

ˆ
Ω∩H(x)

γ(x,y)(u(y)− u(x))2dydx ,(2)

corresponding to some nonlocal interaction kernel γ = γ(x,y) with its support or the so
called effective interaction neighborhood denoted by H(x) to be heterogeneously localized
as x approaches the boundary of Ω. These new results on the trace map can be viewed as
generalizations of the classical trace theorem for local Sobolev spaces to a nonlocal setting.
Indeed, for the class of nonlocal spaces under consideration, the Sobolev space H1(Ω) can
be continuously embedded in S(Ω), as shown in this work, so that the new trace theorems
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effectively provide new ways to improve classical result in the H1 space with the latter
becoming a consequence.

The nonlocal interaction kernel γ considered here is taken to be spatially heterogeneous,
which is different from those represented by typical translate-invariant kernels studied in the
literature [4]. We note that variable order and variable growth function spaces have been a
popular subject with a rich history and much recent interest, see for instance [7, 28]. The
special feature of our work lies in the heterogeneous localization of nonlocal interactions at
the boundary. To be more specific, we work with nonlocal kernels γ = γ(x,y) with a finite
range of interactions, that is, having their support for y over an effective neighborhood
H(x) at every x ∈ Ω. This choice is inherited from the peridynamic model of continuum
mechanics [32]. In previous mathematical analysis of peridynamics and related nonlocal
diffusion models, see [10] for instance, H(x) is usually taken as a ball of a fixed radius δ
for all x in the domain. The parameter δ is called the peridynamic or influence horizon
[32]. We adopt the practice of having δ and H(x) vary with x, thus leading to the study
of nonlocal spaces and nonlocal operators with a variable horizon. For an earlier study
of peridynamics with a variable horizon, we refer to [33], which is primarily concerned
with issues relevant to computational modeling. Heuristically we may want γ(x,y)|x− y|2
behaving more and more like a Dirac delta function while approaching Γ, a part of the
boundary ∂Ω. Such a localization leads naturally to a seamless transition from a domain
featuring nonlocal interactions governed by nonlocal models to a domain having localized
interactions as described by classical PDEs, see section 2 for more discussions. A class of
kernels that fits the desired profile is

(3) γ(x,y) =
1

|δ(x)|d+2
γ̂

(
|y − x|
δ(x)

)
where γ̂ = γ̂(s) is a non-increasing nonnegative function defined for s ∈ (0, 1) with a finite
d+ 1 moment. For illustration, we focus on the case that γ̂ is a constant function for most
of the paper and present some discussions for more general kernel functions towards the
end. The influence horizon δ = δ(x) is a function defined on Ω that approaches zero when
x approaches the boundary. A simple choice would be

(4) δ(x) = σ dist(x,Γ), x ∈ Ω ,

for some σ ∈ (0, 1] and Γ ⊂ ∂Ω. The associated nonlocal neighborhood H(x) is defined by

H(x) := {y ∈ Ω : |y − x| ≤ δ(x)} .

The main contribution of this work is to show that, by allowing heterogeneous localization
as described in the case with the influence horizon δ = δ(x) and the vanishing effective
neighborhood H(x) when x approaches the boundary ∂Ω, we expect to have a well defined

continuous trace map from the associated nonlocal space S(Ω) to H1/2(∂Ω).
As in studies of classical trace theorems for standard Sobolev spaces, we proceed first to

a special stripe domain Ω = (0, r) × Rd−1 with a portion of its boundary Γ = {0} × Rd−1

where r is any given positive constant. The following result gives a special instance, in terms
of choices of the spatial domain and the nonlocal interaction kernel, of the more general
trace theorem.

Theorem 1.1 (Special trace theorem). For Ω = (0, r) × Rd−1 and Γ = {0} × Rd−1, there
exists a constant C depends only on d such that such that for any u ∈ C1(Ω̄) ∩ S(Ω),

‖u‖L2(Γ) ≤ C
(
r−1/2‖u‖L2(Ω) + r1/2|u|S(Ω)

)
,(5)
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and for d ≥ 2,

|u|H1/2(Γ) ≤ C
(
r−1‖u‖L2(Ω) + |u|S(Ω)

)
.(6)

Remark 1.2. We are mainly interested in the small r dependence of the imbedding coef-
ficients. For large r, the results remain true with uniformly bounded coefficients, that is,
‖u‖H1/2(Γ) ≤ C‖u‖S(Ω) where C is a constant as r →∞. We note in addition that the need

of the L2(Ω) norm in (5) and (6) is similar to that for standard trace inequalities in Sobolev
spaces. The dependence on the L2(Ω) norm may be removed by considering Lp type norms
for the trace with a suitable choice of p, just like the classical counterpart in Sobolev spaces.

We leave the proof of the theorem 1.1 to section 4. Once the special trace theorem is
established, we know that the trace map T admits a continuous extension on S(Ω). The

continuous mapping from S(Ω) to H1/2(Γ) allows us to make sense the notion of restriction
of a function to the boundary of domain. Thus suitable Dirchlet boundary value problems
become well-defined for nonlocal models with solutions in the space S(Ω). Furthermore,
analogous to the case of classical Sobolev spaces, see for example [9], the previous theorem
has a more general version valid for Lipschitz domains Ω in Rd for d ≥ 2, given in the
following theorem.

Theorem 1.3 (General trace theorem). Assume that Ω is a bounded simply connected
Lipschitz domain in Rd (d ≥ 2) and Γ = ∂Ω, then there exists a constant C depending only
on Ω and Γ such that

(7) ‖Tu‖
H

1
2 (Γ)
≤ C‖u‖S(Ω) , ∀u ∈ S(Ω) .

The proof of the previous theorem can be found in section 5. For completeness, let us
recall the standard notion of Lipschitz domain as a domain whose boundary is locally the
graph of a Lipschitz continuous function, or more precisely, we have

Definition 1.4. A bounded open subset Ω of Rd is called a Lipschitz domain, if, for every
p ∈ ∂Ω, there exists a pair {B(p, r), ϕp} where ϕp : Rd−1 → R such that

(1) |ϕp(x̄)− ϕp(ȳ)| ≤M |x̄− ȳ| for x̄, ȳ ∈ Rd−1 ,

(2) Ω ∩B(p, r) = {(x1, x̄) ∈ Rd|x1 > ϕp(x̄)} ∩B(p, r) .

The remainder of the paper is organized as follows. Section 2 contains some comments
on the motivation of our work and discussions on the connections to classical results. Some
more detailed studies on nonlocal spaces and the associated norms are given in section 3.
A few interesting inequalities needed in the proofs of the trace theorems, such as nonlocal
Hardy type inequalities that extend their classical local versions, are also presented there.

We note that in order to avoid notation complication, a special kernel is used in sections 3
to 5, namely, we choose γ̂ to be the characteristic function on (0, 1), and

(8) γ(x,y) =
1

|δ(x)|d+2
χ(0,1)(|y − x|) , where δ(x) = σdist(x,Γ) .

Specifically, σ = 1 is used in sections 3 to 5 but one can easily check that discussions
contained in these sections remain valid for σ < 1 as well. In fact, further discussions on
the particular set-up that we choose to study in this work, such as the forms of δ = δ(x) and
settings involving more general kernels, are presented in section 6, along with discussions
on the uniformity of the inequalities with respect to σ → 0. Given that our focus here is
on the trace map as motivated by recent studies on nonlocal models such as peridynamics,
other interesting issues concerning the nonlocal space and its various generalizations are not
discussed at length in this work. Some brief discussions on more general and open issues
are included in section 7 with more in depth studies to be given in upcoming works.
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2. Motivation and connection to classical results

A few comments on the motivation of our work are in order. There have been many recent
studies on nonlocal spaces and associated nonlocal operators that have appeared naturally
in various branches of physical, biological and social sciences, see [3, 4, 5, 10, 11, 14, 16,
21, 24, 26, 27, 30, 34] and references cited therein on related applications and mathematical
analysis. Moreover, developing nonsmooth calculus [17] has also been an active subject of
mathematical research with strong connections to geometry [13].

Generically, nonlocal equations posed on a domain Ω ⊂ Rd are complemented by nonlocal
boundary conditions, or more precisely, constraints on a some domain with nonzero d-
dimensional volume, hence leading to so-called constrained value problems [10]. To avoid
the use of such nonlocal constraints, the nonlocal operators need to be properly modified
near the boundary, which is often the case for fractional differential equations [5]. For a
more recent survey on the nonlocal elliptic equations, we refer to [31]. In order to have
well-defined nonlocal problems on Ω with Dirichlet type data on part of its boundary ∂Ω
of codimension-1, study of the trace map becomes a necessity. More often the trace map
is defined if functions under consideration enjoy suitable interior regularity. A consequence
of a well-defined trace map with the trace belonging to a space similar to that for standard
Sobolev spaces would allow a seamless coupling between a classical, local PDE (for instance
the Poisson equation −∆u = f) on one side Ω− of a codimension-1 interface Γ with a
nonlocal equation (say the variational equation −Lu = f associated with the nonlocal
energy) on the other side Ω+ of Γ, see Fig. 1 for an illustration (the circular domains
depict domains of nonlocal interactions associated with a heterogeneously defined horizon
parameter). The study on transmission conditions and the well-posedness of the coupled
local and nonlocal models is left to a separate work. Furthermore, having varying horizon
allows one to harvest the flexibility in working with nonlocal interactions on a wide range
of scales so that more effective numerical simulations can be carried out, along the lines of
asymptotically compatible schemes [35].

−∆u = f

u ∈ H1(Ω−)

Γ

−Lu = f

u ∈ S(Ω+)

Figure 1. A PDE model (in Ω−) is coupled with a nonlocal model (in Ω+)
using suitably defined boundary trace and transmission condition on Γ.

We note that the new nonlocal trace theorems can be viewed as extensions and refinement
of their classical counterparts. Indeed, this can be appreciated from different perspectives.

First, the approach taken in this work provides one avenue to achieve sufficient regularity
for defining the trace map without imposing extra regularity away from the boundary. More
specifically, for a proper subdomain Ω′ of Ω, with a positive distance away from ∂Ω, one can
show that with the kernel given by (8), functions in S(Ω) are generally not expected to have
regularity better than L2(Ω′) over the subdomain Ω′, or may be significantly less regular
away from the boundary than H1 functions. Yet, as elucidated in the introduction and
rigorously established in the theorems, due to the shrinking horizon towards the boundary,
there is enough regularity for these functions to have well-defined traces just on the boundary
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itself. Intuitively, this is a natural consequence of the localization of nonlocal interactions
on the boundary.

On the other hand, it is well-known that (see [4]) for a translation invariant and radial
kernel γ(x,y) = γ̃(|x− y|) with a finite second momentˆ

Rd
γ̃(|x|)|x|2dx <∞,

the nonlocal norm is bounded from above by a suitable multiple of the conventional H1

norm and the Sobolev space H1 is continuously imbedded in the corresponding nonlocal
function space. Moreover, a result in the paper [4] states that when γ̃ = γ̃(|x|) is taken
to be a suitable sequence with γ̃(|x|)|x|2 approximating the Dirac delta measure, the limit
of the corresponding nonlocal spaces recovers the H1 space. Such localization, given the
translation invariance of the kernel, can be viewed as a uniform localization. This does
not serve our purpose of constructing a function space that allow functions having weak
regularity in the interior of the domain but still having a well-defined trace on the boundary.
Nevertheless, it is natural to expect that the continuous imbedding of H1 into the nonlocal
space remains true for a variable horizon with the localization feature on the boundary, so
that the classical trace theorem of H1 space becomes a direct consequence of the nonlocal
counterpart established in this work.

We now present a proposition showing the relation between the classical Sobolev space
H1(Ω) and the new nonlocal space S(Ω) under consideration here.

Proposition 2.1. For δ(x) = σ ·dist(x,Γ) with σ ∈ (0, 1), the space H1(Ω) is continuously
imbedded in S(Ω) and there exists a constant C depending only on σ and Ω such that

‖u‖S(Ω) ≤ C‖u‖H1(Ω) , ∀u ∈ H1(Ω) .(9)

Moreover, C is independent of σ for σ small.

Proof. We begin with a proof of (9) for a smooth function u ∈ C1(Ω̄) ∩H1(Ω).
Let the kernel γ be defined as (3). We can have a standard extension of u to Rd such

that

‖u‖H1(Rd) ≤ C1‖u‖H1(Ω) ,

where C1 only depends on Ω. Notice that for any h ∈ Rd,

|u(x + h)− u(x)|2 =
∣∣ˆ 1

0
∇u(x + th) · hdt

∣∣2 ≤ |h|2 ˆ 1

0
|∇u(x + th)|2dt .

So

|u|2S(Ω) ≤
ˆ
Rd

ˆ
|h|<δ(x)

γ(x,x + h)|u(x + h)− u(x)|2dhdx

≤
ˆ
Rd

ˆ
|h|<δ(x)

1

|δ(x)|d+2
γ̂(
|h|
δ(x)

)|u(x + h)− u(x)|2dhdx

=

ˆ
Rd

ˆ
|h|<1

1

|δ(x)|2
γ̂(h)|u(x + δ(x)h)− u(x)|2dhdx

≤
ˆ
Rd

ˆ
|h|<1

|h|2γ̂(h)

ˆ 1

0
|∇u(x + tδ(x)h)|2dtdhdx .

Let y = x + tδ(x)h, we see that

∂y

∂x
= I + t∇δ(x)⊗ h ,
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and its inverse are uniformly bounded everywhere if ‖∇δ‖ = σ < 1. Moreover, the bounds
are independent of σ if σ is small. Thus, there is a generic constant C > 0 such that

|u|2S(Ω) ≤ C(

ˆ
|h|<1

|h|2γ̂(h)dh)|u|2H1(Rd)

≤ C‖u‖2H1(Ω) .

The constant C may depend on Ω but is independent of σ for σ small.
Putting together, we have the inequality (9) for u ∈ C1(Ω̄). Now invoking density

argument, since H1(Ω) is the completion of C1(Ω̄) under the ‖·‖H1(Ω) norm, we get (9) valid

in H1(Ω) and the continuous imbedding H1(Ω) in the space S(Ω), which is the completion
of C1(Ω̄) under the weaker nonlocal norm. �

The above proposition implies that the new trace theorems for nonlocal spaces are indeed
refinement of the the classical H1/2 trace theorems that are direct consequences of their
nonlocal counterpart due to Proposition 2.1. One may recover the classical results by
simply combining (7) and (9):

C‖Tu‖
H

1
2 (∂Ω)

≤ ‖u‖S(Ω) ≤ C‖u‖H1(Ω) , ∀u ∈ H1(Ω) .

3. More properties of the semi-norm | · |S(Ω)

In this section, we look more closely at the nonlocal semi-norm | · |S(Ω) and derive results
needed for the trace theorems. The discussion mainly consists of two parts. The first
part focuses on generalizing Hardy’s type inequalities to the nonlocal spaces, yielding new
results that are of interests on their own. The second part introduces some special quantities
mimicking norms of directional derivatives that are particularly matched with our nonlocal
setting. The study of such norms, however, are more involved technically than their local
analog and require new techniques that, to our knowledge, have not beed used in the
literature before.

To begin, we can see intuitively that when x gets closer to Γ, the nonlocal norm around
the neighborhood of x behaves more like that of H1. We then expect properties similar to
those classical results associated with H1 functions hold. For example, a generalization of
the Hardy inequality can be shown.

Proposition 3.1 (Nonlocal Hardy-type inequality). Let Ω = (0, r) for some r > 0 and
u ∈ C1(Ω̄) with u(0) = 0, then we have

(10)

ˆ
Ω

|u(x)|2

|x|2
dx ≤ Ca,b

ˆ
Ω

ˆ bx

ax

|u(y)− u(x)|2

|x|3
dydx ,

where Ca,b = 4(2+b+a)
(b−a)(2−b−a)2

with a and b satisfy 0 ≤ a < b ≤ 1. In particular, this implies

the Hardy-type inequality, for a constant C > 0 independent of Ω such that,

(11)

ˆ
Ω

|u(x)|2

dist(x,Γ)2
dx ≤ C|u|2S(Ω)

where Γ = {0}.

Proof. For any x ∈ Ω and y ∈ Ω, let us write

u(x) = u(x)− u(y) + u(y) ,

from which we get

|u(x)|2 ≤ (1 +
1

ε
)|u(y)− u(x)|2 + (1 + ε)|u(y)|2 ,
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where ε is a small number to be determined. Now integrating y over the interval (ax, bx),
we get for x ∈ Ω,

|u(x)|2 ≤ 1 + 1/ε

bx− ax

ˆ bx

ax
|u(y)− u(x)|2dy +

1 + ε

bx− ax

ˆ bx

ax
|u(y)|2dy ,

so thatˆ
Ω

|u(x)|2

|x|2
dx ≤ 1 + 1/ε

b− a

ˆ
Ω

ˆ bx

ax

|u(y)− u(x)|2

|x|3
dydx+

1 + ε

b− a

ˆ
Ω

ˆ bx

ax

|u(y)|2

|x|3
dydx

= I + II .

The term I is our desired bound, and for the term II, since u ∈ C1(Ω̄) and u(0) = 0, we
can use Fubini’s theorem to change the order of integration to get

II =
1 + ε

b− a

ˆ r

0

ˆ bx

ax

|u(y)|2

|x|3
dydx

=
1 + ε

b− a

ˆ br

0

ˆ max{y/a,r}

y/b

|u(y)|2

|x|3
dxdy .

Notice that 0 ≤ a < b ≤ 1, we get

II ≤ 1 + ε

b− a

ˆ r

0

ˆ y/a

y/b

|u(y)|2

|x|3
dxdy

=
1 + ε

b− a
· 1

2
(b2 − a2)

ˆ
Ω

|u(y)|2

|y|2
dy

=
(1 + ε)(b+ a)

2

ˆ
Ω

|u(x)|2

|x|2
dx .

Now since b+ a < 2, we can pick ε = 1
b+a −

1
2 to get

ˆ
Ω

|u(x)|2

|x|2
dx ≤ 1 + 1/ε

b− a
· 2

2− (1 + ε)(b+ a)

ˆ
Ω

ˆ bx

ax

|u(y)− u(x)|2

|x|3
dydx

= Ca,b

ˆ
Ω

ˆ bx

ax

|u(y)− u(x)|2

|x|3
dydx .

At last, inequality (11) follows straightforwardly from (10). �

Although the Proposition 3.1 only shows the nonlocal Hardy-type inequality for the one
dimensional case, it is not hard to see that the more general cases are also true.

Corollary 3.2 (Nonlocal Hardy’s inequality in a multi-dimensional stripe domain). Let
Ω = (0, r) × Rd−1 (d ≥ 2) and Γ = {0} × Rd−1. Assume that u ∈ C1(Ω̄) and u(0, x̄) = 0
for x̄ ∈ Rd−1, then

(12)

ˆ
Ω

|u(x)|2

dist(x,Γ)2
dx ≤ C|u|2S(Ω) .

Proof. Use Proposition 3.1, we haveˆ
Ω

|u(x)|2

(dist(x,Γ))2
dx =

ˆ
Rd−1

ˆ r

0

|u(x1, x̄)|2

|x1|2
dx1dx̄

≤
ˆ
Rd−1

ˆ r

0

ˆ bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|3
dy1dx1dx̄ ,(13)

where the last term is bounded by C|u|2S(Ω) by Lemma 3.6 that is shown later in this

section. �
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Remark 3.3. We note first that while Proposition 3.1 and Corollary 3.2 are shown for a
specific kernel with influence horizon δ(x) = dist(x,Γ), from the proof, we can see that the
nonlocal Hardy’s inequality also holds for any δ(x) = σdist(x,Γ) with constant C depending
continuously on σ. Moreover, we will see in section 6 that C can be made a uniform constant
with respect to σ for σ → 0.

Secondly, although the nonlocal Hardy’s inequality is presented only for a strip domain
here, it is not hard to see that it also holds for any bounded Lipschitz domain Ω ⊂ Rd. This
will also be further illustrated in section 7.

The last integral in (13) involves weighted variations of the function u in its first compo-
nent. In the same spirit of norms of directional derivatives in classical, local function spaces,
we introduce the following definition as a nonlocal analog that refines our understanding
of how the nonlocal norm ‖ · ‖S(Ω) provides control on the function variation in different
directions. This not only helps proving (13) but also plays important roles in proving the
new trace theorems. For brevity of notation,

ffl
is used to represent the integral average

over the respective domain, that is, the integral over the domain divided by the volume of
domain.

Definition 3.4. On the domain Ω = (0, r)×Rd−1, we define in the following two directional
nonlocal semi-norms | · |n and | · |t, standing for normal and tangential directions respectively
with reference to the boundary segment Γ = {0} × Rd−1,

|u|2n =

ˆ
Rd−1

ˆ r

0

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|2
dy1dx1dx̄(14)

|u|2t =

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

|u(x1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdx1dx̄(15)

where 0 ≤ a < b ≤ 1 and 0 < c < 1 are constants.

Remark 3.5. To offer some insight, we make some heuristic comments. For a smooth
function u = u(x), we may approximately have, in an informal manner, that

|u|2n ≈
ˆ
Rd−1

ˆ r

0

 bx1

ax1

|y1 − x1|2

|x1|2
|ux1(x1, x̄)|2dy1dx1dx̄

= Cn(a, b)

ˆ
Rd−1

ˆ r

0
|ux1(x1, x̄)|2dx1dx̄

|u|2t ≈
ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

|∇x̄u(x1, x̄) · (ȳ − x̄)|2

|x1|2
dȳdx1dx̄

= Ct(c, d)

ˆ
Rd−1

ˆ r

0
|∇x̄u(x1, x̄)|2dx1dx̄

for some constants Cn(a, b) and Ct(c, d) that can be computed explicitly. This provides a
hint that | · |n and | · |t may indeed mimic norms of directional directives. We thus see that
it is reasonable to call | · |n and | · |t directional semi-norms. In comparison, we may also
informally expand | · |2S(Ω) as

|u|2S(Ω) ∼
ˆ
Rd−1

ˆ r

0

 
Bx1 (x1,x̄)∩Ω

|u(y1, ȳ)− u(x1, x̄)|2

|x1|2
dy1dȳdx1dx̄ ≈ C‖∇u‖2L2(Ω) .

As the norms of classical (local) directional derivatives are obviously bounded by that
of the total gradient, we extend to the nonlocal case by establishing the following lemma
saying that | · |n and | · |t are controlled by the original semi-norm | · |S(Ω).
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Lemma 3.6. Let Ω = (0, r) × Rd−1 for some r > 0, a, b and c satisfy 0 ≤ a < b ≤ 1,
0 < c < 1 and (a− 1)2 + c2 ≤ 1. Then there exists a constant C depending only on a, b and
c such that for any u ∈ S(Ω),

|u|n ≤ C|u|S(Ω) ,(16)

|u|t ≤ C|u|S(Ω) .(17)

Proof. First, let us briefly describe the idea of the proof. Instead of showing (16) and (17)
directly, we show the following two inequalities instead.

|u|2n ≤ c1|u|2t + C|u|2S(Ω)(18)

|u|2t ≤ c2|u|2n + C|u|2S(Ω)(19)

where c1c2 < 1. We see that they immediately yield both (16) and (17). Moreover, by
density argument, we can focus on showing (18) and (19) only for u ∈ C1(Ω̄) ∩ S(Ω).

For any (y1, ȳ) ∈ Ω, let us write

u(y1, x̄)− u(x1, x̄) = u(y1, x̄)− u(y1, ȳ) + u(y1, ȳ)− u(x1, x̄) ,

and we get the estimate

|u(y1, x̄)− u(x1, x̄)|2 ≤ (1 + ε)|u(y1, x̄)− u(y1, ȳ)|2 + (1 +
1

ε
)|u(y1, ȳ)− u(x1, x̄)|2 ,

where ε is a small number to be determined. The relative positions of those points are
depicted in Figure 2. The purple horizontal dotted line shows the range of (y1, x̄), the blue
vertical dotted line for (y1, ȳ), and the red vertical dashed line for (x1, ȳ). The key to choose
these positions is to make sure that (y1, ȳ) stays in the effective neighborhood of (x1, x̄)
bounded by the black dashed circle.

(x1, x̄)
(y1, x̄)

(y1, ȳ) (x1, ȳ)

{x1}×Bcy1(x̄)

{y1}×Bcy1(x̄)

(ax1, bx1)

{0} × Rd−1

Figure 2. Depiction of geometry used in the proof of Lemma 3.6.

Now integrating ȳ over the ball Bcy1(x̄) we have

|u(y1, x̄)− u(x1, x̄)|2 ≤(1 + ε)

 
Bcy1 (x̄)

|u(y1, x̄)− u(y1, ȳ)|2dȳ

+ (1 + 1/ε)

 
Bcy1 (x̄)

|u(y1, ȳ)− u(x1, x̄)|2dȳ .
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So, we have

ˆ
Rd−1

ˆ r

0

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|2
dy1dx1dx̄

≤ (1 + ε)

ˆ
Rd−1

ˆ r

0

 bx1

ax1

 
Bcy1 (x̄)

|u(y1, x̄)− u(y1, ȳ)|2

|x1|2
dȳdy1dx1dx̄

+ (1 + 1/ε)

ˆ
Rd−1

ˆ r

0

 bx1

ax1

 
Bcy1 (x̄)

|u(y1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdy1dx1dx̄

= I + II .

(20)

It is easy to see that II is controlled by |u|2S(Ω) since

II = (1 + 1/ε)

ˆ
Rd−1

ˆ r

0

 bx1

ax1

 
Bcy1 (x̄)

|u(y1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdy1dx1dx̄

≤ C(1 + 1/ε)

ˆ
Ω

 
H(x)∩Ω

|u(y)− u(x)|2

|x1|2
dydx ,

where the last inequality is true since y ∈ H(x) ∩ Ω, a result we can see by using the
assumption on a, b and c,

(21) |y − x|2 = (y1 − x1)2 + |ȳ − x̄|2 ≤ (a− 1)2|x1|2 + c2b2|x1|2 ≤ |x1|2 ,

where ȳ ∈ Bcy1(x̄) and ax1 ≤ y1 ≤ bx1 are used.
Now for I, by using Fubini’s thoerem, we have

I =
(1 + ε)

b− a

ˆ
Rd−1

ˆ r

0

ˆ bx1

ax1

 
Bcy1 (x̄)

|u(y1, ȳ)− u(y1, x̄)|2

|x1|3
dȳdy1dx1dx̄

≤ (1 + ε)

b− a

ˆ
Rd−1

ˆ r

0

(ˆ y1/a

y1/b

 
Bcy1 (x̄)

|u(y1, ȳ)− u(y1, x̄)|2

|x1|3
dȳdx1

)
dy1dx̄

=
(1 + ε)(b+ a)

2

ˆ
Rd−1

ˆ r

0

 
Bcy1 (x̄)

|u(y1, ȳ)− u(y1, x̄)|2

|y1|2
dȳdy1dx̄

=
(1 + ε)(b+ a)

2

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

|u(x1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdx1dx̄

Together, (18) is proved for c1 = (1 + ε)(b+ a)/2.
As for (19), we consider a point (y1, ȳ) ∈ Ω (as depicted in Figure 2) so that (y1, ȳ) is in

the effective neighborhood of (x1, x̄). |u(x1, ȳ)−u(x1, x̄)|2 is estimated in a similar fashion
by

|u(x1, ȳ)− u(x1, x̄)|2 ≤ (1 + ε)|u(x1, ȳ)− u(y1, ȳ)|2 + (1 +
1

ε
)|u(y1, ȳ)− u(x1, x̄)|2 .

Integrating y1 over the interval (ax1, bx1), we get

|u(x1, ȳ)− u(x1, x̄)|2 ≤(1 + ε)

 bx1

ax1

|u(x1, ȳ)− u(y1, ȳ)|2dy1

+ (1 + 1/ε)

 bx1

ax1

|u(y1, ȳ)− u(x1, x̄)|2dy1 .
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This impliesˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

|u(x1, ȳ)− u(x1, x̄)|2

|x1|2
dȳdx1dx̄

≤ (1 + ε)

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

 bx1

ax1

|u(x1, ȳ)− u(y1, ȳ)|2

|x1|2
dy1dȳdx1dx̄

+ (1 + 1/ε)

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

 bx1

ax1

|u(y1, ȳ)− u(x1, x̄)|2

|x1|2
dy1dȳdx1dx̄

= III + IV .

The term IV is clearly controlled by |u|2S(Ω),

IV = (1 + 1/ε)

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

 bx1

ax1

|u(y1, ȳ)− u(x1, x̄)|2

|x1|2
dy1dȳdx1dx̄

≤ C(1 + 1/ε)

ˆ
Ω

 
H(x)∩Ω

|u(y)− u(x)|2

|x1|2
dydx ,

where the last inequality is derived based on the observation that y ∈ H(x):

(22) |y − x|2 = (y1 − x1)2 + |ȳ − x̄|2 ≤ (a− 1)2|x1|2 + c2|x1|2 ≤ |x1|2 ,
following assumptions on a, b and c.

For the term III, we use Fubini’s theorem to get

III = (1 + ε)

ˆ
Rd−1

ˆ r

0

 
Bcx1 (x̄)

 bx1

ax1

|u(y1, ȳ)− u(x1, ȳ)|2

|x1|2
dy1dȳdx1dx̄

= (1 + ε)

ˆ r

0

ˆ
Rd−1

 
Bcx1 (x̄)

 bx1

ax1

|u(y1, ȳ)− u(x1, ȳ)|2

|x1|2
dy1dȳdx̄dx1

= (1 + ε)

ˆ r

0

ˆ
Rd−1

 
Bcx1 (ȳ)

 bx1

ax1

|u(y1, ȳ)− u(x1, ȳ)|2

|x1|2
dy1dx̄dȳdx1

= (1 + ε)

ˆ r

0

ˆ
Rd−1

 bx1

ax1

|u(y1, ȳ)− u(x1, ȳ)|2

|x1|2
dx1dȳdy1

= (1 + ε)

ˆ
Rd−1

ˆ r

0

 bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|2
dy1dx1dx̄ .

This implies (19) with c2 = (1 + ε). The product of c1 and c2 is

c1c2 =
(1 + ε)2(b+ a)

2
.

Since b+ a < 2, by choosing ε small enough such that (1 + ε)2(b+ a) < 2, we have c1c2 < 1,
so that (16) and (17) are true, and hence we have the lemma. �

4. Proof of the theorem 1.1

We note first that in this section, theorem 1.1 is only shown for the kernel defined in (8).
The discussions for more general kernels are in section 6. Now let us show (5). For any
(x1, x̄) ∈ (0, r)× Rd−1, write

u(0, x̄) = u(x1, x̄)− (u(x1, x̄)− u(0, x̄)) ,

from which we have

u2(0, x̄) ≤ 2u2(x1, x̄) + 2(u(x1, x̄)− u(0, x̄))2.
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Now by integrating x1 over (0, r), we obtain

u2(0, x̄) ≤ 2

r

ˆ r

0
u2(x1, x̄)dx1 +

2

r

ˆ r

0
|u(x1, x̄)− u(0, x̄)|2dx1 .

So, we get by Proposition 3.1 and Lemma 3.6 thatˆ
Rd−1

u2(0, x̄)dx̄ ≤ 2

r
‖u‖2L2(Ω) + 2r

ˆ
Rd−1

ˆ r

0

|u(x1, x̄)− u(0, x̄)|2

|x1|2
dx1dx̄

≤ 2

r
‖u‖2L2(Ω) + 2r

ˆ
Rd−1

ˆ r

0

ˆ bx1

ax1

|u(y1, x̄)− u(x1, x̄)|2

|x1|3
dy1dx1dx̄

≤ C
(‖u‖2L2(Ω)

r
+ r‖u‖2S(Ω)

)
.

Let us show (6) next. First, for d ≥ 2, by definition of |u(0, ·)|2
H1/2(Rd−1)

,

|u(0, ·)|2
H1/2(Rd−1)

=

ˆ
Rd−1

ˆ
Rd−1

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄

=

ˆ
Rd−1

ˆ
Br/2(x̄)

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄

+

ˆ
Rd−1

ˆ
Bc
r/2

(x̄)

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄ .

Now the second part can be estimated byˆ
Rd−1

ˆ
Bc
r/2

(0̄)

|u(0, x̄ + h̄)− u(0, x̄)|2

|h̄|d
dh̄dx̄

≤
ˆ
Bc
r/2

(0̄)

1

|h̄|d

ˆ
Rd−1

(
2u2(0, x̄ + h̄) + 2u2(0, x̄)

)
dx̄dh̄

≤ C

r
‖u(0, ·)‖2L2(Rd−1) ,

(23)

where C is a constant depend only on d. Thus we only have to prove the following inequality
to get (6),

(24)

ˆ
Rd−1

ˆ
Br/2(x̄)

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄ ≤ C|u|2S(Ω) .

The idea is again to split the left-hand side into three parts that can be controlled by the
right hand side.

As shown in Figure 3, we choose (x1, x̄), (y1, ȳ) ∈ Ω and rewrite

u(0, ȳ) = u(0, ȳ)− u(y1, ȳ) + u(y1, ȳ)

u(0, x̄) = u(0, x̄)− u(x1, x̄) + u(x1, x̄) .

Notice that the blue solid horizontal line and the red horizontal dashed line in Figure
3 show the possible positions of (x1, x̄) and (y1, ȳ) respectively. The key is to determine
the end points of these lines so that any (y1, ȳ) over the blue solid line should stand in
the effective neighborhood (shown as red solid circle) of any (x1, x̄) on the red horizontal
dashed line, in particular, the left-most end point whose effective neighborhood is given by
the dashed purple circle.

By splitting terms, we have

|u(0, ȳ)− u(0, x̄)|2 ≤ 3|u(0, ȳ)− u(y1, ȳ)|2 + 3|u(y1, ȳ)− u(x1, x̄)|2 + 3|u(x1, x̄)− u(0, x̄)|2 .
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(0, x̄)

(0, ȳ)

|h̄|

β|x̄− ȳ|

α|x̄− ȳ|
(y1, ȳ)

(x1, x̄)

{0} × Rd−1

Figure 3. Depiction of geometry used in the proof of Theorem 1.1.

Now let α and β be numbers to be determined and satisfy 1 < α < β ≤ 2. Integrating
both x1 and y1 in the interval (α|ȳ − x̄|, β|ȳ − x̄|), we have

|u(0, ȳ)− u(0, x̄)|2 ≤ 3

(β − α)|ȳ − x̄|

ˆ β|ȳ−x̄|

α|ȳ−x̄|
|u(0, ȳ)− u(y1, ȳ)|2dy1

+
3

(β − α)|ȳ − x̄|

ˆ β|ȳ−x̄|

α|ȳ−x̄|
|u(x1, x̄)− u(0, x̄)|2dx1

+
3

(β − α)2|ȳ − x̄|2

ˆ β|ȳ−x̄|

α|ȳ−x̄|

ˆ β|ȳ−x̄|

α|ȳ−x̄|
|u(y1, ȳ)− u(x1, x̄)|2dy1dx1 .

So our integral can controlled by,

ˆ
Rd−1

ˆ
Br/2(x̄)

|u(0, ȳ)− u(0, x̄)|2

|ȳ − x̄|d
dȳdx̄

≤ 3

β − α

ˆ
Rd−1

ˆ
Br/2(x̄)

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(y1, ȳ)− u(0, ȳ)|2

|ȳ − x̄|d+1
dy1dȳdx̄

+
3

β − α

ˆ
Rd−1

ˆ
Br/2(x̄)

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(x1, x̄)− u(0, x̄)|2

|ȳ − x̄|d+1
dx1dȳdx̄

+
3

(β − α)2

ˆ
Rd−1

ˆ
Br/2(x̄)

ˆ β|ȳ−x̄|

α|ȳ−x̄|

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(y1, ȳ)− u(x1, x̄)|2

|ȳ − x̄|d+2
dy1dx1dȳdx̄

=
6

β − α

ˆ
Rd−1

ˆ
Br/2(x̄)

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(y1, ȳ)− u(0, ȳ)|2

|ȳ − x̄|d+1
dy1dȳdx̄

+
3

(β − α)2

ˆ
Rd−1

ˆ
Br/2(x̄)

ˆ β|ȳ−x̄|

α|ȳ−x̄|

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(y1, ȳ)− u(x1, x̄)|2

|ȳ − x̄|d+2
dy1dx1dȳdx̄

= I + II .
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Let us first check that the term II is bounded by C|u|2S(Ω). We take notice of Fubini’s

theorem and the fact that β ≤ 2 to get

II =
3

(β − α)2

ˆ
Rd−1

ˆ
Br/2(0)

ˆ β|h̄|

α|h̄|

ˆ β|h̄|

α|h̄|

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|h̄|d+2
dy1dx1dh̄dx̄

≤ 3βd+2

(β − α)2

ˆ
Rd−1

ˆ
Br/2(0)

ˆ β|h̄|

α|h̄|

ˆ β|h̄|

α|h̄|

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1dx1dh̄dx̄

where Br/2(0) denotes the d− 1 dimensional ball at the origin. The integral can be further
estimated by

ˆ
Rd−1

ˆ
Br/2(0)

ˆ β|h̄|

α|h̄|

ˆ β|h̄|

α|h̄|

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1dx1dh̄dx̄

=

ˆ
Rd−1

ˆ
Sd−2

ˆ r/2

0

(ˆ βh

αh

ˆ βh

αh

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1dx1

)
|J |dhdSd−2dx̄

where |J | = |J(h)| is the volume element of d− 1 dimensional ball and dSd−2 is the volume
element of the d− 2 dimensional unit sphere. After a change of order of integration, since
1 < α < β ≤ 2, we end up with

ˆ
Rd−1

ˆ
Sd−2

( ˆ r/2

0

ˆ βh

αh

ˆ βh

αh

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1dx1|J |dh

)
dSd−2dx̄

≤
ˆ
Rd−1

ˆ
Sd−2

(ˆ r

0

ˆ x1
α

x1
β

ˆ βh

αh

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1|J |dhdx1

)
dSd−2dx̄

=

ˆ
Rd−1

ˆ r

0

( ˆ
Sd−2

ˆ x1
α

x1
β

ˆ βh

αh

|u(y1, x̄ + h̄)− u(x1, x̄)|2

|x1|d+2
dy1|J |dhdSd−2

)
dx1dx̄

≤
ˆ
Rd−1

ˆ r

0

(ˆ
x1
β
≤|ȳ−x̄|≤x1

α

ˆ β|ȳ−x̄|

α|ȳ−x̄|

|u(y1, ȳ)− u(x1, x̄)|2

|x1|d+2
dy1dȳ

)
dx1dx̄

≤
ˆ

Ω

ˆ
H(x)

|u(y)− u(x)|2

|x1|d+2
dydx .

Note that the last inequality is true only if y = (y1, ȳ) ∈ H(x). Since α|ȳ − x̄| ≤ y1 ≤
β|ȳ − x̄| and x1/β ≤ |ȳ − x̄| ≤ x1/α implies that αx1/β ≤ y1 ≤ βx1/α, we have

(25) |y − x|2 = (y1 − x1)2 + |ȳ − x̄|2 ≤ max{(1− β

α
)2 +

1

α2
, (1− α

β
)2 +

1

α2
}|x1|2 ≤ |x1|2 ,

if we pick α and β such that

(26) max

{
(1− β

α
)2 +

1

α2
, (1− α

β
)2 +

1

α2

}
≤ 1 .

Then this in fact leaves us many chocies of α and β, for example, α = 3
2 and β = 2 would

work.
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The term I is bounded by

6

β − α

ˆ
Rd−1

ˆ
Br/2(0)

ˆ β|h̄|

α|h̄|

|u(x1, x̄)− u(0, x̄)|2

|h̄|d+1
dx1dh̄dx̄

=
6C(d)

β − α

ˆ
Rd−1

ˆ r/2

0

ˆ βh

αh

|u(x1, x̄)− u(0, x̄)|2

|h|d+1
hd−2dx1dhdx̄

≤ 6C(d)

β − α

ˆ
Rd−1

ˆ r

0

(ˆ x1
α

x1
β

1

h3
dh
)
|u(x1, x̄)− u(0, x̄)|2dx1dx̄

≤ 3C(d)(β + α)

ˆ
Rd−1

ˆ r

0

|u(x1, x̄)− u(0, x̄)|2

|x1|2
dx1dx̄ .

By Proposition 3.1 and Lemma 3.6, we have

ˆ
Rd−1

ˆ r

0

|u(x1, x̄)− u(0, x̄)|2

|x1|2
dx1dx̄ ≤ C|u|2S(Ω) .

This completes the proof of theorem 1.1. �

Remark 4.1. The problem of relating boundary estimates and interior estimates appears
often in the study of PDE boundary value problems, such as in Kellogg’s theorem for deriv-
ing Cα regularity estimates up to the boundary with prescribed Cα data [20], and in deriving
interior regularity estimates from the coincidence set for free boundary problems [23]. In-
deed, the idea of relating boundary points to interior points in order to get an estimate of
boundary from those in the interior leads to a popular approach to establish the classical
trace theorem, see for example, [22, chapter 15]. However, a new challenge in our work
here in the nonlocal case, unlike the straightforward constructions in the classical case, is
that the interior points need to be carefully chosen to make the nonlocal norm ‖u‖S(Ω) com-
ing into play. The lemma 3.6 provides us analogies of estimates on tangential and normal
derivatives that are important to complete our derivation.

5. Proof of the theorem 1.3

First, let us show that the theorem 1.3 is true when Ω is a special Lipschitz domain,
namely, assume there exists a Lipschitz continuous function ϕ : Rd−1 → R such that

Ω = {x ∈ Rd|x1 > ϕ(x̄), x̄ ∈ Rd−1} ,

and

∂Ω = {x ∈ Rd|x1 = ϕ(x̄), x̄ ∈ Rd−1} .

Then we can define two linear operators Gϕ : L2(Ω)→ L2(Rd+), where Rd+ = (0,∞)×Rd−1

and Dϕ : L2(∂Ω)→ L2(Rd−1) by: for x = (x1, x̄) ∈ (0,∞)× Rd−1,

(Gϕu)(x) = u(x1 + ϕ(x̄), x̄),

(Dϕu)(x̄) = u(ϕ(x̄), x̄).

It is known that Dϕ is a bounded operator from H
1
2 (∂Ω) to H

1
2 (Rd−1), and its inverse

D−1
ϕ on the two spaces is also a bounded operator (see, for instance, Lemma 3 in [9]). The

next step is to show that Gϕ is a bounded operator from S(Ω) to S(Rd+). We note that

δ(x) used for the two spaces S(Ω) and S(Rd+) may need to have different scalings, though
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this does not affect the purpose of proving the trace inequality.

‖Gϕu‖S(Rd+) =

ˆ
Rd−1

ˆ ∞
0
|u(x1 + ϕ(x̄), x̄)|2dx1dx̄

+

ˆ
Rd+

ˆ
H(x)

|u(y1 + ϕ(ȳ), ȳ)− u(x1 + ϕ(x̄), x̄)|2

|σ1 · x1|d+2
dydx

= ‖u‖2L2(Ω) +

ˆ
Ω

ˆ
H′(x)

|u(y1, ȳ)− u(x1, x̄)|2

|σ1 · (x1 − ϕ(x̄))|d+2
dydx

(27)

where H′(x) = {y ∈ Ω : |y1 − x1 − (ϕ(ȳ) − ϕ(x̄))|2 + |ȳ − x̄|2 ≤ σ2
1 · |x1 − ϕ(x̄)|2}. Now

since (x1, ϕ(x̄)) ∈ ∂Ω, we know that

dist(x, ∂Ω) ≤ |x1 − ϕ(x̄)| ≤ K1dist(x, ∂Ω) ,

for some K1 independent of x. Then for any y ∈ H′(x̄),

|y1 − x1|2 + |ȳ − x̄|2 ≤ 2|y1 − x1 − (ϕ(ȳ)− ϕ(x̄))|2 + 2|(ϕ(ȳ)− ϕ(x̄))|2 + |ȳ − x̄|2

≤ max{2, 2M2 + 1}
(
|y1 − x1 − (ϕ(ȳ)− ϕ(x̄))|2 + |ȳ − x̄|2

)
≤ (σ1K2 · dist(x, ∂Ω))2 =: (σ2 · dist(x, ∂Ω))2 .

This together with (27) implies that

‖Gϕu‖S(Rd+) ≤ C‖u‖S(Ω) ,

with δ(x) defined as σ1dist(x, ∂Ω) and σ2dist(x, ∂Ω) for S(Rd+) and S(Ω) respectively, and
σ1, σ2 satisfy σ2 = σ1K2. Taking into account the above observations and applying the
special nonlocal trace theorem (1.1) already shown for a stripe domain, we have

‖Tu‖
H

1
2 (∂Ω)

= ‖D−1
ϕ (DϕTu)‖

H
1
2 (∂Ω)

≤ C1‖DϕTu‖
H

1
2 (Rd−1)

= C1‖(Gϕu)(0, ·)‖
H

1
2 (Rd−1)

≤ C2‖Gϕu‖S(Rd+)

≤ C3‖u‖S(Ω) .

Now for Ω, which is a bounded simply connected Lipschitz domain, there exists a finite
number of pairs {B(xi, ri), ϕi}Ni=1 such that ∂Ω ⊂

⋃N
i=1B(xi, r). Each ϕi is Lipschitz

continuous, and we assume they have a uniform Lipschitz constant M . Now let {ζi}Ni=1 be
a partition of unity of ∂Ω, i.e.,

(1) ζi ∈ C∞c (B(xi, ri)), 1 ≤ i ≤ N ,

(2) 0 ≤ ζi ≤ 1 and

N∑
i=1

ζi(x) = 1 for all x ∈ ∂Ω .

Then for x ∈ ∂Ω,

Tu(x) =

N∑
i=1

T (ζiu)(x) ,

so

‖Tu‖
H

1
2 (∂Ω)

≤
N∑
i=1

‖T (ζiu)‖
H

1
2 (∂Ω)

.

Now since ζi ∈ C∞c (B(xi, ri)), we may assume without loss of generality that

dist(supp(ζi), ∂B(xi, ri)) ≥ ri − b, ∀i = 1, 2, ...N
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for some b < ri. Then instead of considering the semi-H
1
2 (∂Ω) norm as integral over

∂Ω × ∂Ω, we treat it as the integral over ∂Ω × ∂Ω ∩ {|ȳ − x̄| ≤ b}, since the other part
can be thrown into the L2(∂Ω) norm as we did before. Under this alternative definition of

H
1
2 (∂Ω), we have

‖T (ζiu)‖
H

1
2 (∂Ω)

= ‖T (ζiu)‖
H

1
2 (∂Ω∩B(xi,ri))

.

Now since

Ω ∩B(xi, ri) = {x ∈ Rd|x1 > ϕi(x̄)} ∩B(xi, ri),

∂Ω ∩B(xi, ri) = {x ∈ Rd|x1 = ϕi(x̄)} ∩B(xi, ri) ,

we may apply a zero extension and consider ζiu as a function defined on {x ∈ Rd|x1 >
ϕi(x̄)}. Hence the estimate in the beginning of this proof can be applied. Therefore

‖Tu‖
H

1
2 (∂Ω)

≤ C1

N∑
i=1

‖T (ζiu)‖
H

1
2 ({x∈Rd|x1=ϕi(x̄)})

≤ C2

N∑
i=1

‖ζiu‖S({x∈Rd|x1>ϕi(x̄)})

≤ C3

N∑
i=1

‖ζiu‖S(Ω∩B(xi,ri))

≤ C4‖u‖S(Ω) ,

where the last inequality is true becauseˆ
Ω∩B(xi,ri)

ˆ
Ω∩B(xi,r)∩H(x)

(ζi(y)u(y)− ζi(x)u(x))2

|δ(x)|d+2
dydx

≤ 2

ˆ
Ω∩B(xi,ri)

ˆ
Ω∩B(xi,r)∩H(x)

ζ2
i (y)(u(y)− u(x))2 + u2(x)(ζi(y)− ζi(x))2

|δ(x)|d+2
dydx

≤ 2

(
‖ζi‖2C0‖u‖2S(Ω∩B(xi,r))

+ ‖ζi‖2C1

ˆ
Ω∩B(xi,ri)

ˆ
|y−x|≤δ(x)

u2(x)
|y − x|2

|δ(x)|d+2
dydx

)

≤ C

(
‖ζi‖2C0‖u‖2S(Ω∩B(xi,r))

+ ‖ζi‖2C1

ˆ
Ω∩B(xi,ri)

u2(x)dx

)
.

This completes the proof. �

6. More general kernels

Although much of our discussion so far is focused on the choice that γ̂ takes on a constant
value over its support, the new nonlocal trace theorems can also be established for more
general nonlocal interactions that are discussed here. The special choice of γ̂ avoids technical
complication while keeping the essence of the issues to be investigated. More importantly,
the nonlocal norm of u corresponding to this special case is among the weakest of nonlocal
norms associated with popular kernels that have been used in the literature. For example,
for a typical fractional power law kernel γ̂(s) = 1/sλ, for λ ∈ [0, d + 2) [8, 2], we have the
fractional type kernels

(28) γλ(x,y) =
cλ

|δ(x)|d+2−λ ·
1

|y − x|λ
for y ∈ H(x), λ ∈ [0, d+ 2) .
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Notice that λ has to be less than d + 2 to ensure that γ̂ has a finite d + 2 order moment
so that all C1(Ω̄) functions have finite nonlocal norms. For such kernels, it is easy to make
the following comparison of norms.

Lemma 6.1. For γλ defined in (28),ˆ
Ω

ˆ
Ω∩H(x)

γ0(x,y)(u(y)− u(x))2dydx ≤ C
ˆ

Ω

ˆ
Ω∩H(x)

γλ(x,y)(u(y)− u(x))2dydx ,

with λ ∈ (0, d+ 2).

Proof. This is obvious since for y ∈ H(x), i.e., |y − x| ≤ δ(x),

1

|δ(x)|d+2
≤ 1

|δ(x)|d+2−λ ·
1

|y − x|λ

for λ ∈ (0, d+ 2). �

The lemma shows that |u|S(Ω) defined with λ = 0 indeed gives the weakest norm among
ones corresponding to a large class of kernels either associated with (28) or are bounded
below and above by such kernels. It is also possible to consider generalizing the choices of the
variable horizon. For example, we are going to show that the nonlocal trace inequalities and
Hardy-type inequalities proved previously also hold for δ(x) = σdist(x,Γ) where σ ∈ (0, σ0]
for σ0 > 0. More importantly, the embedding constants in these inequalities only depend
on σ0. For this matter, we define some notations first.

|u|2δ(x),r =

ˆ
Ωr

ˆ
Ωr∩H(x)

1

|δ(x)|d+2
γ̂(
|y − x|
δ(x)

)(u(y)− u(x))2dydx .

where Ωr = (0, r) × Rd−1. The next lemma shows that the smaller σ is, the larger the
nonlocal norm we can get.

Lemma 6.2. Let δ(x) = σdist(x,Γ), where σ ∈ [1
2 , 1) and Γ = {0}×Rd−1, then there exists

a constant C depending only on d such that the following inequality holds for any r > 0 and
α ∈ (0, 1],

(29) |u|2δ(x),r/2 ≤ C
(1 + σ

1− σ

)d+2
|u|2αδ(x),r .

Proof. First, |u|δ(x),r/2 can be rewrite as

|u|2δ(x),r/2 =

ˆ
Ωr/2

ˆ
Dδ(x),r/2

1

|δ(x)|d+2
γ̂(
|s|
δ(x)

)(u(x + s)− u(x))2dsdx .

where Dδ(x),r/2 = {s ∈ Rd : |s| ≤ δ(x),x + s ∈ Ωr/2, for some x ∈ Ωr/2}.
Now for any n ∈ N, we decompose u(x + s)− u(x) into n parts,

u(x + s)− u(x) =
(
u(x + s)− u(x +

n− 1

n
s)
)

+ · · ·+
(
u(x +

1

n
s)− u(x)

)
.

By using the inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , we get

|u|2δ(x),r/2 ≤ n
n∑
i=1

ˆ
Ωr/2

ˆ
Dδ(x),r/2

1

|δ(x)|d+2
γ̂(
|s|
δ(x)

)(u(x +
i

n
s)− u(x +

i− 1

n
s))2dsdx .

For each fixed i, let x̃ = x+ i−1
n s, then x̃ ∈ Ωr/2 as a result of x+s ∈ Ωr/2 and x ∈ Ωr/2.

Since δ(x) = σx1 and |s| ≤ δ(x), we have

(1− σ)δ(x) ≤ δ(x̃) ≤ (1 + σ)δ(x) .
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Then by the fact that δ(x) ≤ δ(x̃)/(1− σ), 1/δ(x) ≤ (1 + σ)/δ(x̃) and γ̂ nonincreasing we
have

|u|2δ(x),r/2 ≤ n
2

ˆ
Ωr/2

ˆ
|s|≤ δ(x̃)

1−σ

(1 + σ)d+2

|δ(x̃)|d+2
γ̂(

|s|
δ(x̃)/(1− σ)

)(u(x̃ +
1

n
s)− u(x̃))2dsdx̃

= nd+2

ˆ
Ωr/2

ˆ
n|s|≤ δ(x̃)

1−σ

(1 + σ)d+2

|δ(x̃)|d+2
γ̂(

n|s|
δ(x̃)/(1− σ)

)(u(x̃ + s)− u(x̃))2dsdx̃

=
(1 + σ

1− σ

)d+2
ˆ

Ωr/2

ˆ
|s|≤ δ(x)

n(1−σ)

1∣∣ δ(x)
n(1−σ)

∣∣d+2
γ̂(
|s|
δ(x)

n(1−σ)

)(u(x + s)− u(x))2dsdx

≤
(1 + σ

1− σ

)d+2
|u|2 δ(x)

n(1−σ) ,r
,

where n is chosen as any number such that n(1− σ) ≥ 1. This shows that (29) is true for
any α = 1

n(1−σ) with n ∈ N and n(1 − σ) ≥ 1. Now for a general α ∈ (0, 1], we can find a

number n ≥ 1 such that
1

(n+ 1)(1− σ)
< α ≤ 1

n(1− σ)
.

Then it is easy to see that

|u|2δ(x),r/2 ≤
(1 + σ

1− σ

)d+2
|u|2 δ(x)

(n+1)(1−σ) ,r
≤
(1 + σ

1− σ

)d+2(n+ 1

n

)d+2
|u|2αδ(x),r .

So (29) is true with C = 2d+2. �

Using this lemma, we arrive at the conclusion that our embedding results can be extend
to any δ(x) = σdist(x,Γ).

Proposition 6.3. The results of Theorem 1.1, Theorem 1.3 and Corollary 3.2 remain valid
for influence horizon of the form δ(x) = σdist(x,Γ) where σ ∈ (0, σ0] for some σ0 > 0.
Moreover, the embedding constant C depends only on Ω, Γ and σ0.

Proof. First we observe that theorem 1.3 follows completely from the theorem 1.1, so we
only need to establish the corresponding results in theorem 1.1 and corollary 3.2, using
directly the Proposition 3.1 and Lemma 3.6. It is not hard to see that the result holds
for σ ∈ [1

2 , σ0]. Indeed, if we choose a = 1
2 , b = 1, c = 1

2 in the proof of Proposition 3.1
(to assure a ≥ 1 − σ) and Lemma 3.6 (to satisfy the equivalent versions of (21) and (22)
corresponding to σ ≥ 1

2), and α = 3
2 , β = 7

4 in section 4 (to satisfy the equivalent versions

of (25) and (26) corresponding to σ ≥ 1
2), we see that the inequalities in these proofs hold

with C depending on σ0. Then for the other case that σ ∈ (0, 1
2), the result is obtained

from Lemma 6.2. �

Moreover, the proportionality of the horizon on the distance to the boundary is only a
specific choice that can be generalized. One instance is that δ(x) is proportional to dist(x,Γ)
for x only on a boundary layer of finite positive width but remains constant elsewhere. A
possible form of such a δ(x) might be

δ(x) = min{σdist(x,Γ), η},
for some η > 0 to be specified. Another possibility is to have δ(x) vanishes in some other
nonlinear ways as x approaches the boundary. Similar results can be shown in these cases
and they follow naturally from the fact that it is the nonlocal interaction in the boundary

layer, rather than the interior of the domain, that provides the essential control on the H
1
2

trace.



20 XIAOCHUAN TIAN AND QIANG DU

The discussion on the general form of δ(x) is meaningful since it is important in many
applications to note that the imbedding constant in (9) does not depend on σ, just like the
constants appearing in the new nonlocal trace inequalities. For example, for the coupled
PDE and nonlocal model depicted in Fig. 1, we may recover a coupled PDE models in the
local limit as σ → 0. This again implies that the nonlocal trace theorems are refinement
and improvement of the classical trace theorems in H1(Ω).

7. Discussion

We now make some further discussions on the main results given in the paper. As impor-
tant as the role that Sobolev space plays in the study of partial differential equations, the
mathematical theory of nonlocal space provides the essential tool towards rigorous analy-
sis of nonlocal equations. When nonlocality is incorporated in the models, it could lead to
more subtle definitions of suitable boundary value problems. Nonlocal equations on domains
with boundary are often supplemented not by additional constraints on the codimension-
1 boundary, but rather volumetric constraints [10]. We, however, are able to define new
nonlocal spaces as presented here, allowing nonlocality to diminish when approaching the
domain boundary, so that standard (local) Dirichlet type boundary conditions can be de-
fined on a codimension-1 boundary. We note that boundary value problems with local
boundary conditions have been widely studied as well for fractional differential equations
that are also instances of nonlocal models [5]. Indeed, classical fractional derivatives may be
seen as having a vanishing horizon near the boundary or a diminishing history dependence
near the initial time [2, 8], however, their scaling features are completely different from our
setting so that the boundary trace or initial value are sensible largely due to the sufficiently
strong interior regularity for fractional derivatives, and not through the localization effect
described in this work. We also have not found parallel results in the vast literature on
generalizations of Sobolev spaces such as Besov and Lizorkin-Triebel spaces [1, 37, 38]. We
present next in this section the by-products of our trace theorems and at last conclude with
some possible generalizations.

7.1. By-products. The main focus of this work is on trace theorems, but it is worthwhile
to point out that along the way, the results used to establish the main theorems are also of
independent interests.

For example, the first step towards having the generalized trace inequality is to prove a
nonlocal Hardy type inequality, that itself is also an interesting extension of the classical
Hardy’s inequality. The classical Hardy’s inequality, see for instance [6], involves a bound on
a weighted function norm by some norm of first order derivatives over the domain. There are
naturally many extensions to spaces associated with variable orders and position dependent
weights. Intuitively, our generalizations are derived by saying that the first derivative does
not need to be well defined everywhere in the domain, but only at the place where the
weighting factor blows up or when the nonlocal interactions are localized. This may not be
surprising itself, and our new definition of a variable-horizon based nonlocal interaction and
the special heterogeneous localization feature help making such generalizations possible.

As mentioned in remark 3.3, we may also establish a more general version for more general
Lipshitz domains.

Proposition 7.1 (Nonlocal Hardy’s inequality). Given a bounded Lipshitz domain Ω, there
exists a constant C > 0 such that if Tu = 0 on ∂Ω, then

(30)

ˆ
Ω

|u(x)|2

(dist(x, ∂Ω))2
dx ≤ C|u|2S(Ω) .
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The procedure to establish (30) follows the similar path as in the proof of Theorem 1.3
starting from the Theorem 1.1. We do not repeat the detailed argument here.

7.2. Trace theorems on portions of the domain boundary. We first give some com-
ments on the generalization of the trace theorem to portions of the domain boundary. In
the classical, local case, we note that the trace inequality on ∂Ω automatically implies the
same result for the trace on a subset Γ of ∂Ω. This is not, however, as straightforward in
the case for our nonlocal space whose definition involves the Γ dependent horizon, and thus
the Γ dependent nonlocal kernel.

We expect similar results remain valid, as demonstrated by the special case given in
Theorem 1.1, but careful investigations are needed for more general domains. A possible
route is to consider first a special domain that is a (rectangular) section of the strip domain,
for instance, Ω = (0, r)× (a, b)×Rd−2 and Γ = {0}× (a, b)×Rd−2. By a suitable extension
in the second variable from the interval (a, b) to the whole real line, we may first utilize the
result in Theorem 1.1 for the whole strip domain to get the desired result on its subsection.
One may then employ similar partition of unity techniques and domain transformations to
more general domains and more general subset of their boundary.

In terms of further generalizations of the trace theorems, we note that although the results
of this paper are only shown for the L2 or the Hilbert space setting, it is not surprising
that they can be generalized to the Lp and other more general Banach spaces. With the
choices of more general kernels, one may also consider nonlocal extensions of trace results
in fractional W s,p type spaces. Extensions of the notion of trace may also go beyond co-
dimensional one manifolds to other more general subdomains or sets. Furthermore, the
position-dependent and heterogeneous feature in the nonlocal norms may be related for the
study of more general Morrey, Campanato, Besov and Lizorkin-Triebel spaces, possibly of
variable order and growth conditions, to obtain new type of spaces and the associated trace
maps [19, 29]. In addition, connections with the study of Sobolev and other function spaces
on metric measure spaces may also be explored [17, 18]. Mathematically, one may also
ask questions concerning optimal constants in the trace inequality, as in the classical case
[12]. Moreover, while it is known that the H1 space gives the smallest Sobolev space with

continuous H1/2 boundary trace map, we now see much larger spaces can also preserve the
same property, even in spaces like what we define here whose functions may only be in L2

over any compact subset away from the boundary. Thus, the issue of how large such a space
can be, as communicated to us by Luis Caffarelli, becomes very interesting to study.

Another direction, motivated naturally by interests in nonlocal mechanics, is to consider
analogous results for spaces of vector fields such as those studied in [25, 26]. Likewise,
one may investigate high order extensions as well, following the discussions of high order
nonlocal spaces likes ones in [36], which were relevant to the studies of beams and shells.

In closing, the main results presented here are indicative of the conceptually simple ob-
servation on the improved regularity of functions in nonlocal spaces associated with a van-
ishing nonlocal horizon, either uniformly across the domain of interest, or when approaching
a codimension-1 surface. In the former case we recover the limit of nonlocal spaces being
the classical Sobolev space, as in [4, 30], while in the latter case we obtain the analogue and
extension of the classical trace theorem. One may further investigate regularity estimates,
multiscale analysis and homogenization issues associated with nonlocal problems having a
heterogeneous choice of variable horizon and nonlocal interaction kernels.
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