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Abstract

The molecular mechanism of ion channel gating and substrate modulation is elusive for many voltage
gated ion channels, such as eukaryotic sodium ones. The understanding of channel functions is a pressing
issue in molecular biophysics and biology. Mathematical modeling, computation and analysis of membrane
channel charge transport have become an emergent field and give rise to significant contributions to our
understanding of ion channel gating and function. This review summarizes recent progresses and outlines
remaining challenges in mathematical modeling, simulation and analysis of ion channel charge transport.
One of our focuses is the Poisson-Nernst-Planck (PNP) model and its generalizations. Specifically, the
basic framework of the PNP system and some of its extensions, including size effects, ion-water interactions,
coupling with density functional theory and relation to fluid flow models. A reduced theory, the Poisson-
Boltzmann-Nernst-Planck (PBNP) model, and a differential geometry based ion transport model are also
discussed. For proton channel, a multiscale and multiphysics Poisson-Boltzmann-Kohn-Sham (PBKS)
model is presented. We show that all of these ion channel models can be cast into a unified variational
multiscale framework with a macroscopic continuum domain of the solvent and a microscopic discrete
domain of the solute. The main strategy is to construct a total energy functional of a charge transport
system to encompass the polar and nonpolar free energies of solvation and chemical potential related
energies. Using the Euler-Lagrange variation, the coupled PNP equations and other transport equations
are derived, whose solutions lead to the minimization of the total free energy and explicit profiles of
electrostatic potential and densities of charge species. Current computational algorithms and tools for
numerical simulations and results from mathematical analysis of ion channel systems are also surveyed.
As this review will be frequently updated, to help improve it, please do not hesitate to send corrections
and suggestions to the authors.
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I Introduction
Membrane charge transport is one of the most important biological processes in lives, as it facilitates signal
transduction, action potential, cardiac rhythms, muscle contraction, T-cell activation, etc. Transporting
charges could be small proteins, mobile ions, and dipoles in solvent environment, and they are conducted by
membrane channels such as ion channel, proton pumps, or general transporter proteins. In a specific but critical
manner, ion channels are a type of transporter proteins embedded in cell membranes. They have tube-like
water pores in the middle that facilitate selected ion permeation and maintain proper cellular ion compositions.
Phospholipid bilayer of cells provides a hydrophobic barrier to the passage of charged ions in extra- and intra-
cellular environment, but strongly polar or even charged amino acids of channel proteins provide a conducting
pathway across the hydrophobic interior of the membrane bilayer (Ikezu & Gendelman (2008), Karniadakis
et al. (2005)). Resulting ionic flux plays a key role in almost many physiological phenomena from nerve
and muscle excitation, human sensory transduction, to cell volume and blood pressure regulation, etc. More
critically, ion channels are prominent factors to human health. One example is in cancer research: glioblastoma
multiforme exhibits abnormal upregulation of gBK potassium ( K+) and ClC-3 chloride (Cl−) channels, which
aid glioblastoma cells changing cellular volume very rapidly, thus help extremely aggressive invasive behavior
of the tumor cells. Another example is the M2 proton (H+) channel in influenza A virus. The M2 proton
channel conducts protons into the virion core, acidifies the virus interior, and leads viral ribo nucleo protein
(RNP) complexes release and start viral replication. It has been intensively studied that ion channels are
frequent targets in research of new drugs for human diseases (Cross et al. (2012), Dong et al. (2013), Fermini
& Priest (2008), Miao et al. (2015), Zhou (2011a)). Advanced giga-seal patch-clamp technique has made the
measurement of ionic flowing through a single channel possible (Chung & Kuyucak (2002)), and experimental
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Figure 1: Homology structure of a sodium channel constructed from a mosquito genetic data. (a) Top view of a mosquito voltage
gated sodium channel. Four homologous domains (I through IV) are illustrated by using four different colors. In each domain,
there are six transmembrane segments (S1 through S6). Segments S1−S4 of the channel constitute the voltage-sensing domain
(VSD), which is away from the pore, while segments S5 and S6, together with the membrane-reentrant pore loop, form the pore.
Image credit: Zixuan Cang. (b) The sodium channel viewed in a cell membrane. Image credit: Christopher Opron.

discoveries are available for structures and functions of potassium channels (Brohawn et al. (2014), Labro et al.
(2015)), sodium channels (Catterall (2012), Payandeh et al. (2012)), calcium channels (Fu et al. (2014)), and
proton channels (Hondares et al. (2014)). These developments set the stage for theoretical/mathematical
modeling to simulate charge transport, to reproduce experimental data, to predict new phenomena, and to
offer direction in ion channel-targeted drug design (Boiteuxa et al. (2014), Lacroix et al. (2013)).

There is quite good understanding of the molecular basis of voltage gated potassium channels across various
species, such as bacteria, insects, and mammals, due to the availability of many high quality X-ray crystallo-
graphic structures (Gutman et al. (2005), Long et al. (2005)), and detailed theoretical analysis (Jensen et al.
(2012b)). Voltage gated potassium channels typically are simple, single-domain proteins that assemble to
form functional homotetramers. However, eukaryotic voltage gated sodium channel (Nav) channels, such as
those of mosquitoes and humen, are complex and four homologous domain proteins assembled into pseudote-
trameric structures, with no X-ray crystallographic structure, see Fig. 1. The only existing high resolution
X-ray crystallographic structures for Nav channels are from bacteria (Bagneris et al. (2013), McCusker et al.
(2012), Payandeh et al. (2012), Shaya et al. (2014)). Similarly to voltage gated potassium channels, bacterial
Nav channels have four identical subunits arranged to form a functional channel. The molecular mechanism
of eukaryotic Nav channel gating transitions, between voltage-sensing, activation, and deactivation as well as
their coupling and interaction with drugs and/or insecticides, is largely unknown or unclear, partially due to
limited experimental means, theoretical models and computational power (Dong et al. (2014), Du et al. (2013,
in press 2015)). Such a gap in our understanding severely hinders our ability to design effective mosquito in-
secticides as well as qualified drugs for epilepsy, irregular cardiac arrhythmias, hyperalgesia, myotonia, and
anesthesia.

Modern ion channel models are based on the biological understanding of the function and gating mechanism
of ion channels, which heavily depend on their molecular structures. A channel protein usually consists of
several hundreds to thousands amino-acid residues. Some of them have simpler structures, for example, the
Gramicidin A (GA) channel obtained from the soil bacterial species Bacillus brevis is just a dimer that consists
of two head-to-head β-helical parts in a bilayer membrane. All of the residues form a narrow pore of about
4Å in diameter and 25Å in length that simply conducts monovalent cations, binds bivalent cations, while rejects
anions. On the contrast, the KcsA (potassium crystallographically-sited activation) channel has a relatively
complicated structure and hence complete functions. It is comprised of around 560 residues that form four
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identical subunits, each containing two alpha-helices connected by a loop of approximately 30 amino acids.
There are three primary functioning sections of the KcsA channel: the opening pore on the cytoplasmic side of
the cell interior, a small cavity filled with water and a mix of sodium (Na+) and potassium (K+) ions, and the
selectivity filter (Egwolf, B. & Roux, B. (2010)). The KcsA channel is specialized to facilitate and regulate
the conduction of K+ ions in particular (Egwolf, B. & Roux, B. (2010)). Further, the technology of homology
provides ability to discover more ion channel three dimensional (3D) structures from their genetic data. Figure
1 shows the homology structure of a sodium channel constructed from a mosquito genetic data. In fact, voltage
gated potassium and sodium channels are homologous to each other. Therefore, a full description of of ion
channels at atomic level is required in order to investigate their function and gating comprehensively. On the
other hand, a major characteristics of an ion channel system is its heterogeneity. It is inhomogeneous in terms
of materials: as shown in Fig. 2(a), an ion channel exists in an extremely complicated environment including
cell membrane, water molecules, mobile ions and other molecular components. All of these components are
subject to intensive mutual long-range (e.g., electrostatics) and short-range (e.g. Lennard-Jones) interactions.
It is also inhomogeneous in terms of functions: an ion channel may have both water-rich, or bulk solvent
regions where ions are fully hydrated, and a region where water molecules can only form a single file and ion-
water clusters need to be rearranged. Additionally, an ion channel may have different function domains that
are responsible for voltage sensing, gating, conducting efficiency and selectivity. In fact, some of these domains
may extend away from the channel pore, as in the case of voltage gated sodium channels (Catterall (2012),
Payandeh et al. (2012)). Furthermore, ion channel gating can be modulated by ligand, toxicity, substrate,
et cetera, which is often the basis for anesthesia and insect control. Therefore, theoretical modeling and
simulations of the molecular mechanism for charge transport in ion channels often involve an excessively large
number of degrees of freedom and encounter enormous challenges (Wei (2010, 2013), Wei et al. (2012)).

One of the pioneering works about the functions of ion channels is the Hodgkin-Huxley model derived
by Hodgkin & Huxley (1952), which is used to study action potentials initiated and propagated in neurons
by modeling the ensemble of voltage dependent channels in nerve fibers using nonlinear ordinary differential
equations. This model is still a basis for many present interesting ion channel studies. In this review, we focus
on models for the functions of a single ion channel. Among mathematical/theoretical models of ion channels
developed in past decades, molecular dynamics (MD) stands among top of the hierarchy in terms of accuracy.
As a type of all-atom channel model, it treats channel protein, cell membrane, solvent and ions explicitly with
positions and velocities propagated by the Newtonian dynamics. MD simulation provides a way to investigate
the ultimate details of how structures move and which motions may be linked to biological functions. From an
MD simulation trajectory, a variety of thermodynamic (e.g., the free energy changes associated with solvation
or ion binding inside a channel pore) or kinetic (e.g., the rate of ion passing through a channel) quantities can
be calculated. Computer tools based on MD have been extensively developed by Engels et al. (1995), Klapper
et al. (1986), MacKerell et al. (1998), Madura et al. (1995), Perlman et al. (1995), Prabhu et al. (2008) and
simulations have been widely used to compute energetics (potential of mean forces PMFs) of ion or water
transport through biological channels. Further, MD is a suitable model to study some specific function unit
of ion channels such as selectivity mechanism in the local selectivity filters. However, the major drawback of
the explicit method is the extremely large number of degree of freedom for the system, so the computation
remains very expensive even with contemporary computer powers due to the necessarily small time step (10−15

seconds) versus the ion permeation time scale (10−6 seconds). Some important ion channel models in MD
are referred to Baker et al. (2016), Dai & Zhou (2014), Heymann et al. (2013), Im & Roux (2002), Lin et al.
(2013), Marx & Hutter (2000), Roux (2002), Roux et al. (2004), Schumaker et al. (2000). Specifically, gating
motion of ion channels, and their interactions between transmembrane were studied in Dai et al. (2015), Dai &
Zhou (2014), Heymann et al. (2013), Jensen et al. (2012a). Meanwhile, some fast algorithms were developed
for all-atoms models to study protein folding and binding Qin & Zhou (2013, 2014).

Brownian dynamics (BD) fades out the molecular details of membrane bilayer and water molecules, while
only treats mobile ions and channel protein explicitly. The motion of target ions is governed by the Langevin
equation. In this model, the forces acting on the ions include frictional/random forces from the surrounding
solvent, and the total electrostatic forces due to other mobile ions, fixed charges in the channel protein, solvent
polarized electrostatic field and/or applied transmembrane potential that are determined by solving the Poisson
equation. Many BD based algorithms are developed and because of the significant reduction in the number of
degrees of freedom. The BD simulations are highly efficient. The trajectories of mobile ions can be simulated
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at usually microsecond scale, from which the single channel current can be derived by counting the number
of ions that move across the channel. A series of work has been established to study functions of channel
proteins via BD by Cheng & Coalson (2005), Cheng et al. (2010), Coalson & Kurnikova (2005), Gordon et al.
(2009).

One of simplest ion channel models is the Poisson-Nernst-Planck (PNP) theory, which is a mean-field
approach with a low resolution of ion channels, but offers high efficiency. Using a continuum approximation,
the PNP model treats the ion flow as the averaged ion concentration driven by the electrostatic potential
force and ion concentration gradient. Meanwhile, it incorporates the static atomistic charge description of
channel proteins. Thus, it hybrids the macroscopic/continuum description of ionic channel flows with the
microscopic/discrete representation of protein electrostatic charge sources, see Fig 2(b). For a 1:1 electrolyte,
the PNP system (without physical parameters) is essentially a system of coupled partial differential equations
(PDEs): 

−ε∆φ = ρf + p− n,

∂p

∂t
= ∇ · (∇p+ p∇φ)

∂n

∂t
= ∇ · (∇n− n∇φ) ,

(1)

where φ(r), p(r, t) and n(r, t) are electrostatics, concentrations of positive mobile ions (cations) and negative
mobile ions (anions), receptively. In this approach, both water and cell membrane are approximated by dielectric
function ε, and the structure of channel protein is modeled by static point charges or atomic charge density
ρf . Under this framework, concentrations of the ions through the channel follow the Ohm’s and Fick’s law,
and form two drift-diffusion equations in the same structure. It is worthwhile to point out that under non-flux
boundary conditions, the PNP model at stationary state reduces to the Poisson-Boltzmann (PB) model Wei
et al. (2012). The PNP model was introduced to the field of molecular biophysics in early 1990s by Barcilon
et al. (1992), Chen et al. (1995), Eisenberg (1996), Eisenberg & Chen (1993), Eisenberg et al. (2010), Singer
et al. (2008) from a similar approach, called drift-diffusion equations in electronic devices community and
widely used in ion channel simulations afterwards, as one of the current major workhorses (Allen et al. (2001),
Cardenas et al. (2000), Chen et al. (1997), Choudhary et al. (2010), Constantin & Siwy (2007), Corry et al.
(2003), Dyrka et al. (2008), Gillespie et al. (2002), Graf et al. (2004), Hwang et al. (2006), Kurnikova et al.
(1999), Levitt (1999), Mamonov et al. (2006), Simakov & Kurnikova (2010), Singer et al. (2008), Zhou, Lu,
Huber, Holst & McCammon (2008)).

But the reality of ion channels is far more complex than three PDEs. The starting point of the fundamental
PNP system in Eq. (1) is the assumption of volume-less point charge approximation of mobile ions embedded
in a structureless and homogeneous continuum model of water molecules. Thus, the original model neglects the
steric effects of ions in significant geometric confinement in channel pore, ion-water interactions, polarization
of water molecules, channel motion, and many other interactions that are not directly and exclusively relate
to electrostatics, but critically contribute to complicated functions of ion channels such as selectivity and
activation. Some theoretical approaches have been proposed towards the direction of improving the traditional
Poisson-Boltzmann or PNP theory, such as in Antypov et al. (2005), Bazant et al. (2011, 2004), Ben-Yaakov
et al. (2011), Schmuck & Bazant (2015), Vlachy (1999), Wei (2010), Wei et al. (2012). Development,
analysis, and computation of PNP-based models for ion channel transport have also attracted much attention
in the community of applied mathematics.

In this review, we first review the fundamental PNP model and its application on a simple ion channel in
Section II. The recent progresses on new models development, computational methods, and mathematical
analysis are surveyed in Sections III, IV, and V, respectively. Finally, we discuss some other advanced math-
ematical models in Section VI, including the Poisson-Boltzmann-Kohn-Sham model for proton channels and
a differential geometry based multiscale model for a comprehensive understanding of solvation and charge
transport.
II The Poisson-Nernst-Planck model
The variational derivation of Poisson-Boltzmann (PB) equation was given in early 1990s by Sharp & Honig
(1990). Similarly, the system of PNP equations can be derived by the variation of a total energy functional
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(a) (b)

Figure 2: Illustration of an ion channel system and the multiscale approach. (a) Atomic view of the Gramicidin A channel in the
membrane and aqueous environment; (b) A cross section of the multiscale representation of the system.

(Fogolari & Briggs (1997)). However, unlike the PB equation or the Poisson equation, which can derived
entirely from total variation, the derivation of the Nernst-Planck equation follows two steps, namely, using
the energy variation to obtain the chemical potential and then using Fick’s laws of diffusion to attain the
Nernst-Planck equation. A somewhat more rigorous derivation from the conservation laws has been given
recently by Wei (2010). This approach allows the coupling to flow velocity and potential chemical reactions,
such as protonation and deprotonation of amino acids, which occur very often during ion channel permeation.

In this review, we follow a simple derivation as in Fogolari & Briggs (1997), Zheng & Wei (2011). Assuming
there are multiple ionic species in an ion channel system and ρα is the concentration of the α-th ion species, the
total free energy for the system can be described in terms of the electrostatic potential Φ and the concentration
ρα as the following:

GPNP
total[Φ, {ρα}] =

∫ {
−εm

2
|∇Φ|2 + Φ ρm −

εs
2
|∇Φ|2 + Φ

∑
α

ραqα

+
∑
α

[
(µ0
α − µα0)ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]}
dr.

(2)

The first row of Eq. (2) is the electrostatic free energies of the system. Here, the ion channel protein is
modeled as the fixed charge density ρm in atomic details with dielectric constant εm. In contrast, the solvent
is modeled by the ionic density ρα and water molecules are treated as a dielectric continuum with dielectric
constant εs. Here qα is the charge of αth ion species. The second row includes chemical potential related
energy and entropy of mobile ions, where µα0 is the chemical potential and µ0

α is the reference chemical
potential of the αth species at which the associated reference concentration is ρα0. kBT is the thermal energy
with kB being the Boltzmann constant and T being the temperature. At last, a Lagrange multiplier λα is
used to ensure appropriate physical properties at equilibrium (Fogolari & Briggs (1997)).

By applying the variational principle, governing equations for the variables Φ and ρα of the system can be
obtained.
II.A Governing equations
First, the Poisson equation can be derived by taking the variation with respect to the electrostatic potential
Φ, i.e,

δGPNP
total

δΦ
⇒ ∇ · (ε∇Φ) + ρm +

∑
α

ραqα = 0. (3)
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Then it yields

−∇ · (ε∇Φ) = ρm +
∑
α

ραqα. (4)

In many multiscale models such as in Chen (2016), Zheng et al. (2011), the Poisson equation is defined in
the whole computational domain Ω, which consists of the solute domain Ω+ and the solvent domain Ω−, on
which the dielectric function ε is defined as a piecewise constant function

ε =

{
εm, r ∈ Ω+,

εs, r ∈ Ω−
(5)

At this moment domains Ω+ and Ω− are assumed to be divided by a given molecular surface Γ, i.e., Ω =
Ω+ ∪ Ω− and Γ = Ω+ ∩ Ω−. Naturally, the Nernst-Planck equation (and ρα) is confined in the domain Ω−.
Note that the dividing surfaces for dielectric constant ε and ρα are not necessary to be the same, as suggested
in Kirkwood (1934) . However, this review, we assume the same surface.

The derivation of the Nernst-Planck equation follows two steps. First, the variation of the total free energy
functional with respect to ion concentration ρα is the relative generalized potential µgen

α of species α, i.e.:

δGPNP
total

δρα
⇒ µgen

α = µ0
α − µα0 + kBT ln

ρα
ρα0

+ qαΦ + λα, (6)

where

λα = −µ0
α , ρα = ρα0e

− qαΦ−µα0
kBT , (7)

and therefore
µgen
α = kBT ln

ρα
ρα0

+ qαΦ− µα0. (8)

This quantity vanishes at the system equilibrium, while in a non-equilibrium situation, the ion flux density Jα
is given through the gradient of the relative generalized potential, i.e., Jα = −Dαρα∇µgen

α

kBT
, where Dα is the

diffusion coefficient of species α. If stream velocity and chemical reaction are neglected (Wei (2010)), the the
mass conservation of species α gives ∂ρα

∂t = −∇ · Jα, i.e.,

∂ρα
∂t

= ∇ ·
[
Dα

(
∇ρα +

ραqα
kBT

∇Φ

)]
, (9)

Equation (9) is only defined in the solvent domain Ω− but forms a coupled system with Eq. (4) for describing
the charge concentrations ρα and the electrostatic potential Φ. The solutions of these equations need to be
pursued self-consistently. Based on the ionic flux density, the general formulation to calculate an important
physical observable–ionic current, as the total flux through a cross section at the steady state, is

I =

Nc∑
α=1

qα

∫
Lx,Ly

Dα

(
∂ρα
∂z

+
ραqα
kBT

∂Φ

∂z

)
dxdy. (10)

II.B Gramicidin channel: A showcase for the PNP model
As a showcase, electrostatic profiles of the GA channel, calculated from the PNP system, is mapped on the
protein surface and shown in Fig. 3. Overall the GA is neutral in terms of charges, but its surface electrostatic
potential is mostly negative near the channel mouth as indicated by the red color in the graph. Also, the
inner wall of the channel pore is also intensively negatively charged as shown in Fig. 3(b). This fact indicates
the obvious selectivity of the GA channel — it selects cations and suppresses anions. The electrostatics of
the channel system greatly depends on the dielectric constants used in Eq. (5). However, the choice of this
key model parameter is very subtle and nontrivial because rotation and polarization of water molecules in the
narrow channel pore are significantly different from those in bulk solvent. The true dielectric properties of
water molecules in ion channel are not fully revealed. To this end, a range of dielectric constants have been
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(a) (b)

Figure 3: 3D illustration of the electrostatic profile of the Gramicidin A (GA) channel. The red and blue colors represent negative
and positive electrostatics, respectively. (a) Top view of the GA channel; (b) Side view of the GA channel.

(a) (b)

Figure 4: Concentration profiles in the GA channel. (a) with reference concentration ρ0 = n0 = 0.1M and variable transmembrane
voltage Φ0 (b) with Φ0 = 50 mV and variable ρ0. Two dashed vertical lines represent the entrance and exist of the channel.

explored in order to obtain a reasonable prediction in Chen & Wei (2013). There is a general agreement
that εm could be taken as a constant that slightly greater than 2, which is the value used in the solvation
study. While the dielectric constant εs for the solvent should be position dependent. The dielectric constant
εbath = 80 is the value widely accepted in the literature for the bath water region.

Concentration profiles of mobile ions in a 1:1 electrolyte, such as KCl or NaCl, in the GA channel are
illustrated in Fig 4, where the ion concentrations of K+ and Cl− in the GA channel are displayed, against
transmembrane voltage Φ0 and reference concentration ρ0 = n0, respectively. In these figures, the concen-
tration of K+ is dominant over the concentration of Cl− in the channel region, so these simulations agree
with the fact that GA channel only conducts cations but reject anions. When the reference ρ0 = n0 is fixed
and the transmembrane potential difference Φ0 is zero, see Fig. 4(a), distribution of K+ concentration is
somehow symmetric in the channel. While when Φ0 increases, concentration of K+ tends to the right end of
the channel and then ion current is generated. Fig. 4 shows concentration of K+ in channel increases as ρ0
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increases, while it is a constant in the bulk solvent due to the neutral electrostatics.

Figure 5: A comparison of simulated I-V curves and experimental data from Cole et al. (2002) for Gramicidin A channel.

One way to validate the proposed model is to compare the simulated current-voltage (IV) curves with
experimental results. In electrophysiology, the voltage refers to the voltage across a membrane, and the
current is the flow of charged ions across protein pore. Some experimental results of I-V curves of the GA
channel for KCl were reported by Cole et al. (2002). For the bulk diffusion coefficients of K+ and Cl−, the
experimental data are used, i.e., DK = 1.96 × 10−5cm2/s and DCl = 2.03 × 10−5cm2/s for K+ and Cl−,
respectively (Zheng et al. (2011)). However, the diffusion coefficients in the channel pore are not known in
general. In order to match experimental results, smaller diffusion coefficients are usually used in the channel
region due to the restricted diffusion in most ion channels. Figure 5 presents the reasonable match between
the IV curve simulated by the PNP model and experimental data from Cole et al. (2002), with a diffusion
coefficient in the channel 25 times smaller than the bulk coefficient.
III Generalized PNP models
In the charge dynamics modeled by the traditional NP equation (9), mobile ions are treated as volume-less point
charges. This is a reasonable assumption for bulk or diluted solvents, but it could be problematic for crowded
ionic population in a narrow channel pore. As shown in Fig. 6, ionic sizes of mobile ions are comparable to
geometry configuration in the narrow channel pore, and they play significant roles in interactions with water
molecules and selectivity of ion channels. Many generalizations of the original PNP framework have been
proposed. Mathematical models for the finite size effects in ionic solutions were proposed by introducing an
energy term that represents the hard sphere repulsion of ions under the PNP framework, as in Hyon et al. (2010,
2011), Lin & Eisenberg (2014). The total energy then is made of the entropic energy, electrostatic potential
energy, and the repulsive potential energy. As a result, modifications of the Poisson-Nernst-Planck (PNP)
equations were derived, including the effects of the finite size of ions that are so important in the concentrated
solutions near electrodes, active sites of enzymes, and selectivity filters of proteins. More recently, a nonlinear
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Figure 6: (a) A schematic drawing of steric effects of ions and ion-water interactions in channel pore. Molecular surface Γ
partitions the whole region into the solute part (Ω+) and the solvent part (Ω−). In the extremely narrow channel pore, ion-water
clusters need to re-arrange their original configurations in bulk solvent in order to go through the channel region. In this situation,
ion size effects and polarization of water dipoles affected in the vicinity of an ion play significant roles in ion transport dynamics.

Poisson model, a Poisson-Nernst-Planck-Fermi model, and an ionic concentration and size dependent dielectric
permittivity Poisson-Boltzmann model were proposed to study the water molecules in solvent as heterogeneous
media in the mean-field theory (Hu & Wei (2012), Li & Lu (2014), Liu & Eisenberg (2014)). Other work
of modification of PNP theory can be found in Adalsteinsson et al. (2008), Burger et al. (2012), Hyon et al.
(2011), Kilic et al. (2007), Li et al. (2010), Qiao et al. (2016, 2014), Xu, Ma & Liu (2014).
III.A Ion-size effects
A specific mathematical model for the finite size, specially, the repulsive effects of mobile ions has been
introduced in Hyon et al. (2010) for ion channels. An appropriate energy term that represents the hard sphere
repulsion of ions was built into the total energy consisting of the entropic and electrostatic potential energies,
then variational approach leads to a modified NP equation for ionic species ρα as follows:

∂ρα
∂t

= ∇ ·
{
Dα

[
∇ρα +

ρα
kBT

(
qα∇Φ−

∫
12εα,α(aα + aα)12(r− r′)

|r− r′|14
ρα(r′)dr′ (11)

−
∑
β,β 6=α

∫
6εα,β(aα + aβ)12(r− r′)

|r− r′|14
ρβ(r′)dr′

 .

Comparing to Eq. (9), this model involves two integral terms with the Lennard-Jones hard-core repulsion
kernels to model the repulsing energy between ion ρα themselves and with all other ion ρβ , where εα,β are
empirically chosen energy constants for the repulsive interactions between ionic concentration ρα and ρβ with
the radii of the two species are aα and aβ , respectively.

In another work by Lu & Zhou (2011), the finite size effects of ions were modeled based on the Borukhov
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model, in which an ideal-gas-like solvent entropy term is included in the total functional, to represent the
unfavorable energy of over-packing or crowding of ions in narrow channels. After variation, the new NP
equation reads:

∂ρα
∂t

= ∇ ·

{
Dα

[
∇ρα +

ρα
kBT

(
qα∇Φ +

kαρα
∑
β a

3
β∇ρβ

1−
∑
β a

3
βρβ

)]}
, (12)

where aβ is the radius of the βth ionic species and kα is the ratio between aα and the radius of water molecules.
In the work of Burger et al. (2012), a modified PNP system was established as for size effects in confined

geometry of channels

∂ρα
∂t

= ∇ ·
{
Dα

[
(1− c)∇ρα + ρα∇c+

ραqα
kBT

(1− c)∇Φ + µαρα(1− c)∇W 0
α

]}
, (13)

where µα is the entropy variable, c =
∑
α ρα, and W 0

α is an external potential. The nonlinear mobilities
described by the model was derived based on a discrete lattice-based hopping model with volume exclusion,
with the investigation of the system entropy in time.

In these models, the ion-ion (repulsive) interaction terms are all in terms of either concentration or gradient
of concentration of mobile ions. This is the so-called density functional approach, which could be unified in a
framework of density functional theory (DFT). In the differential geometry based model discussed in Section
VI.B, the size effects of ions can be included in a unified term called generalized correlations, which include
not only ion-ion interactions, but also short-range interactions among ions, ion-water, and ion-proteins.
III.B Classical density functional theory (cDFT) based PNP (cDFT-PNP)
Another strategy to include the above discussed size effects or other interactions beyond electrostatics is to
include them uniformly by the classical density functional theory (cDFT). In this approach, the cDFT-PNP
can be written as (Meng et al. (2014)):

∂ρα
∂t

= ∇ ·
{
Dα

[
∇ρα +

ρα
kBT

(
qα∇Φ +∇µid

α (r) +∇µex
α (r)

)]}
. (14)

Besides the electrostatics energy, the ideal chemical potential energy µid
α (r) and excess chemical potential

energy µex
α (r) are included in the ion dynamics. Both of the two terms can be expressed as functionals of ionic

densities, i.e.,
µid
α (r) = − ln

[
γαρα(r)/ρ0

α

]
, (15)

where γα is the activity coefficient described by the extended Debye-Huckel theory. Meanwhile,

µex
α (r) =

δF ex({ρα(r)})
δρα(r)

(16)

and the excess free energy functional F ex({ρα(r)}) includes hard-sphere components, short-range interactions,
Coulomb interactions and electrostatic correlations, i.e.,

F ex({ρα(r)}) = F ex
hs + F ex

sh + F ex
C + F ex

el , (17)

where the expression of each term can be found in Ref. Meng et al. (2014).
III.C Fluid flow and chemical reactions
When fluid flows play a crucial role in the density distribution of charge spices and electrostatic properties, the
PNP equations can be coupled with the Navier-Stokes equations.

In Eisenberg et al. (2010), Wang, Liu & Tan (2016), Xu, Sheng & Liu (2014), the Poisson-Nernst-Planck-
Navier-Stokes (PNPNS) equations were derived from the energetic variational approach (EnVarA) for a 1:1
electrolyte

Etotal =

∫
Ω

{
c

2
|v|2 + kBT

(
n ln

n

n0
+ p ln

p

p0

)
+
ze

2ε
(p− n)

∫
Ω

G(r, r′)(n− p)(r′)d(r′)

}
dr, (18)
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where v is the flow stream velocity and c =
∑
α ρα is the total solvent mass density . Note that the energy

components for electrostatics of the system is expressed by the Green’s function G(r, r′). As results, the
derived PNPNS equations are

−ε∆φ = ze(p− n)

∂p

∂t
+∇ · (pr) = ∇ ·

(
Dp∇p+

ze

kBT
Dpp∇φ

)
∂n

∂t
+∇ · (nr) = ∇ ·

(
Dn∇n+

ze

kBT
Dnn∇φ

)
ρ

(
∂v

∂t
+ (v · ∇)v

)
= η∆v −∇Π + (n− p)ze∇φ

∇ · v = 0 (19)

with the detailed formulation of Π in Ref. Xu, Sheng & Liu (2014).
In another work by Wei (2010), a total action functional was proposed as

GNS−PNP
total [Φ, {ρα}] =

∫ ∫ {
−εm

2
|∇Φ|2 + Φ ρm −

εs
2
|∇Φ|2 + Φ

∑
α

ραqα

+
∑
α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]

−

[
c
v2

2
− p+

µf
8

∫ t(∂vi
∂rj

+
∂vj
∂ri

)2

dt′

]}
drdt,

(20)

where η is the viscosity of the fluid. The Einstein summation convention is used in the viscosity term. The
first two rows in Eq. (20) have been discussed in the earlier sections. The last row in Eq. (20) describes the
Lagrangian of an incompressible viscous flow with the kinetic energy, potential energy and viscous energy lost
due to friction. Then the new NP equation derived from Eq. (20) is

∂ρα
∂t

+ v · ∇ρα = ∇ ·Dα

[
∇ρα +

ρα
kBT

∇
(
qαΦ− v2

2

)]
+
∑
j

ν̄αjJ
j , (21)

where ν̄αjJ
j is the density production of α species per unit volume in the jth chemical reaction. Consequently,

the Navier-Stokes equation results as

c

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · T + FE, (22)

where FE =
∑
α ραqα∇Φ and T is the flow stress tensor Wei (2010)

T =
η

2

(
∂vi
∂rj

+
∂vj
∂ri

)
=
η

2

[
∇v + (∇v)T

]
. (23)

Here the electrostatic potential is governed by the Poisson equation

−∇ · (ε∇Φ) = ρm +
∑
α

ραqα. (24)

Note that chemical reactions do not contribute to the total mass and velocity transport due to the conservation.
III.D Ion-water interactions
Another view of generalize PNP theory is to model the heterogeneous property of water molecules as a
continuum. Experimental observations concluded that that dielectric response of water decreases as ionic
concentration increases. A possible explanation is that water molecules form a hydration shell around a
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solvated ion, and when away from the ion-water cluster, the orientation of water molecules generally follow
the external electrostatic field. In contrast, the motions of those dipoles in the hydration shell are greatly
restricted in the vicinity of an ion. They are oriented immediately along the field line generated by the cation
or anion, as shown in Fig. 6, leading to an overall decrease in the dielectric response to the electrostatic field.

Based on this observation, a PNP model involving ion-water interactions was proposed by Chen (2016) , by
modeling water molecules in the solvent as a medium with dielectric function depending on the concentration
of mobile ions, i.e., ε({ρα}). In this work, the following total energy is considered:

G[Φ, {ρα}] =

∫
Ω

[
kBT

∑
α

ρα ln
ρα
ρα0
− ε(r)

2
|∇Φ|2 + Φρm + Φ

∑
α

ραqα

]
dr

+

∫
Ω

∑
α

[
kBT (ρα0 − ρα) + (µ0

α − µα0)ρα + λαρα
]
dr, (25)

in which the whole domain Ω has been divided into the solute domain Ω+ and the solvent domain Ω− and

ε(r) =

 εm, r ∈ Ω+,

ε({ρα}), r ∈ Ω−.
(26)

By a similar variation process, a new PNP system with ion-water interaction is obtained.
−∇ · (ε({ρα})∇Φ) = ρm +

∑
α

ραqα

∂ρα
∂t

= ∇ ·
{
Dα

[
∇ρα + ρα∇

(
qα
kBT

Φ + Uα

)]}
,

(27)

The model of Chen (2016) inherits the structure of the PNP equation and introduces an extra potential
energy term:

Uα = − δε

δρα

|∇Φ|2

2kBT
. (28)

This energy depends on ionic species, ionic concentration and the electrostatics, and thus it is called the

ion-water interaction (IWI) energy. Since
δε

δρα
< 0, the IWI energy is always positive regardless of the charge

of ions, so it is an energy barrier for all ionic species. It offers the ability of the model to distinguish different
ions of the same charges. In the conventional PNP, the overall potential energy for the dynamics of the αth
ion is Φ(r)qα/kBT , i.e., as long as two ionic species have the same valence (e.g., Na+ and K+), they will
have the identical transport dynamics, which is not realistic for some ion channels. In contrast, since δε/δnα

depends on specific ion types, the IWI energy − δε

δρα

|∇Φ|2

2kBT
will be obviously different for ions even with the

same valence. This property can be used to study the selectivity of ion channels. Experimental results from
Chandra (2000) suggest that the dependence of local dielectric response ε of water molecules to the K+ is

different from that of Na+. In other words, the value
δε

δρK+

in Eq. (28) is different from
δε

δρNa+

, where ρK+

and ρNa+ are local concentrations of K+ and Na+, respectively. Consequently, the overall transport potential
energy, given by Eq. (27), takes different values for K+ and Na+.

Figures 7 (a) and (b) show the energy components in the KcsA channel, for K+ and Na+, respectively.
The blue curves in both figures indicate that the electrostatic potential energies are identical for Na+ and K+

(although they look differently due to the scaling). As shown by the green curve in Fig. 7 (a), the IWI energy
of K+ is up to 2 kBT and the overall, effective transport energy (red curve) is alleviated through the channel,
but is still negative. On the other hand, Na+ ions experience the IWI energy as high as 8 kBT , so the overall
potential energy in the KcsA channel becomes an energy barrier. It is worth to pointing out that the dielectric
functions and values of the parameter β for K+ and Na+ are taken from experiment results. Therefore, the
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proposed formulation is able to model the selectivity of the KcsA channel, although the reality is much more
complicated. Noskov et al. (2004) investigated the selectivity of KcsA channel by comparing the free energy
of K+ and Na+ in the pore and in the bulk solution through molecular dynamics. It was claimed that the
carbonyl groups in the selectivity filter can compensate for the desolvation of K+ with larger radius while
not for the Na+ of smaller radius. Therefore, both the all-atom explicit and the implicit continuum models
demonstrate that ion-water interaction could be a critical factor for ion selectivity.
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Figure 7: Profiles of potential energies of the KcsA channel simulated by the PNP-IWI model. Two dashed vertical lines separate
the whole channel into three domains: the pore, cavity and filter regions. “Overall” means the sum of the electrostatics and
ion-water interaction energies.

In Fig. 8 the current-voltage relations of KcsA channel are compared for the original PNP model and the
PNP model with IWI modification. As shown by blue curves, the PNP model predicts similar magnitudes
of ionic currents for K+ and Na+; the only difference is from the diffusion coefficients of two ion species
(K+: 1.96× 10−9m2/s and Na+:1.33× 10−9m2/s Kuyucak et al. (2001)). This is against the experimental
observation that the conductance of K+ in the KcsA channel is dominant over Na+. Secondly, it is widely
believed that PNP model generally overestimates ionic current and a phenomenologically tuned diffusion
coefficient is used to match experimental results. The green and red curves are the current-voltage generated
by the PNP-IWI model for K+ and Na+, respectively. From these curves, one can see that the simulated ionic
current of K+ is significantly higher than that of Na+. Additionally, diffusion coefficients do not need to be
reduced in the PNP-IWI model.
III.E Poisson-Boltzmann-Nernst-Planck model
The PNP model provides good descriptions of each ionic species in a non-equilibrium system for charge
transport phenomena. However, the computational cost will be extremely high when there is a large number
of ionic types in the system because each charge species is governed by one 3D Nernst-Planck equation that
needs to be numerically solved. To address this issue, a Poisson-Boltzmann Nernst-Planck (PBNP) model
was introduced by Zheng & Wei (2011), in which only concentrations of the target ions (ions of interests) are
modeled by the Nernst-Planck equation while those of other ions are described by the Boltzmann distribution.
This approach is especially reasonable for charge transport modeling: an ion channel usually has selectivity and
it only conducts some specific ion species. For the rest of ions, they can be considered in a quasi-equilibrium
state in the bulk solvent. The validity and usefulness of the PBNP formulation were confirmed by independent
researchers such as Kiselev et al. (2011).

Assume the total number of ion species in the system is Nc, among which ρα (α = 1, · · · , NNP) are denoted
as the densities of the target charge species, or ions of interests, thus NNP is the total number of charge species
treated by using the non-equilibrium Nernst-Planck (NP) equation. On the other hand, the densities of the
remaining charge species in the system are ρβ (β = NNP + 1, · · · , Nc) and NBD = Nc − NNP is the total
number of the remaining charge species which are represented by the equilibrium Boltzmann distribution.
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Figure 8: Simulated current-voltage relations of K+ and Na+ in the KcsA channel.

Based on this consideration, the total free energy functional can be expressed by

GPBNP
total [Φ, {ρα}] =

∫ −εm2 |∇Φ|2 + Φ ρm −
εs
2
|∇Φ|2 + Φ

NNP∑
α=1

ραqα −
Nc∑

β=NNP+1

kBTρβ0

(
e
−
qβΦ−µβ0
kBT − 1

)

+

NNP∑
α=1

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]}
dr.

(29)

Equation (29) includes the same energy components as Eq. (2) does, but note two different treatments for
charged ion species are taken for the charge source terms in the polar solvation free energy functional.

It is then a standard procedure to derive the PBNP equations from the total energy functional (29).
−∇ · (ε∇Φ) = ρm +

NNP∑
α=1

qαρα +

Nc∑
β=NNP+1

qβρβ0e
−
qβΦ−µβ0
kBT ,

 .

∂ρα
∂t

= ∇ ·
[
Dα

(
∇ρα +

ραqα
kBT

∇Φ

)]
,

(30)

In practical applications, the Nernst-Planck equation is only needed for the ions of interests ρα and usually
NNP << Nc. This treatment can significantly reduce computational costs in simulations for a given level of
modeling accuracy. For an electrolyte that contains several ionic species, it is strategically useful to focus on
the ion of major interests and then use the PBNP equations, instead of the full PNP equations, in order to
reduce model complexity and computational costs. The ability of quasi-equilibrium PBNP model to recover
the full predictions of the non-equilibrium PNP model was tested in Wei et al. (2012).

Figure 9 provides the comparison of the cross sections of electrostatic potential and concentration profiles
obtained from PNP and PBNP models for the GA channel (Zheng & Wei (2011)). The external voltage is set to
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Φ0 = 100mV and the salt (KCl) concentration is n0 = 0.5M. Concentration of Cl−, nCl−(r) is represented by
using the Boltzmann distribution, while solve the Nernst-Planck equation for K+ density nK+(r). In figures,
solid curves are simulation results from the PBNP equation, while the dots are from the PNP equations.
Electrostatic potential computed by the reduced LB-PBNP model agree quite well with the full PNP model.
For the density profile, reduced PBNP model also does an excellent job in the channel region, which is the
region of main interest.

(a) (b)

Figure 9: Comparison of cross sections of electrostatic potential and concentration profiles from the PNP and PBNP models.
Transmembrane voltage Φ0 = 100mV, reference concentration n0 = 0.5 M. (a) Electrostatic potential profiles; (b) Concentration
profiles.

IV Computational algorithms and implementation
In order to understand the realistic chemical, physical, and biological properties in ion transport processes and
to predict reliable results, many algorithms and computational tools have been developed to obtain highly
accurate and efficient numerical solutions of various proposed models.
IV.A Finite difference based methods
The PNP and related system can be discretized by finite difference method (FDM). In Chen, Chen, Chen,
Geng & Wei (2011), Zheng et al. (2011), a set of FDM based algorithms was developed for the second-order
convergence solutions of the PNP equations with 3D realistic and complicated solvent excluded surfaces, in
which the matched interface and boundary method (MIB) developed in Xia & Wei (2014), Xia et al. (2012,
2011, 2014), Yu & Wei (2007), Yu et al. (2007), Zhao & Wei (2004), Zhou, Feig & Wei (2008), Zhou & Wei
(2006), Zhou et al. (2006) was used to handle the discontinuous property of dielectric constants on solvent and
solute domain, and Dirichlet to Neumann mapping technique (Geng et al. (2007)) was applied to rigorously
treat Dirac delta singularities of fixed charges the protein channels. This PNP algorithm was used to construct
a molecular level prototype for mechanoelectrical transducers in mammalian hair cells (Park & Wei (2014)).
Finally, many PB solvers, as those in Baker et al. (2001), Bertonati et al. (2007), Im et al. (1998), Rocchia
et al. (2001), Wang et al. (2012), can be incorporated to PNP systems.

Finite-difference methods for solving 1D and 2D time-dependent PNP equations was developed by Flavell
et al. (2014), Liu & Wang (2014), with second-order accurate solutions in both space and time. These works
focus on conservation of total ions, correct rates of energy dissipation, and positivity of the ion concentrations.
A set of sufficient conditions on the step sizes of the numerical method were discussed to assure positivity of the
ion concentrations and it demonstrated that the conservation property is critical in obtaining correct numerical
solutions over long time scales (Flavell et al. (2014)). Relatively simple and easy-to-implement conservative
schemes were established to preserve equilibrium solutions, and they were proved to satisfy the total exact
concentrations, preserving positivity of the chemical concentrations under a mild Courant-Friedrichs-Lewy
(CFL) condition, and the free energy dissipation law at the semi-discrete level (Liu & Wang (2014)). An
energy preserving finite difference scheme was developed in He & Pan (2016).
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Efficient numerical algorithms for solving 3D steady-state PNP equations with excess chemical potentials
described by the classical density functional theory (cDFT) (Meng et al. (2014)). In these algorithms, the
NP equations were transformed into Laplace equations through the Slotboom transformation. The algebraic
multigrid method was applied to efficiently solve the system and excess chemical potentials was calculated
through fast Fourier transforms with computational complexity of O(N logN), where N is the number of grid
points.

Pseudo-time-coupled nonlinear models was proposed for biomolecular surface representation and solvation
analysis by Zhao (2012). Recently, this type of approaches have been further extended to operator splitting
alternating direction implicit (ADI) schemes for pseudo-time coupled nonlinear solvation simulations (Zhao
(2014)). More recently, a fast ADI algorithm has been developed for geometric flow equations in biomolecular
surface generations in Tian & Zhao (2014).
IV.B Finite element based methods
Finite element method (FEM) is also developed to solve the PNP equation (Chaudhry et al. (2014), Lu et al.
(2010), Lu & Zhou (2011), Metti et al. (2016), Sun et al. (2016a), Tu et al. (2013)) and error analysis is
available (Sun et al. (2016b), Yang & Lu (2013), Zinsl (2015)). An FEM based solver was developed for a
modified form of the PNP equations that includes steric effects of mobile ions by Chaudhry et al. (2014). The
algorithm in this work combines Newton’s method to the nonlinear Galerkin form of the equations, which are
augmented with stabilization terms to appropriately handle the drift-diffusion processes. Periodic boundary
conditions of the PNP equations were used to conserve the number of ions in the solution domain and to
make comparison with particle-based simulations possible.

A stable regularization scheme was applied to remove the singular component of the electrostatic poten-
tial induced by the permanent charges inside biomolecules, and then regular, well-posed weak form of PNP
equations were formulated by Lu et al. (2010), Lu & Zhou (2011). For the steady-state problems, an inexact-
Newton method was used to solve the coupled nonlinear elliptic equations, and for time integration for the
non-steady-state electrodiffusion, the Adams-Bashforth-Crank-Nicolson method was devised. These computa-
tional algorithms were also generalized to a size-modified Poisson-Nernst-Planck (SMPNP) model that is able
to treat nonuniform particle sizes by the Borukhov model.

A method of lines approach was proposed for the FEM discretization to approximately solve the PNP
equations in Metti et al. (2016). This discretization scheme assures positivity of the numerical solutions
for particle density. A discrete energy estimate was also established and extended to the FE solutions of
an electrokinetic model, which couples the PNP system with the incompressible Navier-Stokes equations. A
parallel FE simulator for ion transport was developed in Tu et al. (2013) and error analysis of the FEM for
the PNP equations is available in Jerome & Kerkhoven (1990), Sun et al. (2016a). A free energy satisfying
discontinuous Galerkin method was developed in Liu & Wang (2017).
IV.C Other computational methods available for ion channels
There are many other intelligent computational algorithms, some of which are hybrid methods, and some are
currently developed for the equilibrium PB equation but could be extended to study non-equilibrium PNP-like
equations in the future.

Hybrid models: Baker et al. (2016), Lin et al. (2013) developed an image-charge solvation method (ICSM)
combined with molecular dynamics simulations to investigated the selectivity of the KcsA channel. In this
hybrid model, all particles including the channel protein, water molecules and mobile ions were described at
the atomic level with molecular dynamics in a small neighborhood around the channel, while the reaction field
effect of the continuum approximation of the background was computed by the image method. The ICSM
is able to demonstrate the function of the selectivity filter of the KcsA channel when potassium and sodium
ions are considered. In Jung et al. (2009), a PNP with explicit resident ion, or ERIPNP model, was developed
to study biting sites of K+ ions in the KcsA channel. In this algorithms, the continuum PNP equations are
accompanied by explicitly described individual ions with finite size in the selectivity filter of the channel. The
ERINP model reproduced the experimental results with a realistic set of parameters and also reduced CPU
costs.

Boundary integral method:. A boundary integral equation program was provided for calculation of electro-
statics in the Poisson Poisson-Boltzmann modeling of an ion channel in layered dielectric/electrolyte media in
Lin et al. (2013), Ziner & Cai (2016). A layered media Green’s function was used in order to accurately model
the inhomogeneous background, including different physical properties and extra/intra cellular environments,
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cell membrane, and the cylindrical shape of ion channels. A series of parallel, treecode, or GPU-accelerated
boundary integral equation methods were developed to calculate electrostatics of solvated biomolecules by
Geng (2013), Geng & Jacob (2013), Geng & Krasny (2013).

Nonlocal algorithms: A nonlocal dielectric model and the associated computational package was developed
for protein in ionic solvent, taking into account the polarization correlation among water molecules in Xie
et al. (2013), Xie & Zhou (2007). Using solution splitting and reformulation techniques, the solution of the
nonlocal dielectric model was shown to be uniquely obtained from solving two well-defined PDE systems and
one Poisson-like boundary value problem. Additionally, a nonlocal linearized PB equation with uniform ionic
size effect was also proposed and numerically tested on three protein molecules.

Stochastic methods: Stochastic walk-on-spheres (WOS) algorithms for solving the linearized Poisson-
Boltzmann equation (LPBE) provide several attractive features not available in traditional deterministic solvers
(Simonov et al. (2007)): Gaussian error bars can be computed easily, the algorithm is readily parallelized and
requires minimal memory and multiple solvent environments can be accounted for by reweighting trajectories.
Numerical optimizations that can make the computational time of Monte Carlo LPBE solvers competitive
with deterministic methods was introduced by Mackoy et al. (2013). In the optimization techniques, each
atom’s contribution to the variance of the electrostatic solvation free energy was assured to be the same, and
the bias-generating parameters in the algorithm were optimized, and an epsilon-approximate rather than exact
nearest-neighbor search was utilized when determining the size of the next step in the Brownian motion.

Levitt approach, rate-equation approach and their equivalence: It was investigated by Levitt (1991a,b) that
ion permeation can be modeled as continuous diffusion with the rate of ion transport being obtained from
solving the steady-state diffusion equation. The calculation involves determining the potential of mean force
and ion diffusion constant, which can be obtained from MD simulations. While in the rate-equation approach
Kolomeisky (2007), Läuger (1985), the translocation of the permeant ion through a channel pore is modeled
by a hopping mechanism along a discrete set of internal binding sites, and the rate of ion transport is obtained
from solving a set of steady-state rate equations. These two approaches are related and the equivalence of
them is proved by Zhou et al. (2011).
IV.D Iterative schemes for coupled systems
Regardless computational methods, governing equations in all models are coupled and need to be solved
iteratively. To illustrate the iterative process, consider a coupled generalized PNP model as

∂Sk+1

∂t
= |∇Sk+1|

[
∇ ·
(
γ
∇Sk+1

|∇Sk+1|

)
+ VLB(Φk, {ρkα})

]
, (31)

−∇ ·
(
ε(Sk)∇Φk

)
= Skρm + (1− Sk)

∑
α

ρkαqα, (32)

∇ ·
[
Dα

(
∇ρkα +

ρkα
kBT

∇(qαΦk + Uα)

)]
= 0, (33)

where the function S(r) is a characteristic function identifying the solvent or solute domain. Derivation of the
governing equation of S(r), or Eq. (31) is discussed in detail in Section VI.B. In this case, solving Eq. (31) is
considered as the outer loop, in which the function Sk+1 in the (k+ 1)th step is solved from the electrostatics
Φk and ρkα in the kth step. On the other hand, solving for Φk and ρkα with an available Sk is also an iterative
process and it is called the inner loop. Namely, start with a certain definition of molecular surface S0, Φ0 and
ρ0
α are solved self-consistently with this chosen S0 till convergent. In this case, Φ0,0 is taken as the solution

of the corresponding Poisson-Boltzmann equation, and it is used in Eq. (33) to solve for ρ0,1
α . Then ρ0,1 is

substituted in Eq. (32) to solve for Φ0,1. After mth step Φ0,m and ρ0,m
α are convergent, they are renamed as

Φ0 and ρ0
α and used in the outer loop Eq.(31) to solve S1.

In the mth inner loop for computing Φk,m and ρk,mα , the successive over relaxation scheme is utilized (
Chen et al. (2010))

Φk,m = ζ1Φk,m + (1− ζ1)Φk,m−1

ρk,mα = ζ2ρ
k,m
α + (1− ζ2)ρk,m−1

α ,
(34)

where 0 ≤ ζ1 ≤ 1 and 0 ≤ ζ2 ≤ 1 are relaxation factors. Larger values of ζ1 and ζ2 will lead to slower
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convergence, while smaller values may cause instability. Alternatively, the Gummel iteration proposed by
de Falco et al. (1964) can also be used to handle this type of problems.

The overall self-consistent process, including inner and outer iterations are summarized as follows.

Step 1: Initial atomic position and partial charge generation. The initial atomic positions of a protein
are taken from the Protein Data Bank (PDB) (www.pdb.org), and the partial charge prescription is
obtained by the software PDB2PQR Dolinsky et al. (2007, 2004), which provides rj and Qj values in
the formulation.

Step 2: Given initial guesses of Φ and ρα, the surface function S is obtained by the initial value problem
Eq. (47). After the surface function S is determined, an isosurface is extracted for the interface Γ.

Step 3: Based on the interface Γ, normal direction n is computed by ∇S
|∇S| on the isosurface; the coupled

Eqs. (32) and (33) are solved iteratively by above mentioned schemes.

Step 4: Go to Steps 2 and 3 for updating S, Φ and ρα until a convergence is reached based on a given
tolerance. Noticed that in the lth outer loop for updating S, we use Sl+1 = λ3S

l + (1 − λ3)Sl+1. In
each outer loop, the total free energy functional is evaluated for checking the convergence criteria.

V Mathematical analysis
There has been much effort in the mathematical analysis of the PNP equation and related systems in the past
few decades. The nontrivial mathematics and important applications have made this analysis an attractive
research topic. Qualitative properties of the steady state of PNP systems in ion channels, including existence
and uniqueness of solutions upon boundary conditions, were studied in Park & Jerome (1997). Afterwards,
mathematical analysis established for the PNP and related models in past decades are majorly in two aspects:
one is the asymptotic behavior of the PNP model and the other is the multiple solutions of modified PNP
equations Other analyses are referred to Cartailler et al. (2017), Deng & Li (2013), Hadjadj et al. (2010),
Hineman & Ryham (2015).

The PNP system was studied as a singularly perturbed system, with the assumption that the Debye length
is small relative to the diameter of the narrow ion channel, by Abaid et al. (2008), Eisenberg & Liu (2006),
Liu (2005), Singer et al. (2008), Singer & Norbury (2009), Wang et al. (2014). Explicit derivation of higher
order terms in the asymptotic expansions was obtained from special structures of the zeroth order inner and
outer systems. Various current-voltage relations of ion channels were described in the case of zero permanent
charges in a channel protein with electro-neutrality condition enforced at the ends of the channel (Abaid et al.
(2008), Zhang (2015)). Effects of small fixed protein charges and channel geometry on ionic flow was studied
in Ji et al. (2015). Ion channels involving two types of ions with three regions of piecewise constant permanent
charge were studied by geometric singular perturbation theory, which gives rise to the existence and (local)
uniqueness of the solution of the singular boundary value problem near each singular orbit (Eisenberg & Liu
(2006), Liu (2009)). By this technique, multiple solutions of the system were discovered and they might
explain a variety of multiple valued phenomena in biological channels, such as gating or some kinds of active
transport. Liu (2005) studied the global behavior in terms of limiting fast and slow systems, in which three
different time scales were indicated in the singularly perturbed PNP system.

Solutions of modified PNP system may explain more physical observation. The ability of PNP system is
analyzed to study gating mechanism of ion channels by Lin & Eisenberg (2015). Discovered by experimental
measurements, single protein channels produces unstable currents: nearly zero or a definite level of currents.
One reason may be the spontaneous stochastic gating process. Existence of multiple solutions of steady state
PNP-steric equations were studied to check whether it can describe this two levels of current. Indeed, two
steady state solutions of PNP-steric equations were proved for three types of ion species (two types of cations
and one type of anion) and four types of ion species (two types of cations and their counter-ions) with specific
assumptions on permanent charges in channel proteins. In Jia et al. (2016), a quasi-one-dimensional steady-
state PNP model modified with size effect was studied as a singularly perturbed differential system, with fixed
boundary ion concentrations and electric potentials. The existence of solutions to the boundary value problem
for small ion sizes was investigated with the ion sizes as small parameters. This analysis provided dependencies
of current-voltage relations on boundary concentrations, diffusion coefficients and ion sizes.
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An open problem in mathematical analysis is how to deal with the free boundary associated with ionic flow.
A differential geometry based PNP system has been proposed where the interface between the ion channel and
the solvent is governed by the Laplace-Beltrami equation as described in the next section. There is a pressing
to analyze this more challenging system.
VI Other mathematical models for ion channel transport
VI.A Poisson-Boltzmann-Kohn-Sham model for proton transport
Proton transport is one special type of charge transport through membranes and plays a critical role in
many biochemical processes (Chen, Chen & Wei (2012), Chen & Wei (2012)). For example, generation and
conduction of large proton concentration gradients are required in energy transduction in a bioenergetic system:
chemical energy is stored as proton gradient that drives the ATP generation in mitochondria of animal cells.
While for plants, light energy is transducted into a proton gradient to create ATP in chloroplasts (Decoursey
(2003)). Studies of proton transport are also important for public health: for example, the M2 proton (H+)
channel in influenza A virus. Conducting protons into the virion core and thus acidifying the virus interior, the
M2 proton channel leads viral ribo nucleo protein (RNP) complexes release and start viral replication (Schnell
& Chou (2008), Sharma et al. (2010)). Also, it has been intensively studied that proton channels are frequent
targets in the research of new drugs for human diseases such as cancers (Harguindey et al. (2009)).

However, the mechanism of proton transport is significantly different from that of regular ions such as
sodium or potassium. The reason is that proton has the lightest mass among all ions and its effective radius
at least 105 smaller because the H+ has no electron (Decoursey (2003)). The light mass and tiny size greatly
facilitate proton transfer reaction and electrostatic interactions with surrounding molecules (Mitchell (1976)).
Due to these unique physical properties, the mobility of protons in bulk solution is about fivefold higher
than that of other cations (Bernal & Fowler (1933)). Major studies indicated that transport of protons is
characterized as a succession of hops in the hydrogen-bond network and is described by the Grotthuss theory
in Nagle & Morowitz (1978). Specifically, mechanism of proton transport for the influenza virus M2 channel
was studied by Zhou (2011b,c), in which quantitative calculations have been implemented on the effort of pH,
transmembrane voltage, and H2O to D2O exchange on the transport rate, and the rate-limiting was concluded
to be binding to and unbinding from the His37 tetrad of protons.

Proton transport needs to be treated by quantum mechanical formulations, according to Nagle & Morowitz
(1978), Pomes & Roux (2002b). Many algorithms, such as multistate empirical valence bond (MS-EVB)
approach in Schmitt & Voth (1999), were developed by Schmitt and Voth, to compute dynamics of protons
in bulk phase water with an emphasis on a quantum dynamical treatment. Additionally, using Feynman
path integral dynamical simulations in Pomes & Roux (1996, 2002a,b), Roux and his coworkers investigated
single file of water molecules in the Gramicidin A channel, which functions as a proton wire. Although
not a governing factor, the nuclear quantum effect has a significant impact to proton transfer in equilibrium
conditions (Pomes & Roux (1996, 2002a,b)). Especially under nonequilibrium conditions, such as the presence
of an external electrostatic field (Drukker et al. (1998)), or hydrogen-bonding partners are greatly restricted
for the displacements of water molecules in narrow channel pores (Decornez et al. (1999)), nuclear tunneling
and nonadiabatic transitions need to be accounted in the proton translocation (Bothma et al. (2010), Pomes
& Roux (2002a)). Other important works are included in Alexov & Gunner (1999), Cukier (2004a,a,b,b),
Shepherd & Morrison (2010), Wang et al. (2006), Yan et al. (2007) and all these studies are based on a
full-atom fashion.

In recent work by Chen & Wei (2013), a multiscale/multiphysics model was developed for the understanding
of the molecular mechanism of proton transport in transmembrane proteins via continuum, atomic and quantum
descriptions. As shown in Fig. 10, quantum dynamics of proton is expressed in terms of proton concentrations,
combined with classical implicit solvent modeling. Further, in order to reduce the number of degrees of
freedom, a new quantum density functional theory was constructed, based on the Boltzmann statistics to
describe proton dynamics quantum mechanically, while numerous solvent molecules are implicitly treated as
a dielectric continuum. A new density functional like formalism is introduced to represent protein density
according to the Boltzmann statistics. Additionally, generalized correlations that model interactions among
all the ions, and between ions and proteins are explored in detail in Chen & Wei (2012). In this model, proton
kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the
whole system are integrated in a multiscale framework on an equal footing. In these models, we consider the
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Figure 10: Illustration of the quantum dynamics in continuum model for proton channels. Dynamics of other ions are modeled
by classical Boltzmann approximation in bulk solvent Ωs, while dynamics of protons is modeled in quantum mechanics but in a
mean-field approach.

energy functional:

GTotal[Φ, n, {ρβ}] =

∫ {
−εm

2
|∇Φ|2 + Φρm

− εs(r)

2
|∇Φ|2 + Φn(r)q − kBT

∑
β

ρ0
β

(
e
−
qβΦ+Uβ−µβ0

kBT − 1

)

+

∫
~2e−(E−µp)/kBT

2m(r)
|∇ΨE(r)|2dE + UGC[n] + UExt[n]

+ λ

[
Np
VΩ
−
∫
e
−E−µpkBT |ΨE(r)|2dE

]}
dr. (35)

This energy functional follows the same pattern of Eq. (2) or (29), but in this case proton is the major ion
of interests and its concentration is denoted as n(r). Other ions, with concentration ρβ , are modeled by the
equilibrium Boltzmann distribution as in Eq. (29).

Proton is described in a quantum mechanical formulation in terms of kinetic and potential energies in the
third line of Eq. (35), where ~ is the reduced Planck constant, and m(r) is the effective mass of the proton.
Under this framework, the kinetic energy is represented by the gradient of the proton wavefunction ΨE(r).
The potential energy of protons includes electrostatic energy Φn(r)q, generalized correlation UGC[n], and
external UExt[n], which are approximated as functionals of the proton concentration. The wavefunction and
number density of protons have the following relation:

n(r) =

∫
|ΨE(r)|2e−

E−µp
kBT dE, (36)
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where µp is the general electrochemical potential of protons.
The total energy functional (35) represents a multiphysical and multiscale framework that contains the

continuum approximation for the solvent, while explicitly takes into account the channel protein in discrete
atomic details. More importantly, it puts the classical theory of electrostatics and the quantum mechanical
description of protons on an equal footing. Similar energy frameworks have been developed for nano-electronic
devices in Chen & Wei (2010).

The governing equation for the electrostatic potential can be derived by the variation of energy functional
(35) with respect to electrostatic potential Φ

δGTotal[Φ, n]

δΦ
= 0 =⇒ −∇ · (ε∇Φ(r))−

N ′c∑
β

ρ0
βe
−
qβΦ(r)−µβ

kBT = n(r)q + ρf (r). (37)

In the present multiphysics model, the proton number density n(r) in Eq. (37) is related to the wavefunction
ΨE(r), which is governed by the generalized Kohn-Sham equation. This equation is obtained by the variation

of the total free energy functional (35) with respect to wavefunction Ψ†E

δGTotal[Φ, n]

δΨ∗E
= 0 =⇒ −∇ · ~2

2m(r)
∇ΨE(r) + V (r)ΨE(r) = EΨE(r), (38)

where we set the Lagrange multiplier λ = E. The total Hamiltonian of the proton is given by

H = −∇ · ~2

2m(r)
∇+ V (r), (39)

in which the total effective potential energy

V (r) = qΦ(r) + VGC(r) + VExt(r) (40)

consists of electrostatic, generalized correlation and external contributions. The external potential can be
omitted for a closed system without external fields.

It is important to note that generalized Kohn-Sham equation (38) is fundamentally different from the
normal Kohn-Sham equation for electronic structures. The Kohn-Sham operator in Eq. (38) has an absolutely
continuous spectrum and invokes the Boltzmann statistics for proton scattering. Whereas the normal Kohn-
Sham operator has a discrete spectrum and assumes the Fermi Dirac statistics for electron occupations (bound
states). Eqs. (37) and (38) form the Poisson-Boltzmann-Kohn-Sham (PBKS) equations.

From the above quantities, the proton current can be defined by standard probability flux, whose practical
expression is the following

I =
q

h
Tr

∫
G(E)V ahintraG

†(E)V ahextra

[
e
−E−µextra

kBT − e−
E−µintra
kBT

]
dE. (41)

where Tr is the trace operation, G is the Green’s operator

G(E) = (E −H)−1, (42)

and µextra and µintra are the external electrical field energies at extracellular and intracellular electrodes,
respectively. Here V ahextra and V ahintra are the anti-Hermitian components of the external potentials (Chen &
Wei (2013)).

Figures 11 (a)-(b) display the electrostatic potential energy and the generalized correlations of protons in
the GA channel, respectively. The electrostatic potential energy in this model is very similar to the profiles in
the PNP or PBNP model, because the electrostatics is determined mainly by the molecular structure of the
GA channel. The dielectric constant of water molecules in the channel region is taken as a model parameter
and three values, εch = 20, εch = 40, and εch = 80 are used in Fig. 11 (a). Two electrostatic potential wells
present near the entrance and exist of the channel, corresponding to the two binding sites. Fig. 11(b) shows
the generalized correlation of protons, including protein-proton, proton-water, and proton-ion interactions,
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Figure 11: Potential energy components of proton transport through the GA channel along the z-axis. (a) Electrostatic potential
energy. (b) Generalized correlations

modeled by density functionals. In this case, generalized correlations are all energy barriers that protons need
to overcome during the transport, and the sum of electrostatics and generalized correlation is the overall
potential energy of protons.

Figure 12 displays simulated results of proton conductance through Eq. (41), compared with experimental
data from Schumaker et al. (2000) of the GA channel. The blue dots in each figure represent available
experimental observations for certain voltage biases, while the red curves are from the PBKS model predictions
calculated with sufficiently many voltage samples. The model parameters are chosen to match the experimental
data but all of the choices are taken within the range of physical measurements.
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Figure 12: Voltage-current relation of proton translocation of GA at different concentrations. Blue dots: experimental data of
Eisenman et al. (1980); Red solid curves: QDC model prediction.

VI.B Differential geometry (DG) based charge transport models
Like other biological processes, charge transport takes place in an aqueous environment because 65%-90% of
cell mass is water. Thus, understanding the solvation process of channel proteins and mobile ions in solvent
has equal importance as ionic dynamics. In terms of modeling, a solvation process may include the creation
of a solute cavity in the solvent, the hydrogen bond breaking and formation at the solvent-solute interface,
the surface reconstruction of the solute molecule, and/or the entropy effect due to solvent-solute mixing
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(Mukhopadhyay et al. (2012), Onufriev et al. (2002)). Physically, this process involves a variety of solvent-
solute interactions, such as the electrostatic, dipolar, induced dipolar, and van der Waals interactions between
the solvent and the solute (Baker et al. (2006), Baker & McCammon (2003), Ren et al. (2013), Rocchia
et al. (2001, 2002)). In the past several years, intensive investigations for modeling ion channel systems based
on the PNP theory but with solvation processes through multiscale, multiphysics variational approach were
carried out, which were based on a differential geometry based multiscale paradigm for large chemical and
biological systems, such as fuel cells, nanofluidics (Park et al. (2015)), ion channels, molecular motors, and
viruses (Chen, Chen & Wei (2012), Chen & Wei (2012, 2013), Chen et al. (2010), Chen, Baker & Wei (2011),
Chen & Wei (2011), Wei (2010, 2013), Wei et al. (2012)). With abundant water molecules and atomic details
in cell membrane, it is critical to perform dimensionality reduction and manifold contraction by multiscale
approaches. The essential ingredient is to use the differential geometry theory and analysis for surfaces and
geometric measure as a natural technique to distinguish macroscopic domain for solvent and membrane, from
the microscopic domain for channel proteins. At the same time, the differential geometry based model couples
the continuum mechanical description of the aquatic environment with the discrete atomistic description of
ion channels.

These differential geometry based multiscale models are intensively investigated and practically implemented
for various types of ion channel problems (Chen, Chen & Wei (2012), Chen & Wei (2012), Chen et al. (2010),
Chen, Baker & Wei (2011), Chen & Wei (2011)). There are two representations, the Eulerian formulation
(Chen et al. (2010), Chen & Wei (2011), Chen, Zhao, Chun, Thomas, Baker, Bates & Wei (2012), Wang & Wei
(2015)) and the Lagrangian formulation (Chen, Baker & Wei (2011)) for the key element in the models, the
solvent-solute interface (Bates et al. (2009, 2008)). For the former, the interface is described as a hypersurface
function which is evolved according to the derived governing equations (Chen et al. (2010)), while for the
latter, interface elements are directly evolved according to governing equations which prescribe a set of rules.
The Lagrangian representation of a molecular surface can be obtained from the projection of the hypersurface
function by using an isosurface extraction procedure. The Eulerian formulation is mathematically simple and
computationally robust, while the Lagrangian formalism is straightforward for force prescription (Bates et al.
(2009)) and is computationally efficient, but usually encounters difficulties in handling the geometric break-
up and/or surface merging. Validation and equivalence of these two formulations are tested by the solvation
analysis for biological and chemical compounds (Chen et al. (2010), Chen, Baker & Wei (2011)). These models
were shown to deliver excellent solvation predictions of experimental data (Chen, Zhao, Chun, Thomas, Baker,
Bates & Wei (2012), Wang & Wei (2015)).
Variational solute-solvent interface The first ingredient of the DG model is the definition of molecular
surface. Implicit solvent models require a given solvent-solute interface, or molecular surface, to distinguish
different domains with the corresponding physical features, e.g., dielectric functions and diffusion constants,
and to separate appropriate computational domains. In many models, simple ad hoc molecular surfaces, such
as the van der Waals surface, the solvent excluded surface (Richards (1977)), or the solvent accessible surface
are often utilized in applications of protein-protein interactions (Crowley & Golovin (2005)), protein folding
(Spolar & Record Jr. (1994)), DNA binding and bending (Dragan et al. (2004)). In Wei et al. (2005), the first
PDE-based approach to construct biomolecular surfaces via curvature driven geometric flows was introduced.
Later on, the first variational formulation of molecular surfaces is developed, and the resulting molecular
surface, called the minimal molecular surface (MMS), was constructed by the mean curvature flow (Bates
et al. (2006, 2008)). Physically, the new definition of molecular surface satisfies the physical requirement of
free energy minimization of the ion channel system. Computationally, it avoids artificially geometric defects
such as cusps or self-intersecting surfaces, which could lead to computational instabilities.

To develop the variational solute-solvent interface, a solute characteristic function S(r) is introduced in the
total free energy. Fig. 13 offers a 1D representation, in which S(r) takes values one and zero in the solute and
solvent domains, respectively but with a transient region. Correspondingly, the solvent characteristic function,
1− S(r), represents the solvent domain. With this setup, the energy in Eq. (2) can be rewritten as
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Figure 13: Illustration of surface characteristic function S and solvent characteristic function 1− S in a 1D setting.

GPNP
total[S,Φ, {ρα}] =

∫
{γ|∇S|+ pS + (1− S)U

+S
[
−εm

2
|∇Φ|2 + Φ ρm

]
+ (1− S)

[
−εs

2
|∇Φ|2 + Φ

∑
α

ραqα

]

+(1− S)
∑
α

[(
µ0
α − µα0

)
ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0) + λαρα

]}
dr.

(43)

The first row of Eq. (43) lists the nonpolar solvation free energy of the system, with γ being the surface
tension and p being the hydrodynamic pressure, respectively. The solvent-solute interaction U is originally
approximated by Chen et al. (2010), Chen, Baker & Wei (2011), the Lennard-Jones potential, i.e.,

U =

Na∑
j

ULJj (r) (44)

where Na atoms are assumed for the channel protein. The Weeks-Chandler-Andersen (WCA) decomposition
based on the original WCA theory from Weeks et al. (1971) is utilized to split the Lennard-Jones potential
into attractive and repulsive parts. The WCA potential was used to account for the attractive dispersion
interaction Chen et al. (2010), Chen, Baker & Wei (2011), but can be extended as the generalized correlation
in terms of ionic concentrations, i.e.,

U =
∑
α

ραUα. (45)

Details of the formation and explanation of the generalized correlation Uα is given in the later Section.
The second and third rows of Eq. (43) follows the same concepts in Eq. (2), except that the solvent and

solute characteristic functions are associated correspondingly.
Generalized Laplace-Beltrami (LB) equation By applying the variational principle, the governing equation
for the function S(r) is

δGPNP
total

δS
⇒−∇ ·

(
γ
∇S
|∇S|

)
+ p− U − εm

2
|∇Φ|2 + Φ ρm

+
εs
2
|∇Φ|2 − Φ

∑
α

ραqα −
∑
α

[
−µα0ρα + kBTραln

ρα
ρα0
− kBT (ρα − ρα0)

]
= 0,

(46)

25



where Eq. (7) is used in the derivation. It is easier to pursue the solution of Eq. (46) by the following parabolic
equation with an artificial time (Bates et al. (2009), Wei (2010), Zhao (2011)):

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ V1

]
, (47)

where the LB potential V1 is

V1 = −p+ U +
εm
2
|∇Φ|2 − Φ ρm −

εs
2
|∇Φ|2 + Φ

∑
α

ραqα (48)

+
∑
α

[
kBT

(
ραln

ρα
ρα0
− ρα + ρα0

)
− µα0ρα

]
.

Figures 14 (a)-(b) show the molecular surface generated from the generalized LB equation (47). For
comparison, the solvent exclusive surface (SES) of the GA generated via the MSMS package developed by
Sanner et al. (1996) is also displayed in Figs. 14 (c)-(d). The SES only depends on the parameter used
in the generating software package (water probe radius 1.4 Å and density 10). Once generated, it keeps
fixed and is independent of the physiological conditions such as ion concentration or transmembrane voltage
differences in simulations. On the other hand, generation of the surface from the generalized LB equation is
an iteration process as stated in the earlier sections. As included in the LB potential V1(Φ, {ρα}), evaluation
of the characteristic functions S(r) depends on the electrostatics and ionic concentration. The results showed
in Figs. 14(a) and (b) are calculated under the transmembrane potential of 0.2 mV and with the ionic
concentration of 0.1M.

Comparing Figs. 14(a) and (b) and Figs. 14(c) and (d), the SES commits geometric singularities, such
as cusps and self-intersecting surfaces Zheng et al. (2011). These singularities may bring computational
difficulties to the designed interface schemes and are unphysical in the solvent-solute interface. In contrast,
the surface from the LB equation has a smoother appearance because of the diffusion mechanism, which
gives less-intensive sharp changes near the solvent-solute boundary. More importantly, generations of the
new molecular surface incorporate the interactions with the external ionic condition as well as transmembrane
voltages. All of these characteristics make more physical sense, and many good results in applications are
obtained in Chen et al. (2010), Chen, Baker & Wei (2011).
Generalized Poisson-Nernst-Planck equation Under this differential geometry based model, the general-
ized Poisson-Nernst-Planck equation can be derived by taking the variation with respect to the electrostatic
potential Φ, i.e,

−∇ · (ε(S)∇Φ) = Sρm + (1− S)
∑
α

ραqα, (49)

where ε(S) = (1 − S)εs + Sεm is an interface-dependent dielectric function. Eq. (49) depends on ion
concentration ρα and the solute characteristic function S.

∂ρα
∂t

= ∇ ·
[
Dα

(
∇ρα +

ρα
kBT

∇(qαΦ + Uα)

)]
, (50)

This is the generalized Nernst-Planck equation where qαΦ + Uα is a mean-field approach of all potentials.
Equation (50) reduces to the standard Nernst-Planck equation in Eq. (9) when the solvent-solute interactions
are taken as the original definition in Eq. (44). The differential geometry (DG) based model can also be
applied to the PBNP and PBKS systems similarly.
Generalized correlation Many improvements for the PNP system, such as the size effects or ion-water
interactions discussed earlier, can be adopted in the differential geometry based model, termed as generalized
correlation, which are modeled in a mean-field approach.

In this approach, the generalized correlation is modeled by extending the term∫
(1− S)Udr (51)

26
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Figure 14: Surface representations of the GA channel. (a)-(b) Surface extracted from the generalized LB equation with S = 0.5.
(c)-(d) MSMS surface with probe radius 1.4 and density 10.

in Eq. (43) as the free energy functional of the local ionic concentration ρα and its gradient ∇ρα for all ions,
i.e.,

GGC[S, {ρα}] =

∫
(1− S(r))

∑
α

UGC[{ρα}, {∇ρα}]dr. (52)
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With the assumption that the ∇ρα dependence is omitted as a first order approximation, it takes

GGC[S, {ρα}] =
∑
β

(
1

2

)δαβ ∫ ∫
(1− S(r))ρα(r)ρβ(r′)Kβ(|r− r′|)dr′dr (53)

+

∫ ∫
(1− S(r))ρα(r)nw(r′)Kw(|r− r′|)dr′dr (54)

+

Na∑
j=1

∫
(1− S(r))ρα(r)nj(r

′)Kj(|r− r′|)dr, (55)

where δαβ is the Kronecker delta function with δαβ = 1 if α = β and δαβ = 0 when α 6= β. The kernels
Kβ(|r−r′|), Kw(|r−r′|), and Ki(|r−r′|) model interactions among the α-th and β-th ions, water molecules
(in sense of density nw(r)), and protein atom distribution ni(r

′), respectively.
Finally, by taking variation with respect to the concentration ρα, one obtains the generalize correlation

potential

Uα(r) =
∑
β

ρβ(r) ∗Kβ(r) + nw(r) ∗Kw(r) +

Na∑
j=1

nj(r) ∗Kj(r), (56)

where ∗ represents the convolution operation.
VII Concluding remarks
Phenomena of charge transport present not only in naturally-designed devices such as ion channels, deoxyri-
bonucleic acid (DNA) nanowires, ATPases, or neuron synapses, but also widely exist in human-made devices
including solar cells, fuel cells, battery cells, molecular switches, nanotubes, field effect transistors, nanofibers,
thin films, etc (Wei et al. (2012)). Thus, understanding of mechanism and dynamics of charge transport in
these nano-scale biological or industrial devices is prerequisite to study their functions for human health or
developing modern technologies. Quantitative modeling and simulation of charge transport have emerged as
a new field in applied mathematics, which offers mathematical models, algorithms and analysis to reproduce
experimental data, to predict new phenomena and hence to shed light on new directions of research for these
nano-bio systems. Due to complexity of charge transport increases dramatically at nanoscale, where a large
amount of components, both macroscopic and microscopic, interact with each other in multiphysical principles
in a heterogeneous environment, Mathematical modeling and computation of these complex systems encounter
formidable challenges. Fully atomic description for the whole system will offer the highest accuracy, but it is
prohibited by the intractable large number of degree of freedom. Multiscale and multiphysics modeling that
retains the atomistic description of the channel protein while treats the membrane and solvent as dielectric
continuum gives rise to efficient approaches to ion channel charge transport.

In this paper we review recent progresses in mathematical modeling, algorithm and analysis of charge
transport in ion channels. A major emphasis is the development in Poisson-Nernst-Planck (PNP) based
models. The PNP equations can be derived from the total energy functional of an ion channel system and
include a Poisson equation for electrostatic environment for the whole system and a series of Nernst-Planck
equations for dynamics of mobile ions. Modified PNP models were developed under this framework in order
to include more detailed physical properties such as ion size effects or ion-water interactions, or to reduce
model complexity in multi-ion species systems. All the modification and improvement of PNP equations can
be achieved by adding additional energy components in the total energy functional. On the other side, proton
transport is a special type of charge transport due to the properties of hydrogen ions, and thus quantum
dynamics is involved in modeling proton channels. There are quite a few literature about quantum models
for proton transport in the literature, but it is the first time that a quantum dynamics in continuum model
was established as a mean-field method. Finally, a differential geometry (DG) based multiscale model was
developed, which includes the solvation process of ion channels in a solvent. In the multiscale treatment
of the ion channel system, the DGPNP model generates a more reliable and robust definition of molecular
surface, which takes into account the mutual interactions with electrostatics and ionic dynamics. Various
computational algorithms and mathematical analysis are also reviewed in this work.

Although numerous efforts and work have been devoted in this area each year worldwide, including the
availability of molecular structures of new ion channels, resolving a complete picture of molecular mechanism
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of channel gating and charge transport remains a challenging task. On the one hand, structure determination of
ion channel proteins and in general, G-protein-coupled receptors (GPCRs), is typically more difficult than that
of global proteins. On the other hand, even with available structures, biophysical understanding of functioning
principles for many existing ion channels are not completely clear. In particular, the gating mechanism of
voltage gated eukaryotic sodium channels is still elusive.

Future mathematical modeling and simulation of ion channels will address the pressing needs in the under-
standing of their molecular mechanism. Much attention will be paid to the homology modeling of ion channel
structures, such as the structure presented in Fig. 1 and their improvement. Additionally, the interactions of
ion channels and drugs, which hold the key for the drug discovery for epilepsy, irregular cardiac arrhythmias,
hyperalgesia, myotonia, and anesthesia, will be studied by molecular docking. An important component in
docking analysis is the prediction of protein-ligand/drug binding affinities, which can be achieved by machine
learning algorithms Wang, Zhao & Wei (submitted 2016). Moreover, the blind prediction of mutation impacts
to ion channel current-voltage (I-V) curves (Cang & Wei (2017b)) and drug resistance will be a new topic
in mathematical molecular bioscience and biophysics (Wei (2016)). In such predictions, machine learning
methods, including deep learning, can be empowered by using mathematical features from differential geom-
etry, algebraic topology, graph theory and partial differential equations (Cang & Wei (2017a), Wang, Zhao
& Wei (submitted 2016), Xia & Wei (submitted 2016)). Finally, the PNP type of models will be coupled
with molecular mechanism and chemical kinetics to address the conformational changes and protonation (or
deprotonation) during the ion permeation. Given the importance of the physical and chemical phenomena
of charge transport to both biological systems and nano-device engineering, theoretical modeling, numerical
algorithms, mathematical analysis, and realistic applications of ion channel charge transport will be a focus of
mathematical research in the future.
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