Variational M ethods for Biomolecular Modeling
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Abstract Structure, function and dynamics of many biomolecularesyst can be
characterized by the energetic variational principle d&ldorresponding systems
of the partial differential equations (PDESs). This prinei@llows us to focus on
the identification of essential energetic components, fitenal parametrization of
the energies, and the efficient computational implemeoriaif energy variation or
minimization. Given the fact that complex biomolecularteyss are structurally
non-uniform and their interactions occur through contatgrfaces, their free ener-
gies are associated with various interfaces as well, sutieasolute-solvent inter-
face, molecular binding interface, lipid domain interfaaad membrane surfaces.
This fact motivates the inclusion of interface geometryitipalar its curvatures,
to the parametrization of free energies. Applications afhsinterface geometry
based energetic variational principles are illustratedugh three concrete topics:
the multiscale modeling of biomolecular electrostaticd aalvation that includes
the curvature energy of the molecular surface, the formatfomicrodomains on
lipid membrane due to the geometric and molecular mechantitise lipid inter-
face, and the mean curvature driven protein localizatiomembrane surfaces. By
further implicitly representing the interface using a phésld function over the en-
tire domain, one can simulate the dynamics of the interfackthe corresponding
energy variation by evolving the phase field function, adinig significant reduc-
tion of the number of degrees of freedom and computationalpbexity. Strategies
for improving the efficiency of computational implementaits and for extending
applications to coarse-graining or multiscale moleculaugations are outlined.
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1 Introduction

Living biological systems require a constantly supply oémgy to generate and
maintain certain biological orders that keep the systerive.alhis warrants the
biophysical models that quantify the management and balafi@nergy in bio-
logical systems, i.e., the energy budget of metabolismingagells - the building
blocks of life - as an example, energy is derived from the dbahibond energy in
food molecules, passed through a sequence of biocheméazlors, and is used in
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cells to produce activated energy carrier molecules &ERS) for powering almost
every activity of the cells, including muscle contractiggneration of electricity

in nerves, and DNA replication [2]. For solvated biomolemﬂystem@ discussed

in this chapter, including solvated proteins, bilayer meanies, or their complexes,
one can make similar energy budgets too. Various types ofjgsecan be identified
for biomolecular systems, such as

1. kinetic energies of atoms or molecules in motion;

2. potential energies for bonded atoms: potential eneofiasacterizing the stretch-
ing, bending, torsion of the covalent bonds between atoms;

3. potential energies for unbounded atoms: electrostagiogy and van der Waals
energy; and

4. kinetic and potential energy interconversions in enzjoymocesses and chem-
ical reactions.

The first three energy terms constitute the basis for the entde dynamics (MD)
simulation of non-reactive solvated biomolecular systddsing the spatial coordi-
nates of individual atoms as parameters, MD simulatiorsetthe motion of each
atom by using the Newton second law, where the force apptieeath atom is
computed as the variational of the total energy with resfeeitte atom’s spatial co-
ordinates/[15, 20, 133, 104]. Additional forces that modetaperature-dependent
thermal fluctuations can be added to the forces, giving ddeahgevin dynamics
simulations [114]. In this regard, MD simulation is indeedassical application of
the variational principle.

The large amount of solvent molecules in a molecular dynsusimulation of
solvated biomolecular system can make the simulation dagpiahd expensive. This
deficiency motivates the development of various continuumutiscale models for
part of or the entire solvated biomolecular system [12932616, 23, 148, 163, 28,
(52, 120]. Notably among these simplifications are implicivent models, which
manage to replace the atomic degrees of freedom of solvelecuies with a con-
tinuum description of averaged behavior of solvent moleswuhile retain an atom-
istic description of the solute molecule [52, 120]. Accogly, the solvent-solute
interface must be identified as the boundary between théncomh solvent region
and the discrete biomolecular domain. This interface isatigular importance
because it is related to a range of solvent-solution intemag such as hydrogen
bonding, ion-ion, ion-dipole, dipole-dipole and multipdhteractions, and Debye
attractions [41]. Thus the parametrization of the totakrgyef the system must in-
clude the geometry of this interface. Mean and Gaussiaratunes are generally in-
volved in such parametrization because they measure trebildly or non-flatness
of a biomolecular surface and characterize respectivayettirinsic and intrinsic
measure of the surface [76]. In these multiscale models lvfitam biomolecules
systems the motion of the atoms still follows the Newtonis l@here the force is

1 Water constitutes a large percentage of cellular mass anddheiomolecules are mostly living
in an aqueous environment where various types of ions such ams¢Na’), potassium (K),
calcium (C&"), and chloride (Ct) present at different concentrations.
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given as the variational of the total energy with respechtodtoms’ spatial coor-
dinates, the electrostatic potential, and the interfa® 138, 148, 58, 161]. The
change in the solvent-solute interface induces variatiocurvatures, whose ener-
gies might be treated as a part of the total energy functicrtase curvature or
differential geometry based biomolecular models offer aifeat of mathematical
analysis and computational methodologies for the dynawiiche solvent-solute
interface and the equilibrium energy landscape of solvatetholecules. In other
words, one can derive dynamic partial differential equaito evolve the interface
morphology and this evolution can be mapped to the path wharglobal or local
minimum on the landscape of the total energy. Here in thigtehave shall present
three representative applications of interface geometsgd variational principles
to the modeling of biomolecular interactions: (i) biomal&r electrostatics and sol-
vation, (ii) surface microdomain formation in bilayer meraibes, and (iii) curvature
driven protein localization in bilayer membranes.

In the first application we consider the long-range eletatas interactions
among partially charged static atoms in the solute and theag solvent with
mobile ions. These interactions strongly depend on thetiposof solvent-solute
boundary, also referred to as the molecular surface in thigest, where a rapid
transition of dielectric permittivity is observed. Inclas of this interface, albeit im-
plicitly, in the formulation of the total energy of the systdacilitates the coupling
of polar and nonpolar solvent-solute interactions, as aglthe nonlinear solvent
response, in the form of interface energy functional of aeefcurvature energy,
electrostatic energy and van der Waals potential. Such pliogufinally gives rise
to a novel variational multiscale solvation model [46, 428127, 26]. In a more
elaborated model, the solute molecule can be describedtimefudetail by using
the quantum density functional theory (DFT) in an iterativenner, which allows a
more accurate account of solvent-solute interaction asplorese/ [25]. Differential
geometry based solvation models have been shown to deliperts predictions of
solvation free energies for hundreds of molecules/[28, 1Bk variational princi-
ple based solvation model can be further extended to desegbential biological
transportation such as transmembrane ion or proton flovtsitend critically on
the geometry of the associated protein channels. By inotuttie chemical poten-
tial and entropy of the diffusive ion species into the totamgy functional one can
obtain simultaneously the optimized channel protein s@daas well as the corre-
sponding I-V (current-voltage) curve [159, 28, 150].

Curvature is believed to play an important role in many kgatal processes,
such as protein-DNA and protein-membrane interactiorediiting membrane cur-
vature sensing. Classical phase field modeling of surfatterpaformation in bi-
layer membranes contains a curvature term in its definitibthe total energy
[24, 44,42, 102, 18, 56]. However, when modeling the surfzatitern formation
in our second application here, we show that it is the geodesiature rather than
the curvature of pattern interfaces that plays an essemti@lin modulating the
interface energy. Noting that this geodesic curvature findd on a general differ-
entiable manifold, and thus the classical phase field mogealf phase separation
with specified intrinsic curvature can be regarded as a apease of this geodesic
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curvature model in the Euclidean spaces. By providing wrimtrinsic geodesic
curvatures that model the geometry of the contact of diffespecies of lipids, we
are able to simulate the generation of lipid rafts as the &iion and equalization of
localized surface domains.

In contrast to most amphiphilic lipids whose relatively doand geometrically
regular hydrophobic tails allow they to pack together, meanb proteins usually do
not present in large distinct domains in membrane surfat#gyugh small amount
of membrane proteins can compound together forming funatioomplexes such
as ion channels or membrane transporters. Most membrategmare amphipathic
helices, which contain both hydrophobic and hydrophiligugrs, complementing to
amphiphilic lipids. Therefore, the localization of thesembrane proteins in gen-
eral can not be modeled using the geodesic curvature basse pheparation model
as described in our second application. Many membraneipsoteowever, do pre-
fer bilayer membranes with particular curvature, in thessethat they can induce
particular curvature in the bilayer membrane and they tenbet localized in re-
gions with specific curvature. Therefore, one can imagiagéntiembrane curvature
can provide a driving force for the distribution of membrameteins in the bilayer,
and thus an appropriate energy functional that represkatsmembrane curvature
must be added to the classical electrochemical potentibéatropy to describe the
localization of membrane proteins.

These three applications of variational principles in badecular modeling are
by no means exhaustive, even in the context of solvatiornyaisahnd membrane-
protein interactions. There are inspiring studies of iod aater transport in mem-
brane channels using energetic variational approachesrewhe effects of surface
charge density and non-uniform particle sizes can be reatiluded to the inves-
tigations thanks to the flexibility of the variational appobes [148, 67, 154, 71,
169, 70/ 89, 83, 150]. Similar flexibility also enables theemsdion of the application
of variational principles from the standard phase field ntiadeof bilayer mem-
brane deformation and morphology [45, 44/ 42] to multi-comgnts membranes
[86],158], pore formation [113, 35], and double layer [38]. 556me of the models,
particular those for bilayer membranes, share variousedegf similarity to those
models used for self-assembly or phase separation of patyoneo-polymers. Itis
this wide diversity of the lipid structures and the compiézhinteractions between
proteins and lipid bilayers in solution that makes the eetcgvariational model-
ing of bilayer membranes unique and challenging. As we gielent below, most
of our efforts are concentrated on the formulation of potdregnergy functional
of these interactions so that the variational principle barapplied and numerical
solutions can be found by solving the corresponding systeihmonlinear partial
differential equations (PDES).



Contents 7

2 Variational Multiscale M ethods for Biomolecular
Electrostatics and Solvation

By definition, the solvation energy of biomolecules is thatoof free energy re-
quired to transfer the biomolecules from the vacuum to theesb environment.
It is therefore an essential quantitative characterinatib the solute-solvent in-
teractions. Electrostatic free energy, also called pathrasion free energy, is an
important component of the solvation free energy since rbamnolecules are
charged and there are always mobile ions in the solvent yptaesiological con-
ditions. Various critical applications of the electroataand solvation free ener-
gies can be found in chemistry, biophysics, and medicineréfér the reader to
[40,/92, 91, 144, 143, 52, 145, 138, 73, 79, 109, 48, 31, 117{Heoretical un-
derpinning of these applications and the determinatioh@&lectrostatics and sol-
vation free energies. Apart from electrostatic effects,gblvation free energy also
involves the nonpolar energy, namely, the energy cost featerg a suitable cav-
ity in the continuum solvent to allow the transferring of thiemolecules and for
the dispersive interactions between the solvent and thadiarule on the surface
of this cavity. Implicit solvent models are particularlypgaring for computing the
solvation free energy since the number of solvent degreéseflom can be dra-
matically reduced by a well fitted bulk dielectric permiitywwhile the atomistic
representations of solute biomolecules can be retainedatotain a detailed mod-
eling of the solute. The framework of implicit solvent masl@llows the solvation
free energy to be decomposed into two components, polaatimivand nonpolar
solvation [[79, 138, 81]. In this approach, the electrostatintribution can be read-
ily computed from the solution of the Poisson-Boltzmannagiun, or the Poisson
equation if there is no explicit ion in the solvent [88, 6361301, 61, 6, 7]. The
solution of these equation depends on the contrast of dielgermittivity in vac-
uum and the solvent environments, and this contrast is obrated at the boundary
between the biomolecule and the solvent. Likewise, theutation of nonpolar sol-
vation free energy depends on the geometry of the biomaeasuirface. The fact
that both polar and nonpolar components are determinedebgdlvent-solute in-
terface warrants the importance of a biophysically judiléamathematically well-
posed, and computational feasible definition of the mobacsilirface or dielectric
interface. In fact, the decoupling of polar and nonpolar porents makes implicit
solvent models conceptually convenient and computatipsahple.

However, there are many structural imperfections assetiafith implicit sol-
vent models. First, intrinsic thermodynamical and kinetiapling makes it impos-
sible to completely separate the electrostatic compoment the non-electrostatic
components in the solvation modeling. Additionally, a prescribed solvent-solute
interface, such as solvent excluded surface and van desWladace, decouples po-
lar and nonpolar components. As a result, the solvationdedsolute polarization
and solvent response are not appropriately accounted ilicitrgolvent models.
Moreover, implicit solvent models neglect potential stilwa induced surface re-
construction and possible conformational changes. Kirtakrmodynamically, the
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change in the Gibbs free energy of solvation can be formabodcposed into the
change in internal energy, work, and entropy effect. Theneoi guarantee that all
of these components are fully accounted in implicit solvertdels. In addition

to the aforementioned structural or organizational impetiibns, the performance
of implicit solvent models is subject to a wide range of inmpéntation deficien-

cies, such as the modeling of nonpolar component, the tesdtaf the electrostatic
component, the exclusion of high-order polarization, tkehesion of curvature, the
geometric singularity of solvent-solute interface, thabdity of numerical schemes
and algorithms, the grid convergence of the solvation fregy, to mention only a
few.

Some of the aforementioned problems have been the subfaateisive study
in the past few decades. One approach starts from improkegitrface definitions,
so that earlier van der Waals surface, solvent accessitfecel[77], and molecular
surface (MS) [111] are replaced by smooth surface expnes$§d | 60, 62, 160, 22].
Geometric analysis, which combines differential geoméb®%) and differential
equations, is a powerful mathematical tool for signal andgeprocessing, data
analysis, and surface construction [100, 146, 140, 141]. B&bmetric PDEs and
DG theories of surfaces provide a natural and simple ddgamifor a solvent-solute
interface. The first curvature-controlled PDEs for molacigurface construction
and solvation analysis was introduced in 2005 [147]. A el solvent-solute
interface, namely a minimal molecular surface (MMS), wasppised for molec-
ular surface generation in 2006 [9,/10]. In this work, the imization of surface
free energy is equivalent to the minimization of surfaceaavehich can be imple-
mented via the mean curvature flow, or the Laplace-Beltrammi, fhnd gives rise to
the MMS. The MMS approach has been used in implicit solvendets[28] 10].
Potential-driven geometric flows, which admit a potentiaveh terms, have also
been proposed for biomolecular surface construction [8f &pproach was adopted
by many researchers [29, 21, 30, 155, 156, 157] for biomédecurface and elec-
trostatics/solvation modeling.

It is nature to extend DG based variational theory of theeuthsolute interface
into a full solvation model by incorporating a variationatihulation of the PB the-
ory [116]59] [148, 28] following the spirit of a similar apgpach by McCammon and
coworkers [47, 46]. However, the formalism of McCammon andarkers does not
involve geometric flow and has a Gaussian curvature terrmtigitt lead to jumps
in the energy when there are topological changes. Our DGdbasé@tional model
addresses many of the aforementioned imperfections ofdéihgblvent models. For
example, by parametrizing both polar and nonpolar compsradtihe solvation en-
ergy using the geometry of the interface, these two compsnean be coupled
naturally in a single free energy functional. Applicatidittee variational principle
and the equilibrium solution of the associated LaplacerBeili flow gives rise to
an optimal biomolecular surface along with an optimizedatbn energy.
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2.1 Polar solvation free energy

We start with the definition of polar solvation energy, whistassociated with the
energy difference for charging biomolecules in both theuvae and the solvent en-
vironment. Variational formulation of Poisson-Boltzmaaquation was discussed
in the lietrature/[116, 59]. Here we recast this formulatioour DG based formal-
ism. Considering a solvated biomolecular system occupwgirigree-dimensional
(3D) domainQ e R3, one can relate the polar solvation energy of the biomogecul
to the electrostatic potentig(r) : R — R by formulation [148, 27]

1 1 Ne 4
GP/Q{S[pdeZSm|D<D|2} -(1-9 [285D¢|2+kBTi;ci(e q'°1’/*<BT1)] }dr,
1

whereS(r) and 1— S(r) are respectively the domain indicators for the solute aad th
solvent domains. We set0S(r) < 1, which is related to the widely used phase-field
function|@(r)| < 1 by

1+ 1-¢
== 1-S= > (2
HereSand 1- Sare introduced to distinguish the contributions to theltivee en-
ergy from the solute regiof2y, and solvent regiol®s. The dielectric permittivity in
these two complementary subdomaingxdre given by, andes, respectively. The
fixed charge densitp,, of biomolecule consists of a summation of partial charges
(Qj) from atoms

S

Pm(r) = Y Qi5(r — 1)), 3)
J

wherer j € RR2 is the position ofjth charged atom. In Ed. (13 andc; are respec-
tively the charge and bulk concentration of ilieion speciesi\; is the number of
ions species in the solverkg is the Boltzmann constant, afidis the temperature.
The surface functioi§(r) can be chosen initially as a smooth function to ease
the numerical implementation, as seen in the left chart gf{Ei We show below
the classical Poisson-Boltzmann equation can be reprddogeising this energy
functional when a sharp solventsolute interface is adopted whenS becomes a
Heaviside function. In the sequel we shall work on a geregdlPoisson-Boltzmann
equation in the sense that the transition from the solvegibneto the solute region
is smooth rather than discontinuous.

2.2 Nonpolar solvation free energy

The nonpolar solvation energy involves a number of terms. Sdaled-particle the-
ory (SPT) for nonpolar solutes in aqueous solutions [124] 1filize a solvent-
accessible surface area term [127, 95]. Solvent-accessifilime was shown to be
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Fig. 1 Left: A typical phase field functio changes smoothly from its value efl in the solvent

domain to the value of 1 in the solute domain. Right: The dielectinstant(S) depends on the
phase field function and changes smoothly from a value of 78 (pm8®e solvent domain to a
value of 2 (or 1) in the solute domain.

relevant in large length scale regimes [90, 68]. It was poiritthat van der Waals
(vdW) interactions near solvent-solute interface are ingodras well[[55, 54, 33,
[137]. Dzubiellaet al convert these terms into a nonpolar energy functional, whic
however involves Gaussian curvature term [46]. We modify finnctional in spirit
of our MMS [9,/10] to give the following nonpolar term [148,]27

an = VAm+ me-l-Po/Q Uattdr- (4)

Here the first term is the surface energy given by the surfansidny and the
biomolecule’s surface arefy,. This term measures the disruption of inter- and
intra-molecular noncovalent bonds of solvent moleculegsiwén internal surface
is created. In our approach, the surface tengidoes not depend on Gaussian cur-
vature so that the first term in Eq. (4) avoids possible engrgyps suggested by
the Gauss-Bonnet theorem. Additionally, such a term fadlowr minimum surface
energy functional formulation [9, 10]. The second term esgnts the mechanical
work for expanding a volume &fy, against a hydrostatic pressyseThe last term
guantifies the attractive dispersion effects near the sbiselute interface, deter-
mined by the solvent bulk densify and the attractive portion of the van der Waals
potentialU 2" at positionr. Since the biomolecular surface is not explicitly known
in the present modeling, we relate the surface area anddtessd volume to the
surface functiorSthrough

vm:/ dr:/ Sot 5)
Om Q
and the coarea formula [151, 148]

An= [ |CSr. (6)
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With these relations we can assemble the polar and nonpatdriloutions to give
the formulation of the total solvation free energy functibfor biomolecules at

equilibrium [148] 27]

Grot = /Q {vma +pS+(1— S)pantt+S[(Pm¢) — ;smmcpz} +
Ne
(1-9) l—;ssma)? —kgT _Zci (e G®/KeT _ 1)] } dr. (7)

There are a variety of definitions of nonpolar free energiesraative to that in Eq.
(4), but most of them are determined by the surface areandi®sed volume and
ver der Waals term in a similar way [81, 138,/ 79]. The preseninfilation and
the variational principle introduced here are applicablthese alternative nonpolar
solvation models as well.

2.3 Governing equations

We search for the critical point of the free energy functidoeobtain the optimal
free energy of the biomolecular systems. By constructioafitee energy functional
is determined by the surface functi®eand the potentiatp. The latter indeed de-
pends on the position of dielectric interface hence on thiase functionSas well.
Since the electrostatic potential follows the Poisson gquait is theoretically pos-
sible to replace the electrostatic potential using the chution of the Green'’s func-
tion with the change density. However, the dependence sf@Gneen’s function on
the surface functiois does not have an explicit representation. Consequenty, it
practically impossible to represent the total energy aduhetional of the surface
function only and compute its variation. In our investigas we shall compute the
critical point by evolving the gradient flow of the free engfgnctional to a steady

. . : i - ... 0G
state; while the electrostatic potential defined by the sking variation éc;:t

used as a constraint during the evolution. These two varnigtare

is

5G < -
5 = Spm+0-(1- st Sem)I@) + (1) ZCiqie*q""/KBT, (8)
i=
0G0t - us att 1 2
=~ O (VDS|> +P= PV pm® + 5 (& — &m) D@
Nc
theT 3 ai(e™ /e —1). 9)
i=

The vanishing variation in Ed. (8) gives rise to a generdliP®isson-Boltzmann
equation (GPBE) [148, 27]



12 Contents

Ne
—0-(&(90P) = Pm+(1—9) Zciqie*qi‘l’/KBT. (10)
i=
where the dielectric function
&(S) = (1—-9&s+ Sem, (1)

is also plotted in the right chart in Fig. 1. The gradient flawthe surface function
Sfollows the following generalized Laplace-Beltrami eqoat[148, 27]

oS 3G 0s
- -Ins % — s |- (vigg ) +v] 12)

where a generalized potential functidrecollects the relevant terms in Eq. (9) as

1

V=—p+pU"—pnd+ 5

Nc
(&m— &)|0P|? —keT Zq(e*‘*"’/KBT ~1), (13)
i=

and |09 is added to the front of the variation to introduce the loaaivature of
the molecular surface to adjust rate at which the surfacetifumevolves toward its
steady configuration. In this sense Eq./(12) is a generatjgethetric flow equation.
Note that the time in Eq. (12) is artificial.

We expect that the GPBE with smoofhconverges to its sharp interface limit
when S becomes a Heaviside function with a discontinuity locatetha dielec-
tric interfacel”, in that case the GPBE can be written as the following twedli
equations

—£m[|2q3m = Pm, r € Qm, (14)
Ne

—es[P s = Zlciqie*q“”s/ KT, r e Qs (15)
i=

these two equations are coupled through the interface tonslion/”. In this case,
to make the above two equations well posed, one has to irdeoto interface
jump conditions,

Gs= b, endPn-N=&0ds-n, rel (16)

where @, @5 are the limit values of the electrostatic potential fromusioin do-
mainsQy, and s, respectively, and(r) is the unit normal vector of.
2.4 Computational simulations and summary

A second-order finite difference scheme was designed te sbk coupled gener-
alized Poisson-Boltzmann equatidn [(10) and the Lapladae®ei equation[(12).
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Most of physical parameters involved in EQ. (12) are takemfithe references
[81,/99] and the CHARMM force field. A constant surface tensjois chosen in
our investigation whose value shall vary for different noollar surfaces [81, 99].

In particular,y is implemented as a fitting parameter so that the optimizéaso
tion free energyAG from our computational studies can match the experimental
measurements. By definition,

AG = Gior — Go, (17)

whereGy is defined in Eq.J (7) any is the total energy of the solvent molecules
in vacuum withes = €y, = 1 and without nonpolar energy. To facilitate the fitting of
y we rewrite Eq.[(12) as

Sofo()Y o

More details of the numerical methods for solving the codartial differential
equations can be found in [27]. In Fig. 2 we show a simulatidvere the initial
surface function is set such that the target diatomic systemell contained in the
regionS= 1. The surface function evolves from the initial profile todighe final
configuration that fits the molecular surface of a diatom&temy, reaching a state
where the total solvation energy is optimized. A more rdéialisimulation on the
protein (PDB ID: 1frd) is shown in Fig. 3, where isosurfacesined by different
S are plotted along with the electrostatic potentfalon the surface. Whil& = %

is usually chosen as the molecular surface, the three ssrtae very close due to
the high resolution of the numerical method. The availgbdf the surface position
and surface potential could significantly facilitate thalgsis of binding affinity of
protein-protein or protein-ligand systems, of which thecélostatic potential is an
important component [119, 5, 63, 34, 87, 108].

Numerically, this model can be computed by using both thesfiah formu-
lation, in which the solute boundary is embedded in the 3Dli#e&an space so
evaluation of the electrostatic potential can be carrigddaectly [27], and the La-
grangian formulation, wherein the solvent-solute integfés extracted as a sharp
surface and subsequently used in solving the GPB equatidhdelectrostatic po-
tential [26]. Lagrangian formulation requires direct kimg of the sampling points
on the molecular surface, which is convenient for the serfasualization, the map-
ping of the surface electrostatic potential field, and thiemement of the van der
Waals radii in constraint. However, it suffers from the depenent of singulari-
ties while evolving molecular surface and the difficulty @dling the change of
topology. In contrast, the Eulerian representation gedsrad of the explicit track-
ing of sampling points by modeling the solvent-solute if&tee either a smooth 3D
density profile or as a specific level set of the smooth profitee dynamics of the
solvent-solute interface can be obtained by evolving tBisi8nsity profile follow-
ing the Laplace-Beltrami flow of the energy functional. Thddfian representation
is therefore capable of reproducing complicated dynamictidace topology. As
we shall introduce below, it also greatly facilitates thenputation of a number
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_ 075 x 55
(T=2.0) (T=5.0)

Fig. 2 The phase field function evolves from its initial configuratio the final state where the
surfaceS= 0.0 fits the molecular surface for a diatomic system. Here we show oalgrtifiles of
Sat the cross sectiofx, y,0.05) sampled at six moments during the evolution.

Fig. 3 Electrostatic potential on molecular surfaces with differesiues ofS. Left: S= 0.25;
Middle: S= 0.5; Right: S=0.75.

of geometric quantities that are otherwise difficult to conepin the Lagrangian
representation, such as the area of entire surface and¢sw@fi@losed volume.

The parametrization of solvation energy using the surfacetfonS allows one
to track the molecular surface by following the isosurf&e 0.5 during the evo-
lution of S. This formulation is referred to the Eulerian formulatiéiternatively,
one can explicitly define a molecular surfaCeto separate the solvent and solute
domains, and to use this surface to parametrize the safvatiergy. Denote such
an energy functional aSoi(I"). Similar to the optimization procedure presented
above, the total energy is optimized by evolvihgollowing the gradient flow of
the energy, and in this case, the energy variation is withaesto the spatial co-
ordinates of this explicitly defined surfa€e Numerically, this can be achieved by
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discretizingl™ into a collection of surface elements or surface vec{éy$, each ele-
ment parametrized by a local coordinate systemx,), and thusGie:(I" ) becomes
Gtot(é,-). Furthermore, we can constrain the motionfofo the normal direction
n(xg,x2) only, for that a tangential displacementfofdoes not change the surface
configuration and the solvation energy. A scalar displacerfield (x1,x2) in the
normal direction can be defined through

é‘j’(xl,xz) = §(x1, %) + OW(X1, X2)N (X1, %2), (19)

which states that the surface eleméptis updated from its original position by
oY (x1,x2) along the normal direction to the new positiA , whereg is a number
to scale the normal displacement figldx;, x2). The optimization of the total energy
at a particular molecular surfacéemeans that any normal displacement will violate
the nature of optimum at this point, indicating
o5
- =0. (20)

o=0

Now we can observe the transition of the independent vasainl calculating the
energy variation:
o 7} 17

5 aé]? — 35 (21)
as a result of replacing the motion of the explicit surfacasing the scaled normal
motion of a collection of surface elements. The readersefegned to [26] for the
detailed calculation of the energy variation, the derosatf the equation governing
the gradient flow, and the numerical techniques for solMiregequation. This inves-
tigation also shows that the optimized solvation energy motecular surface are
well matching those generated by the Eulerian formulatidhdre is no topologi-
cal change i~ during its evolution. Notice that a single point épmay evolves
to two distinct points, or two distinct points in two differesurface elements may
converge to a single point when there is a topological chalgimg the evolution
of . This intrinsic singularity in handling the topologicalatmge limits the appli-
cations of the Lagrangian formulation to complex biomolacsystems, for which
it is impossible to set an initial surfa¢ethat is topologically equivalent to the final
optimized molecular surface. The Eulerian formulationésde suggested for the
investigations of the solvation energy and molecular sesaf general biomolecu-
lar systems.

Recently, differential geometry based implicit solventdabhas been tested ex-
tensively via solvation analysis [27, 26, 28, 39, 132, 138 differential geometry
based nonpolar model was found to deliver some of the begtatansolvation pre-
dictions [28]. However, for general molecules with a sigrafit polar component,
our initial predictions were not up to the state of thelart [26]. It turn out that both
the generalized Laplace-Beltrami equation and the gemedaPoisson-Boltzmann
equation can be easily solved individually. However, whese equations are cou-
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pled, there is a stability problem [156, 157]. EssentiallienS admits unphysical

values beyond its physical definition<0S < 1, the dielectric function (11) will

adopt unphysical (negative) values as well, which gives tasan instability in up-

dating the Laplace-Beltrami equatidn {12). This issue &iadhe performance of
DG based solvation models for molecules with significanapobmponent. To ad-
dress this problem, a convex optimization algorithm [138% lbeen developed to
ensure the stability in solving coupled PDEs (10) and (18)a4esult, the differen-
tial geometry based solvation model is found to deliver soifnthe most accurate
prediction of experimental solvation free energies for enttran 100 molecules of
both polar and nonpolar types [139].

Most recently, Wei and coworkers have taken a differenttitneat of non-
electrostatic interactions between the solvent and saiutee DG based solvation
models so that the resulting total energy functional and @agons are consistent
with more detailed descriptions of solvent densities aiflimjium [150, 149]. To
account for solute response to solvent polarization, a tymamechanical (QM)
treatment of solute charges was introduced to the DG-baxdeati®n models using
the Kohn-Sham density functional theory (DFT) [25]. Thisltiseale approach self-
consistently computes the solute charge density distobwthich simultaneously
minimizes both the DFT energy as well as the solvation eneogyributions.

Currently, efforts are invested to improve the accuracy rimlistness of DG
based solvation models by combining physical models wittwkadge based mod-
els, namely, machine learning approaches. Additionaly,Hased solvation models
and machine learning approaches are utilized for accuratkgtions of the protein
binding energies and ligand binding affinities over a widegeof conformational
states. Furthermore, it is worth noting that the method dép@nly on the repre-
sentation of the solvent-solute interfaces, and this ssgm&tion is independent of
the atomic or coarse-grained description of the biomokult is therefore possi-
ble to adopt this method to compute the potential of mearefofccoarse-grained
biomolecular structures along selected coordinate, aaddhults can be utilized
for parametrization the force field for coarse-grained muoler systems as well.
Finally, we would like to point out that many critical apmiions to biophysics,
chemistry, and medicine mostly remain unexplored.

3 Variational M ethods for Pattern Formation in Bilayer
Membranes

As one of the most important biomolecular systems, the lipidyer membranes
sustain the regular functions of cell and subcelluar cotnpamts by regulating the
transmembrane ion or molecular flows and by providing ptatfofor various essen-
tial biochemical processes [123, 2]. These critical fumgi of bilayer membranes
are determined by their lipid compositions, the specific imeme proteins, and
their dynamical arrangement in the bilayers during the sewf membrane mor-
phology change as a result of various membrane-solvent orarma-membrane, or



Contents 17

membrane-protein interactions. Applications of the wv@oiaal principle for bilayer
membrane modeling have been mostly focused on four type®bfgms: (i) mean-
curvature dependent membrane morphology [42, 45, 96, BY]piiic or proton
flows in protein channels [154, 159], (iii) lateral diffusimn membrane surfaces
[162], and (iv) pattern formation in bilayer membranes [43, 152]. Here in this
section we focus on the local pattern formation in bilayembeanes, for that there
are many controversial investigations concerning the lysjgal underpinning of
these patterns, their spatial and temporal distributians, their roles in modulat-
ing relevant biochemical processes [128, 106, 3, 134]. §lpedterns are called
lipid rafts, which are small (10-200nm), heterogeneoughlyi dynamic, sterol-
and sphingolipid-enriched domains that compartmentakiellar processes [118].
Lipids move laterally within the domains mostly rather tharer the entire mem-
brane surface [4]. Classical phase separation models redoaginimize the total
area of the domain boundaries and large domains appearextdied the minimiza-
tion; this process is usually referred to as coarsening. Wiese classical models
are directly extended to model surface phase separatieriotal arc length of the
domain boundaries on the surface will be minimized to gdeedierge domains,
which do not match the measured sizes of lipid rafts/[43, 52].1

3.1 Classical phase field models

We first examine the classical phase separation model farypsystems. Consider
two species of particles ifR3 with respective mass or volume fractioms, m, €
[0,1]. The interactions between particles of the same speciefaemeable while
the interactions between different species are unfaverdiiis preference can be
modeled by defining a phase field function

m — My
my +nmy’

9= (22)

where @(r) € [-1,1], r € R® and minimizing the Ginzburg-Landau free energy
functional inQ € R3

c(e) = [ (f(@)+FI00F)dr, (23)

wheref(g) is a double well potential that has two minimumspet +1. A typical

choice is 77
= %
5 (24)
which has two symmetric potential wells of the same depﬁattl. Itis apparent

that a complete phase separation wjtithanging discontinuously between 1 and
—1 is favorable byf (@) whenG(g) is minimized. Such an unphysical distribution
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of (Eis to be penalized by the ter%m(ﬂz that regulates the transitional gradient
of quetween 1 and-1.

3.2 Geodesic curvature based membrane models

Fig. 4 Left: Schematic illustration of the mismatch of the lipid struetuat the interface that in-
duces a transitional hybrid region between two lipid domal§.[Middle: Within the transitional
hybrid layer the otherwise regular lattices of the lipidsitiher domain relax to match each other,
causing a bending interface [14]. Right: Circles on a sphere banstant geodesic curvatures. The
great circle, i.e., the lowest circle, has vanishing geodasigature in particular.

3.2.1 Lagrangian formulation

Our variational model is motivated by the recent theoréstadies of the hybrid
lipids saturation at the interface between saturated asdturated of lipids with
geometrical and molecular mechanical mismatch [14]. Assitiated in Fig. 4, two
species of lipids at their interface have different intelecalar interactions that are
determined by their structures. The otherwise regularc&f either species of
lipids has to be relaxed in a way such that the intermoledul&ractions in the
transitional region near the interface will fit the diffetdattice structure of other
species. This relaxation generates curved interface leetiveo species of lipids in
a manner similar to the generation of surface tension. Simeelomain boundary
is a curve on a two-dimensional (2D) surface embeddeRinit is the geodesic
curvature of the interface, which is a locally straight lithet does not curve to
either domain it separates, rather than the interface tunevdhat determines the
intermolecular interactions between two species of lipidar the interfacé The

2 |n Sect/ 2, we us& to denote the surface function, which is a domain indicatod, ase @

to denote the electrostatic potential following the tramtitil usage in the studies of biomolecular
electrostatics. Here in Selt. 3 and Sectt. 4 the models do ndvénetectrostatics, and we denote
@ the phase field function, while uSto denote the 2D surface embeddedihwhen applicable.
An interface in Sect. 2 refers to solvent-solute boundaryorggivhereas in Sedt. 3 and Sect. 4, it
refers a boundary curve on a given surface.
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geodesic curvature of the interface measures how far tlegface curve is from
being a geodesic. We define the curvature energy of the ndorath boundary by
a one-dimensional (1D)on-curve integration

G:/Ck(H —Ho)2ds (25)

whereC is the domain boundary contour embeddefkiH is the geodesic curva-
ture,Hp is the spontaneous geodesic curvature of the lipid mixisetseparated,
andk is the geodesic curvature energy coefficient. The spontengeodesic curva-
tureHp is an intrinsic property of the combination of any two spe@élipids in the
bilayer membrane that will be separated to form local miorodins as a result of
geometric and molecular mechanical mismatch. In the tiiansil region near the
interface two species of lipids are arranged in a hybricestather than the regular
lattice structure. Indeed a recent theoretical study asbatfree energy for the hy-
brid packing of two species of lipids (denoted by the sulpgdriand 2 below) at the
interface [13, 14]:

T =ks(L1— L2+ ky(L2—LI)2 + y(L1 — Lp)%, (26)

whereL; is the length of the lipid chains in the transitional regitmullaiO is the length
of the equilibrium chain in the bulk. Paramet&gandk, are the free energetic costs
of mismatch between two species and their hybrids at thefaue, respectively
and similarly,y is the energy cost of mismatch between two chains of the @ybri
Furthermore, the following relations are identified to teththe domain curvature
and lipid geometrical properties:

Vi = Ljagw; (1i W'2H> , 1=12 (27)
whereV is the molecular volume of the lipid chains, is the length that charac-
terizes the molecular spacing of the lipid head groups,and (w; +wy)/2 is the
headgroup spacing of the hybrids along the interface. Herestibtraction sign is
chosen if the species is included in the microdomain, otteerthe addition sign is
used. The chain length in the equilibrium bulk staf®, can be computed from the
molecular volume divided by the head group area in the baltest

0= (28)
Egs. [(26-27) represent the interface bending enefggs a function of it geodesic
curvatureH. The minimizeHy can be analytically calculated to the linear order:

b 1 [A-2Bw 28V
O W [T+ 2B)wr | (1 2B)Vr |

(29)
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whereB is a constant characterizing the free energetic cost af fiismatch at the
interface,wr = (Wy + W) /2wy = Wy —Wo,Vr = (V1 +V2)/2, andVy = Vi — Va.
By truncating the Taylor series approximation.&f(H) with respect taHy to the
second order we get an energy functional in the form of [Eg). (25

3.2.2 Eulerian formulation

It has been seen in Sect. 2 that the parametrization of smivamhergy using the sur-
face function allows one to implicitly track the molecularrface by following the
iso-surface extraction during the evolution of the surfaretion, which is referred
as to the Eulerian formulation. We could also evolve a phase fiinction to min-
imize the energy in Ed. (25) and to obtain the configuratiommrodomains. This
is achieved by using the following 2D Eulerian formulatiohtiee microdomain
geodesic curvature energy defined on the entire membrafaessr

2
60— [ (80+ ploHeera- ) ox (30)

whereH; = v/2Hg and¢ is a small positive parameter that characterizes the width
of the transitional layer fronp(x) = —1 to ¢(x) = 1. HereSis a surface embed-
ded inR3, x = (x1,%2) anddx is an infinitesimal surface element. The equivalence
of this Eulerian formulation (30) to the Lagrangian forntida (25) is analogous

to the equivalence between the Canham-Helfrich-Evansatune energy and the
membrane elastic energy [42, 1]. In particular, if the pHadd function is defined

by
o(x) = tanh(c\i/(;i) (31)

with d(x) being the signed geodesic distance at the surface pamthe interface
contourC whereg = 0, then

1 1 1
D@ = Sd(d00)Td, Ap = Zo'(d(x)| D2+ £ (dx)) A,

where

q(x) —tanh(\/);e> g (x) = % {1—tanr? (\/)%gﬂ ,

q'(x) = —itanh(\/);g) secht (\/);‘J J

andOy, Oy- are surface gradient and surface divergence operatopgatdsely. The
geodesic curvature of a contour is given by

H=0-n, (32)
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wheren is the normal vector to the conto@. Sincen = [yd we haveH = [y -
Dxd == Axd and

£ q” I3
Axd =5 anqD* a“:lxd‘z, Dxd - aljx(p

Therefore, one has

€ 2

/!
d 70

q
Writing d (x) andq” (x) in terms ofg(x) we can convert the above representation to

V2e 2q 2
Ayd = fqz (Ax(0+ fqzmxfm ) )

)
Axd == an(pf

which is the geodesic curvatuké = Axd. Replacingq(x) with ¢ one obtains the
final form ofH as

2€ 2
o V2 (qu0+"’|wa2)

T1-¢? 1—¢?
V2 1
- <qu0+82(1402)(.0), (33)

where we assumgn|| = 1 in the last step of derivation. When minimizing the cur-
vature energy in Ed. (30) the following constraint

A(p) = /s @(x)dx = constant (34)

must be enforced such that quantities of both species dflipie conserved.
To derive the equation of the geometric flow for the ené®gyp) we compute its
first variation with respect tg:

3G 1
50 k {AXW - (3¢% 4+ 2Hce— )W (35)

where 1
W = e840~ (@+Hce) (¢* — 1).

We then split the linear and nonlinear componeklits &ndWy) of W to facilitate
the numerical treatments. They are given respectively by

1 1
WL = eAxp+ E('(H— He, Wh = —EQOB—ch’Z-

We then have the full expansion of the variation
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oG

K K K
50" KA+ W+ KA — ?(3(P2+2H05(P)(\M\l W) + W

k Kk
= keAZo+ R (2—6¢* — 4kHce) Axp— (68(p+ 2kHC> |Oxo|?

+k<_2H§+1> ~ 3kH 2_k<4_2H§) 3 5kHe 4 3k ¢

e &3 g2 B g )P T2 T aE?
kH
g—;. (36)
Also note that the variation of the mass conservation caimgtis
oA
50 (37)

The appearance of fourth order derivative in the variad@y d¢ motivates us to
adopt the following equation of the geometric flow with anfeuial time for ¢:

99 _ 3G A

whereA is a Lagrangian multiplier used to ensure the conservatfop. &Ve can
derive a representation af by integrating Eq.[(38) and noting thi{ti—?dx =0,
s

hence
oG

0=— —dx+/)\dx,
Jso@ Js

and consequently
1 [0G

= @ Sé—(pdx,
which yields
dp_ 3G, 1 /8G,
ot op |9 ./sdp
Eq. (39) is a fourth-order nonlinear surface diffusion egum Alternatively, one
could derive a Cahn-Hilliard equation for the surface pHaeéd functiong as

op oG
o —a(5e). (40)

which guarantees the conservationgpédnd thus does not need a Lagrangian mul-
tiplier. However, it involves a sixth order surface derivatand thus is more com-

plications when the equation is to be solved numerically atisaretized surface
S

(39)

To ease the exposition of numerical treatments we ado:ptéfsg—fpdx and

defineg = 32. Then we write Eq.(39) as
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@®=-9g+A. (41)

To begin the time discretization we average the nonlineactfan g(¢) over the
current and next time stefgs, @1 to implement a Crank-Nicolson approximation

%w(ml%) —A(@) =0, (42)

where the averaged function is defined by

9(Ghi1, h) = ;Ax(fc(%ﬂ) + fe(@n)) —

k

gz (Er1t @eath+ 6 + eHe(hea+ @) — D (fe(ghin) + fe()),

and 1
t(0) =k (£~ (F + e (- ).

To numerically solve Eql (42) which is an implicit scheme gt 1, we define an
interior iteration for computingpy, such thaty,, — @1 asm— oo. The equation
for Y, reads as

=B (e, Y ) — A (Uhm) =0, (@3

where new averaged functions are defined by

k ~
g(wm+17 ‘l’m» %) = EAX fC(mea wm7 (H\) -
k
2¢2?

- 1
fo(Wmit, Ym ) = gAx(Wm+1+(Pr1) - E(¢%+‘P§_2)(Wm+%+25Hc)-

(4’%"‘ Umth + %2+SHc(wm+ @) — 1) (fe(Ym) + fe(@)),

Convergentiy, is obtained by iterating over the interior index usually up to a
tolerance|my1 — Ym|| < &y for some smalky > 0. This convergenyy, is assigned

to gh+1, and computation is advanced to the next time step. Therlar@nonlinear
components offn. 1 in Eq.[43) are further split. The nonlinear components are
updated slower than the linear components, allowing ane&ftiocumerical solution.
The spatial approximation of the equation is obtained bywalyndeveloped aC°
interior penalty surface finite element methiod [12, 1].

3.3 Computational simulations and summary

We apply the geodesic curvature driven phase separatioelrtmdimulate the mi-
crodomain formation on surfaces. We present four exampielations on differ-



24 Contents

ent surfaces or with different spontaneous geodesic auest The energetic his-
togram and the dynamics of the domain formation in each sitimi are compared
to those generated by the Allen-Cahn equation obtained dylitiect extension of
the Ginzburg-Landau energy based a classical phase separaidel on surfaces
[43]. We also compute the radii of the microdomains whichexgected to approx-
imate the reciprocal of the given spontaneous geodesiature

In the first simulation (#1) on unit sphere with 3963 apprcadety uniformly
distributed nodes, we choose= 0.1, H; = Tls, k= 0.01 andAt = 0.001. A random
field is initialized on the surface such thatpds= 0. The results are compared side
by side with those of the classical Allen-Cahn equation m[Bi Using a K-means
clustering method we are able to identify a number of microdims whose radii
are then calculated. The radius associated with each nuioranh is approximately
0.23. This means the curvature is approximat@%g, close to the specified sponta-
neous geodesic curvature.

The total energies for the geodesic curvature model andaissical Allen-Cahn
model are plotted in Fig. 5. Both converge as time evolve® fitmber of itera-
tions is large because of the smal, which is constrained by the stability of our
numerical method for the fourth-order nonlinear partiffiedential equation.
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Fig. 5 Minimization of the geodesic curvature total energy and thez@urg-Landau Energy. Left:
Simulation #1 on unit sphere with 3963 nodes &hd= 0%3. Right: Simulation #2 on unite sphere
with 984 nodes an#ii; = 1/0.4.

In the second simulation (#2) on the unit sphere as showngri#iwe choose
e=01H; = O_—fw, k = 0.01 andAt = 0.002. This spontaneous curvature matches
the reported spontaneous curvature for DOPE/DOPS mix&#le A coarser while
quasi-uniform mesh with 984 nodes is deployed on the unigispiThe radius asso-
ciated with the each microdomain is approximatel$7 indicating a curvature ap-
proximately%\,ﬂ. The convergence of the energies of the geodesic curvatodelm
and the classical Allen-Cahn mode are plotted in[Fig. 5 ak Weé lower resolution
resulting from the coarser mesh in the second simulatiorbeaseen in the larger
spots in the initial field and the wider transitional layeetvoeen different domains.

The third simulation (#3) is conducted on a more complicatgdiace as shwon
in Fig.[8. We choose the molecular surface of three partizlemit radius respec-
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Fig. 6 Simulation #1. Formation of local microdomains simulated by thedgsic curvature en-

ergy (top row) and domain separation simulated by the classicab@ig-Landau energy (bottom
row) from the same initial random field (left column) on the ursphere with 3963 nodes. Sam-
pling time from left to right ist = 0,3, and 7.
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Fig. 7 Simulation #2. Formation of local microdomains simulated by thedgsic curvature en-
ergy (top row) and domain separation simulated by the classicab@ig-Landau energy (bottom
row) from the same initial random field (left column) on unit sghaith 984 nodes. Sampling
time from left to right ist = 0,3, and 7.

tively centered a{0,1,0),(—0.864,—0.5,0) and (0.864,—0.5,0). The surface is
quasi-uniformly meshed with 2974 nodes and wesset 0.1, H; = %,k =0.01
and At = 0.001. Starting with a random initial field we finally identifiesikx mi-
crodomains using the K-mean clustering method at the équiin state, whose
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radii are estimated. As seen in Fig. 9, the radii of the miorédins approximate the
given spontaneous geodesic curvatures.

Fig. 8 Simulation #3. Formation of local microdomains simulated by thedgsic curvature en-
ergy (top row) and domain separation simulated by the classicab@ig-Landau energy (bottom
row) from the same initial random field (left column) on the molacsurface of three-atom with
2974 nodes. Sampling time from left to rightis= 0,3, and 7.
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Fig. 9 The radii of the prominent 6 microdomains produced in Simula#&n

In the last simulation (#4) we choose the molecular surfdcgoparticles of
unit radius respectively centered @t 0,0),(—1,0,0),(0,1,0),(0,—1,0),(0,0,1)
and (0,0,—1). The quai-uniform surface mesh has 3903 nodes and we set
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0.1,H; = ﬁ,k = 0.01 andAt = 0.001 for the simulation. One can see from Fig.
[10 that the largest raft radius obtained by the simulati@bisut 035 which means
the curvature of that raft is aboa%, a value close to given spontaneous geodesic
curvature.
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Fig. 10 The radii of the prominent 9 rafts produced by Simulation #4
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Fig. 11 Simulation #4. Formation of local microdomains simulated by thedgsic curvature en-
ergy (top row) and domain separation simulated by the classicab@ig-Landau energy (bottom
row) from the same initial random field (left column) on the molacsurface of six-atom with

3903 nodes. Sampling time from left to rightis= 0,3, and 7.

The radii of the microdomains generated in our simulaticresrmt exactly the
given spontaneous geodesic curvature. Rather they aribdist around the given
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curvature. Apart from the numerical error in simulation amd&-mean clustering
and radii estimate, this non-uniform distribution of domeadii is mostly related to
the total quantity of the lipid phases in the initial randoeidi The initial quantity
may not be exact to cover an integer number of microdomaitis the given ra-
dius. However, the overall distribution of radii around tieen radius of curvature
demonstrated that our geodesic curvature model is capapledicting the forma-
tion of microdomains that are caused by the geometrical asideular mechanical
mismatch of lipid mixtures. The predicted microdomains bancompared to the
observed lipid rafts, and the boundaries of these microdtsr@an be identified to
provide locations where specific proteins can aggregatepl®m of our model of
geodesic curvature driven microdomains formation to tloalieation of proteins
will provide a very useful quantitative technique for stirdythe crucial roles of
these proteins in high-fidelity signal transmission ins@5, 66].

4 Variational Methods for Curvature Induced Protein
Localization in Bilayer Membranes

Rather than forming distinct domains in a way similar todgpas modeled in Sect.
[3, many membrane proteins do not form distinct domains in branes. Given the
fact that their distribution on bilayer membranes is notffanm, molecular mech-
anisms need to be identified to quantitatively investighats tlistribution and its
biological consequences. On the one hand, approximate803® of all membrane
proteins can freely diffuse along the membrane [50, 74, 0%],Jand on the other
hand, insertion or tethering of the membrane proteins taybil membrane will
cause membrane curvature [164, 110, 64]. For instancesigideproteins such as
those in the BAR (Bin/Amphiphysin/Rvs) domain family cart as a scaffold to
the membrane. These proteins have an intrinsic curvatutewgoron attaching, the
membrane bends to match the protein curvature [98]. In dasirfsishion, several
proteins can oligomerize to create a rigid shape and bendh#mbrane. Protein
coats such as clathrin, COPI (COat Protein I) and COPII (G®atein Il) are ex-
amples of this type [51, 75]. Other proteins may insert threlaes into the mem-
brane. Membrane curvature is also induced when there iaetice between the
length of the hydrophaobic region of a membrane protein aadhitkness of the hy-
drophobic core of the lipid bilayer in which it is embedde@3). Epsin proteins do
this by forming an alpha-helix known as HO upon binding tortitembrane, and this
helix inserts itself into the membrane [11]. Moreover, looawding of peripheral
proteins can cause membrane bending by creating an asyynofigltie monolayer
areas and thereby curling the membrane away from the sidehwthe crowding
occurred. This effect is experimentally demonstrated R2[1Further illustrating
the importance of proteins in membranes, Schratdtl. showed that the M2 pro-

3 A protein unit consisting of several segments such as most ion chproteins or G-protein-
coupled receptors (GPCRs) is not taken as a distinct domainsistildy. The whole unit is con-
sidered as a single protein instead.
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tein plays an essential role in generating regions of highiature in the influenza
A virus membrane [115]. This specific protein accumulatesegions of negative
Gaussian curvature and can generate curvature in the meenitself, allowing the
replicated virus to be wrapped and released from the indesséls. While these ex-
amples should provide sufficient motivation to include phas to the model, we
note that all endocytosis and exocytosis processes areopediin one way or an-
other by proteins. Therefore, any viral replication pracesjuires proteins. Antag-
onizing the curvature effects of proteins is a viable ardivstrategy [115]. This
motivates the necessity for a model coupling membrane tuneand lateral diffu-
sion of proteins. We shall observe below that the final gangrequation for this
curvature-driven lateral transportation appears a difftision equation in its es-
sential form. This mechanism is different from the tranggion of surfactants on
interfaces moving with the fluid flow as investigated in therkture [130, 131, 153].

4.1 Lagrangian formulation

Modeling generation of membrane curvature using energati@tional principle
has been well established in the past few decades [19, 62549This research
has been inspiritional to our work. However, the focus ofdiscussion in this sec-
tion is on the curvature driven protein localization. Wetskehe framework of the
integration of these two components. The numerical implgat®n is computa-
tionally intensive because of the coupling of dynamical raeane morphology and
the varying surface concentration of proteins. Considereanbrane withim+ 1)
distinct lipid species with concentratiop#p ,I =0,--- ,mand a single type of diffu-
sive membrane proteins with a concentrat@?f. A closed membrane is modeled
as a structureless surfaseontained in a 3D domaif2 € R® and separate® into
two subdomains, one inside the membrane and the other eutsié total energy of
the system is composed of the membrane curvature energhamhtropic energy
from the lipids and proteins

Gtot = Gmem+ Gent7 (44)

where the membrane curvature energy is given in the cldsSa@ham-Helfrich-
Evans form

Grmem= /C k(H —Ho(p®, pP"))%ds (45)

and the entropic energy for the membrane with membraneipratechments is

Gent:% /C (ip.“p [In(9® (@")2) 1] + pPr® [In(ppm(apm)z)—l})ds (46)

HereH is the membrane mean curvature afdis the spontaneous membrane cur-
vature k is a curvature energy coefficient, afid= 1/(ksT) is the inverse of thermal
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energy. The effective sizes of lipids and proteins are &gy given bya:'p and
aP'®. By modeling lipids and proteins as hard disks, the occupigtace areas in
the membranes are taken(a#p )2 and(aP™)?, respectively. The essential feature of
our model is seen in the dependence of the membrane spontacigwature on the
local lipid compositionolIlp and the protein concentrati@?™. This dependence is
justifiable considering that (i) each lipid specldss its own spontaneous curvature
therefore the membrane spontaneous curvature mustiogcton of the lo-
cal lipid composition, and (ii) membrane proteins will imgumembrane curvature
so that the observed spontaneous curvature must be a fumdttbe local protein
concentration [126, 135, 72, 103, 115]. We define the menebcanvature induced
by a single membrane protein as the spontaneous (membanajure of the pro-
tein. Here we definély as the average spontaneous curvature of lipids and proteins
weight by their respective surface coverage fraction:

icb(a:ip )2p||ip + Cgro(apm) prro

Ho = v/2! , (47)

(a:ip)zpllip + (aprO)prro

e

whereC}, andCh™ are the spontaneous curvature of tHespecies of lipids and
proteins, respectively. Considering that the membrarfaseirs completely covered
by the lipids and proteins, the following saturation coaisir holds true:

@P)%0® + (@°)?pP° = 1. (48)

E

With this constraint we can write the spontaneous curvatuks. (47) as

Ho = V2 (Iicaay"%zp.“p +08“°<apf°>2ppf°) (49)

and the membrane entropic energy as
Gent = i/ 1 1_ppro(apr0)2_ il plip(a:ip)z
Bk @y 2,
X [In (1_ppr0(apr0)2_ ipllip(a:ip)2> _
|=

Iipllip [In(pllip(a:ip)Z) _ 1} + pPro (ln(pprO(aprO)Z) - 1) } ds (50)

+

To obtain the dynamics of the membrane morphology, one danlete the varia-
tion of the total energiot in Eq. (44) and solve the resulting equation for the gradi-
ent flow of ¢. This process is routine and can be found in the studies aitapeous
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curvature effects of pure or multi-component membranesawit proteins [45, 42].
Since our interest here is to investigate the protein laaéittn on membrane sur-
faces, we choose to fix the membrane morphology, Hg.is a time-independent
function. We then only need to calculate the variation ofttital energy with re-
spect to the membrane protein concentration, which turhtodue

0Git  OGmem , OGent
dpPro - dpPro dpPro

2
_ (d;:) In <1ppr0(apr0)2 o
2 |

+2C5"°(aP™)2(H — Ho). (51)

keT

pllip (a:ip )2) +In (pprO(aprO)Z)]

M3

4.2 Eulerian formulation

While we are working on the membrane with fixed morphology ftmenulation of
the curvature driven protein localization is expected teriiacing with dynamical
morphology where the membrane surface issptior known. For that purpose one
could trace the position of membrane implicitly by evolviaghase field function
@(x) on surface&Sembedded if2 € R3, whereg takes the value of 1 in the exterior
of the membrane enclosure and 1 inside [45, 42]. The membnaa@ curvature at
¢ = 0 can be computed as a functiongfollowing

V2e 1 )
H=—"="_1(A Sy 2
2(1902)( @+ <p)<p), (52)
wheree > 0 is a small parameter that adjust the transitiopdfom —1 to 1 near
the membrane as in Eq. (30). We then identify three compsneithe chemical
potential defined by the variation in Eq. (51)

Lpro |n(ppr0(apr0) ) (53)
2 m

Rpm__(ii@") In (1 pPro(aP")? Z PP (a)? ) (54)

pro __ €

RV Trwr=) (204 o) o o

to write this chemical potential as

pro __ 5G'[Ot

Sppro — kg T (LP™+ RP") 4 2C0"°(aP")? 0P, (56)
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This chemical potential allows us to define the diffusion fiector and the trans-
portation equation. Two options are available for the didiniof the transportation
equation. One could extract the membrane sur&fcem the phase field functio@
and solve a surface transportation® his involves the dynamic meshing or mesh
deformation ife is evolving in time, and singularity will arise if there isgological
change infSas@ evolves.

Alternatively, one could formally define a 3D transportatequation in the en-
tire domainQ but practically restrict the transportation of membranetgins to
a very small neighborhood near the membrane suaddis is accomplished by
introducing to the flux vector

3P70(r) = —DP3sBpP"O(r) P (57)

a functionds which is concentrated at the membr&whereg = 0. Various choices
of such functions are available and their numerical progediffer subtly [78]. We
choose
tanh(10(¢+1)), —-1<@<0,
5 Janh(10(g+1)) 0 58)
~tani(10(p—1)), 0<@<1,

so that effective domain neg = 0 can be automatically identified gsevolves.
The general transportation equation for membrane proteams

3p""(r)
ot

wherev is the velocity of the membrane in which the membrane preteiove.
Although this velocity is taken to be zero in our computasi@imulations to be
presented here, it can be computed if the membrane movesheittvolving phase
field function. The nature of the equation can be seen if treeedfects of lipids and
membrane proteins are not considered, a}@.,: aP"=0. In this casd&¥ =0 and

+0- (vOpP™(r)) = —0-J3°°(r), (59)

pro
0gt = 0 (DP"°3s0pP™°+ 2k T DP'OC*(aP™°)?35pP°0PP™),  (60)

which is a drift-diffusion equation with a potentiBP™©. The mean curvature of the
membrane therefore appears a potential that drives thepatation of membrane
proteins to membrane surfaces where its mean curvaturefitgehe spontaneous
membrane curvature of proteins. To numerically solve theaggn, we separate the
linear and nonlinear components of the equation, which laa treated using an
implicit-explicit splitting interaction methods simildo the treatment of Eql (40)
presented in Sect] 3. The spatial approximation of the émut obtained by using
the Fourier spectral method, and a change of variable isssacgto convert the
equation with variable diffusion coefficieds to a constant diffusion coefficient
so that the Fourier spectral method is applicable [36, 125].
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4.3 Computational simulations and summary

©
©

O
O

0 O
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C

Fig. 12 Simulated localization of the membrane proteins from itsahjpiosition to the outer ring
of the torus on a 12Buniform meshe = 0.1. Time incremenit = 103, Spontaneous curvatures
ch° =025, Cgp = —0.1, and sampling moments are- 0,0.1,0.25,0.5,1.0,5.0. Color is scaled by
the maximum concentration in each plot.

O

To demonstrate the curvature preference of protein |catédiz we consider in the
domainQ = (—4,4)3 a torus because it has regions with positive and negativa mea
curvatures where the proteins may populate or not deperudirigeir spontaneous
curvature. The torus surface is given by

R+ 2 =12, (61)

whereRandr are the major and minor radii, respectively. Its alterreaigrametriza-
tion
(%,¥,2) = ((R+rcosf)cosp, (R+rcosb)sing,rsing) (62)

can be handled when computing the curvature. Here®< 2ris the angle made
from the surface around the center of the tube, known as thedab angle, and
0 < ¢ < 2mis the angle made from the surface to the positaxis (projected
on thexy-plane), known as the toroidal angle. WhRen> r, one gets the so-called
ring torus. Here we choodR= 2 andr = 1.1. The phase field functiop is set as
the signed distance function with this torus surface. Wesittar only one species
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of diffusion proteins and one species of lipids. The satomatondition [(48) then
indicates that we only need to model the distribution of @iret only. The mem-
brane proteins are initially concentrated near the higbeisit of the positive/-axis,
smoothly distributed along the surface, and because ofdbpt@n of phase field
function which expands the transportation domain from thiéase to a small neigh-
borhood in the vicinity of the surface, smoothly distritdifeom the surface to the
bulk:

p= poe*\/mefzo’ v (X’CX)ZHV’CV)ZHZ), (63)

wherer = \/x?+y?+ 7% and(cx, ¢y, 0) is the center of the torus tube on the same

plane of which locates the poifi,y, z). The scaling consta is chosen such that
the maximum of the concentration is 1 on the torus surface.

1.0

1.00 100 g
0.8 0.75 0.75
06 0.50 0.50
0.4 : e |
0.2 | 0.25 | 0.25
0.0 I
1.00 1.0 1.0 "
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04 | 04 |
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DO DO00C

Fig. 13 Simulated localization of the membrane proteins from itsahfipsition to the outer ring of
the torus on a 128uniform meshe = 0.1. Time increment igit = 10~3. Spontaneous curvatures

areC"™ = —0.1 andCl = 0.5, and sampling moments are- 0,0.1,0.25,0.5,1.0,5.0. Color is
scaled by the maximum concentration in each plot.

We first set the spontaneous curvature of membrane protaihdigEds to be
CP"® — 0.5,C)P = —0.1, respectively. Notice that the mean curvature of a torus is
given by

R+ 2r cosf

Hiorus= =——=———~— 4
torus 2r(R+rCOSG)’ (6 )
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which gives a mean curvatukdys ~ 0.6158 for the chosen values Bfr at the
outer ring of the torus wher@ = 0 andHiorus~ —0.1 at the inner ring of the torus
where® = 71. With this first choice oC0"®,CiP we expect that the membrane pro-
teins will populate near the outer ring where the mean cureais close to the
specified spontaneous curvature of membrane proteins. Xpecttion is verified
by Fig.[12, where the plots of the concentrations of the maméproteins on the
membranep = 0 and the cross section= 0 at six sampling moments show the
transportation of membrane proteins from its initial piesitto the outer ring of the
torus.

In the second simulation we start with same initial condités in the first sim-
ulation but switch the spontaneous curvature€J8 = —0.1 andCl’ = 0.5. It is
expected that the membrane proteins will finally populatthatinner ring of the
torus, and this is verified by the snapshots of concentraifiofig/13.

These two computational simulations demonstrate the safidenodeling of the
curvature driven membrane protein localization using th#-diffusion equation
(60). Full version of Eq. (59) can also be considered to ielthe effects of finite
sizes of effects of lipids and proteins, and multiple spgoilipids. Our choice of
small time increment4 = 10-3) is restricted by the stability of the implicit-explicit
splitting method used for integrating the nonlinear equat\We expect the devel-
opment of more efficient numerical methods for the integranf the equation,
in particular when it is to be coupled with the dynamic phastlffunctiong, in
that case a membrane velocity shall be added to[Eqg. (60) te ihak advection-
drift-diffusion equation. Such coupling reveals the pusifeedback of membrane
curvature accumulation to membrane protein localizat®@n.the other hand, the
number of major membrane proteins involved in the membras®ffi, budding,
endocytosis, or exocytosis is not constant over the eritire tourse because there
is continuous intracellular protein transport. Proteireyrbe recruited from the so-
lution to membrane at specific regions of the membrane anchwigke they are
released from the membrane to the solution [112, 121]. Theeiaresented here
can be extended by adding a reaction term that models thardgrexchange of
membrane proteins between the membrane and the solutdeednit is shown that
some membrane budding proteins such as influenza virus lygntiagn (HA) and
neuraminidase (NA) are associated with raft-like microdors, while some are not
[80]. An integration of the curvature driven localizatiomdalocal clustering within
the microdomains will help elucidate the competing or dmdlative effects of these
membrane proteins in the same biophysical process.

5 Conclusions

Energetic variational principle constitutes a tangilhd lbetween multiscale theory
and the experimental observation of biomolecular strggtuinction, and dynamics,
aided by computational simulations. Although the appiared of variational prin-

ciple have bee well established for research in variousaremechanics, classical
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and modern physics, and material sciences, novel insightsfiered by this princi-
ple when it is applied to the biomolecular systems. Amongpiiogresses achieved
in recent years, a significant step forward has been madg tisrngeometry of the
molecular interface to parametrize the total energy [150 28, 84, 82, 1, 97, 71].
This unified representation allows the investigators tai$oon the identification
of energies that characterize various molecular intayastat multiple spatial and
temporal scales. The flexibility of the analytical and cotagpional framework of the
variational principle ensures that the critical states@amics of the biomolecular
system can be tracked with confidence by evolving the totiggn Furthermore, by
introducing a phase field function we can implicitly defineldarack the molecular
interface which may subject to large deformation and togictl change. The three
topics presented here demonstrated the desirable fléeibitf formulating the to-
tal energy, of parametrizing the energy using phase fieldtiom, and of simulating
the equilibrium state and dynamics of the system though tineemical solutions of
the nonlinear partial differential equations (PDESs) fa ¢feometric flow of the total
energy.

The geometrically parametrized total energy obtained bytiergetic variational
principles entail a rich body of features for mathematiaad aumerical analysis,
including the stability of its critical points, the coarseg dynamics, the solution
periodicity, and the conservative discretization of theuietng PDEs, while most
of them remain open as long as the applications to biomaegubblems are con-
cerned. More broad usefulness of the methodology outliné¢lol present three top-
ics are expected to be established in chemistry, biophyaias medicine through
interdisciplinary research and collaboration.
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