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Abstract Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding systems
of the partial differential equations (PDEs). This principle allows us to focus on
the identification of essential energetic components, the optimal parametrization of
the energies, and the efficient computational implementation of energy variation or
minimization. Given the fact that complex biomolecular systems are structurally
non-uniform and their interactions occur through contact interfaces, their free ener-
gies are associated with various interfaces as well, such asthe solute-solvent inter-
face, molecular binding interface, lipid domain interface, and membrane surfaces.
This fact motivates the inclusion of interface geometry, particular its curvatures,
to the parametrization of free energies. Applications of such interface geometry
based energetic variational principles are illustrated through three concrete topics:
the multiscale modeling of biomolecular electrostatics and solvation that includes
the curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanicsat the lipid inter-
face, and the mean curvature driven protein localization onmembrane surfaces. By
further implicitly representing the interface using a phase field function over the en-
tire domain, one can simulate the dynamics of the interface and the corresponding
energy variation by evolving the phase field function, achieving significant reduc-
tion of the number of degrees of freedom and computational complexity. Strategies
for improving the efficiency of computational implementations and for extending
applications to coarse-graining or multiscale molecular simulations are outlined.
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1 Introduction

Living biological systems require a constantly supply of energy to generate and
maintain certain biological orders that keep the systems alive. This warrants the
biophysical models that quantify the management and balance of energy in bio-
logical systems, i.e., the energy budget of metabolism. Taking cells - the building
blocks of life - as an example, energy is derived from the chemical bond energy in
food molecules, passed through a sequence of biochemical reactions, and is used in
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cells to produce activated energy carrier molecules (i.e.,ATPs) for powering almost
every activity of the cells, including muscle contraction,generation of electricity
in nerves, and DNA replication [2]. For solvated biomolecular systems1 discussed
in this chapter, including solvated proteins, bilayer membranes, or their complexes,
one can make similar energy budgets too. Various types of energies can be identified
for biomolecular systems, such as

1. kinetic energies of atoms or molecules in motion;
2. potential energies for bonded atoms: potential energiescharacterizing the stretch-

ing, bending, torsion of the covalent bonds between atoms;
3. potential energies for unbounded atoms: electrostatic energy and van der Waals

energy; and
4. kinetic and potential energy interconversions in enzymatic processes and chem-

ical reactions.

The first three energy terms constitute the basis for the molecular dynamics (MD)
simulation of non-reactive solvated biomolecular systems. Using the spatial coordi-
nates of individual atoms as parameters, MD simulations trace the motion of each
atom by using the Newton second law, where the force applied to each atom is
computed as the variational of the total energy with respectto the atom’s spatial co-
ordinates [15, 20, 133, 104]. Additional forces that modelstemperature-dependent
thermal fluctuations can be added to the forces, giving rise to Langevin dynamics
simulations [114]. In this regard, MD simulation is indeed aclassical application of
the variational principle.

The large amount of solvent molecules in a molecular dynamics simulation of
solvated biomolecular system can make the simulation daunting and expensive. This
deficiency motivates the development of various continuum or multiscale models for
part of or the entire solvated biomolecular system [129, 46,32, 16, 23, 148, 163, 28,
52, 120]. Notably among these simplifications are implicit solvent models, which
manage to replace the atomic degrees of freedom of solvent molecules with a con-
tinuum description of averaged behavior of solvent molecules while retain an atom-
istic description of the solute molecule [52, 120]. Accordingly, the solvent-solute
interface must be identified as the boundary between the continuum solvent region
and the discrete biomolecular domain. This interface is of particular importance
because it is related to a range of solvent-solution interactions such as hydrogen
bonding, ion-ion, ion-dipole, dipole-dipole and multipole interactions, and Debye
attractions [41]. Thus the parametrization of the total energy of the system must in-
clude the geometry of this interface. Mean and Gaussian curvatures are generally in-
volved in such parametrization because they measure the variability or non-flatness
of a biomolecular surface and characterize respectively the extrinsic and intrinsic
measure of the surface [76]. In these multiscale models of solvated biomolecules
systems the motion of the atoms still follows the Newton’s law where the force is

1 Water constitutes a large percentage of cellular mass and therefore biomolecules are mostly living
in an aqueous environment where various types of ions such as sodium (Na+), potassium (K+),
calcium (Ca2+), and chloride (Cl−) present at different concentrations.
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given as the variational of the total energy with respect to the atoms’ spatial coor-
dinates, the electrostatic potential, and the interface [59, 138, 148, 58, 161]. The
change in the solvent-solute interface induces variation in curvatures, whose ener-
gies might be treated as a part of the total energy functional. These curvature or
differential geometry based biomolecular models offer a manifest of mathematical
analysis and computational methodologies for the dynamicsof the solvent-solute
interface and the equilibrium energy landscape of solvatedbiomolecules. In other
words, one can derive dynamic partial differential equations to evolve the interface
morphology and this evolution can be mapped to the path toward the global or local
minimum on the landscape of the total energy. Here in this chapter we shall present
three representative applications of interface geometry based variational principles
to the modeling of biomolecular interactions: (i) biomolecular electrostatics and sol-
vation, (ii) surface microdomain formation in bilayer membranes, and (iii) curvature
driven protein localization in bilayer membranes.

In the first application we consider the long-range electrostatic interactions
among partially charged static atoms in the solute and the aqueous solvent with
mobile ions. These interactions strongly depend on the position of solvent-solute
boundary, also referred to as the molecular surface in this context, where a rapid
transition of dielectric permittivity is observed. Inclusion of this interface, albeit im-
plicitly, in the formulation of the total energy of the system facilitates the coupling
of polar and nonpolar solvent-solute interactions, as wellas the nonlinear solvent
response, in the form of interface energy functional of surface curvature energy,
electrostatic energy and van der Waals potential. Such a coupling finally gives rise
to a novel variational multiscale solvation model [46, 47, 148, 27, 26]. In a more
elaborated model, the solute molecule can be described in further detail by using
the quantum density functional theory (DFT) in an iterativemanner, which allows a
more accurate account of solvent-solute interaction and response [25]. Differential
geometry based solvation models have been shown to deliver superb predictions of
solvation free energies for hundreds of molecules [28, 139]. This variational princi-
ple based solvation model can be further extended to describe essential biological
transportation such as transmembrane ion or proton flows that depend critically on
the geometry of the associated protein channels. By including the chemical poten-
tial and entropy of the diffusive ion species into the total energy functional one can
obtain simultaneously the optimized channel protein surfaces as well as the corre-
sponding I-V (current-voltage) curve [159, 28, 150].

Curvature is believed to play an important role in many biological processes,
such as protein-DNA and protein-membrane interactions, including membrane cur-
vature sensing. Classical phase field modeling of surface pattern formation in bi-
layer membranes contains a curvature term in its definition of the total energy
[24, 44, 42, 102, 18, 56]. However, when modeling the surfacepattern formation
in our second application here, we show that it is the geodesic curvature rather than
the curvature of pattern interfaces that plays an essentialrole in modulating the
interface energy. Noting that this geodesic curvature is defined on a general differ-
entiable manifold, and thus the classical phase field modeling of phase separation
with specified intrinsic curvature can be regarded as a special case of this geodesic
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curvature model in the Euclidean spaces. By providing various intrinsic geodesic
curvatures that model the geometry of the contact of different species of lipids, we
are able to simulate the generation of lipid rafts as the formation and equalization of
localized surface domains.

In contrast to most amphiphilic lipids whose relatively long and geometrically
regular hydrophobic tails allow they to pack together, membrane proteins usually do
not present in large distinct domains in membrane surfaces,although small amount
of membrane proteins can compound together forming functional complexes such
as ion channels or membrane transporters. Most membrane proteins are amphipathic
helices, which contain both hydrophobic and hydrophilic groups, complementing to
amphiphilic lipids. Therefore, the localization of these membrane proteins in gen-
eral can not be modeled using the geodesic curvature based phase separation model
as described in our second application. Many membrane proteins, however, do pre-
fer bilayer membranes with particular curvature, in the sense that they can induce
particular curvature in the bilayer membrane and they tend to be localized in re-
gions with specific curvature. Therefore, one can imagine that membrane curvature
can provide a driving force for the distribution of membraneproteins in the bilayer,
and thus an appropriate energy functional that represents the membrane curvature
must be added to the classical electrochemical potential and entropy to describe the
localization of membrane proteins.

These three applications of variational principles in biomolecular modeling are
by no means exhaustive, even in the context of solvation analysis and membrane-
protein interactions. There are inspiring studies of ion and water transport in mem-
brane channels using energetic variational approaches, where the effects of surface
charge density and non-uniform particle sizes can be readily included to the inves-
tigations thanks to the flexibility of the variational approaches [148, 67, 154, 71,
69, 70, 89, 83, 150]. Similar flexibility also enables the extension of the application
of variational principles from the standard phase field modeling of bilayer mem-
brane deformation and morphology [45, 44, 42] to multi-components membranes
[86, 158], pore formation [113, 35], and double layer [38, 57]. Some of the models,
particular those for bilayer membranes, share various degree of similarity to those
models used for self-assembly or phase separation of polymers or co-polymers. It is
this wide diversity of the lipid structures and the complicated interactions between
proteins and lipid bilayers in solution that makes the energetic variational model-
ing of bilayer membranes unique and challenging. As we shallpresent below, most
of our efforts are concentrated on the formulation of potential energy functional
of these interactions so that the variational principle canbe applied and numerical
solutions can be found by solving the corresponding systemsof nonlinear partial
differential equations (PDEs).
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2 Variational Multiscale Methods for Biomolecular
Electrostatics and Solvation

By definition, the solvation energy of biomolecules is the cost of free energy re-
quired to transfer the biomolecules from the vacuum to the solvent environment.
It is therefore an essential quantitative characterization of the solute-solvent in-
teractions. Electrostatic free energy, also called polar solvation free energy, is an
important component of the solvation free energy since mostbiomolecules are
charged and there are always mobile ions in the solvent underphysiological con-
ditions. Various critical applications of the electrostatic and solvation free ener-
gies can be found in chemistry, biophysics, and medicine. Werefer the reader to
[40, 92, 91, 144, 143, 52, 145, 138, 73, 79, 109, 48, 31, 117] for theoretical un-
derpinning of these applications and the determination of the electrostatics and sol-
vation free energies. Apart from electrostatic effects, the solvation free energy also
involves the nonpolar energy, namely, the energy cost for creating a suitable cav-
ity in the continuum solvent to allow the transferring of thebiomolecules and for
the dispersive interactions between the solvent and the biomolecule on the surface
of this cavity. Implicit solvent models are particularly appearing for computing the
solvation free energy since the number of solvent degrees offreedom can be dra-
matically reduced by a well fitted bulk dielectric permittivity while the atomistic
representations of solute biomolecules can be retained to maintain a detailed mod-
eling of the solute. The framework of implicit solvent models allows the solvation
free energy to be decomposed into two components, polar solvation and nonpolar
solvation [79, 138, 81]. In this approach, the electrostatic contribution can be read-
ily computed from the solution of the Poisson-Boltzmann equation, or the Poisson
equation if there is no explicit ion in the solvent [88, 63, 136, 101, 61, 6, 7]. The
solution of these equation depends on the contrast of dielectric permittivity in vac-
uum and the solvent environments, and this contrast is concentrated at the boundary
between the biomolecule and the solvent. Likewise, the calculation of nonpolar sol-
vation free energy depends on the geometry of the biomolecular surface. The fact
that both polar and nonpolar components are determined by the solvent-solute in-
terface warrants the importance of a biophysically justifiable, mathematically well-
posed, and computational feasible definition of the molecular surface or dielectric
interface. In fact, the decoupling of polar and nonpolar components makes implicit
solvent models conceptually convenient and computationally simple.

However, there are many structural imperfections associated with implicit sol-
vent models. First, intrinsic thermodynamical and kineticcoupling makes it impos-
sible to completely separate the electrostatic component from the non-electrostatic
components in the solvation modeling. Additionally, a pre-prescribed solvent-solute
interface, such as solvent excluded surface and van der Waals surface, decouples po-
lar and nonpolar components. As a result, the solvation induced solute polarization
and solvent response are not appropriately accounted in implicit solvent models.
Moreover, implicit solvent models neglect potential solvation induced surface re-
construction and possible conformational changes. Finally, thermodynamically, the
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change in the Gibbs free energy of solvation can be formally decomposed into the
change in internal energy, work, and entropy effect. There is no guarantee that all
of these components are fully accounted in implicit solventmodels. In addition
to the aforementioned structural or organizational imperfections, the performance
of implicit solvent models is subject to a wide range of implementation deficien-
cies, such as the modeling of nonpolar component, the treatment of the electrostatic
component, the exclusion of high-order polarization, the exclusion of curvature, the
geometric singularity of solvent-solute interface, the stability of numerical schemes
and algorithms, the grid convergence of the solvation free energy, to mention only a
few.

Some of the aforementioned problems have been the subjects of intensive study
in the past few decades. One approach starts from improving the surface definitions,
so that earlier van der Waals surface, solvent accessible surface [77], and molecular
surface (MS) [111] are replaced by smooth surface expressions [61, 60, 62, 160, 22].
Geometric analysis, which combines differential geometry(DG) and differential
equations, is a powerful mathematical tool for signal and image processing, data
analysis, and surface construction [100, 146, 140, 141, 142]. Geometric PDEs and
DG theories of surfaces provide a natural and simple description for a solvent-solute
interface. The first curvature-controlled PDEs for molecular surface construction
and solvation analysis was introduced in 2005 [147]. A variational solvent-solute
interface, namely a minimal molecular surface (MMS), was proposed for molec-
ular surface generation in 2006 [9, 10]. In this work, the minimization of surface
free energy is equivalent to the minimization of surface area, which can be imple-
mented via the mean curvature flow, or the Laplace-Beltrami flow, and gives rise to
the MMS. The MMS approach has been used in implicit solvent models [28, 10].
Potential-driven geometric flows, which admit a potential driven terms, have also
been proposed for biomolecular surface construction [8]. This approach was adopted
by many researchers [29, 21, 30, 155, 156, 157] for biomolecular surface and elec-
trostatics/solvation modeling.

It is nature to extend DG based variational theory of the solvent-solute interface
into a full solvation model by incorporating a variational formulation of the PB the-
ory [116, 59] [148, 28] following the spirit of a similar approach by McCammon and
coworkers [47, 46]. However, the formalism of McCammon and coworkers does not
involve geometric flow and has a Gaussian curvature term thatmight lead to jumps
in the energy when there are topological changes. Our DG based variational model
addresses many of the aforementioned imperfections of implicit solvent models. For
example, by parametrizing both polar and nonpolar components of the solvation en-
ergy using the geometry of the interface, these two components can be coupled
naturally in a single free energy functional. Application of the variational principle
and the equilibrium solution of the associated Laplace-Beltrami flow gives rise to
an optimal biomolecular surface along with an optimized solvation energy.
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2.1 Polar solvation free energy

We start with the definition of polar solvation energy, whichis associated with the
energy difference for charging biomolecules in both the vacuum and the solvent en-
vironment. Variational formulation of Poisson-Boltzmannequation was discussed
in the lietrature [116, 59]. Here we recast this formulationin our DG based formal-
ism. Considering a solvated biomolecular system occupyinga three-dimensional
(3D) domainΩ ∈ R

3, one can relate the polar solvation energy of the biomolecule
to the electrostatic potentialΦ(r) : R

3 → R by formulation [148, 27]

Gp =
∫

Ω

{

S

[

ρmΦ − 1
2

εm|∇Φ |2
]

− (1−S)

[

1
2

εs|∇Φ |2 +kBT
Nc

∑
i=1

ci(e
−qiΦ/KBT −1)

]}

dr,

(1)
whereS(r) and 1−S(r) are respectively the domain indicators for the solute and the
solvent domains. We set 0≤S(r)≤ 1, which is related to the widely used phase-field
function|φ̄(r)| ≤ 1 by

S=
1+ φ̄

2
, 1−S=

1− φ̄
2

. (2)

HereSand 1−Sare introduced to distinguish the contributions to the total free en-
ergy from the solute regionΩm and solvent regionΩs. The dielectric permittivity in
these two complementary subdomains ofΩ are given byεm andεs, respectively. The
fixed charge densityρm of biomolecule consists of a summation of partial charges
(Q j ) from atoms

ρm(r) = ∑
j

Q jδ (r− r j), (3)

wherer j ∈ R
3 is the position ofjth charged atom. In Eq. (1),qi andci are respec-

tively the charge and bulk concentration of theith ion species,Nc is the number of
ions species in the solvent,kB is the Boltzmann constant, andT is the temperature.

The surface functionS(r) can be chosen initially as a smooth function to ease
the numerical implementation, as seen in the left chart of Fig. 1. We show below
the classical Poisson-Boltzmann equation can be reproduced by using this energy
functional when a sharp solventsolute interface is adopted, i.e., whenSbecomes a
Heaviside function. In the sequel we shall work on a generalized Poisson-Boltzmann
equation in the sense that the transition from the solvent region to the solute region
is smooth rather than discontinuous.

2.2 Nonpolar solvation free energy

The nonpolar solvation energy involves a number of terms. The scaled-particle the-
ory (SPT) for nonpolar solutes in aqueous solutions [124, 105] utilize a solvent-
accessible surface area term [127, 95]. Solvent-accessible volume was shown to be
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Fig. 1 Left: A typical phase field functionSchanges smoothly from its value of−1 in the solvent
domain to the value of 1 in the solute domain. Right: The dielectric constantε(S) depends on the
phase field function and changes smoothly from a value of 78 (or 80) in the solvent domain to a
value of 2 (or 1) in the solute domain.

relevant in large length scale regimes [90, 68]. It was pointout that van der Waals
(vdW) interactions near solvent-solute interface are important as well [55, 54, 33,
137]. Dzubiellaet al convert these terms into a nonpolar energy functional, which,
however involves Gaussian curvature term [46]. We modify this functional in spirit
of our MMS [9, 10] to give the following nonpolar term [148, 27]

Gnp = γAm+ pVm+ρ0

∫

Ωs

Uattdr. (4)

Here the first term is the surface energy given by the surface tensionγ and the
biomolecule’s surface areaAm. This term measures the disruption of inter- and
intra-molecular noncovalent bonds of solvent molecules when an internal surface
is created. In our approach, the surface tensionγ does not depend on Gaussian cur-
vature so that the first term in Eq. (4) avoids possible energyjumps suggested by
the Gauss-Bonnet theorem. Additionally, such a term follows our minimum surface
energy functional formulation [9, 10]. The second term represents the mechanical
work for expanding a volume ofVm against a hydrostatic pressurep. The last term
quantifies the attractive dispersion effects near the solvent-solute interface, deter-
mined by the solvent bulk densityρ0 and the attractive portion of the van der Waals
potentialUatt at positionr. Since the biomolecular surface is not explicitly known
in the present modeling, we relate the surface area and its enclosed volume to the
surface functionS through

Vm =
∫

Ωm

dr =
∫

Ω
Sdr (5)

and the coarea formula [151, 148]

Am =
∫

Ω
|∇S|dr. (6)



Contents 11

With these relations we can assemble the polar and nonpolar contributions to give
the formulation of the total solvation free energy functional for biomolecules at
equilibrium [148, 27]

Gtot =
∫

Ω

{

γ|∇S|+ pS+(1−S)ρ0U
att+S

[

(ρmΦ)− 1
2

εm|∇Φ |2
]

+

(1−S)

[

−1
2

εs|∇Φ |2−kBT
Nc

∑
i=1

ci(e
−qiΦ/KBT −1)

]}

dr. (7)

There are a variety of definitions of nonpolar free energies alternative to that in Eq.
(4), but most of them are determined by the surface area, its enclosed volume and
ver der Waals term in a similar way [81, 138, 79]. The present formulation and
the variational principle introduced here are applicable to these alternative nonpolar
solvation models as well.

2.3 Governing equations

We search for the critical point of the free energy functional to obtain the optimal
free energy of the biomolecular systems. By construction, the free energy functional
is determined by the surface functionS and the potentialΦ . The latter indeed de-
pends on the position of dielectric interface hence on the surface functionSas well.
Since the electrostatic potential follows the Poisson equation, it is theoretically pos-
sible to replace the electrostatic potential using the convolution of the Green’s func-
tion with the change density. However, the dependence of this Green’s function on
the surface functionS does not have an explicit representation. Consequently, itis
practically impossible to represent the total energy as thefunctional of the surface
function only and compute its variation. In our investigations we shall compute the
critical point by evolving the gradient flow of the free energy functional to a steady

state; while the electrostatic potential defined by the vanishing variation
δGtot

δΦ
is

used as a constraint during the evolution. These two variations are

δGtot

δΦ
= Sρm+∇ · ((1−S)εs+Sεm)∇Φ)+(1−S)

Nc

∑
i=1

ciqie
−qiΦ/KBT , (8)

δGtot

δS
= −∇ ·

(

γ
∇S
|∇S|

)

+ p−ρ0U
att+ρmΦ +

1
2
(εs− εm)|∇Φ |2

+kBT
Nc

∑
i=1

ci(e
−qiΦ/KBT −1). (9)

The vanishing variation in Eq. (8) gives rise to a generalized Poisson-Boltzmann
equation (GPBE) [148, 27]
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−∇ · (ε(S)∇Φ) = Sρm+(1−S)
Nc

∑
i=1

ciqie
−qiΦ/KBT . (10)

where the dielectric function

ε(S) = (1−S)εs+Sεm, (11)

is also plotted in the right chart in Fig. 1. The gradient flow for the surface function
S follows the following generalized Laplace-Beltrami equation [148, 27]

∂S
∂ t

= −|∇S|δGtot

δS
= |∇S|

[

∇ ·
(

γ
∇S
|∇S|

)

+V

]

, (12)

where a generalized potential functionV collects the relevant terms in Eq. (9) as

V = −p+ρ0U
att−ρmΦ +

1
2
(εm− εs)|∇Φ |2−kBT

Nc

∑
i=1

ci(e
−qiΦ/KBT −1), (13)

and |∇S| is added to the front of the variation to introduce the local curvature of
the molecular surface to adjust rate at which the surface function evolves toward its
steady configuration. In this sense Eq. (12) is a generalizedgeometric flow equation.
Note that the time in Eq. (12) is artificial.

We expect that the GPBE with smoothS converges to its sharp interface limit
when S becomes a Heaviside function with a discontinuity located at the dielec-
tric interfaceΓ , in that case the GPBE can be written as the following two elliptic
equations

−εm∇2Φm = ρm, r ∈ Ωm, (14)

−εs∇2Φs =
Nc

∑
i=1

ciqie
−qiΦs/KBT , r ∈ Ωs. (15)

these two equations are coupled through the interface conditions onΓ . In this case,
to make the above two equations well posed, one has to introduce two interface
jump conditions,

Φs = Φm, εm∇Φm · n̄ = εs∇Φs · n̄, r ∈ Γ (16)

whereΦm,Φs are the limit values of the electrostatic potential from solution do-
mainsΩm andΩs, respectively, and̄n(r) is the unit normal vector onΓ .

2.4 Computational simulations and summary

A second-order finite difference scheme was designed to solve the coupled gener-
alized Poisson-Boltzmann equation (10) and the Laplace-Beltrami equation (12).
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Most of physical parameters involved in Eq. (12) are taken from the references
[81, 99] and the CHARMM force field. A constant surface tension γ is chosen in
our investigation whose value shall vary for different molecular surfaces [81, 99].
In particular,γ is implemented as a fitting parameter so that the optimized solva-
tion free energy∆G from our computational studies can match the experimental
measurements. By definition,

∆G = Gtot−G0, (17)

whereGtot is defined in Eq. (7) andG0 is the total energy of the solvent molecules
in vacuum withεs = εm = 1 and without nonpolar energy. To facilitate the fitting of
γ we rewrite Eq. (12) as

∂S
∂ t

= γ|∇S|
[

∇ ·
(

∇S
|∇S|

)

+
V
γ

]

. (18)

More details of the numerical methods for solving the coupled partial differential
equations can be found in [27]. In Fig. 2 we show a simulation where the initial
surface function is set such that the target diatomic systemis well contained in the
regionS= 1. The surface function evolves from the initial profile toward the final
configuration that fits the molecular surface of a diatomic system, reaching a state
where the total solvation energy is optimized. A more realistic simulation on the
protein (PDB ID: 1frd) is shown in Fig. 3, where isosurfaces defined by different
S are plotted along with the electrostatic potentialΦ on the surface. WhileS= 1

2
is usually chosen as the molecular surface, the three surfaces are very close due to
the high resolution of the numerical method. The availability of the surface position
and surface potential could significantly facilitate the analysis of binding affinity of
protein-protein or protein-ligand systems, of which the electrostatic potential is an
important component [119, 5, 63, 34, 87, 108].

Numerically, this model can be computed by using both the Eulerian formu-
lation, in which the solute boundary is embedded in the 3D Euclidean space so
evaluation of the electrostatic potential can be carried out directly [27], and the La-
grangian formulation, wherein the solvent-solute interface is extracted as a sharp
surface and subsequently used in solving the GPB equation for the electrostatic po-
tential [26]. Lagrangian formulation requires direct tracking of the sampling points
on the molecular surface, which is convenient for the surface visualization, the map-
ping of the surface electrostatic potential field, and the enforcement of the van der
Waals radii in constraint. However, it suffers from the development of singulari-
ties while evolving molecular surface and the difficulty of handling the change of
topology. In contrast, the Eulerian representation gets around of the explicit track-
ing of sampling points by modeling the solvent-solute interface either a smooth 3D
density profile or as a specific level set of the smooth profile.The dynamics of the
solvent-solute interface can be obtained by evolving this 3D density profile follow-
ing the Laplace-Beltrami flow of the energy functional. The Eulerian representation
is therefore capable of reproducing complicated dynamics of surface topology. As
we shall introduce below, it also greatly facilitates the computation of a number
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Fig. 2 The phase field function evolves from its initial configuration to the final state where the
surfaceS= 0.0 fits the molecular surface for a diatomic system. Here we show only the profiles of
Sat the cross section(x,y,0.05) sampled at six moments during the evolution.

Fig. 3 Electrostatic potential on molecular surfaces with differentvalues ofS. Left: S= 0.25;
Middle: S= 0.5; Right:S= 0.75.

of geometric quantities that are otherwise difficult to compute in the Lagrangian
representation, such as the area of entire surface and surface enclosed volume.

The parametrization of solvation energy using the surface functionSallows one
to track the molecular surface by following the isosurfaceS= 0.5 during the evo-
lution of S. This formulation is referred to the Eulerian formulation.Alternatively,
one can explicitly define a molecular surfaceΓ to separate the solvent and solute
domains, and to use this surface to parametrize the solvation energy. Denote such
an energy functional asGtot(Γ ). Similar to the optimization procedure presented
above, the total energy is optimized by evolvingΓ following the gradient flow of
the energy, and in this case, the energy variation is with respect to the spatial co-
ordinates of this explicitly defined surfaceΓ . Numerically, this can be achieved by
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discretizingΓ into a collection of surface elements or surface vectors{Ŝj}, each ele-
ment parametrized by a local coordinate system(x1,x2), and thusGtot(Γ ) becomes
Gtot(Ŝj). Furthermore, we can constrain the motion ofΓ to the normal direction
n(x1,x2) only, for that a tangential displacement ofΓ does not change the surface
configuration and the solvation energy. A scalar displacement field ψ(x1,x2) in the
normal direction can be defined through

Ŝσ
j (x1,x2) = Ŝ(x1,x2)+σψ(x1,x2)n(x1,x2), (19)

which states that the surface elementŜj is updated from its original position by
σψ(x1,x2) along the normal direction to the new positionŜσ

j , whereσ is a number
to scale the normal displacement fieldψ(x1,x2). The optimization of the total energy
at a particular molecular surfaceΓ means that any normal displacement will violate
the nature of optimum at this point, indicating

∂ Ŝσ
j

∂σ

∣

∣

∣

∣

∣

σ=0

= 0. (20)

Now we can observe the transition of the independent variables in calculating the
energy variation:

δ
δΓ

→ ∂
∂ Ŝσ

j

→ ∂
∂σ

, (21)

as a result of replacing the motion of the explicit surfaceΓ using the scaled normal
motion of a collection of surface elements. The readers are referred to [26] for the
detailed calculation of the energy variation, the derivation of the equation governing
the gradient flow, and the numerical techniques for solving the equation. This inves-
tigation also shows that the optimized solvation energy andmolecular surface are
well matching those generated by the Eulerian formulation if there is no topologi-
cal change inΓ during its evolution. Notice that a single point onŜj may evolves
to two distinct points, or two distinct points in two different surface elements may
converge to a single point when there is a topological changeduring the evolution
of Γ . This intrinsic singularity in handling the topological change limits the appli-
cations of the Lagrangian formulation to complex biomolecular systems, for which
it is impossible to set an initial surfaceΓ that is topologically equivalent to the final
optimized molecular surface. The Eulerian formulation is hence suggested for the
investigations of the solvation energy and molecular surfaces of general biomolecu-
lar systems.

Recently, differential geometry based implicit solvent model has been tested ex-
tensively via solvation analysis [27, 26, 28, 39, 132, 139].The differential geometry
based nonpolar model was found to deliver some of the best nonpolar solvation pre-
dictions [28]. However, for general molecules with a significant polar component,
our initial predictions were not up to the state of the art [27, 26]. It turn out that both
the generalized Laplace-Beltrami equation and the generalized Poisson-Boltzmann
equation can be easily solved individually. However, when these equations are cou-
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pled, there is a stability problem [156, 157]. Essentially,whenSadmits unphysical
values beyond its physical definition 0≤ S≤ 1, the dielectric function (11) will
adopt unphysical (negative) values as well, which gives rise to an instability in up-
dating the Laplace-Beltrami equation (12). This issue hinders the performance of
DG based solvation models for molecules with significant polar component. To ad-
dress this problem, a convex optimization algorithm [139] has been developed to
ensure the stability in solving coupled PDEs (10) and (12). As a result, the differen-
tial geometry based solvation model is found to deliver someof the most accurate
prediction of experimental solvation free energies for more than 100 molecules of
both polar and nonpolar types [139].

Most recently, Wei and coworkers have taken a different treatment of non-
electrostatic interactions between the solvent and solutein the DG based solvation
models so that the resulting total energy functional and PB equations are consistent
with more detailed descriptions of solvent densities at equilibrium [150, 149]. To
account for solute response to solvent polarization, a quantum mechanical (QM)
treatment of solute charges was introduced to the DG-based solvation models using
the Kohn-Sham density functional theory (DFT) [25]. This multiscale approach self-
consistently computes the solute charge density distribution which simultaneously
minimizes both the DFT energy as well as the solvation energycontributions.

Currently, efforts are invested to improve the accuracy androbustness of DG
based solvation models by combining physical models with knowledge based mod-
els, namely, machine learning approaches. Additionally, DG based solvation models
and machine learning approaches are utilized for accurate predictions of the protein
binding energies and ligand binding affinities over a wide range of conformational
states. Furthermore, it is worth noting that the method depends only on the repre-
sentation of the solvent-solute interfaces, and this representation is independent of
the atomic or coarse-grained description of the biomolecules. It is therefore possi-
ble to adopt this method to compute the potential of mean force of coarse-grained
biomolecular structures along selected coordinate, and the results can be utilized
for parametrization the force field for coarse-grained molecular systems as well.
Finally, we would like to point out that many critical applications to biophysics,
chemistry, and medicine mostly remain unexplored.

3 Variational Methods for Pattern Formation in Bilayer
Membranes

As one of the most important biomolecular systems, the lipidbilayer membranes
sustain the regular functions of cell and subcelluar compartments by regulating the
transmembrane ion or molecular flows and by providing platforms for various essen-
tial biochemical processes [123, 2]. These critical functions of bilayer membranes
are determined by their lipid compositions, the specific membrane proteins, and
their dynamical arrangement in the bilayers during the course of membrane mor-
phology change as a result of various membrane-solvent, membrane-membrane, or
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membrane-protein interactions. Applications of the variational principle for bilayer
membrane modeling have been mostly focused on four types of problems: (i) mean-
curvature dependent membrane morphology [42, 45, 96, 37], (ii) ionic or proton
flows in protein channels [154, 159], (iii) lateral diffusion on membrane surfaces
[162], and (iv) pattern formation in bilayer membranes [43,17, 152]. Here in this
section we focus on the local pattern formation in bilayer membranes, for that there
are many controversial investigations concerning the biophysical underpinning of
these patterns, their spatial and temporal distributions,and their roles in modulat-
ing relevant biochemical processes [128, 106, 3, 134]. These patterns are called
lipid rafts, which are small (10-200nm), heterogeneous, highly dynamic, sterol-
and sphingolipid-enriched domains that compartmentalizecellular processes [118].
Lipids move laterally within the domains mostly rather thanover the entire mem-
brane surface [4]. Classical phase separation models manage to minimize the total
area of the domain boundaries and large domains appear at theend of the minimiza-
tion; this process is usually referred to as coarsening. Whenthese classical models
are directly extended to model surface phase separation, the total arc length of the
domain boundaries on the surface will be minimized to generate large domains,
which do not match the measured sizes of lipid rafts [43, 17, 152].

3.1 Classical phase field models

We first examine the classical phase separation model for binary systems. Consider
two species of particles inR3 with respective mass or volume fractionsm1,m2 ∈
[0,1]. The interactions between particles of the same species arefavorable while
the interactions between different species are unfavorable. This preference can be
modeled by defining a phase field function

φ̄ =
m1−m2

m1 +m2
, (22)

where φ̄(r) ∈ [−1,1], r ∈ R
3 and minimizing the Ginzburg-Landau free energy

functional inΩ ∈ R
3

G(φ̄) =

∫

Ω

(

f (φ̄)+
σ
2
|∇φ̄ |2

)

dr, (23)

where f (φ̄) is a double well potential that has two minimums atφ̄ = ±1. A typical
choice is

f (φ̄) =
φ̄4

4
− φ̄2

2
(24)

which has two symmetric potential wells of the same depth atφ̄ =±1. It is apparent
that a complete phase separation withφ̄ changing discontinuously between 1 and
−1 is favorable byf (φ̄) whenG(φ̄) is minimized. Such an unphysical distribution
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of φ̄ is to be penalized by the term
σ
2
|∇φ̄ |2 that regulates the transitional gradient

of φ̄ between 1 and−1.

3.2 Geodesic curvature based membrane models

Fig. 4 Left: Schematic illustration of the mismatch of the lipid structures at the interface that in-
duces a transitional hybrid region between two lipid domains [14]. Middle: Within the transitional
hybrid layer the otherwise regular lattices of the lipids in either domain relax to match each other,
causing a bending interface [14]. Right: Circles on a sphere have constant geodesic curvatures. The
great circle, i.e., the lowest circle, has vanishing geodesic curvature in particular.

3.2.1 Lagrangian formulation

Our variational model is motivated by the recent theoretical studies of the hybrid
lipids saturation at the interface between saturated and unsaturated of lipids with
geometrical and molecular mechanical mismatch [14]. As illustrated in Fig. 4, two
species of lipids at their interface have different intermolecular interactions that are
determined by their structures. The otherwise regular lattice of either species of
lipids has to be relaxed in a way such that the intermolecularinteractions in the
transitional region near the interface will fit the different lattice structure of other
species. This relaxation generates curved interface between two species of lipids in
a manner similar to the generation of surface tension. Sincethe domain boundary
is a curve on a two-dimensional (2D) surface embedded inR

3, it is the geodesic
curvature of the interface, which is a locally straight linethat does not curve to
either domain it separates, rather than the interface curvature that determines the
intermolecular interactions between two species of lipidsnear the interface.2 The

2 In Sect. 2, we useS to denote the surface function, which is a domain indicator, and useΦ
to denote the electrostatic potential following the traditional usage in the studies of biomolecular
electrostatics. Here in Sect. 3 and Sect. 4 the models do not involve electrostatics, and we denote
φ the phase field function, while useSto denote the 2D surface embedded inR

3 when applicable.
An interface in Sect. 2 refers to solvent-solute boundary region, whereas in Sect. 3 and Sect. 4, it
refers a boundary curve on a given surface.
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geodesic curvature of the interface measures how far the interface curve is from
being a geodesic. We define the curvature energy of the microdomain boundary by
a one-dimensional (1D)on-curve integration

G =
∫

C
k(H −H0)

2ds, (25)

whereC is the domain boundary contour embedded inR
3, H is the geodesic curva-

ture,H0 is the spontaneous geodesic curvature of the lipid mixture to be separated,
andk is the geodesic curvature energy coefficient. The spontaneous geodesic curva-
tureH0 is an intrinsic property of the combination of any two species of lipids in the
bilayer membrane that will be separated to form local microdomains as a result of
geometric and molecular mechanical mismatch. In the transitional region near the
interface two species of lipids are arranged in a hybrid state rather than the regular
lattice structure. Indeed a recent theoretical study adopted a free energy for the hy-
brid packing of two species of lipids (denoted by the subscript 1 and 2 below) at the
interface [13, 14]:

F = ks(L1−L0
1)

2 +ku(L2−L0
2)

2 + γ(L1−L2)
2, (26)

whereLi is the length of the lipid chains in the transitional region andL0
i is the length

of the equilibrium chain in the bulk. Parametersks andku are the free energetic costs
of mismatch between two species and their hybrids at the interface, respectively
and similarly,γ is the energy cost of mismatch between two chains of the hybrid.
Furthermore, the following relations are identified to related the domain curvature
and lipid geometrical properties:

Vi = Lia0wi

(

1± wiH
2

)

, i = 1,2, (27)

whereVi is the molecular volume of the lipid chains,wi is the length that charac-
terizes the molecular spacing of the lipid head groups, anda0 = (w1 +w2)/2 is the
headgroup spacing of the hybrids along the interface. Here the subtraction sign is
chosen if the species is included in the microdomain, otherwise the addition sign is
used. The chain length in the equilibrium bulk state,L0

i , can be computed from the
molecular volume divided by the head group area in the bulk state

L0
i =

Vi

w2
i

. (28)

Eqs. (26-27) represent the interface bending energyF as a function of it geodesic
curvatureH. The minimizerH0 can be analytically calculated to the linear order:

H0 =
1

wT

[

(1−2B)wd

(1+2B)wT
+

2BVd

(1+2B)VT

]

, (29)
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whereB is a constant characterizing the free energetic cost of lipid mismatch at the
interface,wT = (w1 + w2)/2,wd = w1 −w2,VT = (V1 +V2)/2, andVd = V1 −V2.
By truncating the Taylor series approximation ofF (H) with respect toH0 to the
second order we get an energy functional in the form of Eq. (25).

3.2.2 Eulerian formulation

It has been seen in Sect. 2 that the parametrization of solvation energy using the sur-
face function allows one to implicitly track the molecular surface by following the
iso-surface extraction during the evolution of the surfacefunction, which is referred
as to the Eulerian formulation. We could also evolve a phase field function to min-
imize the energy in Eq. (25) and to obtain the configuration ofmicrodomains. This
is achieved by using the following 2D Eulerian formulation of the microdomain
geodesic curvature energy defined on the entire membrane surfaceS:

G(φ) =
∫

S

kε
2

(

∆xφ +
1
ε2 (φ +Hcε)(1−φ2)

)2

dx (30)

whereHc =
√

2H0 andε is a small positive parameter that characterizes the width
of the transitional layer fromφ(x) = −1 to φ(x) = 1. HereS is a surface embed-
ded inR

3, x = (x1,x2) anddx is an infinitesimal surface element. The equivalence
of this Eulerian formulation (30) to the Lagrangian formulation (25) is analogous
to the equivalence between the Canham-Helfrich-Evans curvature energy and the
membrane elastic energy [42, 1]. In particular, if the phasefield function is defined
by

φ(x) = tanh

(

d(x)√
2ε

)

(31)

with d(x) being the signed geodesic distance at the surface pointx to the interface
contourC whereφ = 0, then

∇xφ =
1
ε

q′(d(x))∇xd, ∆xφ =
1
ε

q′′(d(x))|∇xd|2 +
1
ε

q′(d(x))∆xd,

where

q(x) = tanh

(

x√
2ε

)

,q′(x) =
1√
2

[

1− tanh2
(

x√
2ε

)]

,

q′′(x) = −1
ε

tanh

(

x√
2ε

)

sech2
(

x√
2ε

)

,

and∇x,∇x· are surface gradient and surface divergence operators, respectively. The
geodesic curvature of a contour is given by

H = ∇x ·n, (32)
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wheren is the normal vector to the contourC. Sincen = ∇xd we haveH = ∇x ·
∇xd = ∆xd and

∆xd =
ε
q′

∆xφ − q′′

q′
|∇xd|2, ∇xd =

ε
q′

∇xφ .

Therefore, one has

∆xd =
ε
q′

∆xφ − q′′

q′

∣

∣

∣

∣

ε
q′

∇xφ
∣

∣

∣

∣

2

.

Writing q′(x) andq′′(x) in terms ofq(x) we can convert the above representation to

∆xd =

√
2ε

1−q2

(

∆xφ +
2q

1−q2 |∇xφ |2
)

,

which is the geodesic curvatureH = ∆xd. Replacingq(x) with φ one obtains the
final form ofH as

H =

√
2ε

1−φ2

(

∆xφ +
2φ

1−φ2 |∇xφ |2
)

=

√
2ε

1−φ2

(

∆xφ +
1
ε2 (1−φ2)φ

)

, (33)

where we assume‖n‖ = 1 in the last step of derivation. When minimizing the cur-
vature energy in Eq. (30) the following constraint

A(φ) =
∫

S
φ(x)dx = constant (34)

must be enforced such that quantities of both species of lipids are conserved.
To derive the equation of the geometric flow for the energyG(φ) we compute its

first variation with respect toφ :

δG
δφ

= k

[

∆xW− 1
ε2 (3φ2 +2Hcεφ −1)W

]

(35)

where

W = ε∆xφ − 1
ε
(φ +Hcε)(φ2−1).

We then split the linear and nonlinear components (WL andWN) of W to facilitate
the numerical treatments. They are given respectively by

WL = ε∆xφ +
1
ε

φ +Hc, WN = −1
ε

φ3−Hcφ2.

We then have the full expansion of the variation
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δG
δφ

= k∆xWL +
k
ε2WL +k∆xWN − k

ε2 (3φ2 +2Hcεφ)(WN +WL)+
k
ε2WN

= kε∆ 2
x φ +

k
ε

(

2−6φ2−4kHcε
)

∆xφ −
(

6k
ε

φ +2kHc

)

|∇xφ |2

+ k

(

−2H2
c

ε
+

1
ε3

)

φ − 3kHc

ε2 φ2−k

(

4
ε3 − 2H2

c

ε

)

φ3 +
5kHc

ε2 φ4 +
3k
ε3 φ5

+
kHc

ε2 . (36)

Also note that the variation of the mass conservation constraint is

δA
δφ

= 1. (37)

The appearance of fourth order derivative in the variationδG/δφ motivates us to
adopt the following equation of the geometric flow with an artificial time for φ :

∂φ
∂ t

= −δG
δφ

+λ
δA
δφ

, (38)

whereλ is a Lagrangian multiplier used to ensure the conservation of φ . We can

derive a representation ofλ by integrating Eq. (38) and noting that
∫

S

∂φ
∂ t

dx = 0,

hence

0 = −
∫

S

δG
δφ

dx+
∫

S
λdx,

and consequently

λ =
1
|S|

∫

S

δG
δφ

dx,

which yields
∂φ
∂ t

= −δG
δφ

+
1
|S|

∫

S

δG
δφ

dx. (39)

Eq. (39) is a fourth-order nonlinear surface diffusion equation. Alternatively, one
could derive a Cahn-Hilliard equation for the surface phasefield functionφ as

∂φ
∂ t

= ∆x

(

δG
δφ

)

, (40)

which guarantees the conservation ofφ and thus does not need a Lagrangian mul-
tiplier. However, it involves a sixth order surface derivative and thus is more com-
plications when the equation is to be solved numerically on adiscretized surface
S.

To ease the exposition of numerical treatments we adoptλ = 1
|S|

∫

S
δA
δφ dx and

defineg = δG
δφ . Then we write Eq. (39) as
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φt = −g+λ . (41)

To begin the time discretization we average the nonlinear function g(φ) over the
current and next time stepsφn,φn+1 to implement a Crank-Nicolson approximation

φn+1−φn

∆ t
+g(φn+1,φn)−λ (φn) = 0, (42)

where the averaged function is defined by

g(φn+1,φn) =
k
2

∆x( fc(φn+1)+ fc(φn))−
k

2ε2 (φ2
n+1 +φn+1φn +φ2

n + εHc(φn+1 +φn)−1)( fc(φn+1)+ fc(φn)),

and

fc(φ) = k

(

ε∆xφ − (
1
ε

+ εHc)(φ2−1)

)

.

To numerically solve Eq. (42) which is an implicit scheme forφn+1, we define an
interior iteration for computingψm such thatψm → φn+1 asm→ ∞. The equation
for ψm reads as

ψm+1−φn

∆ t
+g(ψm+1,ψm,φn)−λ (ψm) = 0, (43)

where new averaged functions are defined by

g(ψm+1,ψm,φn) =
k
2

∆x f̃c(ψm+1,ψm,φn)−
k

2ε2 (ψ2
m+ψmφn +φ2

n + εHc(ψm+φn)−1)( fc(ψm)+ fc(φn)),

f̃c(ψm+1,ψm,φn) =
ε
2

∆x(ψm+1 +φn)−
1
4ε

(ψ2
m+φ2

n −2)(ψm+φn +2εHc).

Convergentψm is obtained by iterating over the interior indexm, usually up to a
tolerance‖ψm+1−ψm‖≤ εψ for some smallεψ > 0. This convergentψm is assigned
to φn+1, and computation is advanced to the next time step. The linear and nonlinear
components ofψm+1 in Eq.(43) are further split. The nonlinear components are
updated slower than the linear components, allowing an efficient numerical solution.
The spatial approximation of the equation is obtained by a newly developed aC0

interior penalty surface finite element method [12, 1].

3.3 Computational simulations and summary

We apply the geodesic curvature driven phase separation model to simulate the mi-
crodomain formation on surfaces. We present four example simulations on differ-
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ent surfaces or with different spontaneous geodesic curvatures. The energetic his-
togram and the dynamics of the domain formation in each simulation are compared
to those generated by the Allen-Cahn equation obtained by the direct extension of
the Ginzburg-Landau energy based a classical phase separation model on surfaces
[43]. We also compute the radii of the microdomains which areexpected to approx-
imate the reciprocal of the given spontaneous geodesic curvature.

In the first simulation (#1) on unit sphere with 3963 approximately uniformly
distributed nodes, we chooseε = 0.1,Hc = 1

0.3,k = 0.01 and∆ t = 0.001. A random
field is initialized on the surface such that

∫

Sφds= 0. The results are compared side
by side with those of the classical Allen-Cahn equation in Fig. 6. Using a K-means
clustering method we are able to identify a number of microdomains whose radii
are then calculated. The radius associated with each microdomain is approximately
0.23. This means the curvature is approximately1

0.23, close to the specified sponta-
neous geodesic curvature.

The total energies for the geodesic curvature model and the classical Allen-Cahn
model are plotted in Fig. 5. Both converge as time evolves. The number of itera-
tions is large because of the small∆ t, which is constrained by the stability of our
numerical method for the fourth-order nonlinear partial differential equation.
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Fig. 5 Minimization of the geodesic curvature total energy and the Ginzburg-Landau Energy. Left:
Simulation #1 on unit sphere with 3963 nodes andHc = 1

0.3 . Right: Simulation #2 on unite sphere
with 984 nodes andHc = 1/0.4.

In the second simulation (#2) on the unit sphere as shown in Fig. 7, we choose
ε = 0.1,Hc = 1

0.40,k = 0.01 and∆ t = 0.002. This spontaneous curvature matches
the reported spontaneous curvature for DOPE/DOPS mixture [53]. A coarser while
quasi-uniform mesh with 984 nodes is deployed on the unit sphere. The radius asso-
ciated with the each microdomain is approximately 0.37, indicating a curvature ap-
proximately 1

0.37. The convergence of the energies of the geodesic curvature model
and the classical Allen-Cahn mode are plotted in Fig. 5 as well. The lower resolution
resulting from the coarser mesh in the second simulation canbe seen in the larger
spots in the initial field and the wider transitional layers between different domains.

The third simulation (#3) is conducted on a more complicatedsurface as shwon
in Fig. 8. We choose the molecular surface of three particlesof unit radius respec-
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Fig. 6 Simulation #1. Formation of local microdomains simulated by the geodesic curvature en-
ergy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on the unitesphere with 3963 nodes. Sam-
pling time from left to right is:t = 0,3, and 7.

Fig. 7 Simulation #2. Formation of local microdomains simulated by the geodesic curvature en-
ergy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on unit sphere with 984 nodes. Sampling
time from left to right is:t = 0,3, and 7.

tively centered at(0,1,0),(−0.864,−0.5,0) and (0.864,−0.5,0). The surface is
quasi-uniformly meshed with 2974 nodes and we setε = 0.1,Hc = 1

0.4,k = 0.01
and ∆ t = 0.001. Starting with a random initial field we finally identifiedsix mi-
crodomains using the K-mean clustering method at the equilibrium state, whose
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radii are estimated. As seen in Fig. 9, the radii of the microdomains approximate the
given spontaneous geodesic curvatures.

Fig. 8 Simulation #3. Formation of local microdomains simulated by the geodesic curvature en-
ergy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on the molecular surface of three-atom with
2974 nodes. Sampling time from left to right is:t = 0,3, and 7.
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Fig. 9 The radii of the prominent 6 microdomains produced in Simulation#3

In the last simulation (#4) we choose the molecular surface of six particles of
unit radius respectively centered at(1,0,0),(−1,0,0),(0,1,0),(0,−1,0),(0,0,1)
and (0,0,−1). The quai-uniform surface mesh has 3903 nodes and we setε =
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0.1,Hc = 1
0.4,k = 0.01 and∆ t = 0.001 for the simulation. One can see from Fig.

10 that the largest raft radius obtained by the simulation isabout 0.35 which means
the curvature of that raft is about10.35, a value close to given spontaneous geodesic
curvature.
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Fig. 10 The radii of the prominent 9 rafts produced by Simulation #4

Fig. 11 Simulation #4. Formation of local microdomains simulated by the geodesic curvature en-
ergy (top row) and domain separation simulated by the classical Ginzburg-Landau energy (bottom
row) from the same initial random field (left column) on the molecular surface of six-atom with
3903 nodes. Sampling time from left to right is:t = 0,3, and 7.

The radii of the microdomains generated in our simulations are not exactly the
given spontaneous geodesic curvature. Rather they are distributed around the given
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curvature. Apart from the numerical error in simulation andin K-mean clustering
and radii estimate, this non-uniform distribution of domain radii is mostly related to
the total quantity of the lipid phases in the initial random field. The initial quantity
may not be exact to cover an integer number of microdomains with the given ra-
dius. However, the overall distribution of radii around thegiven radius of curvature
demonstrated that our geodesic curvature model is capable of predicting the forma-
tion of microdomains that are caused by the geometrical and molecular mechanical
mismatch of lipid mixtures. The predicted microdomains canbe compared to the
observed lipid rafts, and the boundaries of these microdomains can be identified to
provide locations where specific proteins can aggregate. Coupling of our model of
geodesic curvature driven microdomains formation to the localization of proteins
will provide a very useful quantitative technique for studying the crucial roles of
these proteins in high-fidelity signal transmission in cells [85, 66].

4 Variational Methods for Curvature Induced Protein
Localization in Bilayer Membranes

Rather than forming distinct domains in a way similar to lipids as modeled in Sect.
3, many membrane proteins do not form distinct domains in membranes3. Given the
fact that their distribution on bilayer membranes is not uniform, molecular mech-
anisms need to be identified to quantitatively investigate this distribution and its
biological consequences. On the one hand, approximately 30-90% of all membrane
proteins can freely diffuse along the membrane [50, 74, 94, 107], and on the other
hand, insertion or tethering of the membrane proteins to bilayer membrane will
cause membrane curvature [164, 110, 64]. For instances, therigid proteins such as
those in the BAR (Bin/Amphiphysin/Rvs) domain family can act as a scaffold to
the membrane. These proteins have an intrinsic curvature and, upon attaching, the
membrane bends to match the protein curvature [98]. In a similar fashion, several
proteins can oligomerize to create a rigid shape and bend themembrane. Protein
coats such as clathrin, COPI (COat Protein I) and COPII (COatProtein II) are ex-
amples of this type [51, 75]. Other proteins may insert themselves into the mem-
brane. Membrane curvature is also induced when there is a difference between the
length of the hydrophobic region of a membrane protein and the thickness of the hy-
drophobic core of the lipid bilayer in which it is embedded [103]. Epsin proteins do
this by forming an alpha-helix known as H0 upon binding to themembrane, and this
helix inserts itself into the membrane [11]. Moreover, local crowding of peripheral
proteins can cause membrane bending by creating an asymmetry of the monolayer
areas and thereby curling the membrane away from the side which the crowding
occurred. This effect is experimentally demonstrated in [122]. Further illustrating
the importance of proteins in membranes, Schmidtet. al.showed that the M2 pro-

3 A protein unit consisting of several segments such as most ion channelproteins or G-protein-
coupled receptors (GPCRs) is not taken as a distinct domain in this study. The whole unit is con-
sidered as a single protein instead.
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tein plays an essential role in generating regions of high curvature in the influenza
A virus membrane [115]. This specific protein accumulates inregions of negative
Gaussian curvature and can generate curvature in the membrane itself, allowing the
replicated virus to be wrapped and released from the infected cells. While these ex-
amples should provide sufficient motivation to include proteins to the model, we
note that all endocytosis and exocytosis processes are promoted in one way or an-
other by proteins. Therefore, any viral replication process requires proteins. Antag-
onizing the curvature effects of proteins is a viable antiviral strategy [115]. This
motivates the necessity for a model coupling membrane curvature and lateral diffu-
sion of proteins. We shall observe below that the final governing equation for this
curvature-driven lateral transportation appears a drift-diffusion equation in its es-
sential form. This mechanism is different from the transporation of surfactants on
interfaces moving with the fluid flow as investigated in the literature [130, 131, 153].

4.1 Lagrangian formulation

Modeling generation of membrane curvature using energeticvariational principle
has been well established in the past few decades [19, 65, 49,45]. This research
has been inspiritional to our work. However, the focus of ourdiscussion in this sec-
tion is on the curvature driven protein localization. We sketch the framework of the
integration of these two components. The numerical implementation is computa-
tionally intensive because of the coupling of dynamical membrane morphology and
the varying surface concentration of proteins. Consider a membrane with(m+ 1)

distinct lipid species with concentrationsρ lip
l , l = 0, · · · ,mand a single type of diffu-

sive membrane proteins with a concentrationρpro. A closed membrane is modeled
as a structureless surfaceScontained in a 3D domainΩ ∈ R

3 and separatedΩ into
two subdomains, one inside the membrane and the other outside. The total energy of
the system is composed of the membrane curvature energy and the entropic energy
from the lipids and proteins

Gtot = Gmem+Gent, (44)

where the membrane curvature energy is given in the classical Canham-Helfrich-
Evans form

Gmem=
∫

C
k(H −H0(ρ lip

l ,ρpro))2ds, (45)

and the entropic energy for the membrane with membrane protein attachments is

Gent =
1
β

∫

C

(

m

∑
l=0

ρ lip
l

[

ln(ρ lip
l (alip

l )2)−1
]

+ρpro[

ln(ρpro(apro)2)−1
]

)

ds, (46)

HereH is the membrane mean curvature andH0 is the spontaneous membrane cur-
vature,k is a curvature energy coefficient, andβ = 1/(kBT) is the inverse of thermal
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energy. The effective sizes of lipids and proteins are respectively given byalip
l and

apro. By modeling lipids and proteins as hard disks, the occupiedsurface areas in
the membranes are taken as(alip

l )2 and(apro)2, respectively. The essential feature of
our model is seen in the dependence of the membrane spontaneous curvature on the
local lipid compositionρ lip

l and the protein concentrationρpro. This dependence is
justifiable considering that (i) each lipid speciesl has its own spontaneous curvature
[93] therefore the membrane spontaneous curvature must be afunction of the lo-
cal lipid composition, and (ii) membrane proteins will induce membrane curvature
so that the observed spontaneous curvature must be a function of the local protein
concentration [126, 135, 72, 103, 115]. We define the membrane curvature induced
by a single membrane protein as the spontaneous (membrane) curvature of the pro-
tein. Here we defineH0 as the average spontaneous curvature of lipids and proteins
weight by their respective surface coverage fraction:

H0 =
√

2

m

∑
l=0

Cl
0(a

lip
l )2ρ lip

l +Cpro
0 (apro)2ρpro

m

∑
l=0

(alip
l )2ρ lip

l +(apro)2ρpro
, (47)

whereCl
0 andCpro

0 are the spontaneous curvature of thel th species of lipids and
proteins, respectively. Considering that the membrane surface is completely covered
by the lipids and proteins, the following saturation constraint holds true:

m

∑
l=0

(alip
l )2ρ lip

l +(apro)2ρpro = 1. (48)

With this constraint we can write the spontaneous curvaturein Eq. (47) as

H0 =
√

2

(

m

∑
l=0

Cl
0(a

lip
l )2ρ lip

l +Cpro
0 (apro)2ρpro

)

(49)

and the membrane entropic energy as

Gent =
1
β

∫

C

{

1

(alip
0 )2

(

1−ρpro(apro)2−
m

∑
l=1

ρ lip
l (alip

l )2

)

×
[

ln

(

1−ρpro(apro)2−
m

∑
l=1

ρ lip
l (alip

l )2

)

−1

]

+

m

∑
l=1

ρ lip
l

[

ln(ρ lip
l (alip

l )2)−1
]

+ρpro(

ln(ρpro(apro)2)−1
)

}

ds. (50)

To obtain the dynamics of the membrane morphology, one can calculate the varia-
tion of the total energyGtot in Eq. (44) and solve the resulting equation for the gradi-
ent flow ofφ . This process is routine and can be found in the studies of spontaneous
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curvature effects of pure or multi-component membranes without proteins [45, 42].
Since our interest here is to investigate the protein localization on membrane sur-
faces, we choose to fix the membrane morphology, i.e.,H0 is a time-independent
function. We then only need to calculate the variation of thetotal energy with re-
spect to the membrane protein concentration, which turns out to be

δGtot

δρpro =
δGmem

δρpro +
δGent

δρpro

= kBT



−
(

apro

alip
0

)2

ln

(

1−ρpro(apro)2−
m

∑
l=1

ρ lip
l (alip

l )2

)

+ ln(ρpro(apro)2)





+2Cpro
0 (apro)2(H −H0). (51)

4.2 Eulerian formulation

While we are working on the membrane with fixed morphology, theformulation of
the curvature driven protein localization is expected to interfacing with dynamical
morphology where the membrane surface is nota prior known. For that purpose one
could trace the position of membrane implicitly by evolvinga phase field function
φ(x) on surfaceSembedded inΩ ∈R

3, whereφ takes the value of−1 in the exterior
of the membrane enclosure and 1 inside [45, 42]. The membranemean curvature at
φ = 0 can be computed as a function ofφ following

H =

√
2ε

2(1−φ2)

(

∆xφ +
1
ε2 (1−φ2)φ

)

, (52)

whereε > 0 is a small parameter that adjust the transition ofφ from −1 to 1 near
the membrane as in Eq. (30). We then identify three components of the chemical
potential defined by the variation in Eq. (51)

Lpro = ln(ρpro(apro)2), (53)

Rpro = −
(

apro

alip
0

)2

ln

(

1−ρpro(apro)2−
m

∑
j=1

ρ lip
j (alip

j )2

)

, (54)

Ppro =
ε√

2(1−φ2)

(

∆xφ +
1
ε2 φ(1−φ2)

)

−H0 (55)

to write this chemical potential as

µpro =
δGtot

δρpro = kBT(Lpro+Rpro)+2Cpro
0 (apro)2∇xPpro. (56)
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This chemical potential allows us to define the diffusion fluxvector and the trans-
portation equation. Two options are available for the definition of the transportation
equation. One could extract the membrane surfaceSfrom the phase field functionφ
and solve a surface transportation onS. This involves the dynamic meshing or mesh
deformation ifφ is evolving in time, and singularity will arise if there is topological
change inSasφ evolves.

Alternatively, one could formally define a 3D transportation equation in the en-
tire domainΩ but practically restrict the transportation of membrane proteins to
a very small neighborhood near the membrane surfaceS. This is accomplished by
introducing to the flux vector

Jpro(r) = −DproδSβρpro(r)∇µpro (57)

a functionδS which is concentrated at the membraneSwhereφ = 0. Various choices
of such functions are available and their numerical properties differ subtly [78]. We
choose

δS =

{

tanh(10(φ +1)), −1≤ φ ≤ 0,

− tanh(10(φ −1)), 0≤ φ ≤ 1,
(58)

so that effective domain nearφ = 0 can be automatically identified asφ evolves.
The general transportation equation for membrane proteinsreads

∂ρpro(r)
∂ t

+∇ · (v∇ρpro(r)) = −∇ ·Jpro(r), (59)

wherev is the velocity of the membrane in which the membrane proteins move.
Although this velocity is taken to be zero in our computations simulations to be
presented here, it can be computed if the membrane moves withthe evolving phase
field function. The nature of the equation can be seen if the size effects of lipids and
membrane proteins are not considered, i.e.,alip

l = apro = 0. In this caseRpro = 0 and

∂ρpro

∂ t
= ∇ · (DproδS∇ρpro+2kBTDproCpro

0 (apro)2δSρpro∇Ppro), (60)

which is a drift-diffusion equation with a potentialPpro. The mean curvature of the
membrane therefore appears a potential that drives the transportation of membrane
proteins to membrane surfaces where its mean curvature wellfits the spontaneous
membrane curvature of proteins. To numerically solve the equation, we separate the
linear and nonlinear components of the equation, which are then treated using an
implicit-explicit splitting interaction methods similarto the treatment of Eq. (40)
presented in Sect. 3. The spatial approximation of the equation is obtained by using
the Fourier spectral method, and a change of variable is necessary to convert the
equation with variable diffusion coefficientDδS to a constant diffusion coefficient
so that the Fourier spectral method is applicable [36, 125].
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4.3 Computational simulations and summary

Fig. 12 Simulated localization of the membrane proteins from its initial position to the outer ring
of the torus on a 1283 uniform mesh.ε = 0.1. Time increment∆ t = 10−3. Spontaneous curvatures
Cpro

0 = 0.5,Clip
0 =−0.1, and sampling moments aret = 0,0.1,0.25,0.5,1.0,5.0. Color is scaled by

the maximum concentration in each plot.

To demonstrate the curvature preference of protein localization we consider in the
domainΩ = (−4,4)3 a torus because it has regions with positive and negative mean
curvatures where the proteins may populate or not dependingon their spontaneous
curvature. The torus surface is given by

(R−
√

x2 +y2)2 +z2 = r2, (61)

whereRandr are the major and minor radii, respectively. Its alternative parametriza-
tion

(x,y,z) = ((R+ r cosθ)cosϕ,(R+ r cosθ)sinϕ, r sinϕ) (62)

can be handled when computing the curvature. Here 0≤ θ ≤ 2π is the angle made
from the surface around the center of the tube, known as the poloidal angle, and
0 ≤ ϕ ≤ 2π is the angle made from the surface to the positivex-axis (projected
on thexy-plane), known as the toroidal angle. WhenR> r, one gets the so-called
ring torus. Here we chooseR= 2 andr = 1.1. The phase field functionφ is set as
the signed distance function with this torus surface. We consider only one species
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of diffusion proteins and one species of lipids. The saturation condition (48) then
indicates that we only need to model the distribution of proteins only. The mem-
brane proteins are initially concentrated near the highestpoint of the positivey-axis,
smoothly distributed along the surface, and because of the adoption of phase field
function which expands the transportation domain from the surface to a small neigh-
borhood in the vicinity of the surface, smoothly distributed from the surface to the
bulk:

ρ = ρ0e−
√

x2+(y−R)2+z2
e
−2

(

r−
√

(x−cx)2+(y−cy)2+z2
)

, (63)

wherer =
√

x2 +y2 +z2 and(cx,cy,0) is the center of the torus tube on the same
plane of which locates the point(x,y,z). The scaling constantρ0 is chosen such that
the maximum of the concentration is 1 on the torus surface.

Fig. 13 Simulated localization of the membrane proteins from its initial position to the outer ring of
the torus on a 1283 uniform mesh.ε = 0.1. Time increment is∆ t = 10−3. Spontaneous curvatures
areCpro

0 = −0.1 andClip
0 = 0.5, and sampling moments aret = 0,0.1,0.25,0.5,1.0,5.0. Color is

scaled by the maximum concentration in each plot.

We first set the spontaneous curvature of membrane proteins and lipids to be
Cpro

0 = 0.5,Clip
0 = −0.1, respectively. Notice that the mean curvature of a torus is

given by

Htorus=
R+2r cosθ

2r(R+ r cosθ)
, (64)
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which gives a mean curvatureHtorus≈ 0.6158 for the chosen values ofR, r at the
outer ring of the torus whereθ = 0 andHtorus≈ −0.1 at the inner ring of the torus
whereθ = π. With this first choice ofCpro

0 ,Clip
0 we expect that the membrane pro-

teins will populate near the outer ring where the mean curvature is close to the
specified spontaneous curvature of membrane proteins. Our expectation is verified
by Fig. 12, where the plots of the concentrations of the membrane proteins on the
membraneφ = 0 and the cross sectiony = 0 at six sampling moments show the
transportation of membrane proteins from its initial position to the outer ring of the
torus.

In the second simulation we start with same initial condition as in the first sim-
ulation but switch the spontaneous curvatures toCpro

0 = −0.1 andClip
0 = 0.5. It is

expected that the membrane proteins will finally populate atthe inner ring of the
torus, and this is verified by the snapshots of concentrations in Fig. 13.

These two computational simulations demonstrate the successful modeling of the
curvature driven membrane protein localization using the drift-diffusion equation
(60). Full version of Eq. (59) can also be considered to include the effects of finite
sizes of effects of lipids and proteins, and multiple species of lipids. Our choice of
small time increment (∆ = 10−3) is restricted by the stability of the implicit-explicit
splitting method used for integrating the nonlinear equation. We expect the devel-
opment of more efficient numerical methods for the integration of the equation,
in particular when it is to be coupled with the dynamic phase field functionφ , in
that case a membrane velocity shall be added to Eq. (60) to make it an advection-
drift-diffusion equation. Such coupling reveals the positive feedback of membrane
curvature accumulation to membrane protein localization.On the other hand, the
number of major membrane proteins involved in the membrane fusion, budding,
endocytosis, or exocytosis is not constant over the entire time course because there
is continuous intracellular protein transport. Proteins may be recruited from the so-
lution to membrane at specific regions of the membrane and meanwhile they are
released from the membrane to the solution [112, 121]. The model presented here
can be extended by adding a reaction term that models the dynamic exchange of
membrane proteins between the membrane and the solution. Indeed, it is shown that
some membrane budding proteins such as influenza virus hemagglutinin (HA) and
neuraminidase (NA) are associated with raft-like microdomains, while some are not
[80]. An integration of the curvature driven localization and local clustering within
the microdomains will help elucidate the competing or collaborative effects of these
membrane proteins in the same biophysical process.

5 Conclusions

Energetic variational principle constitutes a tangible link between multiscale theory
and the experimental observation of biomolecular structure, function, and dynamics,
aided by computational simulations. Although the applications of variational prin-
ciple have bee well established for research in various areas of mechanics, classical
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and modern physics, and material sciences, novel insights are offered by this princi-
ple when it is applied to the biomolecular systems. Among theprogresses achieved
in recent years, a significant step forward has been made using the geometry of the
molecular interface to parametrize the total energy [150, 27, 26, 84, 82, 1, 97, 71].
This unified representation allows the investigators to focus on the identification
of energies that characterize various molecular interactions at multiple spatial and
temporal scales. The flexibility of the analytical and computational framework of the
variational principle ensures that the critical states anddynamics of the biomolecular
system can be tracked with confidence by evolving the total energy. Furthermore, by
introducing a phase field function we can implicitly define and track the molecular
interface which may subject to large deformation and topological change. The three
topics presented here demonstrated the desirable flexibilities of formulating the to-
tal energy, of parametrizing the energy using phase field function, and of simulating
the equilibrium state and dynamics of the system though the numerical solutions of
the nonlinear partial differential equations (PDEs) for the geometric flow of the total
energy.

The geometrically parametrized total energy obtained by the energetic variational
principles entail a rich body of features for mathematical and numerical analysis,
including the stability of its critical points, the coarsening dynamics, the solution
periodicity, and the conservative discretization of the resulting PDEs, while most
of them remain open as long as the applications to biomolecular problems are con-
cerned. More broad usefulness of the methodology outlined in the present three top-
ics are expected to be established in chemistry, biophysics, and medicine through
interdisciplinary research and collaboration.

References

1. Melissa Adkins.Modeling local parttern formation on membrane surfaces using nonlocal
Iinteractions. PhD thesis, Colorado State University, 2015.

2. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Wal-
ter. Molecular Biology of the Cell. Garland, 2002.

3. Richard G. W. Anderson and Ken Jacobson. A role for lipid shellsin targeting proteins to
caveolae, rafts, and other lipid domains.Science, 296:1821–1825, 2002.

4. Touko Apajalahti, Perttu Niemela, Praveen Nedumpully Govindan, Markus S. Miettinen,
Emppu Salonen, Siewert-Jan Marrink, and Ilpo Vattulainen. Concerted diffusion of lipids in
raft-like membranes.Faraday Discuss., 144:411–430, 2010.

5. G. Archontis, T. Simonson, and M. Karplus. Binding free energies and free energy compo-
nents from molecular dynamics and Poisson-Boltzmann calculations. application to amino
acid recognition by aspartyl-trna synthetase.J. Mol. Biol., 306(2):307–327, 2001.

6. Cyril Azuara, Erik Lindahl, Patrice Koehl, Henri Orland,and Marc Delarue. PDBHydro:
incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of
macromolecule electrostatics.Nucleic Acids Research, 34(Web-Server-Issue):38–42, 2006.

7. N. A. Baker. Biomolecular applications of Poisson-Boltzmannmethods. InRev. Comput.
Chem., volume 21, pages 349–379. 2005.

8. P. W. Bates, Z. Chen, Y. H. Sun, G. W. Wei, and S. Zhao. Geometric and potential driving
formation and evolution of biomolecular surfaces.J. Math. Biol., 59:193–231, 2009.



Contents 37

9. P. W. Bates, G. W. Wei, and S. Zhao. The minimal molecular surface. arXiv:q-
bio/0610038v1, [q-bio.BM], 2006.

10. P. W. Bates, G. W. Wei, and Shan Zhao. Minimal molecular surfaces and their applications.
J. Comput. Chem., 29(3):380–91, 2008.

11. T. Baumgart, B. R. Capraro, C. Zhu, and S. L. Das. Thermodynamics and mechanics of
membrane curvature generation and sensing by proteins and lipids. Ann. Rev. Phys. Chem.,
62:483–506, 2011.

12. Susanne C. Brenner, Shiyuan Gu, Thirupathi Gudi, and Li-Yeng Sung. A quadratic c0 interior
penalty method for linear fourth order boundary value problems with boundary conditions of
the Cahn-Hilliard type.SIAM J. Numer. Anal., 50(4):2088–2110, 2012.

13. R. Brewster, P. A. Pincus, and S. A. Safran. Hybrid lipids asa biological surface-active
component.Biophys. J., 97:1087–1094, 2009.

14. Robert Brewster and Samuel A. Safran. Line active hybrid lipids determine domain size in
phase separation of saturated and unsaturated lipids.Biophys. J., 98(6):L21–L23, 2010.

15. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: A program for macromolecular energy, minimization, anddynamics calcula-
tions. J. Comput. Chem., 4:187–217, 1983.

16. Keith M. Callenberg, Naomi R. Latorraca, and Michael Grabe. Membrane bending is critical
for the stability of voltage sensor segments in the membrane.J. Gen. Physiol., 140:55–68,
2012.

17. Brian A. Camley and Frank L. H. Brown. Dynamic simulations of multicomponent lipid
membranes over long length and time scales.Phys. Rev. Lett., 105:148102, Sep 2010.

18. F. Campelo and A. Hernandez-Machado. Shape instabilitiesin vesicles: A phase-field model.
Euro. Phys. J. Spec. Top., 143(1):101–108, 2007.

19. P. B. Canham. The minimum energy of bending as a possible explanation of the biconcave
shape of the human red blood cell.J. Math. Biol., 26:61–81, 1970.

20. D. A. Case, D. A. Pearlman, J. W. Caldwell, T. E. Cheatham, W. S.Ross, C. L. Simmerling,
T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crowley, D. M.
Ferguson, V. Tsui, R. J. Radmer, Y. Duan, J. Pitera, I. Massova, G. L. Seibel, U. C. Singh,
P. K. Weiner, and P. A. Kollman.Amber 7.0. University of California, San Francisco, CA.,
2002.

21. Jianwei Che, Joachim Dzubiella, Bo Li, and J. Andrew McCammon.Electrostatic free energy
and its variations in implicit solvent models.J. Phys. Chem. B, 112:3058–3069, 2008.

22. Minxin Chen, Bin Tu, and Benzhuo Lu. Triangulated manifold meshing method preserving
molecular surface topology.J. Mole. Graph. Model., 38:411–418, 2012.

23. Xi Chen and Qiang Cui. Computational molecular biomechanics: A hierarchical multiscale
framework with applications to gating of mechanosensitive channels of large conductance.
In Traian Dumitrica, editor,Trends in Computational Nanomechanics, volume 9 ofChal-
lenges and Advances in Computational Chemistry and Physics, pages 535–556. Springer
Netherlands, 2010.

24. Xinfu Chen. Spectrum for the allen-cahn, cahn-hilliard, and phase-field equations for generic
interfaces.Comm. Partial Differential Equations, 19:1371–1395, 1994.

25. Z. Chen and G. W. Wei. Differential geometry based solvationmodels III: Quantum formu-
lation. J. Chem. Phys., 135:194108, 2011.

26. Zhan Chen, Nathan A. Baker, and G. W. Wei. Differential geometry based solvation model
II: Lagrangian formulation.J. Math. Biol., 63(6):1139–1200, 2011.

27. Zhan Chen, Nathan A. Baker, and G.W. Wei. Differential geometry based solvation model I:
Eulerian formulation.J. Comput. Phys., 229(22):8231 – 8258, 2010.

28. Zhan Chen, Shan Zhao, Jaehun Chun, Dennis G. Thomas, Nathan A. Baker, Peter W. Bates,
and G. W. Wei. Variational approach for nonpolar solvation analysis.J. Chem. Phys., 137(8),
2012.

29. L. T. Cheng, Joachim Dzubiella, Andrew J. McCammon, and B. Li.Application of the level-
set method to the implicit solvation of nonpolar molecules.J. Chem. Phys., 127(8), 2007.



38 Contents

30. Li-Tien Cheng, Yang Xie, Joachim Dzubiella, J. Andrew McCammon, Jianwei Che, and
Bo Li. Coupling the level-set method with molecular mechanics for variational implicit
solvation of nonpolar molecules.J. Chem. Theor. Comput., 5(2):257–266, 2009. PMID:
20150952.

31. Christophe Chipot. Free energy calculations in biological systems. how useful are they in
practice? In Benedict Leimkuhler, Christophe Chipot, Ron Elber, Aatto Laaksonen, Alan
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