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Abstract

We study a robust and efficient eigensolver for computing the positive dense
spectrum of the two-dimensional transmission eigenvalue problem (TEP) which
is derived from the Maxwell’s equation with complex media in pseudo-chiral
model and the transverse magnetic mode. The discretized governing equations
by the Nédélec edge element result in a large-scale quadratic eigenvalue problem
(QEP). We estimate half of the positive eigenvalues of the QEP are on some in-
terval which forms a dense spectrum of the QEP. The quadratic Jacobi-Davidson
method with a so-called non-equivalence deflation technique is proposed to com-
pute the dense spectrum of the QEP. Intensive numerical experiments show
that our proposed method makes the convergence efficiently and robustly even
it needs to compute more than 5000 desired eigenpairs. Numerical results also
illustrate that the computed eigenvalue curves can be approximated by the non-
linear functions which can be applied to estimate the density of the eigenvalues
for the TEP.

Keywords: Two-dimensional transmission eigenvalue problem, pseudo-chiral
model, transverse magnetic mode, dense spectrum, quadratic Jacobi-Davidson
method, non-equivalence deflation

1. Introduction

Transmission eigenvalue problems (TEPs) have recently received a great
attention in the area of the inverse scattering which is essential for the study
of direct/inverse scattering problems with nonabsorbing inhomogeneous media
[1, 2, 3, 4, 8, 10, 11, 20, 26]. Transmission eigenvalues are related to the validity
of some recently developed reconstruction methods for scattering problems. For
instance, the linear sampling method (LSM) [5, 6] is used to reconstruct or
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detect the sound-soft and penetrable obstacles. The Herglotz wave function [9]
is applied at the first Dirichlet eigenvalue to reconstruct the shape of scatters.
The eigenvalue method using multiple frequency near-field data (EM2F) [30] is
proposed to detect Dirichlet or transmission eigenvalues and builds indicator
functions to reconstruct the support of the target. Furthermore, the EM2F can
also be used to distinguish between the sound-soft obstacle and nonabsorbing
inhomogeneous medium. For further study in the theories and applications of
TEPs, we refer to [4] and the reference therein.

Scattering by a sound-soft or a inhomogeneous medium can be described by
the near-field operator with the reciprocal gap method [7, 24]. Excluding the
Dirichlet or transmission eigenvalues, the near-field operator maps a convergent
sequence and a divergent sequence to the fundamental solution of the Helmholtz
equation at each point inside and outside the target domain, respectively. Based
on the large contrast for the near-field operator at the point inside or outside
the target domain, the EM2F [30] proposes an efficient eigenvalue indicator to
reconstruct the support of the target object.

In fact, the near-field operator theory [7, 24] is applicable and effective only
at the values which are not transmission eigenvalues of systems, i.e., not the
frequency of the incident wave. This motivates us if we can change the inho-
mogeneous medium for the TEP so that the TEP has a dense spectrum of the
positive eigenvalues. As it has shown in [3], if the refraction index of the TEP
is sufficiently large, then all eigenvalues are positive and half of them are clus-
tering in an interval near origin. This could possibly make the target object of
the TEP invisible.

In this paper, we consider the scattering of accustic waves by a bounded
and simply connected inhomogeneous medium domain D ⊆ R2. The related
so-called TEP is to find λ > 0 and nontrivial functions u, v ∈ L2(D) with
u− v ∈ H2

0 (D) = {w ∈ H2
∣∣w = 0, ∂w∂ν = 0 on ∂D} satisfying

∆u+ λε(x, y)u = 0, in D, (1a)

∆v + λv = 0, in D, (1b)

u− v = 0, on ∂D, (1c)

∂u

∂ν
− ∂v

∂ν
= 0, on ∂D, (1d)

where ν is the outer unit normal to the smooth boundary ∂D and ε(x, y) is
the sum of refraction index plus the square of some complex media (see Sec. 2
later). Any positive λ such that (1) has nontrivial solutions u and v is called a
transmission eigenvalue.

Recently, many papers have been addressed in numerical algorithms for the
computation of transmission eigenvalues [3, 10, 12, 18, 19, 21, 22, 25, 26, 29,
31]. Three finite element methods (FEMs) and a coupled boundary element
method were proposed for solving the two-dimensional (2D)/three-dimensional
(3D) interior transmission eigenvalue problems [10, 12, 31]. Then, two iterative
methods together with convergent analysis based on the existence theory of the
fourth order reformulation for the transmission eigenvalues [3, 26, 29]. A mixed
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FEM for 2D TEP was suggested in [18] and the corresponding non-Hermitian
quadratic eigenvalue problem (QEP) was solved by the classical secant iteration
with an adaptive Arnoldi method. The multilevel correction method was used
to transform the solution of TEP into a series of solutions corresponding to
linear boundary value problems and then solved by the multigrid method [19].

In many cases with general inhomogeneous medium, the desired positive
TEP are surrounded by complex eigenvalues. An accurate numerical method,
based on a surface integral formulation of the interior TEP, for solving cor-
responding nonlinear eigenvalue problems for many different obstacles in 3D
is presented in [21]. However, only constant index of refraction and smooth
domain can be treated. The QEPs above can be rewritten as a particular
parametrized symmetric definite GEPs for which the eigenvalue curves are ar-
ranged in a monotonic order so that the desired curves can be sequentially
solved with a new secant-type iteration (see [22] for 2D TEP and [13] for 3D
TEP, respectively).

In this paper, we focus on the 2D TEP with complex media and make the
following contributions.

• We derive the 2D TEP (1) with ε(x, y) = n(x, y) + γ2 from the Maxwell’s
equation with complex media in pseudo-chiral model and the transverse
magnetic mode (TM). Here n(x, y) is the index of refraction and γ > 0 is
a chirality parameter.

• Discretized (1) by the Nédélec edge element [10] results in a generalized
eigenvalue problem (GEP). The GEP is then reduced to a QEP by deflat-
ing all nonphysical zeros. We estimate half of the positive eigenvalues of
the QEP are on some interval which forms a dense spectrum of the QEP.

• We adapt the quadratic Jacobi-Davidson (QJD) method with partial lock-
ing technique for computing a large number of desired eigenpairs of the
QEP. In order to accelerate convergence, we also develop a so-called partial
non-equivalence deflation technique combined with QJD to deflate the part
of computed eigenvalues to infinity while keeping the other eigenvalues
unchanged. Numerical results demonstrate that the new partial deflation
technique makes the convergence efficiently and robustly for computing
5000 desired eigenpairs.

• Furthermore, we modify QJD with partial deflation technique so that it
can be applied to compute all the eigenvalues in a given interval. There-
fore, we separate the dense spectrum of the TEP into serval subinter-
vals and compute the desired eigenpairs simultaneously by the modified
method. Numerical results show that this modified method can be applied
to compute more than 10000 target eigenpairs in our model.

• According to the computed eigenvalues, we make some approximations of
the eigenvalue curves for the TEP (1) by the nonlinear functions. There-
fore, we can estimate the distribution of the eigenvalues for given ε(x, y)
from these nonlinear functions.
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This paper is organized as follows. Section 2 is devoted to derive a 2D TEP
with TM mode and complex media in pseudo-chiral model. A corresponding
discretization TEP and its spectral analysis are given in Section 3. In Section 4,
we develop a non-equivalence low-rank deflation which can be used to accelerate
convergence of QJD for computing the desired positive eigenvalues. A practical
QJD algorithm combined with non-equivalence deflation and numerical results
are presented in Sections 5 and 6, respectively. Finally, a concluding remark is
given in Section 7.

2. Maxwell’s transmission eigenvalue problem with complex media
and TM mode

Mathematically, the propagation of electromagnetic waves in bi-isotropic
and bi-anisotropic material is modeled by the 3D frequency domain source-free
Maxwell equations. In this paper, we consider a 2D Maxwell’s equation with
TM mode and complex media in pseudo-chiral model [32]

∇× E = iω (µH + ζE) , (2a)

∇×H = −iω (nE + ξH) , (2b)

where E and H are the electronic field and magnetic field, respectively, ω rep-
resents the frequency, n and µ are the permittivity/refraction index and per-
meability, respectively, ξ and ζ are 3-by-3 magnetoelectric parameter matrices
in various forms for describing different types of materials (see [27, p.26] and
[32, p.44]). In particular, we consider E and H in (2) forming the transversal
magnetic (TM) mode, i.e.,

E =
[
0 0 E3(x, y)

]>
, H =

[
H1(x, y) H2(x, y) 0

]>
. (3)

Let

ζ =

 0 0 ζ1
0 0 ζ2
−ζ1 −ζ2 0

 , ξ =

 0 0 ξ1
0 0 ξ2
−ξ1 −ξ2 0

 . (4)

Then, Eqs. (2a) implies that ∂yE3

−∂xE3

0

 = iω

H1

H2

0

+

ζ1E3

ζ2E3

0

 . (5)

Substituting (5) into (2b), it holds that

(iω)
−1

 0
0

−
(
∂2

∂x2 + ∂2

∂y2

)
E3

−
 0

0
∂
∂x (ζ2E3)− ∂

∂y (ζ1E3)


= − iω

n
 0

0
E3

+

 0
0

ξ1H1 + ξ2H2

 ,
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which implies that

−∆E3

= ω2

[
nE3 + ξ1

(
(iω)−1

∂

∂y
E3 − ζ1E3

)
− ξ2

(
(iω)−1

∂

∂x
E3 + ζ2E3

)]
+ iω

[
∂

∂x
(ζ2E3)− ∂

∂y
(ζ1E3)

]
= ω2 (n− ξ1ζ1 − ξ2ζ2)E3 + iω

[
∂

∂x
(ζ2E3)− ∂

∂y
(ζ1E3)− ξ1

∂

∂y
E3 + ξ2

∂

∂x
E3

]
.

If we choose ζ1 = −ξ1 = γ1 and ζ2 = −ξ2 = γ2, then we have

−∆E3 = ω2
[
n+

(
γ21 + γ22

)]
E3 ≡ ω2ε(x, y)E3. (6)

For satisfying the boundary conditions with ν being the outer unit normal
to ∂D, we have

E × ν =

 0
0
E3

×
ν1ν2

0

 =

−ν2E3

ν1E3

0

 (7)

and

(∇× E)× ν =

 ∂
∂yE3

− ∂
∂xE3

0

×
ν1ν2

0

 =

∂E3

∂y ν2 + ∂E3

∂x ν1
0
0

 =

∂E3

∂ν
0
0

 . (8)

Let vi be the incident plane wave in R2, u be the transmitted plane wave in D,
vs be the scattered plane wave in R2\D and ṽs be the analytic extension of vs

in D. Then u = E3 satisfies the Eq. (6) and v = vi + ṽs satisfies the Helmholtz
equation ∆v+ ω2v = 0. From (7) and (8), we connect the boundary conditions
of u and v by equaling u = v and ∂u

∂ν = ∂v
∂ν on ∂D, and get the 2D TEP (1)

with λ = ω2.

3. Discretization of TEP and its spectral analysis

We briefly review the discretization of the TEP (1) based on the standard
piecewise linear FEM (see [10] for details). Let

Sh = The space of continuous piecewise linear functions on D,

SIh = The subspace of functions in Sh that have vanishing DoF on ∂D,

SBh = The subspace of functions in Sh that have vanishing DoF in D,
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where DoF is the degrees of freedom. Let {φi}ni=1 and {ψi}mi=1 denote standard
nodal bases for the finite element spaces of SIh and SBh , respectively. Then

u = uIh + uBh =

n∑
i=1

uiφi +

m∑
i=1

wiψi, (9a)

v = vIh + vBh =

n∑
i=1

viφi +

m∑
i=1

wiψi. (9b)

Applying the standard piecewise linear finite element method to (1a) and using
the integration by part, we get

n∑
i=1

ui (∇φi,∇φj) +

m∑
j=1

wi (∇ψi,∇φj)

= ω2

(
n∑
i=1

ui (εφi, φj) +

m∑
i=1

wi (εψi, φj)

)
. (10)

Similarly, applying the standard piecewise linear finite element method to (1b),
we have

n∑
i=1

vi (∇φi,∇φj) +

m∑
j=1

wi (∇ψi,∇φj) = ω2

(
n∑
i=1

vi (φi, φj) +

m∑
i=1

wi (ψi, φj)

)
.

(11)

Applying the linear finite element method with boundary conditions (1c), (1d)
and the integration by part to the difference equation between (1a) and (1b),
we get(

n∑
i=1

(ui − vi)∇φi,∇ψj

)

= ω2

(
n∑
i=1

ui(εφi, ψj) +

m∑
i=1

wi(εφi, ψj)−
n∑
i=1

vi(φi, ψj)−
m∑
i=1

wi(φi, ψj)

)
.

(12)

We define the stiffness matrices K, E, and mass matrices M1, Mε, F1, Fε, G1

and Gε as in Table 1. In addition, we set u = [u1, . . . , un]
>

, v = [v1, . . . , vn]
>

,

and w = [w1, . . . , wm]
>

. Then, the discretizations of (10), (11) and (12) give
rise to a generalized eigenvalue problem (GEP)

Az = λBz (13a)

with λ = ω2,

A =

 K 0 E
0 −K E
E> E> 0

 , B =

Mε 0 Fε
0 −M1 F1

F>ε F>1 Gε −G1

 , z =

u
v
w

 . (13b)
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Matrix Dimension Definition

interior space stiffness matrix:
K � 0 n× n

Kij = (∇φi,∇φj)

E n×m interior/boundary stiffness matrix:
Eij = (∇φi,∇ψj)
interior space mass matrices:

M1 � 0,Mε � 0 n× n
(M1)ij = (φi, φj), (Mε)ij = (εφi, φj)
interior/boundary mass matrices:

F1, Fε n×m
(F1)ij = (φi, ψj), (Fε)ij = (εφi, ψj)
boundary space mass matrices:

G1 � 0, Gε � 0 m×m
(G1)ij = (ψi, ψj), (Gε)ij = (εψi, ψj)

Table 1: Stiffness and mass matrices with ε(x, y) > 0 for (x, y) ∈ D̄.

For the convenience, we define

G = Gε −G1, M = Mε −M1, F = Fε − F1, (14a)

M̂1 = M1 − F1G
−1F>, M̂ = M − FG−1F>, K̂ = K − EG−1F>, (14b)

and

S =
[
K E

]
, T1 =

[
M1 F1

]
, M =

[
M F
F> G

]
. (14c)

Suppose that M � 0 symmetric positive definite. Then it follows that G � 0,
M � 0 and M̂ � 0.

We define the quadratic eigenvalue problem (QEP)

Q(λ)x ≡
(
λ2A2 + λA1 +A0

)
x = 0, (15)

where A2, A1 and A0 are all n× n symmetric matrices given by

A2 = M1 + M̂1M̂
−1M̂>1 + F1G

−1F>1 (16a)

= M1 + T1M−1T >1 ,

A1 = −K − K̂M̂−1M̂>1 − M̂1M̂
−1K̂> − EG−1F>1 − F1G

−1E> (16b)

= −K − SM−1T >1 − T1M−1S>,

A0 = K̂M̂−1K̂> + EG−1E> (16c)

= SM−1S>.

It has shown [13] that the GEP (13) can be reduced to the QEP as in (15)
and (16) with x = u− v in which all nonphysical zero are removed.

Theorem 1 ([13]). Let L(λ) and Q(λ) be defined in (13) and (15), respectively.
Then

σ(L(λ)) = {0, · · · , 0}︸ ︷︷ ︸
m

∪ σ(Q(λ)).
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Here, σ(·) denotes the spectrum of the associated matrix pencil.

Let (λ,x) be an eigenpair of (15). Then

λ2(x∗A2x) + λ(x∗A1x) + (x∗A0x) = 0. (17)

Suppose A1 is symmetric negative definite and A2, A0 � 0, we have

b ≡ −x∗A1x > 0, a ≡ x∗A2x > 0, c ≡ x∗A0x > 0

which implies that the roots of the quadratic equation (17) are

λ+ =
b+
√
b2 − 4ac

2a
> 0, λ− =

2c

b+
√
b2 − 4ac

> 0 (18)

provided that b2 − 4ac > 0. This means that there are 2n positive eigenvalues
of (15) and the associated eigenvectors are real.

Theorem 2. Let

W0 =

[
M F
F> G

]−1/2 [
K
E>

]
, W1 =

[
M F
F> G

]−1/2 [
M1

F>1

]
, (19)

d0 = ‖W0‖2, d1 = ‖W1‖2, (20)

and {
a0 = λmin(A0), ā0 = λmax(A0) = d20,
a2 = λmin (A2) , ā2 = λmax(A2).

(21)

Suppose that

a1 = λmin(K)− 2d0d1 > 0, ā1 = λmax(K) + 2d0d1, (22)

δ = λmin(K)2 − 4d0(d1λmin(K) + d0λmax(M1)) > 0. (23)

Then there are n positive eigenvalues of (15) in the interval (r∗, r
∗), where

r∗ =
2d20

a1 +
√
δ
, r∗ =

2λmin(A0)

ā1 +
√
ā1 − 4a2a0

> 0. (24)

Proof. By the definitions of W0 and W1, A1 in (16b) can be represented as

A1 = −(K +W>0 W1 +W>1 W0). (25)

Let x be the unit eigenvector of (15). Eq. (25) tells us that

b ≡ −x>A1x = x>Kx + x>W>0 W1x + x>W>1 W0x

≥ λmin(K)− 2d0d1 = a1 > 0.
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Let a = x>A2x and c = x>A0x. Then

b2 − 4ac ≥ (λmin(K)− 2d0d1)2 − 4d20(λmin(M1) + d21)

= λmin(K)2 − 4d0(d1λmin(K) + d0λmax(M1)) = δ > 0.

Therefore,

λ− =
2c

b+
√
b2 − 4ac

≤ 2d20

a1 +
√
δ

= r∗.

On the other hand,

b = −x>A1x ≤ λmax(K) + 2d0d1 = ā1,

b2 − 4ac ≤ ā21 − 4a2a0.

Therefore,

λ− =
2c

b+
√
b2 − 4ac

≥ 2a0

ā1 +
√
ā21 − 4a2a0

= r∗.

From (18), there are n smallest positive eigenvalues on (r∗, r
∗).

Remark 3. From (16c), the value x>A0x is dominated by x>K̂M̂−1K̂>x pro-
vided that λmin(K) = O(κ) � 1. From (16a), it holds that x>A2x ≈ O(1). If
we can choose the coefficient ε(x, y) in (1a) such that M ≈ K, then from (24)
follows that

λ− ≈
2O(κ)

O(κ) +
√
O(κ)2 +O(κ)

≈ O(1).

It means that there are n positive eigenvalues of (1) which may form a dense
spectrum in the interval (0, O(1)). This motivates us to develop efficient nu-
merical algorithms to compute all smallest clustering positive eigenvalues.

4. Non-equivalence low-rank deflation

In this section, we introduce the non-equivalence low-rank deflation [14] for
the QEP in (15) to find the successive eigenpairs. Once the smallest positive
eigenvalue is obtained, it is then transformed to infinity by the deflation scheme,
while all other eigenvalues remain unchanged. The next successive eigenvalue
thus becomes the target positive eigenvalue of the transformed problem, which
is then again solved by the proposed method.

Definition 4 ([14]). Let (Λ1, X1) ∈ Rr×r × Rn×r be a given pair, where X1 is
of full column rank. The pair (Λ1, X1) is called an eigenmatrix pair of Q(λ) in
(15) if it satisfies

A2X1Λ2
1 +A1X1Λ1 +A0X1 = 0. (26)

In particular, (diag(∞, · · · ,∞), X1) is called an “infinity” eigenmatrix pair of
Q(λ) if A2X1 = 0.
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Given an eigenmatrix pair (Λ1, X1) ∈ Rr×r × Rn×r(r ≤ n) of Q(λ) in (15),
where Λ1 is nonsingular, we define a new deflated QEP as

Qd(λ) := λ2Ã2 + λÃ1 + Ã0 (27)

with

Ã2 := A2 −A2X1Θ1X
>
1 A2, (28a)

Ã1 := A1 +A2X1Θ1Λ−>1 X>1 A0 +A0X1Λ−11 Θ1X
>
1 A2, (28b)

Ã0 := A0 −A0X1Λ−11 Θ1Λ−>1 X>1 A0 (28c)

and
Θ1 := (X>1 A2X1)−1. (28d)

The nonequivalence deflation (28) allows us to transform Q(λ) into a new QEP
Qd(λ) with the same eigenvalues, except that the eigenvalues of Λ1 are replaced
by r infinities.

On the other hand, let (Λ2, X2) ∈ Rs×s×Rn×s be another eigenmatrix pair
of Q(λ). Suppose that σ(Λ1) ∩ σ(Λ2) = ∅. Then the following orthogonality
relation holds

X>2 A0X1 − Λ>2 (X>2 A2X1)Λ1 = 0. (29)

Using this orthogonality relation, we can get that (Λ2, X2) is also an eigenmatrix
pair of Qd(λ).

5. Jacobi-Davidson method for quadratic eigenvalue problems

In this section, we propose the quadratic Jacobi-Davidson (QJD) method [15,
28] with the non-equivalence deflating scheme to solve the QEP (15). Suppose
Vk is a k-dimensional subspace that has an orthogonal unitary basis v1,v2, . . . ,vk.
Let (θk, sk) be an eigenpair of V ∗k Q(λ)Vks = 0 and (θk,uk ≡ Vksk) be a Ritz pair
of Q(λ), where ‖sk‖2 = 1 and Vk = [v1, · · · ,vk]. To expand the subspace Vk
successively, the QJD method finds the approximated solution of the following
correction equation:(

I − pku
∗
k

u∗kpk

)
Q(θk) (I − uku

∗
k) t = −rk, t⊥uk, (30)

where rk = Q(θk)uk and pk = (2θkA2 +A1)uk. This is an essential step in the
QJD method that may affect the overall performance significantly.

There are different schemes [15] to solve (30). In here, based on the coefficient
matrices A0, A1, A2 in (16), we use the following scheme proposed in [15] to solve
(30). Using the constraint t⊥uk, Eq. (30) can be rewritten as

Q(θk)t =
u∗kQ(θk)t

u∗kpk
pk − rk ≡ ηkpk − rk. (31)
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We can then solve the two linear systems

Q(θk)t1 = pk, Q(θk)t2 = rk (32a)

and compute the solution t of (31) as

t = ηkt1 − t2 with ηk =
u∗kt2
u∗kt1

. (32b)

Based on the above discussions, a quadratic Jacobi-Davidson method de-
signed to compute the desired eigenvalue for the QEP (15) is shown in Algo-
rithm 1.

Algorithm 1 QJD method for Q(λ)x ≡ (λ2A2 + λA1 +A0)x = 0.

Require: Coefficient matrices A0, A1, A2 and an initial orthonormal vector V .
Ensure: The desired eigenpair (λ,x).

1: Compute Wi = AiV and Mi = V ∗Wi for i = 0, 1, 2.
2: while (the desired eigenpair is not convergent) do
3: Compute the eigenpairs (θ, s) of (θ2M2 + θM1 +M0)s = 0.
4: Select the desired eigenpair (θ, s) with ‖s‖2 = 1.
5: Compute u = V s, p = (2θA2 +A1)u, r = Q(θ)u.
6: Solve the correction vector t in (32).
7: Orthogonalize t against V ; set v = t/‖t‖2.
8: Compute

wi = Aiv, Mi =

[
Mi V ∗wi

v∗Wi v∗wi

]
for i = 0, 1, 2.

9: Expand V = [V,v] and Wi = [Wi,wi] for i = 0, 1, 2.
10: end while
11: Set λ = θ and x = u.

Note that the solutions t1 and t2 in (32a) can be efficiently computed by
following way. Substituting A2, A1 and A0 in (16) into (32a), Eq. (32a) can be
represented as{

θ2kM1 − θkK +
(
θkM̂1 − K̂

)
M̂−1

(
θkM̂

>
1 − K̂>

)
+ (θkF1 − E)G−1

(
θkF

>
1 − E>

)}
t = b, (33)

where b = pk or b = rk. Let

t̂ = M̂−1
(
θkM̂

>
1 − K̂>

)
t, t̃ = G−1

(
θkF

>
1 − E>

)
t,

which is equivalent to(
K̂> − θkM̂>1

)
t + M̂ t̂ = 0,

(
E> − θkF>1

)
t +Gt̃ = 0. (34a)
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Then (33) can be represented as(
θkK − θ2kM1

)
t +

(
K̂ − θkM̂1

)
t̂ + (E − θkF1) t̃ = −b. (34b)

Combining (34a) with (34b), the solution t in (33) can be solved from the
enlarged linear system M̂ K̂> − θkM̂>1

G E> − θkF>1
K̂ − θkM̂1 E − θkF1 θkK − θ2kM1

t̂
t̃
t

 =

 0
0
−b

 . (35)

5.1. Partial locking scheme

To compute successively all other desired eigenvalues, deflation [14, 16] or
locking [15, 16, 17, 23] scheme is necessary. The Jacobi-Davidson method in-
corporated with locking scheme is capable of calculating the smallest positive
eigenvalue first and then computing successively all other desired eigenvalues
by suitably choosing the orthonormal searching space span(V ≡ [Vc, V0]), where
the columns of Vc form an orthonormal basis of the subspace generated by the
convergent eigenvectors and V0 is any matrix satisfying V >V = I. Therefore,
in each iteration of Algorithm 1, the convergent eigenvalues λ1, . . . , λj will be
included in the eigenvalues of the projective QEP (θ2M2 + θM1 +M0)s = 0 in
Line 3 of Algorithm 1. Therefore, we choose the target Ritz value θ in Line 4
of Algorithm 1 with θ /∈ {λ1, . . . , λj}.

Let {λ1, . . . , λm} be the desired eigenvalues. If m is small, then the locking
scheme can be applied to compute successively all desired eigenvalues. How-
ever, when m is large, locking all the convergent eigenvectors in the searching
subspace span(V ) will reduce the efficiency because it increases the computa-
tional costs for computing the eigenpairs of (θ2M2 + θM1 + M0)s = 0 and the
Ritz vector u, and orthogonalizing correction vector t against V in Lines 1, 5
and 7, respectively, of Algorithm 1. In order to tackle this drawback, we pro-
pose a partial locking scheme with locking ` convergent eigenvectors at most in
each iteration. That is for computing the (j+ 1)-th eigenpair (λj+1,xj+1) with
j+1 ≤ `, all the convergent eigenvectors x1, . . . ,xj are locked in V which means
that the columns of Vc is a orthonormal basis of the subspace span{x1, . . . ,xj}.
If j + 1 > `, then only the convergent eigenvectors xj+1−`, . . . ,xj are locked.
We summarize it in Algorithm 2.

5.2. Partial deflation scheme

In Section 4, an explicit nonequivalence low-rank deflation method is pro-
posed to transform the convergent eigenvalues to infinity, while all other eigen-
values remain unchanged. The next successive eigenvalue thus becomes the
smallest positive eigenvalue of the transformed problem. In this subsection, we
will discuss how to efficiently apply QJD to solve the deflated QEP Qd(λ)x = 0
in (27).

12



Algorithm 2 Quadratic Jacobi-Davidson method with partial locking scheme.

Require: Coefficient matrices A0, A1, A2, number p of desired eigenvalues,
locking number ` (` < p) and an initial orthonormal matrix V .

Ensure: The desired eigenpair (λj ,xj) for j = 1, . . . , p.
1: Set Vc = [ ];
2: for j = 1, . . . , p do
3: Use Algorithm 1 with initial matrix V to compute the desired eigenpair

(λj ,xj);
4: if j ≤ ` then
5: Orthogonalize xj against Vc; set Vc = [Vc,xj/‖xj‖2];
6: else
7: Orthogonalize xj against Vc(:, 2 : `); set Vc = [Vc(:, 2 : `),xj/‖xj‖2];
8: end if
9: Find an initial matrix V0 such that V >V = I with V ≡ [Vc, V0].

10: end for

Let Y0 = A0X1Λ−11 ∈ Rn×r and Y2 = A2X1 ∈ Rn×r. Then the matrices Ã2,

Ã1 and Ã0 defined in (28c) can be represented as

Ã2 = A2 − Y2Θ1Y
>
2 , (36a)

Ã1 = A1 + Y2Θ1Y
>
0 + Y0Θ1Y

>
2 , (36b)

Ã0 = A0 − Y0Θ1Y
>
0 . (36c)

As stated in (32a), for solving the correction vector td, it needs to solve the
linear system (

θ2kÃ2 + θkÃ1 + Ã0

)
t = b. (37)

Using (36), (37) can be rewritten as[
Q(θk)− (θkY2 − Y0) Θ1

(
θkY

>
2 − Y >0

)]
t = b. (38)

Let

U = θkY2 − Y0.

Applying the Sherman-Morrison-Woodbury formula, the solution of (38) can be
computed as

t =
{
Q(θk)− UΘ1U

>}−1 b

= Q(θk)−1b +Q(θk)−1U
(
I −Θ1U

>Q(θk)−1U
)−1

Θ1U
>Q(θk)−1b

= Q(θk)−1b +Q(θk)−1U
(
Θ−11 − U>Q(θk)−1U

)−1
U>Q(θk)−1b.

This means that, in each iteration, we need to solve the linear systems

Q(θk)Z =
[
p̃k r̃k U

]
, (39a)

13



where r̃k = Qd(θk)ũk and p̃k = (2θkÃ2 + Ã1)ũk, and compute the correction
vector td as

td = ηkt̃1 − t̃2 with ηk =
ũ∗kt̃2

ũ∗kt̃1
(39b)

where

t̃1 = Z(:, 1) + Z(:, 3 : r + 2)(Θ−11 − U>Z(:, 3 : r + 2))−1U>Z(:, 1), (39c)

t̃2 = Z(:, 2) + Z(:, 3 : r + 2)(Θ−11 − U>Z(:, 3 : r + 2))−1U>Z(:, 2). (39d)

From above, we can see that the computational cost of solving Qd(λ)x = 0
by QJD will be increasing as r is increasing. In order to reduce the computa-
tional cost, similar to the concept of partial locking scheme, we propose a partial
deflation scheme with deflating ` convergent eigenvectors at most in each itera-
tion. That is for computing the (j+ 1)-th eigenpair (λj+1,xj+1) with j+ 1 ≤ `,
all the convergent eigenvectors x1, . . . ,xj are deflated. If j + 1 > `, then only
the convergent eigenvectors xj+1−`, . . . ,xj are deflated. We summarize it in
Algorithm 3.

Algorithm 3 Quadratic Jacobi-Davidson method with partial deflation scheme.

Require: Coefficient matrices A0, A1, A2, number p of desired eigenvalues,
number ` (` < p) of deflation and an initial orthonormal matrix V .

Ensure: The desired eigenpair (λj ,xj) for j = 1, . . . , p.
1: Set X1 = [ ], Y0 = [ ], Y2 = [ ] and Θ = [ ];
2: for j = 1, . . . , p do
3: Use Algorithm 1 with initial matrix V and solving correction vector td

by (39) to compute the first desired eigenpair (λj ,xj) of Qd(λ)x = 0;
4: Compute y0 = λ−1j A0xj and y2 = A2xj ;
5: if j ≤ ` then

6: Set Θ =

[
Θ X>1 y2

x>j Y2 x>j y2

]
, Θ1 = Θ−1, X1 = [X1,xj ], Y0 = [Y0,y0] and

Y2 = [Y2,y2];
7: else

8: Set Θ =

[
Θ(2 : `, 2 : `) X1(:, 2 : `)>y2

x>j Y2(:, 2 : `) x>j y2

]
and Θ1 = Θ−1;

9: Set X1 = [X1(:, 2 : `),xj ], Y0 = [Y0(:, 2 : `),y0] and Y2 = [Y2(:, 2 :
`),y2];

10: end if
11: Update the initial matrix V .
12: end for

6. Numerical results

In what follows, we will compare that the efficiency and robustness of Al-
gorithm 2 with ` = 20 and Algorithm 3 with ` = 10 for computing desired

14
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Figure 1: Model domains and the associated distributions of the 5000 positive target eigen-
values for ε(x, y) = 50, 100, 500, 1000.

Table 2: The matrix dimension n, m (K ∈ Rn×n, E ∈ Rn×m) of the matrices for the
benchmark problems.

Domain disk ellipse dumbbell peanut
(n,m) (124631, 1150) (71546, 976) (149047, 1871) (168548, 1492)

positive real transmission eigenvalues λi > 0, i = 1, . . . , p, on four different
domains [22] as shown in Figure 1. The tetrahedra mesh is used to construct
the meshes for these domains. The associated matrix dimensions n and m of
the matrices in Table 1 are listed in Table 2. The distributions of {λ1, . . . , λp}
with ε(x, y) = 50, 100, 500, 1000 and matrix dimensions n and m in Table 2
are shown in Figures 1(e), 1(f), 1(g) and 1(h), respectively. All the eigenvalues
almost have an uniform distribution.

All computations in this section are carried out in MATLAB 2015b. The
system in (35) is solved by the direct method. For the hardware configuration,
we use an HP server that is equipped with two Intel Quad-Core Xeon E5-2643
3.33 GHz CPUs, 96 GB of main memory, and the RedHat Linux operating
system.

6.1. Numerical validation for the clustering eigenvalues

In this section, we shall numerically validate that the TEP has a dense
spectrum in the interval (0, O(1)) if the coefficient ε(x, y) in (1a) is sufficient
large as shown in Remark 3. Furthermore, we shall demonstrate that each
eigencurve can be numerically approximated by a nonlinear function.

In order to observe the variety of the distribution of the eigenvalues with
changing the coefficient ε(x, y), we compute the fifty smallest positive real eigen-
values for each given constant ε(x, y) = ε0 and show the computed eigenvalues
in Figures 2(a), 2(c), 2(e) and 2(g). From these results, we see that the distribu-
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Figure 2: Eigenvalues with various ε(x, y) and the coefficients ai and bi in the nonlinear
functions.
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Table 3: The first and pth eigenvalues λ1 and λp computed by Algorithm 3 and the associated
(e1(ε0), ep(ε0)) defined in (40), where p = 5000 and ε0 = 5000.

Domain disk ellipse
(e1(ε0), ep(ε0)) (0.00290, 4.25) (1.837× 10−3, 2.129)

(λ1, λp) (0.00294, 4.28) (2.087× 10−3, 2.210)
(r1, rp) (0.014, 0.007) (0.119, 0.037)

Domain dumbbell peanut
(e1(ε0), ep(ε0)) (0.0113, 6.42) (6.392× 10−3, 5.621)

(λ1, λp) (0.0114, 6.49) (6.440× 10−3, 5.673)
(r1, rp) (0.009, 0.011) (0.007, 0.009)

tions of these fifty eigenvalues is clustered to the interval (0.2,1) as ε0 approaches
to 103.

On the other hand, these results also show that each eigencurve λi(ε0) can
be approximated by a nonlinear function

λi(ε0) ≈ ei(ε0) ≡ 10ai log10(ε0)+bi (40)

with constant ai and bi for i = 1, . . . , 50. We show the nonlinear functions
e1(ε) and e50(ε) in Figures 2(a), 2(c), 2(e) and 2(g) with red lines. These
approximations can be extended to other eigencurves. Using the eigenvalues
shown in Figures 1(e), 1(f), 1(g) and 1(h), we get the coefficients ai and bi for
i = 1, . . . , 5000 as shown in Figures 2(b), 2(d), 2(f) and 2(h), respectively. The
approximation in (40) can be used to estimate the eigenvalues for a given ε0.
In Table 3, we demonstrate the computed eigenvalues λ1 and λp by Algorithm
3 and (e1(ε0), ep(ε0)) in (40) for ε0 = 5000 and p = 5000 with the domains in
Figure 1. The results show that the relative errors ri ≡ |λi − ei|/|λi| can be
achieved about 0.01 for i = 1 and p.

Furthermore, the curves of the coefficients ai and bi for i = 1, . . . , 5000 in
Figures 2(b), 2(d), 2(f) and 2(h) can be approximated by a linear function

ai ≈ `a(i) ≡ α1 × i+ α0 (41a)

and a nonlinear function

bi ≈ eb(i) ≡ 10β2(log10(i))
2+β1 log10(i)+β0 , (41b)

respectively, as shown in the associated figures. Substituting (41) into (40), we
can see that the positive eigencurve λi(ε) can be approximated by

λi(ε) ≈ e(ε, i) ≡ 10(α1×i+α0) log10(ε)+10β2(log10(i))2+β1 log10(i)+β0
.

Comparing with the eigenvalues λi(100), for i = 5001, . . . , 10105, of the TEP
with peanut domain as shown in Figure 5(b), the relative residuals |λi(100) −
e(100, i)|/λi(100) for i = 5001, . . . , 10105 range from 0.01 to 0.07. This demon-
strates that e(ε, i) is a good approximation for the eigencurve.
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(b) Peanut with ε0 = 100 and p = 3000
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(c) Dumbbell with ε0 = 500 and p = 5000
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Figure 3: Percentages µk
p

for the locking scheme and the deflation scheme with various ε0.
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6.2. Numerical comparison for locking and deflation schemes

Let µk denote the number of the target eigenvalues which are computed by
QJD in Algorithm 1 with using k iterations. If k ≥ 16, then we define µ16 :=∑
k≥16 µk. On the other hand, we define Tl and Td to be the average of the CPU

times for computing p target positive smallest eigenvalues by Algorithms 2 and
3, respectively.

In Figure 3, we show the percentage µk/p for k = 0, 1, . . . , 16 with ε0 =
50, 100, 500, 1000. The results demonstrate that the iteration numbers k of
Algorithm 3 with deflation scheme are concentrated at k = 4, 5, 6 for each ε0.
However, the iteration number k of Algorithm 2 with locking scheme is depend
on ε0. The iteration number is concentrated at 4, 5, 6 only when ε0 is large
enough as shown in Figures 3(c) and 3(d). Figures 3(a) and 3(b) show that, in
average, locking scheme will be needed more and more iterations to compute the
target eigenpair as ε0 to be small. When the convergent eigenvectors are locked
into the searching subspace span{V }, the small size QEP (θ2M2+θM1+M0)s =
0 in Line 3 at Algorithm 1 will produce dummy ritz pairs. The convergence of the
locking scheme can be affected by such dummy ritz pairs when the distribution
of the eigenvalues is not clustered such as ε0 = 50, 100. In the deflation scheme,
there is no any dummy ritz pairs produced by the convergent eigenvectors. This
is a reason why, in average, the iteration number for the deflation scheme is less
than that for the locking scheme. This means that the deflation scheme is more
robust than the locking scheme for ε0.

From Section 5, we know that the computational cost of the deflation scheme
is more than that of the locking scheme in each iteration. As shown in Fig-
ures 3(a), 3(b) and 3(c), due to the total iteration numbers of deflation scheme
to be obviously less than that of locking scheme for ε0 = 50, 100 and 500, the
average time Td is less than Tl. For ε0 = 1000, both the iteration numbers of
the locking and deflation schemes are concentrated at 3, 4, 5, 6. This leads to
Td > Tl as shown in Figure 3(d).

In order to demonstrate the robustness of Algorithm 3, we compute the
first 5000 eigenpairs of the TEP with domains in Figure 1 by Algorithm 3.
The percentages µk

p with ε0 = 50, 100, 500, 1000 are shown in Figure 4. The
results tell us that only at ε0 = 50, more iteration numbers of the QJD are
needed to compute the target eigenvalues. The most iterations of the QJD are
concentrated at 3, 4, 5, 6 for other ε0.

6.3. Computing the eigenvalues in the given interval

In Subsection 6.2, we have demonstrated that Algorithms 2 and 3 can be
applied to sequently compute a lot of the target eigenpairs. Even each target
eigenvalue can be efficiently computed by the proposed methods, the total CPU
times are huge when the number of target eigenvalues is huge. In order to reduce
the total CPU times, we slightly modify Algorithm 3 so that it can be applied
to compute the eigenvalues in a given interval. We called it as Mod. Alg. 3.
Therefore, the target eigenvalues can be computed by Mod. Alg. 3 in parallel
with a given different interval. In Figure 5, we show the results of the domain
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peanut with ε0 = 100 and the given intervals (10i, 10(i+ 1)] for i = 0, 1, . . . , 59.
That is we apply Mod. Alg. 3 to compute all eigenvalues in the interval (0, 600].

Compared the percentage µk
5000 in computing λ1, . . . , λ5000 with Algorithm 3

and Mod. Alg. 3, the results in Figure 5(a) show that the percentage µ3+···+µ7

5000
for Algorithm 3 and Mod. Alg. 3 are equal to 0.6488 and 0.7274, respectively.
This means that, in average, the convergence of Mod. Alg. 3 is better than
that of Algorithm 3. On the other hand, in Figure 5(b), we demonstrate the
iteration numbers of the QJD in Mod. Alg. 3 for computing each eigenvalues.
These results show that it needs more and more iteration numbers of the QJD
as the target eigenvalue is larger and larger.

7. Conclusion

In this paper, we consider the Maxwell’s equation with complex media
in pseudo-chiral model and the transverse magnetic mode to derive the two-
dimensional transmission eigenvalue problem in (1) with ε(x, y) = n(x, y) + γ2,
where n(x, y) is the index of refraction and γ > 0 is a chirality parameter. The
associated discretized eigenvalue problem is related to a generalized eigenvalue
problem which can be reduced to a quadratic eigenvalue problem (QEP) by
deflating all nonphysical zeros. We estimate half of the positive eigenvalues of
the QEP are on some interval which forms a dense spectrum of the QEP. The
quadratic Jacobi-Davidson (QJD) method with partial locking technique is pro-
posed to compute the dense spectrum of the QEP. In order to accelerate conver-
gence, we also develop a so-called non-equivalence deflation technique combined
with QJD to deflate the part of computed eigenvalues to infinity while keeping
the other eigenvalues unchanged. Numerical results demonstrate that the de-
flation technique makes the convergence efficiently and robustly. The locking
technique outperforms the deflation technique in timing only when eigenvalues
of the QEP are typically clustering together in our model. Numerical results
also illustrate that the eigenvalue curves can be approximated by the nonlin-
ear functions so that we can apply these nonlinear functions to estimate the
eigenvalues for a given constant ε(x, y).

Acknowledgments

The first author’s work was partially supported by the Ministry of Science
and Technology (MoST), National Center of Theoretical Sciences (NCTS) in
Taiwan. The third author’s work was partially supported by MoST, NCTS and
ST Yau Center in Taiwan.

References

[1] F. Cakoni, D. Colton, P. Monk, and J. Sun. The inverse electromagnetic
scattering problem for anisotropic media. Inv. Prob., 26(7):074004, 2010.

21



[2] F. Cakoni, D. Gintides, and H. Haddar. The existence of an infinite discrete
set of transmission eigenvalues. SIAM J. Math. Anal., 42(1):237–255, 2010.

[3] F. Cakoni and H. Haddar. On the existence of transmission eigenvalues in
an inhomogeneous medium. Appl. Anal., 88(4):475–493, 2009.

[4] F. Cakoni and H. Haddar. Transmission eigenvalues in inverse scattering
theory. In G. Uhlmann, editor, Inverse Problems and Applications: Inside
Out II, volume 60 of Math. Sci. Res. Inst. Publ., pages 527–578. Cambridge
University Press, Cambridge, 2012.

[5] Q. Chen, H. Haddar, A. Lechtleiter, and P. Monk. A sampling method for
inverse scattering in the time domain. Inv. Prob., 26:085001, 2010.

[6] D. Colton, J. Coyle, and P. Monk. Recent developments in inverse acoustic
scattering theory. SIAM Rev., 42:369–414, 2000.

[7] D. Colton and H. Haddar. An application of the reciprocity gap functional
to inverse scattering theory. Inv. Prob., 21:383–98, 2005.

[8] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering
Theory, volume 93 of Applied Mathematical Sciences. Springer, New York,
3rd edition, 2013.

[9] D. Colton and P. Monk. A novel method for solving the inverse scattering
problem for time-harmonic acoustic waves in the resonance region. SIAM
J. Appl. Math., 45:1039–53, 1985.

[10] D. Colton, P. Monk, and J. Sun. Analytical and computational methods
for transmission eigenvalues. Inv. Prob., 26:045011, 2010.
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