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Abstract. We study a robust and efficient eigensolver for computing a few smallest positive
eigenvalues of the three-dimensional Maxwell’s transmission eigenvalue problem. The discretized
governing equations by the Nédélec edge element result in a large-scale quadratic eigenvalue problem
(QEP) for which the spectrum contains many zero eigenvalues and the coefficient matrices consist of
patterns in the matrix form XY −1Z, both of which prevent existing eigenvalue solvers from being ef-
ficient. To remedy these difficulties, we rewrite the QEP as a particular nonlinear eigenvalue problem
and develop a secant-type iteration, together with an indefinite locally optimal block preconditioned
conjugate gradient method (LOBPCG), to sequentially compute the desired positive eigenvalues.
Furthermore, we propose a novel method to solve the linear systems in each iteration of LOBPCG.
Intensive numerical experiments show that our proposed method is robust, although the desired real
eigenvalues are surrounded by complex eigenvalues.
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1. Introduction. The transmission eigenvalue problem has recently attracted
much attention in the area of inverse scattering theory, as it is important for the
study of the direct/inverse scattering problem for non-absorbing inhomogeneous me-
dia [6, 8, 9, 10, 11, 12, 13, 20, 30]. As shown in [3, 4, 5, 6, 7, 8, 31], transmission
eigenvalues can be determined from the far-field pattern of the scattered wave or
from the near-field data, and used to estimate the material properties of the scat-
tering object. In addition, transmission eigenvalues are also related to the validity
of some recently developed reconstruction methods for scattering problems such as
the linear sampling method and factorization method [11]. For recent progress in the
theories and applications of transmission eigenvalue problems, we refer to [10] and the
references therein.

Efficient numerical methods to determine transmission eigenvalues are required
in estimating the index of refraction [6, 31], and numerical evidence from the discrete
system may contribute to the progress of further theoretical developments such as the
distribution of real eigenvalues for the original infinite dimensional system. Nonethe-
less, numerical techniques for solving the transmission eigenvalues are limited and
only a few papers have addressed the issues of numerical computation on this topic
in the past few years, partly because the transmission eigenvalue problem is neither
elliptic nor self-adjoint and as a consequence, it cannot be addressed by the standard
theory of elliptic partial differential equations.

Recently, there have been some papers [12, 15, 18, 19, 21, 25, 28, 32, 33] ad-
dressing numerical computations in transmission eigenvalue problems. In [12], three
FEMs were proposed for solving the two dimensional (2D) transmission eigenvalue
problem. A coupled boundary element method and FEM was introduced for the in-
terior transmission problem in [15]. Then, Sun [32] proposed two iterative methods
together with convergence analysis based on the existence theory of the fourth-order
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reformulation for the transmission eigenvalues [9, 30]. A mixed FEM for 2D transmis-
sion eigenvalue problems was proposed in [18] and the corresponding non-Hermitian
quadratic eigenvalue problem (QEP) was solved by the classical secant iteration with
an adaptive Arnoldi method. In [19], Ji, Sun, and Xie used the multilevel correc-
tion method to transform the solution of the transmission problem into a series of
solutions corresponding to linear boundary value problems and solved them by the
multigrid method. The authors in [25] rewrote the QEP as a particular parameterized
generalized eigenvalue problem (GEP) for which the eigenvalue curves are arranged
in a monotonic order so that the desired curves can be sequentially solved with a new
secant-type iteration.

For a three dimensional (3D) Maxwell’s transmission eigenvalue problem, two
FEMs with an adaptive Arnoldi method were proposed in [28]. The resulting GEPs
are large, sparse and non-Hermitian. The numerical challenges for solving the cor-
responding GEPs are (i) a few of the smallest positive eigenvalues, which may be
surrounded by complex eigenvalues, are of interest; (ii) the number of zero eigen-
values of the GEP is huge because the nullity of the discrete double curl operator
equals the number of edges in the spanning tree of a finite element mesh [2]; (iii)
how to efficiently solve the associated large sparse linear system in each iteration
of the eigensolver. To tackle drawbacks (i) and (ii), in [33], a mixed FEM was ap-
plied to an equivalent quad-curl eigenvalue problem, and the resulting QEP can be
solved by a classical secant iterative method by introducing a sequence of the param-
eterized GEPs with symmetric positive definite and semidefinite coefficient matrices.
However, in [33], there is no theoretical guarantee for why the desired positive trans-
mission values would not be lost. Moreover, due to the complexity of the matrix
structures, the mesh is rather coarse, and thus more efficient eigensolvers for solving
the QEP and the associated parameterized GEPs are desirable for larger problems
[33]. Note that, for the vector case, Kleefeld [21] presented an accurate numerical
method, based on a surface integral formulation of the interior transmission problem,
for solving corresponding nonlinear eigenvalue problems for many different obstacles
in three dimensions. However, only constant index of refraction and smooth domains
can be treated.

In this paper, we focus on the 3D Maxwell’s transmission eigenvalue problem and
make the following contributions.

• We show that the QEP in [33] can be deduced from the GEP in [28] via a
suitable equivalence transformation. In fact, the QEP and GEP have the
same spectrum except for nonphysical zero eigenvalues.

• Rewriting the QEP as a particular parameterized GEP with symmetric and
symmetric positive semidefinite coefficient matrices, we then use the secant-
type iteration (SecTypIt) method in [25] to sequentially compute the desired
positive eigenvalues.

• To efficiently solve the parameterized GEP, we introduce the locally optimal
block preconditioned conjugate gradient method (LOBPCG) [1, 22, 23] with
some modification schemes to accelerate the convergence rate. Numerical
results show that the convergence of LOBPCG is not affected by the huge
nullity.

• To solve the linear system appearing in LOBPCG, due to the complicated
matrix formulations of the parameterized GEP, we propose a new augmented
linear system so that it can be solved by the direct/iterative method for a
large-size problem.
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• In practice, we propose some adaptive strategies for determining initial data
and stopping tolerance. Intensive numerical experiments show that our method
is robust although the desired eigenvalues are surrounded by complex eigen-
values.

Throughout this paper, the notations ·⊤ and ·∗ are used to represent the trans-
pose and conjugate transpose of vectors or matrices, respectively. Given a real square
matrix A, we write A ≻ 0 (A ≽ 0) if A is symmetric and positive definite (semidefi-
nite).

We organize this paper as follows. In Section 2, we review the 3D Maxwell’s
transmission eigenvalue problem and two discretization schemes proposed in [28, 33].
In Section 3, we introduce the SecTypIt in [25] to address a parameterized GEP of
the QEP for computing a few desired positive eigenvalues of the QEP. Sections 4 and
5 focus on the LOBPCG method and its detailed implementation for the purpose
of providing an efficient and robust eigensolver to address the parameterized GEP.
Numerical experiments with different indices of refraction on the unit ball and the unit
square are presented in Section 6. Finally, we give concluding remarks in Section 7.

2. The 3D Maxwell’s transmission eigenvalue problem and its dis-
cretization. Let D ⊂ R3 be a bounded simply connected domain with a piecewise
smooth boundary ∂D and ν denote the unit outer normal vector to ∂D. Following
[14], we introduce the Hilbert spaces

H(curl, D) := {u ∈
(
L2(D)

)3
: ∇× u ∈

(
L2(D)

)3},
H(curl2, D) := {u ∈ H(curl, D) : ∇× u ∈ H(curl, D)},

equipped with the scalar products

(u,v)curl := (u,v) + (∇× u,∇× v),

(u,v)curl2 := (u,v) + (∇× u,∇× v)curl,

respectively. Here, (·, ·) is the L2 scalar product on D. Furthermore, H0(curl, D) and
H0(curl

2, D) are, respectively, two subspaces of H(curl, D) and H(curl2, D) defined
by

H0(curl, D) := {u ∈ H(curl, D) : u× ν = 0 on ∂D} ,
H0(curl

2, D) := {u ∈ H0(curl, D) : ∇× u ∈ H0(curl, D)} .

Assuming that N, N−1 and either (N − I)−1 or (I −N)−1 are bounded positive
definite real matrix fields on D, then, in terms of the electric field, the so-called
transmission eigenvalue problem for the Maxwell’s equations is to find 0 ̸= λ ∈ C and

non-trivial fields E,E0 ∈
(
L2(D)

)3
with E−E0 ∈ H0(curl

2, D) satisfying

∇×∇×E− λNE = 0 in D,(2.1a)

∇×∇×E0 − λE0 = 0 in D,(2.1b)

E× ν = E0 × ν on ∂D,(2.1c)

(∇×E)× ν = (∇×E0)× ν on ∂D.(2.1d)

The nonzero (complex) values λ such that (2.1) has non-trivial solutions E and E0

are called Maxwell’s transmission eigenvalues.
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Multiplying (2.1a) and (2.1b) by suitable test functions and applying the inte-
gration by parts, a variational formulation for (2.1) can be stated as follows: Find
0 ̸= λ ∈ C and E0,E ∈ H(curl, D) such that

(∇×E,∇× φ)− λ(NE,φ) = 0,(2.2a)

(∇×E0,∇× φ)− λ(E0,φ) = 0,(2.2b)

(∇× (E−E0),∇×ψ)− λ(NE−E0,ψ) = 0,(2.2c)

for all φ ∈ H0(curl, D) and ψ ∈ H(curl, D) with the essential boundary condition
E× ν = E0 × ν on ∂D [28]. Note that in (2.2c), the boundary condition (2.1d) has
been enforced weakly.

On the other hand, as shown in [9], (2.1) is equivalent to a quad-curl problem for
E−E0 ∈ H0(curl

2, D) satisfying

(2.3) (∇×∇×−λN) (N − I)−1 (∇×∇×−λ) (E−E0) = 0.

A variational form of (2.3) is to find a 0 ̸= λ ∈ C and a nontrivial field u ∈
H0(curl

2, D) satisfying

(2.4) ((N−I)−1(∇×∇×u−λu), (∇×∇×φ−λφ))+λ2(u,φ)−λ(∇×u,∇×φ) = 0

for all φ ∈ H0(curl
2, D). Following the approach of a mixed formulation proposed in

[33], the equation (2.4) can be further transformed into another weak formulation for
finding 0 ̸= λ ∈ C, p ∈ H0(curl, D) and ṽ ∈ H(curl, D) such that

(∇× ṽ,∇× φ)− λ(ṽ,φ) + λ2(p,φ) = λ(∇× p,∇× φ),(2.5a)

(∇× p,∇× ξ)− λ(p, ξ) = ((N − I)ṽ, ξ),(2.5b)

for all φ ∈ H0(curl, D) and ξ ∈ H(curl, D).
Now, we use the lowest order curl-conforming Nédélec edge elements [27, 29] to

discretize (2.1) and (2.3). Given a regular tetrahedral mesh of D, we define the space
Sh and the subspace S0

h of Sh as

Sh = {the lowest order edge elements on D} ⊂ H(curl, D),

S0
h = Sh ∩H0(curl, D) ⊂ H0(curl, D)

= {the functions in Sh that have vanishing DoFs on ∂D} ,

where DoFs are the degrees of freedom. Let {φ1, . . . ,φn} be a basis of S0
h and

{φ1, . . . ,φn,ψ1, . . . ,ψm} a basis for Sh. In addition, we define SB
h = span {ψj}mj=1.

Then, the mass and stiffness matrices based on linear edge elements are given by

(2.6) K =

[
K E
E⊤ H

]
, M1 =

[
M1 F1

F⊤
1 G1

]
, MN =

[
MN FN

F⊤
N GN

]
,

where the block matrix entries are given in Table 1. Moreover, we let

S :=
[
K E

]
, T1 :=

[
M1 F1

]
,(2.7)

M =

[
M F
F⊤ G

]
:=

[
MN −M1 FN − F1

F⊤
N − F⊤

1 GN −G1

]
= MN −M1.(2.8)

Note that dim(Null(S⊤)) > 0 as the matrices K and E are assembled from the
discretization of the degenerate curl operators. Here, Null(S⊤) denotes the null space
of the matrix S⊤. Moreover, M ≻ 0, M ≻ 0 and G ≻ 0 because of the positivity of
N and (N − I)−1.
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Table 1
Stiffness and mass matrices.

Matrix Dimension Definition

interior space stiffness matrix.
K n× n

Kij = (∇× φi,∇× φj)

E n×m
interior/boundary stiffness matrix.
Eij = (∇× φi,∇×ψj)
boundary space stiffness matrix.

H m×m
Hij = (∇×ψi,∇×ψj)
interior space mass matrices.

M1,MN n× n
(M1)ij = (φi,φj), (MN )ij = (Nφi,φj)
interior/boundary mass matrices.

F1, FN n×m
(F1)ij = (φi,ψj), (FN )ij = (Nφi,ψj)
boundary space mass matrices.

G1, GN m×m
(G1)ij = (ψi,ψj), (GN )ij = (Nψi,ψj)

2.1. The resulting generalized eigenvalue problem from (2.2). Based on

the Nédélec edge elements, we let u0,h =
n∑

i=1
uiφi ∈ S0

h, v0,h =
n∑

i=1
viφi ∈ S0

h and

uB,h =
m∑
i=1

wiψi ∈ SB
h so that uh = u0,h+uB,h and vh = v0,h+uB,h are the discrete

approximations for E and E0, respectively. In addition, we set u = [u1, . . . , un]
⊤,

v = [v1, . . . , vn]
⊤, and w = [w1, . . . , wm]⊤, and then, the discretization of (2.2) gives

rise to a GEP

(2.9) L(λ)z :=

⎛

⎝

⎡

⎣
K 0 E
0 K E
E⊤ −E⊤ 0

⎤

⎦− λ

⎡

⎣
MN 0 FN

0 M1 F1

F⊤
N −F⊤

1 GN −G1

⎤

⎦

⎞

⎠

⎡

⎣
u
v

w

⎤

⎦ = 0.

2.2. The resulting quadratic eigenvalue problem from (2.5). Let ph =
n∑

i=1
piφi and ṽh =

n∑
j=1

ṽjφj+
m∑
j=1

w̃jψj . Moreover, we set the vectors p = [p1, . . . , pn]
⊤

and ṽ = [ṽ1, . . . , ṽn, w̃1, . . . , w̃m]⊤. Then, with the notations in (2.6), (2.8) and Ta-
ble 1, the matrix problem corresponding to (2.5) is given by

Sṽ − λT1ṽ + λ2M1p = λKp,(2.10a)

S⊤p− λT ⊤
1 p = Mṽ,(2.10b)

where S and T1 are the matrices given in (2.7). Expressing ṽ in terms of p by (2.10b)
and plugging it into (2.10a), we end up with the QEP

(2.11)
[
λ2M1 + (S − λT1)M−1(S − λT1)⊤

]
p = λKp.

2.3. Relation between GEP (2.9) and QEP (2.11). In this subsection, we
first present explicit representations for the coefficient matrices of (2.11). Then, we
show that (2.11) can be deduced from the GEP (2.9) via a suitable equivalence trans-
formation.

To make the following discussion more concise, we first introduce some convenient
notations. Let

M̂1 := M1 − F1G
−1F⊤, M̂ := M − FG−1F⊤, K̂ := K − EG−1F⊤,
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where M , F and G are defined as in (2.8). Note that M̂ is symmetric positive definite
because M ≻ 0 and G ≻ 0.

Lemma 2.1. The QEP (2.11) can be expressed as

(2.12a) Q(λ)p :=
(
λ2A2 + λA1 +A0

)
p = 0,

where A2, A1 and A0 are all n× n symmetric matrices given by

A2 = M1 + T1M−1T ⊤
1(2.12b)

= M1 + M̂1M̂
−1M̂⊤

1 + F1G
−1F⊤

1 ,

A1 = −K − SM−1T ⊤
1 − T1M−1S⊤(2.12c)

= −K − K̂M̂−1M̂⊤
1 − M̂1M̂

−1K̂⊤ − EG−1F⊤
1 − F1G

−1E⊤,

A0 = SM−1S⊤(2.12d)

= K̂M̂−1K̂⊤ + EG−1E⊤.

In particular, A2 is positive definite, and A0 is positive semidefinite.
Proof. Rewriting (2.11) as

(2.13) [λ2
(
M1 + T1M−1T ⊤

1

)
+λ

(
−K − SM−1T ⊤

1 − T1M−1S⊤)+SM−1S⊤]p = 0

and using the fact that

M−1 =

[
M F
F⊤ G

]−1

=

[
M̂−1 0

−G−1F⊤M̂−1 G−1

][
I −FG−1

0 I

]
,

we can show, by routine calculation, that the coefficient matrices in (2.13) are equal
to those of (2.12) (see also Section 2.2 in [25] for the related results). Moreover, it
is obvious to see that the coefficient matrices of (2.12) are symmetric. In addition,
A2 and A0 are positive definite and positive semidefinite, respectively, which follows
from the fact that M1 ≻ 0, M ≻ 0 and dim(Null(S⊤)) > 0.

Theorem 2.2. Let L(λ) and Q(λ) be defined in (2.9) and (2.12), respectively.
Then

σ(L(λ)) = {0, · · · , 0}︸ ︷︷ ︸
m

∪ σ(Q(λ)).

Here, σ(·) denotes the spectrum of the associated matrix pencil.
Proof. We first note from (2.8) that MN = M + M1, FN = F + F1 and G =

GN −G1. The λ-matrix L(λ) in (2.9) can then be rewritten as

(2.14) L(λ) =

⎡

⎣
K − λ(M +M1) 0 E − λ(F + F1)

0 K − λM1 E − λF1

E⊤ − λ(F⊤ + F⊤
1 ) −E⊤ + λF⊤

1 −λG

⎤

⎦ .

Letting

J :=

⎡

⎣
In 0 0

0 −In 0

0 0 Im

⎤

⎦ , P :=

⎡

⎣
0 In 0

−In In 0

0 0 Im

⎤

⎦ ,
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we can further transform L(λ) in (2.14) to a symmetric λ-matrix:
(2.15)

JPL(λ)P =

⎡

⎣
−K + λM1 K − λM1 E − λF1

K − λM1 −λM −λF
ET − λF⊤

1 −λF⊤ −λG

⎤

⎦ =

[
−K + λM1 S − λT1
(S − λT1)⊤ −λM

]
,

where S, T1 and M are the matrices defined in (2.7) and (2.8).
Next, we will show that (2.15) can be reduced to a block diagonal form using

Gaussian eliminations. In fact, by considering the λ-matrix

C(λ) :=
[

In 0
1
λ
M−1(S − λT1)⊤ In+m

]
,

and setting E(λ) := (C(λ))⊤JP and F(λ) := PC(λ), we can compute that

E(λ)L(λ)F(λ) = (C(λ))⊤(JPL(λ)P)C(λ)(2.16)

=

[
−K + λM1 + 1

λ
(S − λT1)M−1(S − λT1)⊤ 0

0 −λM

]

=

[
1
λ
Q(λ) 0

0 −λM

]
,

where the last equality follows from equations (2.11) and (2.12).
Thanks to det(E(λ)) = 1 = det(F(λ)) and the nonsingularity of M, we have

det(L(λ)) = det(E(λ)L(λ)F(λ)) = det( 1λQ(λ)) det(−λM) = 0

⇔
1

λn
det (Q(λ)) λn+m det(−M) = 0 ⇔ λm det (Q(λ)) = 0.

This implies that Q(λ) preserves 2n eigenvalues of L(λ) and throws away m nonphys-
ical zero eigenvalues.

Remark 2.3. A similar result as in Theorem 2.2 for the 2D transmission eigen-
value problems has been discussed in [25]. Due to the singularity of S⊤, we know
that the matrix K in (2.6) is singular. However, for the 2D transmission eigenvalue
problems, K obtained from the discretization of the Laplacian operator is nonsingu-
lar. Therefore, the proof technique in [25] based on the nonsingularity of K cannot be
directly applied to Theorem 2.2. In Theorem 2.2, we provide a more general proof.

The result in (2.16) indicates that the QEP (2.12) obtained by applying the
mixed FEM for the quad-curl problem (2.3) can be directly deduced from the GEP
(2.9) discretized by a curl-conforming FEM of (2.1). It is worth considering the QEP
(2.12) compared with the GEP (2.9) as the former eliminates m nonphysical zero
eigenvalues and maintains the other ones of the later equation. However, the QEP
(2.12) still contains a huge number of zero eigenvalues due to the large null space
of S in (2.12d) associated with the curl operator [2]. Because the smallest positive
eigenvalues are interesting, these zero eigenvalues leads to the numerical difficulties in
computing the desired eigenpairs. Additionally, to find the desired positive eigenvalues
surrounded by complex eigenvalues is another challenge.

To remedy these difficulties, in what follows, we will introduce a secant-type itera-
tive method [25] in Section 3 so that we can sequentially compute the wanted positive
eigenvalues without computing any complex ones. In addition, the locally optimal
block preconditioned conjugate gradient method (LOBPCG) [23] will be introduced
in Section 4 to prevent the disturbance from the huge presence of zero eigenvalues.
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3. A secant-type method for computing positive transmission eigen-

values. In this section, we focus on the numerical method for finding a few smallest
positive transmission eigenvalues of (2.1), which are of great interest for estimating
the index of refraction in inverse scattering theory.

To avoid the influence of complex and zero eigenvalues, we first consider a par-
ticular symmetric definite GEP with a parameter µ (µ-SDGEP) for the QEP (2.12)

(3.1) A(µ)p(µ) = β(µ)A0p(µ), A(µ) := −A1 − µA2,

where A(µ) is symmetric and A0 is symmetric positive semidefinite.
Theorem 3.1. Consider the µ-SDGEP (3.1). Let βi(µ) be the eigenvalue curve

of the matrix pair (A(µ), A0), i = 1, . . . , n. Then
(i) βi(µ) is either real or infinity for any µ ∈ R, i = 1, . . . , n.
(ii) Each real eigenvalue curve βi(µ) is strictly decreasing in µ.
(iii) (λ,p) is a real eigenpair of the QEP (2.12) with p⊤A0p = 1 if and only if

(β(λ),p) is a real eigenpair of the µ-SDGEP (3.1) and

β(λ) =
1

λ
.

Proof. The proof is similar to Lemma 1 in [25] but with the positive definiteness
of A0 replaced by A0 ≽ 0.

Remark 3.2. There is another µ-SDGEP of the form in [33]

Â(µ)p(µ) = α(µ)Kp(µ), Â(µ) := µ2M1 + (S − µT1)M−1(S − µT1)⊤ ≻ 0.

to be considered for solving the QEP (2.12). From this viewpoint, µ is an eigen-
value of (2.12) if and only if it is a fixed-point of the eigenvalue curve α(µ), i.e.,
α(µ) = µ. Although the eigenvalue curves α(µ) are still real, so that solving the
corresponding fixed point problem can avoid capturing complex eigenvalues, it cannot
guarantee, in this case, that α(µ) is monotonically increasing because the differentia-
tion of p(µ)A(µ)p(µ) with respect to µ is, in general, indefinite. This indicates that
eigenvalue curves α(µ) could cross each other and the fixed-points may not appear in
order. Such uncertainty makes the associated fixed-point problem much more compli-
cated, and the traditional secant iteration or Newton’s method may lose some desired
real eigenvalues.

Based on Theorem 3.1, we see that any real eigenvalue λ of the QEP (2.12) is a
fixed point of the eigenvalue curve 1/β(µ), which means β(λ) = 1/λ. In addition, the
monotonicity of β(µ) motivates us to exploit the secant-type iteration (SecTypIt) in
[25] for sequentially computing desired positive transmission eigenvalues.

We simply explain the idea of the SecTypIt and summarize this update process
in Algorithm 1. For details on the SecTypIt algorithm and its implementation, we
refer to [25].

Suppose that 0 < µl < µr are two approximate values for a positive eigenvalue λ
of (2.12). Let βl := β(µl) and βr := β(µr) be the corresponding points on the strictly
decreasing eigenvalue curve β(µ) passing through the point (λ, 1/λ). Here, µlβl < 1
is required to ensure that (µl,βl) can always converge to (λ, 1/λ).

• Update of (µ+
l ,β

+
l ). At each iteration, SecTypIt first updates (µl,βl) accord-

ing to the location of (µr,βr). If µrβr < 1, the new (µ+
l ,β

+
l ) is set to be (µr,βr) (see

Figure 1(a)); otherwise, for µrβr > 1, µ+
l is updated by a fixed-point iteration from
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Algorithm 1 [25] [µ+
l , µ

+
r ,β

+
l , flag] = SecTypIt(µl, µr,βl,βr)

Input: Two approximate solutions (µl,βl) and (µr,βr) to the fixed-point (λ, 1/λ)
Output: The updated values (µ+

l ,β
+
l ) and µ+

r

1: if µrβr < 1 then
2: Set flag = 0
3: µ+

l = µr and β+
l = βr

4: else
5: Set flag = 1
6: µ+

l = 1/βl and β+
l = []

7: end if

8: Compute α2 = βr−βl

µr−µl
and α1 = βl − α2µl

9: Set ∆ = α2
1 + 4α2

10: if ∆ > 0 then
11: Set µ+

r = −α1 +
sign(α1)

√
∆

2α2

12: else
13: Set µ+

r = 1+
√
1−βrµr

βr

14: end if

(µl,βl) to the hyperbola curve, that is µ+
l = 1/βl, while β+

l is left to be determined
by solving (3.1) with µ = µ+

l (see Figure 1(c)).
• Update of (µ+

r ,β
+
r ). The correction of µ+

r depends on the secant line through
the points (µl,βl) to (µr ,βr). When this secant line intersects with the hyperbola
curve, µ+

r is shifted to the µ-coordinate of the intersection point closer to the vertical
axis (see also Figure 1(a)). For the case in which the secant line and the hyperbola
do not intersect each other, we solve the intersection point µ× > µr from the point
(µr,βr) tangent to the hyperbola curve and modify µ+

r by µ×. Finally, we compute
the associated β+

r by solving (3.1) with µ = µ+
r so that we end up with a one-step

iteration for capturing the fixed point (λ, 1/λ) (see Figure 1(b)).
Note that, no matter what the case may be, we have to solve a corresponding

µ-SDGEP (3.1) with an updated µ parameter, and the cost as well as the technique
for solving (3.1) dominate the efficiency and accuracy of this iterative method for
capturing the desired positive transmission eigenvalues. In fact, for any fixed µ > 0,
one can see that the desired positive eigenvalues of (3.1) suffer from the disturbance
of a cluster of infinite eigenvalues. This is because (3.1) consists of an indefinite
matrix A(µ) and a positive semidefinite matrix A0, and the nullity of A0 is quite
large. To study this issue, in the following two sections, we will introduce an efficient
and robust eigensolver, called LOBPCG [22, 23], that can exclude the disturbance of
infinite eigenvalues when solving the µ-SDGEP (3.1).

Remark 3.3. The µ-SDGEP (3.1) has been studied in [25]. As stated in Re-
mark 2.3, the matrices A0 and K in [25] are nonsingular. So, one can solve the
µ-SDGEP (3.1) by the invert Lanczos method and the associated linear system by the
direct method with the Sherman-Morrison-Woodbury formula. However, these tech-
niques fail when A0 and K are singular matrices. That is why we need to introduce
the LOBPCG method for solving (3.1).

4. Locally optimal block preconditioned conjugate gradient method.
Solving (3.1) is a very crucial point for using the secant-type iteration to update
the approximate eigenvalue µ. An appropriate choice of the eigensolver will help to
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(c) mixed secant update

Fig. 1. The secant-type iteration (SecTypIt)

improve efficiency and effectiveness for capturing the desired eigenvalues.
At first glance, the shift-and-invert Lanczos method (SILM) seems a feasible ap-

proach as we are interested in finding a few desired eigenvalues of (3.1). However,
we can immediately note that applying the SILM to solve (3.1) has some drawbacks.
(i) The nullity of A0 in (3.1) is huge, and the large dimension of the null space leads
to several numerical difficulties [16, 17]. (ii) When the desired eigenpairs of (3.1) are
convergent, it is natural to use the associated eigenvectors as the initial vectors for
the next µ-SDGEP to accelerate the convergence. However, only one vector in the
convergent eigen-subspace can be used as an initial vector when the SILM is applied
to solve (3.1).
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To settle these drawbacks, we apply the LOBPCGmethod to solve (3.1). LOBPCG
was proposed by Knyazev [22] to compute the smallest eigenvalues of matrix pencil
A − λB, where A is Hermitian and B is Hermitian positive definite. For the case in
which B is an indefinite matrix, two variants of LOBPCG are recently studied in [23].

In what follows, we will show that the LOBPCG method can dramatically ex-
clude the influence of the infinite eigenvalues and efficiently find some largest positive
eigenvalue of (3.1). To begin with, we briefly recall some fundamental properties.

Definition 4.1. Let A and B be n× n Hermitian matrices.
(i) In(A) = (s+, s−, s0) is defined to be the inertia of A, i.e., s+, s− and s0 are

the numbers of positive, negative and zero eigenvalues of A, respectively.
(ii) The matrix pencil A − λB is called a positive definite matrix pencil if there

is a shift λ0 ∈ R such that A− λ0B is positive definite.
Theorem 4.2 ([23, 24, 26]). Let A − λB be a positive definite matrix pencil.

Then, there is an invertible matrix W such that

W ∗AW − λW ∗BW = diag (Λ+,−Λ−, Is0)− λ diag
(
Is+ ,−Is

−

,0s0

)
,(4.1)

where Λ+ = diag(λ+
1 , · · · ,λ+

s+
) and Λ− = diag(λ−

1 , · · · ,λ−
s
−

) with

λ−
s
−

≤ · · · ≤ λ−
1 < λ+

1 ≤ · · · ≤ λ+
s+ .(4.2)

From the factorization of (4.1), it is clear that A− λ0B is positive definite if and
only if λ−

1 < λ0 < λ+
1 . The next theorem is an extension of the classical Cauchy

interlacing theorem for definite pencils.
Theorem 4.3 ([23, Theorem 2.3]). Let A − λB be a positive definite matrix

pencil and U ∈ Cn×p have full column rank. Then, the eigenvalues of the matrix
pencil (U∗AU,U∗BU) are real and can be ordered as

θ−p
−

≤ · · · ≤ θ−1 < θ+1 ≤ · · · ≤ θ+p+
,

with In(U∗BU) = (p+, p−, p0). Moreover,

λ+
i ≤ θ+i ≤ λ+

i+n−p for 1 ≤ i ≤ p+,

λ−
j ≥ θ−j ≥ λ−

j+n−p for 1 ≤ j ≤ p−.

Based on the results in Theorem 4.3, Kressner, Pandur and Shao [23] obtained
a corresponding Ky-Fan-type theorem (trace minimization principle) and used it to
develop two indefinite variants of the LOBPCG method. Algorithm 2 is the indefi-
nite LOBPCG method with one preconditioner for computing the smallest positive
eigenvalues of a positive definite pencil A− λB.

Note that some largest, although non-infinite, positive eigenvalues of (3.1) are of
interest for the modification of µ. So, to solve it with LOBPCG, which benefits for
computing some smallest eigenvalues, we need to rewrite (3.1) as follows

(4.3) A0p(µ) = λ(µ)A(µ)p(µ) λ(µ) :=
1

β(µ)
.

Suppose that we are interested in finding ℓ smallest positive eigenvalues of (4.3),
which has a large number of zero eigenvalues due to the singularity of A0. To satisfy
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Algorithm 2 [23] [λ1, . . . ,λℓ,x1, . . . ,xℓ] = LOBPCG(A,B, ℓ, X0, ε)

Input: Coefficient matrices A and B, Hermitian positive definite preconditioned T ,
the number of desired smallest positive eigenvalues ℓ, an initial matrix X0 ∈ Rn×ℓ

and stopping tolerance ε.
Output: The desired eigenpairs (λi,xi) for i = 1, . . . , ℓ with λ1 ≤ · · · ≤ λℓ.
1: B-orthonormalize X0 such that X∗

0BX0 = diag(±1).
2: Compute the eigen-decomposition (X∗

0AX0)V0 = (X∗
0BX0)V0Λ0.

3: Update X0 = X0V0 and set k = 0, P0 = [].
4: repeat
5: Compute Rk = AXk −BXkΛk.
6: if ∃j such that ∥Rk(:, j)∥/((∥A∥+ |Λk(j, j)|∥B∥)∥Xk(:, j)∥) ≥ ε then

7: Compute Wk = TRk.
8: Set Uk = [Xk,Wk, Pk].
9: B-orthonormalize Uk such that U∗

kBUk = diag(±1).
10: Compute the ℓ desired eigenpairs (Λk+1, Vk+1) of the matrix pencil

(U∗
kAUk, U∗

kBUk). Here Λk+1 ∈ Rℓ×ℓ, Vk+1 ∈ Rn×ℓ.
11: Compute Pk+1 = Uk,2Vk+1,2 and Xk+1 = Uk,1Vk+1,1 + Pk+1, where Vk+1 =

[V ∗
k+1,1, V

∗
k+1,2]

∗ and Uk = [Uk,1, Uk,2].
12: Set k = k + 1.
13: end if
14: until all desired eigenpairs are convergent
15: Set Λk = diag(λ1, · · · ,λℓ) and Xk = [x1, · · · ,xℓ].

the requirement for using the LOBPCG method, we assume, for a given µi > 0,
that there exists a sufficiently small λi,0 > 0 such that A0 − λi,0A(µi) is a positive
definite matrix pencil. In general, this assumption is reasonable because the norm of
A0 dominates those of A1 and A2. Let λ−

i,s
−

≤ · · · ≤ λ−
i,1 < λ+

i,1 ≤ · · · ≤ λ+
i,s+

be
the eigenvalues of A0 − λ(µi)A(µi). As shown in Lemma 2.1 and its proof, we know
that A2 ≻ 0, A1 = −K − SM−1T ⊤

1 − T1M−1S⊤ and A0 = SM−1S⊤ ≽ 0. Consider
the matrix U , for which the columns form a basis of Null(S⊤) with the orthogonality
condition U⊤A2U = I. Because Null(S⊤) ⊆ Null(K) (by the definition of S in (2.7))
and Null(S⊤) ⊆ Null(A0), we obtain

U⊤A0U = 0 and U⊤A(µi)U = U⊤(−A1 − µiA2)U = −µiU
⊤A2U = −µiI.

By Theorem 4.2, it holds that λ−
i,j0

= 0 for some j0.
From the assumption that a sufficiently small λi,0 > 0 can always be found,

we observe, by Theorem 4.2 again, that the zero and positive eigenvalues of (4.3)
are separated by λi,0, i.e., λ−

i,1 = λ−
i,j0

= 0 < λi,0 < λ+
i,1. This also shows that

λ+
i,1, . . . ,λ

+
i,ℓ are the ℓ desired smallest positive eigenvalues. The above discussion

leads to the following theorem.
Theorem 4.4. Suppose, for a given µi > 0, A0−λ(µi)A(µi) is a positive definite

matrix pencil with eigenvalues ordered as in (4.2). Then, there is a sufficiently small
λi,0 > 0 such that A0 − λi,0A(µi) ≻ 0 and

λ−
i,s

−

≤ · · · ≤ λ−
i,1 = 0 < λi,0 < λ+

i,1 ≤ · · · ≤ λ+
i,s+

.

Together with the results in Theorem 4.3, we conclude that the Ritz values
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Table 2
Notations for the µ-SDGEP (5.1).

λd the dth desired positive eigenvalue of the QEP (2.12), d = 1, . . . ℓ.

µ(d)
i the approximate value for λd at the ith SecTypIt, i = 0, 1 . . ..

(λ(d)
i,j ,p

(d)
i,j ) the eigenpairs of (5.1) with a given µ(d)

i , j = 1, . . . , n.

θ+1 , . . . , θ
+
ℓ+

for each iteration of the LOBPCG method (Algorithm 2) satisfy

0 < λi,0 < λ+
i,j ≤ θ+j ≤ λ+

i,j+n−ℓ, 1 ≤ j ≤ ℓ+.

This indicates that the zero eigenvalues will not degrade the computational efficiency.

5. Practical implementation. Suppose that we want to find ℓ smallest posi-
tive eigenvalues λ1, . . . ,λℓ of the QEP (2.12). Applying the SecTypIt approach (Al-
gorithm 1) to compute λd, we need to solve a sequence of µ-SDGEPs

(5.1) A0p = λA(µ(d)
i )p, A(µ(d)

i ) := −A1 − µ(d)
i A2

for i = 0, 1, 2, . . .. The sequence of µ-SDGEPs (5.1) are then solved by LOBPCG. In
this section, we will propose heuristic strategies for (i) the choice of the preconditioner,
(ii) the setting of the initial vectors, and (iii) the criterion of the stopping tolerance
to accelerate the convergence of LOBPCG and SecTypIt.

Table 2 collects the notations employed in the next two sections. Note that if the

SecTypIt converges to λd at the idth step, we have λ(d)
id,d

= µ(d)
d = λd.

5.1. Solving linear systems. As presented in Line 7 of Algorithm 2, we have
to solve a linear system Wk = TRk with an appropriate preconditioner T , which is an
essential factor dominating the convergence of the LOBPCG method. As mentioned
in [1], we take T as

T =
(
A0 − τA(µ(d)

i )
)−1

=
(
A0 − τ(−A1 − µ(d)

i A2)
)−1

,(5.2)

where τ is a shift value. That is, the modified directions from computing Wk parallel
to those obtained from one step of the inverse power iteration on the residual Rk. In

SecTypIt, we need to compute d smallest positive eigenvalues λ(d)
i,1 ≤ · · · ≤ λ(d)

i,d for

(5.1) and use λ(d)
i,d to produce the new µ(d)

i+1. This indicates that we can focus on the

improvement of the convergence for computing λ(d)
i,d . Therefore, the shift value τ in

(5.2) can be chosen as closer to the desired eigenvalue λ(d)
i,d .

Here, we take τ = 0.85θk,d, where θk,1 ≤ · · · ≤ θk,d are the smallest positive
Ritz values in the kth iteration of LOBPCG for solving (5.1). In computing the

first eigenvalue λ1 of (2.12), the initial vectors of (5.1) with the initial guess µ(1)
0 are

randomly constructed. We can see that, in the first few iterations of LOBPCG, the

Ritz values are far away from λ(1)
1,1. In practice, τ is kept fixed as a given target value

for the first few iterations of LOBPCG.
From (5.2), computing Wk = TRk is equivalent to solving linear systems

(
A0 + τ(A1 + µ(d)

i A2)
)
y = (Rk)j ,(5.3)
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where (Rk)j is the jth column of the residual matrix Rk. However, due to the com-
plexity of A2, A1 and A0 in (2.12b)–(2.12d), it is still challenging to solve (5.3). The
difficulties are: (i) the direct methods can hardly be directly applied to solve (5.3)
because the matrices A0, A1 and A2 are fully dense; (ii) the iterative methods for
solving (5.3) are not efficient because a suitable preconditioner is, in general, not
available. To remedy these drawbacks, we enlarge the linear system (5.3) to aug-
mented linear systems (see (5.6) and (5.7), respectively, below) according to the cases
of the refractive indices so that the augmented systems can then be solved by the
direct methods.

We first consider N(x) = n0I3 for some positive constant n0 > 1. In this case,
the QEP (2.12) can be further simplified as follows

[λ2(n0M1)︸ ︷︷ ︸
A2

+ λ(−(n0 + 1)K)︸ ︷︷ ︸
A1

+ SM−1
1 S⊤

︸ ︷︷ ︸
A0

]p = 0

and we have

A0 + τ(A1 + µ(d)
i A2) = SM−1

1 S⊤ − τ(n0 + 1)K + τµ(d)
i n0M1.

Let

(5.4) ũ := M−1
1 S⊤y ⇒ M1ũ− S⊤y = 0.

Then, equation (5.3) implies that

Sũ+
(
−τ(n0 + 1)K + τµ(d)

i n0M1

)
y = (Rk)j .(5.5)

Combining (5.4) and (5.5), we obtain the augmented linear system as

[
−τ(n0 + 1)K + τµ(d)

i n0M1 S
−S⊤ M1

] [
y

ũ

]
=

[
(Rk)j
0

]
.(5.6)

Proceeding similarly, for general non-constant index of refraction, we enlarge (5.3)
into the augmented linear system:

⎡

⎣
M 0 −S⊤

0 M −T ⊤
1

S − τT1 τ(µ(d)
i T1 − S) τ(µ(d)

i M1 −K)

⎤

⎦

⎡

⎣
ũ

ṽ
y

⎤

⎦ =

⎡

⎣
0

0
(Rk)j

⎤

⎦ .(5.7)

5.2. Initializations of the LOBPCG. When the LOBPCG is applied to solve

(5.1), we compute the first ℓd = min{d + 2, ℓ} smallest positive eigenvalues λ(d)
i,1 ≤

· · · ≤ λ(d)
i,ℓd

and the associated eigenvectors p(d)
i,1 , . . . ,p

(d)
i,ℓd

of (5.1). Because the new

µ(d)
i+1 is produced by SecTypIt with µ(d)

i , we naturally use p
(d)
i,1 , . . . ,p

(d)
i,ℓd

as the initial

vectors of LOBPCG for solving the µ-SDGEP (5.1) with the new µ(d)
i+1. Moreover,

when the sequence {λ(d)
i,d } converges to λd at i = id, the eigenvalue λ(d)

id,d+1 and the

eigenvector matrix [p(d)
id,1

· · ·p(d)
id,ℓd

] can also be chosen as good initial approximations
for µl in SecTypIt and for X0 in LOBPCG, respectively, for finding the next λd+1.
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5.3. Stopping tolerance for the µ-SDGEP (5.1). The stopping criteria can
be divided into outer (SecTypIt) and inner (LOBPCG) criteria.

For each SecTypIt procedure, we inspect if the sequence {µ(d)
i } converges to the

desired eigenvalue λd by checking

(5.8)
|µ(d)

i − µ(d)
i−1|

µ(d)
i

=
|λ(d)

i,d − λ(d)
i−1,d|

λ(d)
i,d

< tol := 10−8.

On the other hand, the LOBPCG method, as an inner iteration, aims to compute

the dth desired eigenpair (λ(d)
i,d ,p

(d)
i,d ) of (5.1) for the update of (µ

(d)
i ,β(d)

i ) with β(d)
i =

1/λ(d)
i,d . So, at each step of LOBPCG, we only need to measure the magnitude of the

relative residual of (λ(d)
i,d ,p

(d)
i,d ) in Line 6 of Algorithm 2. From the definition of the ma-

trices A2, A1 and A0 in (2.12b)-(2.12d), the quantity ∥A0∥F + |λ|(∥A1∥F + |µ|∥A2∥F )
is roughly approximate by ∥[K E]∥2F + |λ|∥[K E]∥F , where ∥ · ∥F is the Frobenius

norm. Therefore, to verify the convergence of the dth Ritz eigenpair (λ(d)
i,d ,p

(d)
i,d ), we

use the normalized residual norm defined by

NRes(d)i,d =
∥A0p

(d)
i,d + λ(d)

i,d (A1 + µ(d)
i A2)p

(d)
i,d ∥F

(∥[K E]∥F + λ(d)
i,d )∥[K E]∥F ∥p(d)

i,d ∥F
.

We then introduce an adaptive stopping criterion for the LOBPCG method ac-
cording to the step number i of the SecTypIt approach. Given a suitable initial guess

µ(d)
0 , we will choose a corresponding tolerance ε(d)0 for computing β(d)

0 = 1/λ(d)
0,1 from

(5.1) with i = 0. For the subsequent iterations, we tighten the tolerance of LOBPCG
according to the outer iteration number i given by

ε(d)i = max{10−13, ε(d)i−1/10}, for i = 1, 2, . . . .

In other words, when the sequence of approximate eigenvalues {µ(d)
i } is getting closer

to the exact solution λd, the stopping criterion becomes increasingly tight to ensure
that the SecTypIt is applied on the exact eigencurve passing through (λd, 1/λd). So,

how to determine the initial tolerance ε(d)0 for each d ≥ 1?
At the very beginning of the SecTypIt, µ1

0 can be selected by any positive number
sufficiently small that it may be far away from the exact eigenvalue λ1, and to save the

computational cost of LOBPCG, we only need a rough approximation of β(1)
0 = 1/λ(1)

0,1

from (5.1) with d = 1 and i = 0. For d ≥ 2, to correct the accuracy of µ(d)
0 ,

the corresponding tolerance is dependent on the NRes(d−1)
id−1,d

, where id−1 denotes the

iteration number i of SecTypIt satisfying (5.8). Based on the above description, we
set

ε(d)0 =

{
10−7, if d = 1,

min(10−7,NRes(d−1)
id−1,d

), if d ≥ 2.

Now, we have Algorithm 3, which summarizes the practical procedure for solving
a few positive eigenvalues of the QEP (2.12) by SecTypIt [25] combined with the
indefinite LOBPCG with one preconditioner [23].
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Algorithm 3 The SecTypIt with LOBPCG for Solving the QEP (2.12)

Input: Matrices (A2, A1, A0) in (2.12), the number of desired smallest positive eigen-
values ℓ, an initial matrix P0 ∈ Rn×3, tolerance tol, initial values µ0 > 0 and
τ > 0.

Output: The desired eigenpairs (λd,pd) for d = 1, . . . , ℓ with 0 < λ1 ≤ · · · ≤ λℓ.
1: for d = 1, . . . , ℓ do
2: Set ℓd = min(d+ 2, ℓ) and ε = min(10−7, 50×NResd) where NRes1 = 1.
3: % Fixed point iteration to generate µ1 and µ2

4: for i = 0, 1 do

5: Set B = −A1 − µiA2.
6: Call [λ+

1 , . . . ,λ
+
ℓd
,p+

1 , . . . ,p
+
ℓd
] = LOBPCG(A0, B, ℓd, Pi, ε) with solving an

augmented linear system (5.6) or (5.7) to compute Wk in Line 7 of Algo-
rithm 2.

7: Set µi+1 = λ+
d , Pi+1 = [p+

1 , · · · ,p
+
ℓd
] and ε = max{10−13, ε/10}.

8: if i = 0 then

9: Set µl = λ+
d and βl = 1/λ+

d .
10: else

11: Set µr = λ+
d , βr = 1/λ+

d and i = 2.
12: end if
13: end for

14: while (|µi−1 − µi−2|/µi−1 ≥ tol) do
15: Call [µl, µr,βl, flag] = SecTypIt(µl, µr,βl,βr).
16: if flag = 1 then

17: Set µi = µl and B = −A1 − µiA2.
18: Call [λ+

1 , . . . ,λ
+
ℓd
,p+

1 , . . . ,p
+
ℓd
] = LOBPCG(A0, B, ℓd, Pi, ε) with solving an

augmented linear system (5.6) or (5.7) to compute Wk in Line 7 of Algo-
rithm 2.

19: Set βl = 1/λ+
d , Pi+1 = [p+

1 , · · · ,p
+
ℓd
].

20: end if

21: Set µi = µr and B = −A1 − µiA2.
22: Call [λ+

1 , . . . ,λ
+
ℓd
,p+

1 , . . . ,p
+
ℓd
] = LOBPCG(A0, B, ℓd, Pi, ε) with solving an

augmented linear system (5.6) or (5.7) to compute Wk in Line 7 of Algo-
rithm 2.

23: Set βr = 1/λ+
d , Pi+1 = [p+

1 , · · · ,p
+
ℓd
] and i = i+ 1.

24: Set ε = max{10−13, ε/10}.
25: end while

26: Compute the normalized residual norm NResd+1 for (λ+
d+1,p

+
d+1).

27: Set µ0 = λ+
d+1 and P0 = [p+

1 , · · · ,p
+
ℓd
,p] with a given random vector p.

28: end for

6. Numerical results. In this section, we demonstrate some numerical results
for computing the 6 smallest positive eigenvalues on two domains [33]: (i) the unit
ball D1 centered at the origin and (ii) the unit cube D2 defined as [0, 1]× [0, 1]× [0, 1].
The tetrahedra mesh is used to construct the meshes for D1 and D2.

All computations in this section are carried out in MATLAB 2014b. The systems
in (5.6) and (5.7) are solved by direct method. For the hardware configuration, we
use a HP workstation that is equipped with two Intel Quad-Core Xeon E5-2643 3.33
GHz CPUs, 96 GB of main memory, and the RedHat Linux operating system.
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(b) N3(8) for D2
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(c) N3(4) for D1
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(d) N2(4) for D2

Fig. 2. Full and zoom in spectrums of the QEP in (2.12) with various index of refraction. The
mesh sizes are h ≈ 0.2 and h = 1/8 for D1 and D2, respectively. The matrix sizes of K are 2, 777
and 1, 909, respectively, and the matrix sizes of G are 753 and 954, respectively.

The benchmark problems contain three different types, N1, N2 and N3, for the
index of refraction N(x). N1 and (N2, N3) correspond to isotropic and anisotropic
mediums, respectively, with constant index of refraction given by

N1(n0) = n0I3, N2(n0) =

⎡

⎣
n0 1 0
1 n0 0
0 0 n0 − 2

⎤

⎦ , N3(n0) =

⎡

⎣
n0 1 0.5
1 n0 − 1 0.8
0.5 0.8 n0 − 1.5

⎤

⎦ .

The full and zoom-in spectrums of the QEP in (2.12) with different N(x) are shown
in Figure 2.

6.1. Numerical correctness validation. We validate the correctness of the
proposed algorithm by solving the benchmark problem for domain D1 with mesh size
h ≈ 0.05 and N(x) = N1(n0) = 16I3. The matrix sizes of the associated matrices
K and G are 216, 468 and 12, 705, respectively. The number of nonzeros of each
matrix can be found in Table 3. The values

√
λ of the 6 smallest positive eigenvalues

produced by Algorithm 3 are 1.1669, 1.1670, 1.1670, 1.4623, 1.4623 and 1.4624. Monk
and Sun in [28] show the 6 smallest positive eigenvalues by locating the zeros of the
determinants in TM and TE modes as 1.1654 with multiplicity 3 and 1.4608 with
multiplicity 3, respectively. This shows that our results coincide rather well with
these exact transmission eigenvalues.
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Table 3
The matrix dimension m, n (K ∈ Rn×n, E ∈ Rn×m) and the numbers of the nonzero elements

of the matrices for the benchmark problems.

N1(n0)

(m,n)
number of the nonzero elements

K E M1(MN ) F1(FN ) G1(GN )
D1 (12705, 216468) 3476268 75405 3476268 75405 63525

N2(n0)

(m,n)
number of the nonzero elements

K E M1(MN ) F1(FN ) (G1, GN )
D1 (9312, 136833) 2189097 55410 2189097 55410 (46560, 46560)
D2 (13434, 130989) 1442037 37896 2074161 74394 (66738, 72166)

N3(n0)

(m,n)
number of the nonzero elements

K E M1(MN ) F1(FN ) (G1, GN )
D1 (9312, 136833) 2189097 55410 2189097 55410 (46560, 46560)
D2 (13434, 130989) 1442037 37896 2074161 74394 (66738, 73482)

6.2. Convergence of LOBPCG. We apply indefinite LOBPCG to compute
some smallest positive eigenvalues of (5.1) and use one step of the inverse power
method to accelerate the convergence. The convergence of LOBPCG will affect the
efficiency of Algorithm 3. Now, we demonstrate the convergence from the views of the
Ritz values and normalized residual norms. The matrix sizes of K and G with N3(8)
in this benchmark problem are 130, 989 and 13, 434, respectively, for the domain D2.
The number of nonzeros of each matrix can be found in Table 3. The 6 smallest
positive eigenvalues are computed.

The Ritz values and the associated normalized residual norms for computing the
first and second smallest positive eigenvalues are shown in Figure 3. In this figure, we

demonstrate the iteration number of SecTypIt, i.e., the number i of µ(d)
0 , µ(d)

1 , . . . , µ(d)
i ,

and stack the iteration number of LOBPCG for solving (5.1) with µ(d)
0 , . . . , µ(d)

i in

the horizontal axis. Because the initial data for (5.1) with µ(1)
0 are randomly con-

structed, as shown in Figure 3(a), it needs 25 iterations of LOBPCG to compute the

first approximate eigenvalue λ(1)
1,1. After µ(1)

0 has been computed, according to the
initialization scheme in Subsection 5.2, the good initial vectors obviously reduce the
iteration number of LOBPCG as shown in the horizontal axis of Figure 3. The asso-
ciated NRes of the Ritz pairs in Figures 3(b) and 3(d) are monotonically convergent

to the stopping tolerance in a few iterations for other µ(d)
i .

Note that when λ1 is computed, we add an extra random initial vector to the
initial subspace. This random vector leads to corresponding NRes larger than those
of others, as shown in Figure 3(d). On the other hand, the locking technique is also
applied to deflate the convergent eigenpair if needed. When the Ritz vector is deflated,
a random vector is added to the searching subspace. (See the first smallest Ritz value
in Figure 3(c).)

For different indices of refraction N(x), we also obtain the same behaviour about
the iteration numbers of LOBPCG. The results are presented in Figure 4. From these
numerical results, we see that it is efficient to solve the µ-SDGEP (5.1) by using
LOBPCG with our adaptive strategies proposed in Section 5.
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Fig. 3. The smallest and second positive Ritz values and the associated normalized residual

norms produced by LOBPCG in solving (5.1) with µ(d)
0 , . . . , µ(d)

i . The matrix size of K with N3(8)
is 130, 989 for domain D2.

6.3. Convergence of the SecTypIt method. In this subsection, we will dis-
cuss the convergence of the SecTypIt with stopping tolerance 10−8 as introduced in
Subsection 5.3. First, the iteration numbers of SecTypIt in computing the 6 smallest
positive eigenvalues for D1 with N2(16), N2(8), N3(4) and D2 with N3(16), N3(8),
N2(4) are shown in Figure 5. For each index of refraction, the iteration number
is less than or equal to 16 to compute one desired eigenvalue. This shows that re-
gardless of whether the desired eigenvalues are obviously far away from the complex
eigenvalues (see Figures 2(a)-2(b)) or are surrounded by the complex eigenvalues (see
Figures 2(c)-2(d)), Algorithm 3 can be used to compute the desired eigenpairs effi-
ciently and robustly.

7. Conclusions. This paper focuses on computing a few smallest positive eigen-
values of the three-dimensional Maxwell’s transmission eigenvalue problem, which
plays an important role in inverse scattering theory. Its discretized matrix eigenvalue
problems are related to a non-Hermitian generalized eigenvalue problem (GEP) in
(2.9) and a symmetric quadratic eigenvalue problem (QEP) in (2.12), which are de-
duced from two finite element methods in [28] and [33], respectively, using the lowest
Nédélec edge elements. We first show that these two problems have the same spec-
trum, except for the nonphysical zero eigenvalues. However, owing to the degenerate
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Fig. 4. Iteration numbers of LOBPCG for computing each λ1, . . . , λ6 with various N(x). The
matrix sizes of K are 136, 833 and 130, 989 for D1 and D2, respectively, and the matrix sizes of G
are 9, 312 and 13, 434, respectively. The number of nonzeros of each matrix can be found in Table 3.

double-curl operator, the QEP still has a large number of zeros. To compute the
desired smallest positive eigenvalues, we propose a SecTypIt by rewriting the QEP as
a sequence of µ-SDGEPs.

To avoid the effect of the large nullity of the µ-SDGEP inherited from the QEP,
we apply LOBPCG with one preconditioner [23] to solve the µ-SDGEP. Due to the
complexity of the coefficient matrices of the QEP, solving the preconditioning linear
system becomes a challenging problem. To this end, we propose a novel method to en-
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Fig. 5. Iteration numbers of the secant method for computing each λ1, . . . ,λ6 with various
N(x). The matrix sizes of K are 136, 833 and 130, 989 for D1 and D2, respectively, and the matrix
sizes of G are 9, 312 and 13, 434, respectively.

large the preconditioning linear system so that one can solve it by the direct/iterative
method. Furthermore, some important heuristic strategies for the determination of
initial data and stopping tolerances for the SecTypIt and LOBPCG are introduced
to accelerate the convergence. The numerical results demonstrate that Algorithm 3
is robust, although the desired eigenvalues are surrounded by complex eigenvalues.
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