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Abstract In this paper, we apply a simple finite element numerical scheme, proposed in
an earlier work (Liu in Math Comput 70(234):579–593, 2000), to perform a high resolu-
tion numerical simulation of incompressible flow over an irregular domain and analyze its
boundary layer separation. Compared with many classical finite element fluid solvers, this
numerical method avoids a Stokes solver, and only two Poisson-like equations need to be
solved at each time step/stage. In addition, its combination with the fully explicit fourth order
Runge–Kutta (RK4) time discretization enables us to compute high Reynolds number flow in
a very efficient way. As an application of this robust numerical solver, the dynamical mech-
anism of the boundary layer separation for a triangular cavity flow with Reynolds numbers
Re = 104 and Re = 105, including the precise values of bifurcation location and critical
time, are reported in this paper. In addition, we provide a super-convergence analysis for the
simple finite element numerical scheme, using linear elements over a uniform triangulation
with right triangles.
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1 Introduction

The primary goal of this paper is to numerically investigate incompressible flow over
non-rectangular domains, with no-penetration, no-slip boundary condition, and provide a
super-convergence analysis for the simple finite element scheme using linear element. The
vorticity–stream function formulation of two-dimensional (2-D) incompressible Navier–
Stokes equations (NSE) is considered, which reads,

∂tω + (u · ∇)ω = ν$ω + f, in %, (1)

$ψ = ω, in %, (2)

u = ∇⊥ψ := (−∂yψ, ∂xψ), (3)

and the no-penetration, no-slip boundary condition is formulated in terms of the stream
function:

ψ = 0,
∂ψ

∂n
= 0, on ∂%. (4)

Here % is assumed to be a bounded, simply connected domain with Lipschitz continuous
boundary' = ∂%, andwe only consider the 2-D polygon domain in this paper. The Reynolds
number is defined as Re = LU

ν , in which L , U and ν denote the length scale, velocity scale
and the kinematic viscosity, respectively. For simplicity, we take L = 1, U = 1 so that
Re = 1

ν in this paper.
It is well-known that a boundary layer appears in any viscous incompressible fluid, due

to the slow-down of the flow by a no-slip boundary [26,44]. Moreover, this shear flow may
detach and separate from the boundary, generating vorticity and a recirculation area for flow
with a high Reynolds number.

Many experimental observations have indicated that the point where the vorticity vanishes
on the boundary may be a candidate for separation of the boundary layer; see the descriptions
in [6]. The theoretical justification of this fact has been provided in a fewworks [21–23], using
an orbit analysis approach for 2-D divergence-free vector field. In more detail, the structural
bifurcation on the boundary is associated with the boundary layer separation, and such a
bifurcation is assured to occur when the vorticity reaches zero value as a local maximum
(minimum), with a positive (negative) time derivative.

The qualitative description of the structural bifurcation of incompressible NSE is valid for
any domain, either rectangular or non-rectangular. Obviously, such a study on an irregular,
non-rectangular domain would lead to plenty of practical applications, such as flow past an
obstacle, oceanic flow, blood flow in the vessel, etc.

There have been many earlier numerical works for high Reynolds number flow, such
as the ones over a rectangular domain using finite difference or spectral methods [5,11–
14,17,20,34,35], the flowpast cylinder [36,37], etc. Also see the relatedworks [18,19,32,41]
using either a curvilinear domain or an immersed boundary method. In these numerical
simulations, the computational domain is either rectangular or could be conformally mapped
to a rectangular domain, so that a fast Poisson solver could be easily obtained, which in
turn leads to a great numerical efficiency. Subsequently, a natural question arises: how to
perform a numerical simulation of a high Reynolds number flow over an irregular domain in
an efficient way so that the boundary layer separation could be studied in detail?

The finite element method is especially suitable for the numerical simulation over an
irregular domain, due to its domain flexibility; see the related references [2,8–10,24,25,28–
31,39,46,48,49], etc. Meanwhile, it is observed that most of these existing works are for
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stationary flow or nonstationary flow with moderate Reynolds number (Re ≤ 103); no
detailed numerical exploration for the boundary layer separation over a non-rectangular
domain has been reported. The key reason is that, most existing finite element works for
incompressible fluid are based on a Stokes solver, in which the divergence-free condition
and the pressure gradient are coupled together. As a result of this highly non-trivial coupling,
a well-resolved numerical simulation of boundary layer separation becomes computationally
costly and very challenging.

In this article, we apply a simple finite element method for (1)–(3), proposed by E & Liu
[43], to the numerical study of boundary layer separation over a triangular domain. The simple
means that k-th (k = 2, 3) order finite elements can be used for both stream function and
vorticity. This finite element scheme avoids a Stokes solver, and only two Poisson/Poisson-
like equations need to be solved at each time step/stage. This approach greatly improves the
computational efficiency for high Reynolds number flow, in conjunction with a fully explicit
Runge–Kutta (RK4) time discretization. The numerical stability of this fully explicit time
stepping follows the linearized stability domain argument; see the related discussions about
the finite difference approximation for high Reynolds flow [11,12], where the convection
and viscous terms are both treated explicitly in the vorticity transport equation.

The numerical scheme using a linear element is applied to the study of the structure
bifurcation of flow and boundary layer separation over a right triangle domain. The linear
element approximation shows a great numerical advantage, since it usually leads to a smaller
band width of stiff matrix, compared with the higher order elements. There are many existing
numerical works for a triangular cavity flow, see the related references [1,14,27,33,38,40,
47], etc. Again, due to the numerical complexity for highReynolds number flows, no report on
the boundary layer separation has been presented in theseworks. In ourwork, we demonstrate
the detailed transition process for the structural bifurcation on the triangular domain.

In addition, we provide an improved convergence analysis for the simple finite element
presented in [43]. In the original article, the convergence order is given by hk−1/2, with k
the polynomial degree in the finite element space. However, a careful observation indicates
that the presented convergence analysis is only valid for the elements with k ≥ 2, such as the
quadratic (k = 2) and cubic (k = 3) polynomials. An analysis of the linear element scheme,
which is of great practical interests due to its smaller band width, has not been justified at
the theoretical level. The reason for this subtle fact is that, the L∞(0, T ; L2) error estimate
for the velocity variable yields an O(hk−1/2) = O(h1/2) (with k = 1) convergence, and an
application of standard inverse inequality fails to recover the L∞ bound of the numerical
solution for the velocity, in both 2-D and 3-D cases. This L∞ recovery has always played a
crucial role in the nonlinear error estimate.

In this paper, we present a super-convergence analysis of the simple finite element scheme
using a linear element over a uniform triangulation Th with right triangle cells. To overcome
the above mentioned difficulties, we apply the super-convergent property of a uniform tri-
angulation so that the accuracy could be improved by h1/2; see the related analysis [42,50].
In more detail, with this super-convergence feature, the L∞(0, T ; L2) convergence order for
the velocity variable, in conjunction with the L2(0, T ; L2) convergence order for the vortic-
ity variable, is improved to O(h), under an a-priori L2(0, T ; L∞) bound of the numerical
solution for the velocity variable. In turn, the rest work is focused on the recovery of such
an a-priori L2(0, T ; L∞) bound for the velocity. First, we make use of the O(h) conver-
gence order for the vorticity variable, in the L2(0, T ; L2) norm. Next, aW 1,4 estimate of the
standard finite element Poisson solver is recalled, which yields an O(h) error estimate for
the velocity variable in the L2(0, T ; L4) norm. Subsequently, an application of an alternate
inverse inequality results in an O(h1/2) estimate for the L2(0, T ; L∞) error of the velocity
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variable, and this becomes a uniform bound over a given final time. Therefore, the a-priori
L2(0, T ; L∞) bound for the velocity is justified by the triangle inequality, and the nonlinear
error analysis could go through.

The remaining part of this paper is organized as follows. The simple finite element method
is recalled in Sect. 2. In Sect. 3, the simple finite element scheme is applied to a triangular
cavity flow and the numerical investigation of the boundary layer separation is presented in
detail. In Sect. 4, we provide a detailed error estimate and super-convergence analysis for
the linear element scheme, using a uniform triangulation with right triangle cells, and the
convergence rate is given by O(h) for both the L∞(0, T ; L2) error for the velocity variable
and the L2(0, T ; L2) error for the vorticity variable. A numerical example of accuracy check
over a trapezoid domain is presented in Sect. 5, with the super-convergence result observed.
Finally, some concluding remarks are made in Sect. 6.

2 Review of Simple Finite Element Discretization and the Convergence
Order

Some usual notations are used in the finite element framework. Let Hr (%), r ≥ 0 be the
standard Sobolev space on the domain%, associated with the norm ∥ ·∥r,% and the semi-norm
| · |r,%. In case r = 0, we have H0(%) = L2(%). For the function φ(x, t), which depends
on both the spatial variable x and the temporal variable t , the norm ∥φ(x, t)∥L p((0,T ];Hr (%))

is defined as ∥)(t)∥L p((0,T ]), with )(t) = ∥φ(x, t)∥Hr (%). For the n-dimensional vector
functions with components in one of these spaces, we shall use the notation

L p(%) = {L p(%)}n, Hr (%) = {Hr (%)}n, (5)

L p((0, T ]; Hr (%)) = {L p((0, T ]; Hr (%))}n . (6)

For simplicity, we assume that % is a polygonal domain. Let Th be a quasi-uniform
triangulation of %, and the mesh parameter is given by h = maxK∈Th hK , where hK stands
for the diameter of triangle element K . And also, Xk

h be the standard continuous finite element
space with k-th degree polynomials on each element of Th . Denote Xk

0,h be the subspace of
Xk
h with zero boundary values.
The NSE (1)–(3) can be formulated in a weak form: find ω ∈ H1(%) and ψ ∈ H1

0 (%)

such that

(φ, ∂tω) − (∇φ,ωu) = −ν(∇φ,∇ω)+ ( f,φ), ∀φ ∈ H1
0 (%), (7)

(∇φ,∇ψ) = −(φ,ω), ∀φ ∈ H1(%). (8)

See [43] for a detailed derivation.
In turn, the finite element semi-discretization scheme is given as follows: find ωh ∈ Xk

h
and ψh ∈ Xk

0,h , such that

(φ, ∂tωh) − (∇φ,ωhuh) = −ν(∇φ,∇ωh)+ ( f,φ), ∀φ ∈ Xk
0,h, (9)

(∇φ,∇ψh) = −(φ,ωh), ∀φ ∈ Xk
h . (10)

In addition, we denote the numerical velocity as uh = ∇⊥ψ .
For the time stepping procedure to the semi-discretization formulation (9, 10), we use

the classical RK4 in the computation, since its stability region encompasses an appreciable
portion of the imaginary axis. In the RK4 time stepping procedure, computations of the
vorticity and stream function have been fully decoupled, so that a Stokes solver is avoided.

123



J Sci Comput (2015) 65:1189–1216 1193

No iteration is required between the vorticity and stream function to recover the bi-harmonic
operator. The main computation is involved with solving a standard Poisson equation and
inverting a standard mass matrix. Among these two linear systems, most computational costs
will be paid for the Poisson solver, due to an O(1) condition number of the mass matrix. To
implement the simple finite element scheme,we useHypre solver package (High performance
preconditioners) for the parallel codes [16].

In addition, a purely explicit treatment of the nonlinear term also greatly simplifies the
computational effort. As for the time step constraint, the fully discrete scheme (in conjunction
with the RK4 time stepping) is stable as long as $t satisfy the following two conditions:

∥uh∥L∞((0,T ];L∞(%))
△t
h

< C1, 4ν
△t
h2

< C2. (11)

The detailed description for this choice is referred to [12], in which the finite difference
approximation was taken as the spatial discretization.

More importantly, the Ladyzhenskaya–Babuska–Brezzi (LBB) condition is not required
in the finite element space construction, comparedwith the Stokes solver-based finite element
schemes for incompressible fluid [3,8,24,25,29,30,39,49]. The detailed description has been
outlined in [43]. This fact greatly improves the computational efficiency for high Reynolds
number flow, as demonstrated by the numerical examples presented in Sect. 3.

Remark 2.1 In addition to the classical RK4, some other multi-stage RK schemes can also
be used. Meanwhile, for the computation of moderate to high Reynolds number flows, the
corresponding RK scheme has to have stability region that encompasses an appreciable
portion of the imaginary axis. From this point of view, both RK3 and RK4 are good choices,
while RK2 is insufficient for moderate to high Reynolds number flows since its stability
region does not contain any portion of the imaginary axis.

In addition, the following convergence result was provided in [43], using mixed finite
element analysis.

Theorem 2.1 [43] Let (ψ,ω, u) satisfy (7, 8) and (ψh,ωh, uh) be the numerical solution
of (9, 10) with k-th order finite element space Xk

h, (k ≥ 2). Then we have

∥u − uh∥L∞((0,T ];L2(%)) + ∥ω − ωh∥L2((0,T ];L2(%)) ≤ Chk−1/2, (12)

where C is a constant only dependent on the exact solution, the final time T , and the kinematic
viscosity ν, independent of h.

In the above theorem, higher order finite element (k ≥ 2) have to be used to ensure the
convergence order. In Sect. 4, an improved convergence result is shown to be valid for the
linear element scheme, and a super-convergence will be proven.

3 Numerical Simulation of the Structure Bifurcation and Boundary Layer
Separation

The general theory of structural stability and bifurcation for 2-D divergence-free vector fields
is referred to [21–23]. For simplicity, we only outline themain result for structural bifurcation
associated with the boundary layer separation.
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Denote Dr (%) and Br
0(%) as

Dr (%) =
{
u ∈ Cr

n(%) |un |∂% = 0, div u = 0
}
, (13)

Br
0(%) =

{
u ∈ Dr (%) |u|∂% = 0

}
, (14)

where un = u · n and uτ = u · τ , n and τ are the unit normal and tangent vectors on ∂%,
respectively. A point P ∈ % is called a singular point of v if v(P) = 0. A point P ∈ ∂% is
called a ∂-regular point of v if ∂vτ (P)/∂n ̸= 0; otherwise, P ∈ ∂% is called a ∂-singular
point of v.

Let u, v ∈ C1([0, T ], Br
0(%)) have the following Taylor expansions:

u(x, t) = u0(x)+ (t − t0)u1(x)+ O(|t − t0|2), (15)

v(x, t) = v0(x)+ (t − t0)v1(x)+ O(|t − t0|2), (16)

u0(x) = u(x, t0), u1(x) = ∂u(x, t0)
∂t

, (17)

v0(x) = ∂u0

∂n
, v1(x) = ∂u1

∂n
, (18)

in which v0, v1 denote the vector field associated with the normal derivative of u0 and u1,
respectively.

The structural bifurcation theory is recalled and its connection with the boundary layer
separation is given.

Theorem 3.1 [21–23] Let u ∈ C1([0, T ]; Br
0(%)), r ≥ 2 satisfies the following assumption

(with ω = ∇ × u = −uy + vx ):

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ 2
(P∗, T ∗) ̸= 0,

∂ω

∂t
(P∗, T ∗) ̸= 0, (19)

then we have

1. u(x, t) has a bifurcation in its local structure at (P∗, T ∗); and
2. if P∗ ∈ ∂% is a unique singular point on ∂%, then u(x, t) has a bifurcation in its global

structure at t = T ∗.

For the 2-D incompressible NSE in the velocity–pressure formulation

∂tu + u · ∇u + ∇ p = 1
Re

$u + f , (20)

∇ · u = 0, (21)

u = 0, on ∂%, (22)

the structural bifurcation theory can be applied to this divergence-free vector fields u(t).

Remark 3.1 [21] The conditions on vorticity in (19) indicate that the formation of recircu-
lating cells starts at the moment when the vorticity reaches its zero point on the boundary as
a local minimum (maximum) point in space. We denote this separation point as P∗ ∈ ∂%

at critical moment T ∗. When the flow is upward, this amounts mathematically to assuming
that there exists a neighborhood U1 of P∗ such that the boundary of U1 includes a portion
of ∂% and

ω ≤ 0, in U1, when t < T ∗. (23)
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This condition implies that the vorticity reaches zero at (P∗, T ∗) as a local maximum in space
and increases afterward in time, and vice versa. In this case, the formation of a recirculating
flow region is given by the following conditions:

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ 2
(P∗, T ∗) < 0,

∂ω

∂t
(P∗, T ∗) > 0. (24)

Remark 3.2 Theorem 3.1 is valid for any domain, either rectangular or non-rectangular. It
has been numerically verified on the rectangular domain in [21], using a fourth order finite
differencemethod for a square cavity flow. In this paper, we present a numerical simulation of
a triangle cavity flow, in particular for its dynamical mechanism of boundary layer separation,
using the simple finite element scheme. The numerical results are expected to be in a nice
agreement with Theorem 3.1 and Remark 3.1.

The 2-D incompressible flow in a non-dimensional right triangle domain% is investigated
in detail, with the boundary sections given by one vertical line x = 1, one horizontal line
y = 1 and one oblique line x+y = 1. Let'1 denote the top (lid) boundary, and'2 = ∂%\'1.

We perform the numerical simulations with two different set-ups of initial data and bound-
ary condition. The first is a smoothly started flow, and a parabolic driven velocity is imposed
on the top boundary. Since the corner singularity is avoided, this numerical approach enables
us to compute the flow at a high Reynolds number in an efficient way. As a result, we present
the numerical results for Reynolds numbers Re = 104 and Re = 105, and the detailed mech-
anism of boundary layer separation is illustrated through this simulation. The second one
is a more physics-relevant benchmark problem: an impulsively started flow with a constant
driven velocity u ≡ 1 on the top boundary. Due to the corner singularity, this numerical work
is more challenging, and we present the results of impulsively started flow with Re = 104.

Remark 3.3 Physical boundary layer separation is one of the most important and difficult
problems in fluid dynamics. Moreover, various numerical and experimental evidences have
shown that, a 3-D effect has to be taken into consideration for the high Reynolds number
flows. For example, it was reported in a recent article [27] by Gonzalez et al. that the steady
triangular flow is unstable to 3-D perturbations for a Reynolds number large enough.

In this paper, we do not intend to solve these fundamental problems, since they are far
beyond the current computational capacity. Meanwhile, the incompressible NSE is univer-
sally accepted as an accurate model of the practical fluid problems. The example we provide
is the boundary layer analysis for the incompressible NSE and itself is of great mathematical
and physical interests. In this regard, the 2-D computation and the smooth initial data set-up
are taken. This also gives a challenging benchmark computation. The cavity flow benchmark
indeed has been a great guideline for the numerical scheme development of incompressible
flow in the last three decades or more.

3.1 Numerical Simulation of the Boundary Layer Separation over a Triangle
Domain, Smoothly Started Flow

The initial data for the stream function and vorticity, for the smoothly started, lid driven
cavity flow are given by

ψ0(x, y) = −16(x − 1)2(y − 1)(x + y − 1)2, ω0(x, y) = $ψ0(x, y), (25)

so that the no-penetration, no-slip boundary conditions are imposed on '2 and a non-
homogeneousNeumannboundary condition (with a parabolic slip velocity profile) is imposed
on the top boundary:
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Fig. 1 The triangular domain mesh

∂ψ

∂n

∣∣∣∣'1 = u · τ |'1 = 16(x − 1)2x2,
∂ψ

∂n

∣∣∣∣
'2

= 0. (26)

Note that these Neumann boundary conditions have to be taken into consideration in the
computation of vorticity in the RK4 time stepping.

The triangular domain mesh is illustrated in Fig. 1. For all the contour plots displayed in
the following sections, solid line corresponds to positive values, while dotted line corresponds
to negative values, and the values in legend are their abstract values.

3.1.1 Example 1: Flow with Reynolds number Re = 104

To capture the detailed structures in the process of structural transition, we perform the
numerical test (using the linear finite element) on a uniform triangulation Th of %, with
mesh parameter h = 1/1024. Due to the stability condition (11), we set the time step as
$t = 2.0E − 4.

The structural transition condition outlined in Theorem 3.1 could be applied to the oblique
line x + y = 1, since a no-slip boundary condition is imposed there. We focus our study of
the boundary layer separation mechanism on this oblique boundary section.

The numerical simulation shows that the vorticity along the upper-portion of the oblique
boundary remains negative for a while after the initial time. See Fig. 2 at time t = 1.3 for
the vorticity zoomed contours and its plot on the oblique line.

During this time interval, the boundary layer structure is standard and its regularity persists
until the boundary layer separation occurs. The stream function and zoomed contours at
t = 1.3, presented in Fig. 3, also clarify this standard structure.

Meanwhile, we also notice a small recirculation on the right vertical boundary x = 1; this
corresponds to another structural transition process, before the beginning of transition on the
oblique boundary. As time goes on, at t = 1.8, Fig. 4 presents the zoomed vorticity and its
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Fig. 3 The triangle cavity flow at time t = 1.3with h = 1/1024. Left stream function contours.Right zoomed
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plot on the oblique boundary. Similarly, the stream function and its zoomed contour plots are
displayed in Fig. 5.

A clear difference in the flow structure between t = 1.3 and t = 1.8 can be observed
by a comparison between Figs. 3, 5 for the stream function, Figs. 2, 4 for the vorticity. At
t = 1.8, the recirculation is apparent in the zoomed contour plots of stream function in Fig. 5,
while such a structure does not emerge at t = 1.3. It is also observed that the local maximum
of vorticity varies from a negative value to a positive one, from t = 1.3 to t = 1.8. This
fact is consistent with the extended discussion in Remark 3.1, since the basic recirculation is
upward along the oblique boundary.

Therefore, a conclusion from Theorem 3.1 implies that the transition occurs between t =
1.3 and t = 1.8. The critical point P∗ and the critical time T ∗ associated with the boundary
layer separation can be numerically captured. A careful numerical experiment gives the crit-
ical time T ∗ = 1.3456; at this time, vorticity reaches zero at P∗(0.34277340, 0.65722660),
as a local maximum, see Figs. 6 and 7. The vorticity at P∗ increases along the time, so
∂ω/∂t > 0. This exactly satisfies the conditions in Remark 3.1.
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Fig. 8 The triangle cavity flow at time t = 4.0 with h = 1/1024. Left stream function contours. Right
vorticity contours

At later time instants, other recirculation areas form along the boundary. We omit the
detailed descriptions, which are similar to the first transition process. The contour plots of
the stream function and vorticity at t = 4.0 are displayed in Fig. 8.

3.1.2 Double Resolution Check

The numerical simulation of high Reynolds number fluid is highly challenging, because of
many small structures of vortex roll-up, either around the boundary or at the interior region.
To demonstrate the numerical accuracy for the triangular driven cavity flow, for which the
explicit formof exact analytic solution is not available,we carry out the computations by using
three mesh grid and time step sizes: h = 1

384 , $t = 4.0E − 04 for the 2nd order element,
h = 1

1024 , $t = 4.0E − 04 for the linear element, and h = 1
1024 , $t = 2.0E − 04 for

the linear element, respectively. For accuracy verification, the stream function and vorticity
profiles computed by the three resolutions are compared on y = 0.5. These comparison plots
are presented in Fig. 9 (for T = 2.0) and Fig. 10 (for T = 4.0), respectively. A very nice
agreement can be observed in the comparison plots.
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Fig. 10 Comparison of the triangle cavity flow at y = 0.5 cut, for time T = 4.0, using two resolutions. Left
stream function comparison plot. Right vorticity comparison plot

3.1.3 Example 2: Lid-Driven Triangle Cavity Flow with a Higher Reynolds Number
Re = 105

More complicated structure transitions and vortex roll-up can be observed for the flow with a
higher Reynolds number. In this subsection, we present the contour plots (including zoomed
contours) of stream function and vorticity at two different time instants: t = 2.0 and t = 4.0,
for the triangular cavity flow with Re = 105, with the same physical set-up and initial data
as in Sect. 3.1.1. To capture the boundary layer structure in a more precise way, we use the
mesh parameter h = 1

1536 , and the time step size is taken as $t = 2.0E − 4. The contour
plots of the stream function and vorticity profiles at time t = 2.0 are given by Fig. 11, while
the zoom contours around the right boundary (x = 1) and the oblique boundary (x + y = 1)
are presented in Figs. 12, and 13, respectively. At a later time t = 4.0, the corresponding
contour plots and zoom contours could be observed in Figs. 14, 15 and 16.
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Fig. 11 The triangle cavity flow at time t = 2.0, with a Reynolds number Re = 105. Left stream function
contours. Right vorticity contours
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Fig. 12 Zoomed contours on the right boundary, for the triangle cavity flow at time t = 2.0, with a Reynolds
number Re = 105. Left stream function contours. Right vorticity contours

3.2 Numerical Simulation of the Impulsively Started Triangular Cavity Flow with
Reynolds Number Re = 104

In this set-up, a trivial initial data is taken: u0(x, y) ≡ 0, and a constant lid-driven velocity
ud ≡ 1 is imposed at the top boundary section y = 1. In more detail, the no-penetration,
no-slip boundary conditions are imposed on '2 and a non-homogeneous Neumann boundary
condition (with a constant slip velocity) is imposed on '1:

∂ψ

∂n
|'1 = u · τ |'1 ≡ 1,

∂ψ

∂n
|'2 = 0. (27)

Due to the corner singularity (the horizontal velocity field u becomes discontinuous at
the upper-right corner (1, 1)), the numerical simulation for this example is more challenging
than that for the smoothly started flow. We present the contour plots of stream function and
vorticity at two different time instants: t = 5.0 (Fig. 17) and t = 15.0 (Fig. 18), for the

123



1202 J Sci Comput (2015) 65:1189–1216

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

3

3

3

4

4

5

X

Y

0.
3

0.
35

0.
4

0.
45

0.
5

0.
5

0.
550.
6

0.
650.
7

Le
ve

l
P

19
0.

08
18

0.
07

5
17

0.
07

16
0.

06
5

15
0.

06
14

0.
05

5
13

0.
05

12
0.

04
5

11
0.

04
10

0.
03

5
9

0.
03

8
0.

02
5

7
0.

02
6

0.
01

5
5

0.
01

4
0.

00
5

3
0.

00
1

2
0.

00
01

1
1E

-0
5

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

2

2

2

2

2

3
3

3
3

3

X

Y

0.
35

0.
4

0.
6

0.
65

Le
ve

l
P

10
37

0
9

31
0

8
25

0
7

19
0

6
13

0
5

70
4

40
3

20
2

10
1

5

F
ig
.1
3

Z
oo

m
ed

co
nt
ou

rs
on

th
e
ob

liq
ue

bo
un

da
ry
,f
or

th
e
tr
ia
ng

le
ca
vi
ty
flo

w
at
tim

e
t
=

2.
0,
w
ith

a
R
ey
no

ld
s
nu

m
be
r
R
e
=

10
5 .
Le
ft
st
re
am

fu
nc
tio

n
co
nt
ou

rs
.R

ig
ht

vo
rt
ic
ity

co
nt
ou

rs

123



J Sci Comput (2015) 65:1189–1216 1203

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Level P

18 0.075
17 0.07
16 0.065
15 0.06
14 0.055
13 0.05
12 0.045
11 0.04
10 0.035
9 0.03
8 0.025
7 0.02
6 0.015
5 0.01
4 0.005
3 0.001
2 0.0001
1 1E-05

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Level P

10 370
9 310
8 250
7 190
6 130
5 70
4 40
3 20
2 10
1 5

Fig. 14 The triangle cavity flow at time t = 4.0, with a Reynolds number Re = 105. Left stream function
contours. Right vorticity contours
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Fig. 15 Zoomed contours on the right boundary, for the triangle cavity flow at time t = 4.0, with a Reynolds
number Re = 105. Left stream function contours. Right vorticity contours
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Fig. 16 Zoomed contours on the oblique boundary, for the triangle cavity flow at time t = 4.0, with a
Reynolds number Re = 105. Left stream function contours. Right vorticity contours
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Fig. 17 The impulsively started triangle cavity flow at time t = 5.0, with a Reynolds number Re = 104. Left
stream function contours. Right vorticity contours
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Fig. 18 The impulsively started triangle cavity flow at time t = 15.0, with a Reynolds number Re = 104.
Left stream function contours. Right vorticity contours

impulsively started flow with Re = 104, using the mesh size h = 1
512 . The time step size is

taken as $t = 1.0E − 03 for t ≤ 100, and $t = 2.0E − 03 for t ≥ 100.
An obvious boundary layer separation could be observed along the oblique boundary

section x + y = 1, and its mechanism is very similar to that of the smoothly started flow.
The details are skipped for simplicity of presentation.

In addition, to investigate the long time behavior of such a physical model, we present the
time evolution (from t = 150.0 to t = 300.0) for the stream function and vorticity variables
at the sample point ( 78 ,

13
16 ), a point close to the upper-right corner, also suggested by the

reference [5] in the study of a square cavity flow, in Fig. 19). The periodic behavior is clearly
observed for both variables.

Remark 3.4 All the finite element codes are generated by FEPG, pFEPG software ((Parallel)
Finite Element Program Generator) [15]. The parallel computation are completed by Tianhe
No. 1 in Tianjin, China.
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Fig. 19 The time evolution for the stream function and vorticity variables at the sample point
(
7
8 ,

13
16

)
for

the impulsively started triangle cavity flow with Re = 104. Left stream function plot. Right vorticity plot

Remark 3.5 The authors have posted the animated file of the numerical simulations online:
http://202.113.29.3/~yhxue/index.html, with Re = 105. Any interested reader can download
and view the detailed process.

4 Super-Convergence Error Estimate for the Semi-Discretization Scheme

4.1 A Preliminary Estimate of Super-Convergent Accuracy

We denote (ω,ψ, u) as the exact solution to (1)–(3) and (ωh,ψh, uh) as the simple finite
element solution using linear element. The numerical errors of stream function, vorticity and
velocity by the finite element method (7)–(10) are defined as follows

ε = ω − ωh, δ = ψ − ψh, ũ = u − uh = (ũ, ṽ) = ∇⊥δ. (28)

For the convenience of the error analysis in later section, we denote Pω as the L2 projection
of ω into the finite element space Xh :

(ω − Pω,φ) = 0, φ ∈ Xh . (29)

Furthermore, Ihψ is defined as the interpolation of ψ into X0,h . The following results are
available (see [4,7])

∥∇(ω − Pω)∥ ≤ Ch∥ω∥2, ∥ψ − Ihψ∥1,∞ ≤ Ch∥ψ∥2,∞.

We also introduce the projection and interpolation errors:

εh = Pε = Pω − ωh, δh = Ihδ = Ihψ − ψh . (30)

In addition, the following estimate is useful in the later convergence analysis:

∥∂t∇(δ − δh)∥ = ∥∂t∇(ψ − Ihψ)∥ ≤ Ch∥∂tψ∥2 ≤ C∗h, (31)

with C∗ only dependent on the exact solution ψ .
To obtain a super-convergence analysis for the simple finite element scheme, we need the

following lemma. The proof is technical, though we refer the proof of a more special case
in [42].
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Fig. 20 A pair of neighboring
triangles

A

B

C

D

K

K1

Lemma 4.1 For uniform triangulation Th with right triangle elements where the sides of
right angle are parallel to the coordinate axises, ψ ∈ H3

0 (%) ∩ C0(%), then we have
∫

%
∇εh · ∇(ψ − Ihψ) ≤ Ch2∥ψ∥3∥εh∥1, ∀εh ∈ Xh . (32)

where C is the constant independent of h, and Xh denotes the piecewise linear finite element
space.

Proof We consider the two neighbor elements in the triangulation Th , see Fig. 20. Let
w = ψ − Ihψ, v = εh in (32), and A = (0, 0), B = (h,−h),C = (h, 0), D = (0, h). Thus
in elements K and K1, vx has constant values. Therefore,

∫

K∪K1

wxvxdxdy = vx

∫

K∪K1

wxdxdy

= vx

(∫

lCD

wdy −
∫

lAD
wdy −

∫

lBA

wdy +
∫

lBC
wdy

)
, (33)

where l12 denote the line segment from point 1 to point 2. In general, we define the following
function on line l,

Fl(P) =
1
2
(d2(P,M) − (hl/2)2),

where d(P,M) denotes the Euclidean distance from arbitrary point P(x, y) to the mid-point
M(xM , yM ) of l, and hl is the length of line segment l. It is clear that Fl = 0 at the two
end-points of the line segment.

On line segment lAD , we have

FlAD (P) =
1
2
((y − h/2)2 − (h/2)2) ≡ f AD(y),

and
∫

lAD
wdy =

∫

lAD
w f ′′

AD(y)dy = w f ′
AD|h0 −

∫

lAD
wy f ′

AD(y)dy

= w f ′
AD|h0 − wy fAD|h0 +

∫

lAD
wyy fAD(y)dy.
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Assuming ψ ∈ C0, so Ihψ is equal to ψ at the vertex, and we have
∫

lAD
wdy =

∫

lAD
wyy fAD(y)dy.

Similarly, on line segment lBC , FlBC (P) is given by

FlBC (P) =
1
2

(
(y + h/2)2 − (h/2)2

)
≡ fBC (y),

and the following identity is valid
∫

lBC
wdy =

∫

lBC
wyy fBC (y)dy.

A combination of these estimates yields
∫

lBC
wdy −

∫

lAD
wdy =

∫

K∪K1

fl(y)wyyτdτdy,

with fl(y) =
1
2

(
(y − yM )2 − h2

4

)
, (34)

where (xM , yM ) is located in the line segment between (0, h/2) and (h,−h/2), fl(y) = 0
on lBA and lCD , and τ is the line parameter from C to D.

We can deal with other pair of line integrals on lCD and lBA in a similar way. On
lCD, FlCD (P) turns out to be

FlCD (P) =
1
2

(

d2(P,MlCD ) −
(
hlCD

2

)2
)

≡ flCD (τ ),

where τ is the line parameter from C to D. Therefore,
∫

lCD

wdy = 1√
2

∫

lCD

wdτ = 1√
2

∫

lCD

wττ flCD (τ )dτ,

and the integral on lBA becomes
∫

lBA

wdy = 1√
2

∫

lBA

wττ flBA (τ )dτ.

These two estimates in turn gives
∫

lCD

wdy −
∫

lBA

wdy = 1√
2

∫

K∪K1

fl(τ )wττ ydydτ. (35)

Substituting (34) and (35) into (33), we have
∫

K∪K1

vxwx ≤ Ch2∥w∥3,K∪K1∥v∥1,K∪K1 . (36)

Denote the boundary of ∂%x which is parallel to the x axis. So the left elements K satisfy
K ∩ ∂%x ̸= ∅. In these elements, wx = 0. So summing up the estimate on all the pairs and
these elements, we obtain

∫

%
vxwx =

∑ ∫

K∪K1

vxwx +
∑

K∩∂%x ̸=∅

∫

K
vxwx

≤ Ch2∥w∥3∥v∥1.
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The following inequality could be derived in a similar manner:
∫

%
vywy ≤ Ch2∥w∥3∥v∥1.

Finally, we complete the proof by letting v = εh, w = ψ − Ihψ . ⊓5

4.2 Error Estimate and Convergence Analysis

Before the statement of the super-convergence result, we need the following lemma in the
nonlinear analysis.

Lemma 4.2 For any 2 ≤ p < ∞, we have

∥uh∥L2(0,T ;L∞) ≤ C
(
∥∇ψ∥L2(0,T ;L∞) + h− 2

p ∥ε∥L2(0,T ;L2)

)
. (37)

Proof By the work of Rannacher and Scott [45], we know that the Ritz projection- is stable
in W 1,p

0 for 2 ≤ p ≤ ∞, with W 1,p
0 = {φ ∈ L p,∇φ ∈ (L p)2,φ|∂% = 0}:
∥-ψ∥W 1,p ≤ C∥ψ∥W 1,p . (38)

Then we get

∥uh∥L2(0,T ;L∞) ≤ ∥∇⊥-ψ∥L2(0,T ;L∞) + ∥∇⊥(-ψ − ψh)∥L2(0,T ;L∞)

≤ C∥ψ∥L2(0,T ;W 1,∞) + ∥∇(-ψ − ψh)∥L2(0,T ;L∞). (39)

Meanwhile, we define ζ ∈ H1
0 (%) as the solution of

$ζ = ε, ζ |∂%= 0. (40)

Since % is convex, the following elliptic regularity estimate is valid:

∥ζ∥H2 ≤ C∥ε∥. (41)

The definition of the Ritz projection - indicates that

(∇-δ,∇φh) = (∇δ,∇φh) = −(ε,φh) = (∇ζ,∇φh), ∀φh ∈ X0,h . (42)

This shows that -δ is the Ritz projection of ζ . Therefore, we obtain the stability property of
-:

∥-δ∥W 1,p ≤ C∥ζ∥W 1,p . (43)

Combing this with (41) and applying the Sobolev embedding H2 → W 1,p for 1 ≤ p < ∞,
we have

∥-δ∥W 1,p ≤ C∥ε∥; (44)

also see the detailed analysis in Brenner and Scott [4]. Moreover, we observe that -δ =
-ψ − ψh is in the finite element space X0,h , so that the following inverse inequality could
be applied:

∥∇(-ψ − ψh)∥L∞ ≤ Ch− 2
p ∥-δ∥W 1,p . (45)

Therefore, we arrive at

∥∇(-ψ − ψh)∥L2(0,T ;L∞) ≤ Ch− 2
p ∥ε∥L2(0,T ;L2). (46)

Substituting this estimate into (39), we finish the proof of Lemma 4.2. ⊓5
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The following theorem is the main theoretical result of this article.

Theorem 4.1 Suppose that (ω,ψ) is the solution of weak formulation (7)–(8) and (ωh,ψh)

is the finite element approximation (9)–(10). Under the condition in Lemma 4.1, we have the
super-convergence error estimate for the linear finite element method:

∥u − uh∥L∞((0,T ];L2) +
√

ν∥ω − ωh∥L2((0,T ];L2)

≤ Ĉh
(
∥ψ∥L2((0,T ];H3) + ∥ω∥L2((0,T ];H2)

)
, (47)

where Ĉ is dependent on the exact solution, ν and T , independent on h.

Proof First, an L2(0, T ; L∞) a-priori assumption for the numerical solution of the velocity
is made. Such an a-priori assumption will be recovered by the error estimate, which will be
given later.

An a-priori assumption for the numerical solution uh of the velocity variable We assume
a-priori that numerical solution uh has the following L2(0, T ; L∞) bound:

∥uh∥L2(0,T ;L∞) ≤ C̃ . (48)

Since both the exact solution and approximate solution satisfy (9)–(10), we have

(φ, ∂tε) − (∇φ, (ωu − ωhuh)) = −ν(∇φ,∇ε), ∀φ ∈ X0,h, (49)

(∇φ,∇δ) = −(φ, ε), ∀φ ∈ Xh . (50)

Taking the temporal derivative of (50), and then setting φ = δh , we see that the first term
in (49) turns out to be

(δh, ∂tε) = −(∇δh,∇∂tδ) = −(∇δh,∇∂tδh) − (∇δh,∇∂t (δ − δh))

= −1
2
d
dt

∥∇δh∥2 − (∇δh,∇∂t (δ − δh)). (51)

The nonlinear inner product term in (49) becomes

(∇δh, (ωu − ωhuh)) = (∇δh, εuh)+ (∇δh,ω(u − uh))

= (∇δh, εuh)+ (∇δh,ω∇⊥(δ − δh))

= (∇δh, εuh)+ (∇δh,ω∇⊥(ψ − Ihψ))

≤ C1(t)∥∇δh∥ (∥∇(ψ − Ihψ)∥ + ∥ε∥) , (52)

with
C1(t) = M(t)+ ∥ω(t)∥L∞ , M(t) = ∥uh(t)∥L∞ . (53)

Therefore, we can estimate (49) in the following way

d
dt

∥∇δh∥2 ≤ 2ν(∇δh,∇ε)+ C1(t)∥∇δh∥ · (∥∇(ψ − Ihψ)∥ + ∥ε∥)
−2(∇δh,∇∂t (δ − δh)). (54)

The last term on the right side of (54) could be analyzed as follows:

− 2(∇δh,∇∂t (δ − δh)) ≤ 2∥∇δh∥ · ∥∇∂t (δ − δh)∥ ≤ 2C∗h∥∇δh∥
≤ (C∗)2h2 + ∥∇δh∥2, (55)
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with the inequality (31) applied in the second step. To estimate the first term on the right side
of (54), we take φ = εh in (50) and get

(εh, εh) = (εh, ε) = −(∇εh,∇δ)

= −(∇ε,∇δ)+ (∇(ε − εh),∇δ)

= −(∇δh,∇ε) − (∇ε,∇(δ − δh))+ (∇(ε − εh),∇δ)

= −(∇δh,∇ε)+ (∇δh,∇(ε − εh)) − (∇εh,∇(δ − δh))

= −(∇δh,∇ε)+ (∇δh,∇(ω − Pω)) − (∇εh,∇(ψ − Ihψ)).

Its combination with (54) and (55) shows that

d
dt

∥∇δh∥2 + 2ν∥εh∥2 ≤ C1(t)∥∇δh∥(∥∇(ψ − Ihψ)∥ + ν∥∇(ω − Pω)∥
+∥ω − Pω∥ + ∥εh∥) − 2ν(∇εh,∇(ψ − Ihψ))

+(C∗)2h2 + ∥∇δh∥2
≤ C1(t)∥∇δh∥

(
∥εh∥ + h(∥ψ∥H2 + ∥ω∥H2)

)

−2ν(∇εh,∇(ψ − Ihψ))+ (C∗)2h2 + ∥∇δh∥2. (56)

Using the super-convergent accuracy result in Lemma 4.1, the following estimate is valid:

ν(∇εh,∇(ψ − -ψ)) ≤ Cνh2∥εh∥1 · ∥ψ∥3 ≤ Cνh∥εh∥0 · ∥ψ∥3,
with the inverse inequality applied at the second step. An application of the Cauchy–Schwarz
inequality indicates that

d
dt

∥∇δh∥2 + ν∥εh∥2 ≤ (
C2
1 (t)
ν

+ 1)∥∇δh∥2 + C2h2(∥ψ∥23 + ∥ω∥22 + 1), (57)

with C1(t) and C2 independent of h.
Note that C1(t) may not have a bounded value at any time t . On the other hand, from the

L2(0, T ; L∞) bound (48) of the numerical solution for the velocity, we conclude that C1(t)
is L2 integrable:

∫ T

0
C2
1 (t) dt ≤ 2

∫ T

0

(
M2(t)+ ∥ω(t)∥2L∞

)
dt

≤ C3 := 2
(
C̃2 + (C∗

0 )
2T

)
, (58)

with C∗
0 = ∥ω(t)∥L∞(0,T ;L∞). Consequently, applying Gronwall inequality to (57) and

setting the initial stream function as the interpolation: ψh(0) = Ihψ(0), we arrive at

∥∇δh(t)∥2 + ν

∫ t

0
∥εh(s)∥2 ds

≤ C4h2e
C3+T

ν

(
∥ψ∥2L2((0,T ];H3) + ∥ω∥2L2((0,T ];H2)

)
. (59)

This is equivalent to

∥∇δh∥L∞((0,T ];L2) +
√

ν∥εh∥L2((0,T ];L2) ≤ Ĉh, (60)

with Ĉ =
√
C4e

C3+T
2ν

(
∥ψ∥L2((0,T ];H3) + ∥ω∥L2((0,T ];H2)

)
.

The O(h) super-convergence (47) has been derived.
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Recovery of the a-priori assumption (48) By the numerical error definitions (28) and
(30), we have

∥ε(t)∥ ≤ ∥εh(t)∥ + ∥ω − Pω∥ ≤ ∥εh(t)∥ + Ch∥ω(t)∥2, ∀t ≥ 0. (61)

Consequently, the O(h) convergence result (60) for the L2(0, T ; L2) norm of the vorticity
variable results in

∥ε∥L2(0,T ;L2) ≤ C

(
Ĉ

ν1/2
+ 1

)

h. (62)

Therefore, the a-priori assumption (48) is justified, with an application of Lemma 4.2:

∥uh∥L2(0,T ;L∞) ≤ C
(
∥∇ψ∥L2(0,T ;L∞) + h− 1

2 ∥ε∥L2(0,T ;L2)

)

(by taking p = 4 in (37))

≤ C

(

∥u∥L2(0,T ;L∞) +
( Ĉ

ν1/2
+ 1

)
h1/2

)

≤ C̃ = CC∗
1 + 1, with C∗

1 = ∥u∥L2(0,T ;L∞), (63)

under the condition that h ≤ ν

C2Ĉ2 . This completes the proof of Theorem 4.1. ⊓5

Remark 4.1 To overcome the difficulty associated with the nonlinearity, we make an a-priori
assumption (48) for the L2(0, T ; L∞) bound of the numerical velocity variable. In turn, an
O(h) convergence (60) is derived for both the L∞(0, T ; L2) error of the velocity and the
L2(0, T ; L2) error of the vorticity. With this convergence result at hand, we could recover
the a-priori L2(0, T ; L∞) assumption (48) for the velocity, with the help of Lemma 4.2 (by
taking p = 4 in (37)).

In fact, the O(h) convergence (60) could be established in an alternate way, without
making the a-priori assumption (48). By making use of Lemma 4.2 (with p = 4), we are
able to get an inequality analogous to (57):

y′(t) ≤ C̆
(
y2

h
+ y + h2

)
, with y(t) = ∥∇δh(t)∥2 + ν

∫ t

0
∥εh(t)∥2dx, (64)

y(0) = O
(
h2

)
, (65)

in which C̆ only depends on the exact solution and ν, independent on h. In turn, a careful
analysis for this ODE shows that an O(h) convergence (60) is valid, over a fixed final time
T . The details are skipped for the sake of brevity.

Remark 4.2 A careful calculation shows that, the external force term f does not affect the
convergence order. The reason is that the inner product ( f,φ) is cancelled between the exact
solution and the numerical solution, so that it will not appear in the numerical error equation.

Remark 4.3 As mentioned in the introduction, for a general triangulation T⟨ of domain %,
a convergence order for the linear finite element has not been theoretically justified in the
existing literature, due to the difficulty associated with the L∞ bound for the numerical
solution; see the related discussions in [43]. In this paper, we have obtained the first order
convergence under the assumptions in Lemma 4.1. As a result, this is the super-convergence
result.
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Fig. 21 Convergence orders for the simple finite element approximation in the energy norm (67), using
the linear, 2rd and 3rd order elements, respectively. The time step: $t/h = 0.64 for the linear element,
$t/h = 1.28 for the 2nd order element, and $t/h = 0.48 for the 3rd order element

5 Accuracy Check

In order to verify the super-convergence result, a numerical experiment is implemented over
the trapezoid domain % with four edges: x = 0, y = 0, x + y = 2, y = 1. The exact stream
function is given by the following smooth profile:

ψe(x, y, t) = x2y2(y − 1)2(x + y − 2)2 cos(t). (66)

The exact velocity and vorticity can be calculated based on the stream function above. In the
test, the Reynolds number is taken to be Re = 104 (i.e., viscosity parameter ν = 10−4), and
final time is given by T = 1.0. The computation is carried out on the uniform triangulation
of %.

For the ease of exposition, we define the error as Eu,ω ≡ (u − uh,ω − ωh), and also the
energy norm as

∥|Eu,ω∥| ≡ ∥u − uh∥L∞((0,T ];L2(%)) + ∥ω − ωh∥L2((0,T ];L2(%)). (67)

The classical RK4 is taken as the time stepping procedure for (9)–(10), and the numerical
stability is assured if the stability condition (11) is satisfied. The convergence orders for the
simple finite element scheme, using the linear, the 2nd and 3rd order elements, are displayed
in Fig. 21. For the linear element with a uniform triangulation, a clear first order convergence
rate is observed in the energy norm, and this numerical result matches the theoretical analysis
stated in Theorem 4.1. For the 2nd (k = 2) and 3rd order (k = 3) finite element approximations,
the convergence orders are given by 1.5 and 2.5 in the energy norm, by a careful observation.
The displayed results confirm the theoretical analysis stated in the earlier article [43]: one
half less convergence order than the full order.

In other words, the following fact is confirmed by our numerical results: For the conver-
gence in the energy norm, which combines the L∞(0, T ; L2) convergence for the velocity
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Fig. 22 Convergence orders for the simple finite element approximation in the L∞(0, T ; L2) norm of the
velocity error, using the linear, 2rd and 3rd order elements, respectively. The time step set-up is the same as
Fig. 21

and the L2(0, T ; L2) convergence for the vorticity, the super-convergence is valid for the lin-
ear element scheme,while the 2nd and the 3rd order element do not have the super-convergent
property.

Furthermore, a more subtle fact has been observed through our numerical experiments. If
we only consider the L∞(0, T ; L2) convergence for the velocity and skip the L2(0, T ; L2)

convergence for the vorticity, all these elements do have super-convergence property. In more
detail, the 2nd order element has a convergence order=2.5, and the 3rd order element has a
convergence order=3 and the linear element scheme has an even stronger super-convergence
property, with convergence order=2. See the displayed numerical results in Fig. 22.

Conjecture 5.1 Suppose that (ω,ψ) is the solution of (7)–(8) and (ωh,ψh) is the finite
element approximation (9)–(10). Under the condition in Lemma 4.1, super-convergence for
the L∞(0, T ; L2) error estimate of the velocity is valid for the simple finite element method,
with any order of element:

∥u − uh∥L∞((0,T ];L2) ≤ Ĉh2, with k = 1, linear element, (68)

∥u − uh∥L∞((0,T ];L2) ≤ Ĉhk, with k-th order element, (69)

where Ĉ is dependent on the exact solution, ν and T , independent on h.

A theoretical justification for this conjecture is still open. We may work on this problem
in the future.

6 Concluding Remarks

We apply a simple finite element scheme for 2-D incompressible fluid to carry out a detailed
numerical study of boundary layer separation of a triangular cavity flow with Reynolds
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numbers Re = 104 and Re = 105. The numerical efficiency is accomplished by a fully
explicit RK4 time discretization, with only two Poisson/Poisson-like solvers needed at
each time step/stage. Compared to many existing finite element fluid solver, this numeri-
cal approach enables us to capture the detailed structures of high Reynolds number fluid, in
particular for the boundary layer separation process, due to its Stokes-solver free nature.

Meanwhile, it is observed that a convergence analysis for this numerical scheme using lin-
ear elements has not been theoretically justified in the existing literature, due to the difficulty
to get an L∞ bound for the numerical solution. In this paper, we provide a super-convergence
analysis for this simple finite element numerical scheme, using linear elements over a uni-
form triangulation with right triangles. The subtle difficulties associated with the nonlinear
terms are overcome in an appropriate way. By making use of the super-convergent property
of a uniform triangulation, we are able to improve the convergence order of the energy norm,
from O(h1/2) to O(h), under an a-priori L2(0, T ; L∞) bound of the numerical solution uh .
In turn, we apply a W 1,4 analysis for the finite element Poisson solver, and its combination
with a modified inverse inequality implies an O(h1/2) estimate for the velocity numerical
error function in the L2(0, T ; L∞) norm. This process justifies the a-priori L2(0, T ; L∞)

assumption so that the super-convergence result is proven.
Moreover, an even stronger super-convergence property has been observed in our extensive

numerical experiments, if only the L∞(0, T ; L2) error of the velocity variable is considered.
A conjecture is also formulated, and its theoretical justification is open to any interested
researchers.
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