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Abstract

We study the oscillatory behavior that arises in solutions of a dispersive numerical scheme for the Hopf equation whenever the
classical solution of that equation develops a singularity. Modulation equations are derived that describe period-two oscillations
so long as the solution of those equations takes values for which the equations are hyperbolic. However, those equations have
an elliptic region that may be entered by its solutions in a finite time, after which the corresponding period-two oscillations are
seen to break down. This kind of phenomenon has not been observed for integrable schemes. The generation and propagation
of period-two oscillations are asymptotically analyzed and a matching formula is found for the transition between oscillatory
and nonoscillatory regions. Modulation equations are also presented for period-three oscillations. Numerical experiments are
carried out that illustrate our analysis.

1. Introduction

In 1943 von Neumann used a central difference scheme to compute compressible fluid flows containing strong
shocks and found oscillatory behavior after shock formation [30]. These oscillations arose due to the dispersive
nature of the numerical scheme he chose and are characteristic of all such schemes. Many continuous analogs of this
phenomenon have been studied recently — particularly in the context of the Korteweg—de Vries equation [6,20,28],
the nonlinear Schrodinger equation [15], and the modified Korteweg—de Vries equation [5,15]. There have also
been detailed studies of dispersive numerical schemes [7-13,19,24,26,29]. A review of many of these works can be
found in [21].

In this paper we expand our original study [22] of the large oscillations arising in the numerical approximation
of the Hopf (inviscid Burgers) initial-value problem

Bu + udeu = 0, u(x,0) = u™(x), (1.1
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given by the semidiscrete dispersive difference scheme

du; Wiyl — Uj—)
th— + F iy g+ uj) 7 /
where x; = jh and k = x;4| — x; is the spatial grid size. While the origin of this scheme is somewhat clouded,
it has a long and distinguished history. For example, it was used by Zabusky and Kruskal [32] in 1965 when
they discovered the remarkable interaction properties of soliton solutions of the Korteweg—de Vries equation. The

historical appeal of this scheme derives from the fact that it possesses the two semidiscrete local conservation laws:

=0, 40 =u"x), (1.2)

duj  fivi2 = fi-1p2

dt/ + j+1/ p i=1 :0, fj+l/2: %(uf+ujuj+l+ujz+])v (133)
du?  giyip—giiip o2 >

S SRS o g = S+l ), (13b)
dr h J J

hence reflecting the local conservation of u and u? by classical solutions of the Hopf equation (1.1).
Taylor expansion of the finite difference approximation (1.2) for small %z allows its deviation from the Hopf
equation (1.1) (i.e. its truncation error) to be read off from

O + udtt + Fgh Udsxu + D () = Oh*). (14)

Consequently, its continuum limit (4 — 0) has many similarities with the zero dispersion limit (¢ — 0) of the
Korteweg—de Vries initial-value problem,

du + udeu + 20,4 = 0, u(x, 0) = u"(x), (1.5)

which is a limit that has been well understood [20,28].

It is well known that for any initial data with a decreasing part the classical solution of the Hopf initial-value
problem (1.1) develops an infinite derivative after a finite time, even if the initial data are smooth. So long as this
solution remains classical, the solutions of both (1.2) and (1.5) will converge strongly to it as 4 or &, respectively,
tends to zero. As the singularity develops in the solution of (1.1), large oscillations develop in the approximating
solutions of (1.2) and (1.5). Itis known in the case of (1.5) that, as € tends to zero, the wavelength of these oscillations
is of order O(¢e) while their amplitude does not vanish [20,28]. Solutions of the scheme (1.2) can exhibit similar
behavior as 4 tends to zero. In either case, after the break time the solutions can at best be expected to have a weak
limit as & or ¢ tends to zero.

This limiting behavior contrasts sharply with that for solutions of any zero dissipation limit, say as ¢ tends to
zero in the Burgers initial-value problem:

Bu + udeu — £y ,u =0, u(x,0) = u'(x). (1.6)

In this case the solutions converge almost everywhere and strongly to a weak solution of (1.1) with shock discon-
tinuities. After the formation of shocks this limiting solution locally dissipates u2, a residual of the fact that the
approximating solutions do so. On the other hand, u? is locally conserved by solutions of either (1.2) or (1.5). As
a result, the weak limit of solutions of either (1.2) or (1.5), if it exists, cannot be this weak solution of the Hopf
equation (1.1). Indeed, weak limits of solutions of (1.5) do not have shock discontinuities [20,28].

So far, much of the analysis of dispersive numerical schemes depends heavily on their integrability [1,2,11,16—
19,26,29]. In fact, only a few integrable lattices have been studied in detail, those of Toda [2,26] and Kac-van
Moerbeke [16], which are essentially identical, and that of Ablowitz-Ladik [1,18,19]. The study of near-integrable
and nonintegrable numerical schemes is important for our general understanding of dispersive numerical phenomena.
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We chose scheme (1.2) as prototypical (numerical evidence indicates that it is not integrable) and compare it with
an integrable scheme. We find notable differences in the behavior of these two schemes.

The simplest oscillatory behavior is the period-two (or binary) oscillation, but even this exhibits many interesting
phenomena that has made it the object of various numerical and theoretical studies [7,8,11-13,23,24,27,29]. In
the spirit of the Whitham averaging method [31], we use the local conservation laws (1.3) to derive modulation
equations that describe the evolution of an envelop of period-two oscillations. These modulation equations are
identified as a central difference scheme for a 2 x 2 system which is strictly hyperbolic with a convex entropy in
a region containing the initial data. As soon as the period-two oscillations evolve out of the hyperbolic region at
some location, they break down locally while remaining a period-two oscillation elsewhere. The breakdown region
exhibits chaotic small scale behavior, a phenomenon not observed in integrable schemes.

The organization of this paper is as follows. Section 2 treats the evolution of period-two oscillation in the dispersive
numerical scheme (1.2). The conserved qualities are used to derive a system of modulation equations for period-two
oscillations, which is found to have both hyperbolic and elliptic regions. We show by a Strang-type convergence
analysis that the modulation equations give the limiting description of period-two oscillations so long their solution
remains in the hyperbolic region and is sufficiently regular.

Section 3 studies the transition from nonoscillatory to period-two oscillatory behavior. We first present the onset
of period-two oscillations in numerical experiments with the initial condition ug(x) = — ¥/x, a generic case of
shock formation, and a phase-plane analysis is made of the resulting self-similar behavior of the envelope of
oscillations. We then present the onset of period-two oscillations in numerical experiments for rarefaction waves
that continuously connect nonoscillatory to oscillatory solutions. In each case the onset of oscillations is found to
propagate at the negative of the convection velocity. We use a weakly nonlinear asymptotic analysis to show that
near the transistion between the nonoscillatory and oscillatory regions the oscillation envelop is described by a
second Painlevé transcendent.

Section 4 studies the breakdown of period-two oscillations. First we show that as soon as the period-two oscillatory
solution evolves into the elliptic region at some location, it breaks down locally while remaining a period-two
oscillation wherever it stays in the hyperbolic region. In general, such a region of breakdown is not near a shock
discontinuity. By the way of comparison, we consider the modulation of the period-two oscillations for an integrable
scheme. We show that solutions of the corresponding modulation equations always lie in the hyperbolic region
provided they do so initially. Numerical experiments illustrate that period-two oscillations do not break down for
the integrable scheme. Finally, we illustrate by numerical experiment the sensitivity of period-two oscillations near
a discontinuity to shifts in the computational grid.

In Section 5, we discuss the evolution of modulated period-three oscillations. Exact period-three oscillations
evolve on a fast timescale, in contrast with the stationary character of period-two oscillations. Modulation equations
for period-three oscillation are derived and analyzed; their solutions are compared with numerical experiments.

Finally, we give some concluding remarks in Section 6.

2. Evolution of period-two oscillations
2.1. Modulation equations for period-two oscillations

Due to its spatial central difference, the scheme (1.2) has exact stationary solutions with period-two spatial
oscillations. Solutions in this family are determined up to a phase by their mean value v and mean square w which
are defined by

v = %(uj+uj+1), w= %(u}%—ujzﬂ). 2.1
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The solution u; is recovered (up to a phase) by

up=v+(~=D/vVw -2 (2.2)

In order to describe a solution of (1.2) that is a modulation of this family of period-two oscillations it is therefore
natural to introduce the variables

Vitl/2 = %(uj +ujt1), Wjt+1/2 = %(uj2 + ”‘12+l)' (2.3)

Both v; 1,2 and w; 41,2 are locally conserved densities of the scheme (1.2) and are smoothly varying for modulated
period-two oscillations. The technique we use to derive modulation equations can be applied to many other dispersive
numerical schemes [21]; it just requires that the scheme possesses a family of exact period-two solutions like (2.2)
and at least two local conservation laws like (1.3).

The evolution of vj 1/, and wj 41,2 can be simply expressed using the local conservation laws (1.3). First notice
that the fluxes of (1.3) can be expressed in terms of the variables v; /2 and wj1 12 as

1.2
fit12 =3V 10+ éwj+1/2, 8i+12 = %vﬂrl/z - %Uj+1/2wj+1/2~ (2.4)
Averaging the local conservation laws (1.3) over adjacent spatial points yields

dvjv12  fivapn — fi-12 dwjr12 | &j+3/2 — &j—1/2
=0, =0. 2.5
dr + 2h ’ dt + 2h (2.5

Eq. (2.5) can be viewed as the central difference approximation to the 2 x 2-system

0rv + 0 fv, w) =0, fv, w)z%vz{—éw,

3_2

4 (2.6)
afw—}_axg(v&w) =O7 g(u, U)Ejv —§Uw.

Since vj 11,2 and w; 12 are smoothly varying for modulated period-two oscillations, formally at least, their contin-
uum limits v and w will satisfy (2.6), the so-called modulation equations for period-two oscillations. Furthermore,
v and w are then the weak limits of u; and u]2 respectively.

The Jacobian matrix of the flux functions of (2.6) is

avf awf 1 4v 1
A= = - 2.7
<3v8 wg ) 6 \24v° —dw —4v )’ 2.7)

and its eigenvalues are

hi =1V 1002 — w. (2.8)

Clearly, system (2.6) is hyperbolic in the region

[, w) | w < 1007}, (2.9)
and is elliptic in the region

{(v, w) | 100 < w}. (2.10)
It can be shown that classical solutions of the modulation equations (2.6) satisfy

a(w — v — vy (w — v*) — 2w — vH)dv = 0. (2.11)

Hence, the region v? < w is invariant for these solutions, a fact that is consistent with the origins (2.3) of v and w

and indeed allows the reconstruction of u (up to phase) through formula (2.2). However, as we demonstrate in the
next section, the hyperbolic region is not invariant for these solutions.
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If the initial data are nonoscillatory then w — v* will be zero initially and by (2.11) will remain zero so long as the
solution of (2.6) is classical. The characteristic velocity associated with w — v? is seen to be —v, the negative of the
convective velocity associated with v. This means the onset of period-two oscillations will propagate with velocity
—v into a nonoscillating region. This fact will be seen again later in the paper, both in analyses of the behavior of
special solutions, and through a linearized analysis of nonoscillatory solutions.

2.2. Persistence and stability of period-two oscillations

In Section 2.1 we derived the averaged conservation laws (2.4) and (2.5) and showed that they were a central
difference scheme to the system of modulation equations (2.6). Here we justify, at least in some cases, the formal
passage to the continuum limit, thereby establishing the persistence and stability of the oscillations.

The Strang convergence theorem [25] states that if a solution of a nonlinear hyperbolic system is sufficiently
smooth and the linearization of a numerical scheme which approximates that solution is L? stable then the scheme
for the nonlinear problem is strongly convergent. We will use a variant of this result. We consider the system of
hyperbolic conservation laws

U + 3, FU) =0, U(x,0) = U"(x), (2.12)

where U = U (¢, x) has period one in x and takes values in RY. The flux F(U) is assumed to be a smooth function
from R? into itself with a Jacobian Vy F(U) that can be smoothly diagonalized within the reals as

Vy F(U) = L™Y(U)AWU)L).
Here A(U) is the diagonal matrix of (real) eigenvalues of Vi F(U) and L(U) is the matrix of corresponding left
eigenvectors. We consider the semidiscrete central difference scheme

dU; | F@Up) = FW ) _

dr 2h -

where & = 1/j and x; = jh for some positive integer J. We show that this scheme is linearly L? stable and, hence,
has full accuracy if the solution of (2.12) is sufficiently smooth.

0, Uj(0)=U"x)), (2.13)

Theorem 2.1. Let U = U(x, t) be a C3 solution of (2.12) of period one in x with (C?) initial data U™ (x). Let
U;”(¢) be the solution of (2.13) for h = 1/.J. Then for 0 < ¢ < T we have

1 1
7X;|U(xj,t)—UjU)(t)f2Scﬁ‘ (2.14)
j:

Proof Since U has C? regularity one has
dU (x;, 1) " FUxj41,0) — F(U(xj—1,1))
dr 2h
Denote the error by E; (1) = U;(t) — U (x;, t). Now we suppose a priori that

= O(h?). (2.15)

max{|E;()|} <h for0 <t <1. (2.16)
J

If we apply this supposition then the Taylor expansion of F about U(x;) gives

F(Uj) = FU(x))) = Vy FU(x;))Ej + AV F(U)EEj + O, 2.17)
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where the ¢-dependence has been suppressed. When (2.15) is subtracted from (2.13) and (2.17) is employed, one
obtains
dE; VyFU(xj+1)Ej+1 — VuFU(xj-1))Ej-
dr + 2h

2 2
_ _%VUF(U(xj+1))Ej+1Ej+1;ZVUF(U(xj—]))Ej—IEj—l LoD, (2.18)

Now introduce the notation
Aj =AU,  Li=LUW), V;=LjEj,
and express (2.18) as

V) AV = A Vi

dr 2h
_9L, Ly, 1 VL FWUxj41)Ej+1Ej+1 — VEF U (xj-1))Ej -1 Ej—i
o 4 2™ 2h
L —LYA Vi~ @7 = LTYHA Vi
_Ll j+1 j JHLY = j—1 J J J +O(h2)

= O(IVj+1] + [Vj-1]) + O(R?).
Take the scalar product of this equation with V;, sum by parts, and again use supposition (2.16) to obtain

d J J
< Vil = €YV + o).
j=1 j=1

When integrated in time, this yields

J
DV 0@ fort <,
j=1

or equivalently,
J
Y IE @0 <Ok fort < 1. (2.19)
j=1
The Cauchy—Schwarz inequality then implies
max{|E;(1)|} < O(h*?) fort < 1.
J

The a prori assumption (2.16) is therefore justified for 1 < #y. With a standard continuity argument one concludes

J
DU — Ul 0 < Crh® for0<t<T.
j=1

Because = 1/J, this establishes the theorem. O
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We now apply Theorem 2.1 to our system of modulation equations (2.6) to obtain our main result.

Theorem 2.2. Let (v, w) = (v(x, ), w(x,t)) bea C 3 solution of the modulation equations (2.6) of period one in
x with (C?) initial data (v"(x), w™(x)) that satisfies v < wi® < 10vi"2, Let uj(.”(t) be the solution of scheme
(1.2) satisfying the initial condition

u (@ = ) + (1 fwin(xy) — v (x)?. (220

Upon defining v;i)l/z(t) and w;i)]/z(t) in terms of uj(-j)(t) by (2.3), thenfor 0 < ¢ < T we have

1 1
i Zl (G120 = o O + w172, 0 = wil) L, OR) < . @21)
]:

where xj 1172 = (j + %)h.
Proof. From definition (2.3) of v;i)l /2(0) and a w](.i)l 2 (0) in terms of the initial data uj(.j)(O) given by (2.20), one
can at best conclude that

o) p0) = ™ 112) +OR), Wi, H(0) = W (xp12) + Oh). (2.22)

The result then follows from Theorem 2.1 and the Lipschitz dependence of the solution on initial data. O

Remark. The rate of convergence given by (2.21) is not as fast as that given by (2.14), however, convergence was
all we were after.

3. Onset of period-two oscillations
3.1. Self-similar onset

As stated in Section 1, large oscillations develop in the solutions of (1.2) when the corresponding classical solution
of the Hopf initial-value problem (1.1) develops an infinite derivative. The generic behavior of a Hopf solution at
the instant an infinite derivative develops is that of a cube root singularity. To study the onset of oscillations, it is
therefore natural to consider scheme (1.2) with the initial data

u(x) = —x'73, 3.1

One advantage of discrete problems is that numerical simulations can be used to give a general picture of the problem.
Indeed, our analysis is guided by careful numerical experiments [23]. We begin by reviewing those experiments for
the initial data (3.1). We will show that period-two oscillations develop in the solution of (1.2) which fan out from
a jump-discontinuity at x = 0 in a self-similar fashion.

In Figures 1(a)—(b), we plot the numerical solutions of scheme (1.2) withinitial data (3.1) fora grid size of A = 0.01
attimest = 0.0,z = 0.3, = 0.6 and r = 0.9, respectively. Eq. (1.2) was solved using an Adams—Bashforth method
with the time step equal to 0.2/. The numerical boundary condition was implemented by imposing the endvalues at
every time step. We also used a four-step Rung—Kutta method to solve (1.2) and obtained indistinguishable results.
The evident discontinuity in the envelope of period-two oscillations at the center of Fig. 1(b) does not correspond
to a shock solution of the modulation equations (2.6), but rather to a contact discontinuity because there is no flux
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time = .6
© (@
Fig. 1. Numerical solutions of the dispersive scheme (1.2) approximating the Hopf equation (1.1) with initial data uM(x) = — 3/x at: (a)

t=0;(b)r =0.3;(c)t =0.6; (d) + = 0.9.

across it. System (2.6) has zero as a double characteristic at this point and, hence, is not strictly hyperbolic. This
degeneracy will be examined in Section 4.3. Figs. (a)—(d) clearly show that the envelope of period-two oscillations
fans out in both direction from this discontinuity as the time increases. The envelope is smooth except at the origin
and at the points where the oscillatory region connects to the nonoscillatory solution with a square root profile.

For comparison we consider the zero-dissipation solution of the Hopf equation, say obtained in the limit of
vanishing ¢ of solutions of (1.6) with initial data (3.1). It can be shown that this solition is self-similar and has the
form

(X
uteon) =1"2f (5).
where f = f(&) satisfies

FE) =3 @ +2fE f(E) =0,  fE) ~—£ as|E] > oo (3.2)

This can be integrated to find the relation & = — f> + f. This then determines f uniquely for £2 > %, while for
g2 < % it must be augmented by the “equal area rule” to determine which value of f is selected [31]. The solution
is found to possess a jump discontinuity (a shock) at § = 0 for any positive time. In Fig. 2 this solution, obtained
with an ENO scheme, is compared to the weak limit of the numerical solutions that were presented in Fig. 1. Since
those solutions were modulations of period-two oscillations, their weak limit is computed accurately by averaging
values at adjacent spatial points. We can see in Fig. 2 that the weak limit of the numerical solution of the scheme
(1.2) is not equal to the zero-dissipation solution of Hopf equation (1.1) in the oscillatory region. The difference
between them is small but increases with time.

Itis apparent from Fig. 1. that, like the zero-dissipation solution of the Hopf equation, the envelope of oscillations
might be self-similar. Indeed, it is easy to check that the numerical scheme (1.2) has a similarity: namely, that if we
let u? () denotes its solution for grid size 4 then

1
uj’(t) = —ufh(azt) for every @ > 0. (3.3)
a
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initial data time=.3

time = .6

(© @

Fig. 2. The solid lines are the zero-dissipation solution of the Hopf equation (1.1) at: (a) # = 0; (b) r = 0.3; (¢c) t = 0.6; (d) t = 0.9. The
dashed lines indicate the weak limit of the dispersive scheme (1.2) as computed from the same solution shown in Fig. 1. The difference
between them is small but increases with time.

This symmetry gives rise to a self-similar solution for the envelope equations (2.6). In order to analyze this self-
similarity, we bring the equations into a more symmetric form by introducing the transformation

v=14@+b), w=ia@+bY), (3.4)
so that the modulation equation equations (2.6) become
da+ 3(a+2b)d.b =0, b+ (b +2a)da = 0. (3.5)

In light of (2.2), @ and b can be thought of as the envelope of the oscillations. This form of the modulation equations
can be derived directly from the scheme (1.2) and is similar to that used by Goodman and Lax [7] in the context of
their discretization.

A self-similar solution of (3.5) takes the form

— 2, (2 — (X
alx,t) =1t g(t3/2), bx,t)=t k(t3/2)’
where g = g(§) and k = k(&) satisfy
3g —96g +2(g +2k)k =0, 3k —9&k’ +2(k +2g)g’ = 0. (3.6)

In order to recover the nonoscillatory initial data (3.1), the solution of (3.6) should satisfy the boundary condition

g(&) = k(&) = f(§) for || large enough, (3.7

where f = f(&) solves &£ = — f3 4 f just as for the zero-dissipation limit. This ensures that the zero-dispersion
limit agrees with the zero-dissipation limit where the former has no oscillations.

The scaling homogeneity of (3.6) indicates that this system can be transformed into an essentially autonomous
system by introducing

£21() = g(&), Eki(§) = k(&). (3.8)
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Then (3.6) becomes

gﬁ _ 22781+ 381 + 2kpks + 2(g1 + 2k1) (281 + k)81
dg 81 — 4(g1 + 2k1) (k1 +2g1) ’ (3.9)
dk _ 2—27k1 +3(ky +2g1)g1 + 2(k; +2g1)(2k; +gl)k1.
dé 81 — 4(g1 + 2k1) (k1 +2g1)

The behavior if (gy, k1) can now be studied through a phase-plane analysis.

For the initial data (3.1) the self-similar profiles g and 4 will be odd functions of § that are positive for & < 0. The
functions g| and k| defined in (3.8) will therefore be even functions of £ that are nonpositive. The corresponding
orbit of (3.9) will then lie entirely in the third quadrant of the (g1, k1)-plane. By the even symmetry in &, it suffices
to consider only & < Q. It is clear that by (3.7) the solution of (3.8) satisfies

§16) =k €)= @)/ ~ —6 2P asg - —oo. (3.10)
The vector field of (3.9) is singular along the hyperbola
81 —4(gy + 2k1)(k1 +281) =0 (3.11)

with the exception of the point (g1, k1) = (— % —%) where the numerators on the right-hand side of (3.9) both vanish
too. Therefore, as £ increases from —oo, the solution of (3.9) moves along the line g; = k| from the origin towards
the hyperbola (3.11), passing through it at (—%, —%), its only regular point. There are many orbits emanating from
this point on the other side of the hyperbola, but only one of them gives a solution for which g (&) tends to zero as
£ — 0. To get on this orbit, the solution of (3.9) develops a singularity, turning abruptly to the left at (—%, —%)
then proceeds to asymptotically approach the vertical line g; = —%. This singularity corresponds to the onset of
oscillations in the numerical solution of (1.2).
Let & denote the value of £ at this singular point. By (3.10)

fo = f (&) = g1(E)é0 = —30. (3.12)

where fg satisfies & = — f(f + fu. Whence,
172 1/2

B=-19" =" 3.1

In the original variables this singularity happens at (xo, uo) where
1/2 1/2

x0() = ko2 = =2(3) PP uo) = ulxo(). 1) = for = (3)" 2. (3.14)
Clearly,

dxo (1) 1/2

= =-0) P02 2 _u(xo(), 1), (3.15)

The above equality tell us that the onset of the oscillations propagates at the negative of the convection velocity. As
we indicated before, this is generally true. In the next section, this phenomenon will be examined through a linear
analysis.

The above phase-plane analysis can be illustrated with numerical experiments. In Fig. 3 the numerical results
from Fig. 1(b) are replotted in the (g;, k| )-phase plane. The values of g and k| are computed by averaging adjacent
points of the numerical solution in the self-similar scale and dividing by the grid location j. Itis clear in Fig. 3 that
the computed values of (g, k1) lie along the line g; = k; from the origin toward the hyperbola, passing close to
the point (—%, —%), and then, as is seen in Fig. 4, asymptote to the line g; = —% as &€ — 0. This is consistent with
the foregoing phase-plane analysis of (3.9), the directional vector-field of which is indicated with arrows in Fig. 3.
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Fig. 3. The directional vector-field of (3.9) in the (g, k) )-plane is indicated with arrows. The envelope of the 1 = 0.3 oscillations seen
in Fig. 1(b) is shown here as a superimposed dark solid line.
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Fig. 4. The same as Fig. 3, but without the arrows and on a scale that more clearly illustrates the slow asympotic approach to the line

glz—%as$—>0.

3.2. Onset for rarefaction waves

We now consider those rarefaction wave solutions of the modulation equations (2.6) that make a continuous
transition from a uniform nonoscillatory to a uniform oscillatory state. Specifically, for any i and & > 0 we
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consider initial data of (2.6) in the form

_ ' @, i) forx <0,
@), wh ) = { R, wR&x))  for0 <x <&, (3.16)
WRE), wh(E)) foré <x,

where (v, w) = (VR(€), wR(&)) is the solution of the rarefaction wave profile equation

d (v _ (r@w v (i
d—é(w>_(r2(v,w))’ (w)LZO_(#)’ (3.17)

for the right eigenvector (r1, r2)T corresponding to the eigenvalue A = —%\/ 10v2 — w of the coefficient matrix
(2.7) given by
(rl(v, w)) 3100 —w 1 (3.18)
nW,w) ) 120+ V1002 —w \4v+2V1002 —w | '

Here the eigenvector (r1, r2)T has been normalized so that (r1, r2) - (yA, dyA) = 1.
The rarefaction wave solutions of the modulation equations (2.6) corresponding to the initial data (3.16) is then

(@1, i?) for x < —ut,
W, 0, wix,n) ={ @RE), wkE) for —at < x < & + (& — i1, (3.19)
R (&), wR(&)) for & + (& — i)t < x.
where
_x+ut
§= 1+¢°

The onset of oscillations is again seen to propagate with velocity —u.
We now consider the solution of (1.2) with initial data given by

U (0) = v™(xp) + (—1)7 it () — vin(x;)2, (3.20)

The profile is computed numerically from the ODE (3.17). These initial data are plotted in Fig. 5(a). The cor-
responding numerical solution of (1.2) at # = 0.5 is presented in Fig. 5(b). It shows that the period-two oscil-
lation has persisted and propagated. To show clearly that this propagation is a rarefaction behavior, in Figs. 5(c)
and (d) we plot the data of (a) and (b), respectively, in the (v, w)-plane. The initial data in Fig. 5(c) are the
Rankine curve determined by (3.17). As excepted, the data viewed in the (v, w)-plane at a later time, plotted
in (d) for + = 0.5, are the same as for the initial curve in (c). This indicates that the solution is the rarefaction
wave.

3.3. Weakly nonlinear analysis of onset

Points where the microscopic behavior of the numerical solution changes from oscillatory to nonoscillatory can
be thought of as the location of a phase transition in the sense of nonequilibrium statistical mechanics. Near such
a point the amplitude of the oscillations is small, so that the transition may be studied through a weakly nonlinear
asymptotic analysis.
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Fig. 5. The initial data shown in (a) are the rarefaction data (3.16). (b) The solution of (1.2) at# = 0.5. (c) The initial data in the (v, w)-plane
consist of the rarefaction curve given by (3.17). The endpoint on the curve w = v? represents the nonoscillatory left-hand state, while the
other endpoint represents the oscillatory right-hand uniform state. (d) The solution at t = 0.5 in the (v, w)-plane is a curve that is almost
identical with the initial curve in (c).

When the difference scheme (1.2) is linearized about a constant value u = i, one obtains

duj  _ujr —uj—
g — Al

dt 2h
Seeking solutions of the form u; (1) = exp(i(kx; — wt)), one finds that the dispersion relation @ = w(x) and group
velocity ¢ = c¢(x) are given by

=0. (3.21)

u . dw _
w(k) = —sin{ch), c(k) = — (k) = ucos(ch). (3.22)
h : dx

The general use of the group velocity to analyze dispersive numerical schemes is discussed in [27]. A stationary
phase analysis of the Fourier integral representation of the solution as A — 0 shows that the dominant signals will
propagate at the critical values of the group velocity, the so-called characteristic velocities. For (3.22) these are
¢+ = c¢(k+) = Zu, which are attained at the wave numbers x; = 0 and x_ = 7/k and have the frequencies
w+ = 0. These linear modes are

wit) =1,  uj(t) = (=1, (3.23)
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and are also the basis for the set of exact stationary period-two solutions upon which the modulation equations (2.6)
are based. In other words, the velocity & corresponds to smooth information while —# corresponds to period-two
oscillations.

Since period-twe oscillations propagate with the fastest group velocity, the oscillatory behavior at a leading edge
of the transition region is basically composed of weak period-two oscillations. It is easily checked that if (v;, z;)
satisty

dv; Vit — V- et = 2

—L 4+ M +vj+vj-1)~j—t—J—+%(z,-+1—zj+zj_1)”+ 1= =0,

Y 2 2h (3.24)
dzj 4 N AL e Vit = Uj~1 '
o + §(Uj+l +v; + vj)l)T - §(Zj+1 ~zj + zj_l)—T =0,

thenu; = v+ (-1 Yz ; solves (1.2). We will therefore construct approximate solutions of (1.2) by first constructing
approximate solutions of (3.24).
In order to study small fluctuations about a nonzero homogeneous state u = i, we introduce v and z by

v =a+ht, oz =hi (3.25)

Then setting this into (3.24) yields

v | _Vjpy — Uiy oo N
4 + u h + 3(Z]+l Zj +Z]»]) h
21 = PN e T

+h73 (V0 + 95 + UJ'-I)T =0, (3.26a)
% iy -G g - T
R A AL e Ve

i L By~
— G -2 +Zf“)j—+l'2'h—u =0. (3.26b)

Now suppose that the values of v; and z; are approximated by point evaluations of smooth spatial functions that are
slowly varying in the frame moving with velocity ~#. Introduce the smooth functions v = v(s, y) and z = z(s, y)
such that

() ~ v(x; + i, B2t),  Fi() ~ z(x; + at, hR). (3.27)
After setting (3.27) into (3.26) and Taylor expanding in A one finds

2idyv + 1zdyz = O(hY), (3.282)
Bz — §id3z — vdyz — Lzdyv = O(h?). (3.28b)

Upon integrating (3.28a) to leading order, one finds
v=—~—=22+C. (3.29)

If this solution is to extend into a nonoscillatory region where the perturbation vanishes, we must impose the
boundary conditions v = z = 0 there; hence C = 0. When this result is substituted back into (3.28b) it yields to
leading order

1

1 5
857 — =07 + ~— =720,z = 0. 3.3
52 6“ 5’Z+36ﬁ dy 6 (3.30)
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Therefore, the amplitude z of the oscillations in the phase transition region approximately satisfies the modified
Korteweg—deVries equation (3.30). Given any smooth solution z = z(y, s) of (3.30), an approximate solution of
(1.2) may be constructed in the form

wi(t) = i + (=) z(x; + t, i*t)h — %%(z(xj + at, B2))*h* + O(hY). (3.31)
The shift x; + ¢ on the right-hand side of the above formula again tells us that the onset of oscillations propagates
with velocity —u.

The general form of (3.31) can also be obtained from the classical theory of continuous weak solutions with jump
discontinuities in the spatial first derivatives [3]. Specifically, when the jump in the first derivative of a continuous
solution of a quasilinear first-order hyperbolic system lies along a differentiable curve in the (x, 7)-plane then
the discontinuity propagates at a characteristic velocity and the jump is a corresponding right eigenvector of the

coefficient matrix. To apply this result, the modulation equations (2.6) are recast yet again as

1
a,(”)+( o6 )ax(”):o, (332)
q -3¢ v q

where v is as before, and ¢ = w — u*. One sees from (2.2) that regions where ¢ = 0 correspond to nonoscillatory
regions of the modulational solution. At a boundary between such a nonoscillatory region and an envelope of
oscillations where (3.32) has a continuous weak solution with value (i, 0), the discontinuity propagates at velocity
—it and the coefficient matrix evaluated at (v, g) = (&, 0) has a corresponding right eigenvector (—ﬁ(l /i), DT.
Behind the discontinuity the solution of (3.32) therefore takes the form

- 1 -
(”)~(”)+h2¢2(_5(1/“)) (3.33)
q 0 1

for some amplitude function ¢. Recovering u ; from formula (2.2) gives

11
12a
which has the exact same form as (3.31). The jump discontinuity in the derivative of ¢? means that the envelope of
oscillations connects to the nonoscillatory region of value i with a square root profile. This observation generalizes
what we had seen in the rarefaction problem of Section 3.2.

The following theorem establishes the validity of expansion (3.27) for initial data with small amplitude period-two
oscillations.

uj=v+ (=g ~i+(-D'h¢ — —=h’¢> (3.34)

Theorem 3.1. Let z = z(y, s) be a smooth periodic solution of (3.30) with initial data zg = zo(x). Let u;(t) be the
solution of (1.2) with initial data

_ . 11
uj(0) =i+ (=D 20(e)h — 15 = Qo) A%, (3.35)
and i; () be the approximation
. 11
aj(t) = it + (=1 z(xj + iat, h*0)h — 3 5 i, h21))2h?. (3.36)
U

Then one has the L2-estimate

1 J
|5 2l () = 20 = O, (3.37)
j=1
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where the estimate is uniform OVer any compact interval of ¢

Proof. Define the error by e; (1) = u;(r) — uj(?). Setting this into scheme (1.2) yields

dej .- TR R ek TS B i) — lij—y
—(jt—+§(uj+1+uj+uj_1) o +~3-(ej+1+ej +ej_1)T
€i+1 — €1
T3 e ey ST Gt T;(2), (3.38)

where the truncation error 75 (z) satisfies the 7.2 estimate

2 (@) < ChS, (3.39)
J

Multiply Eq. (3.38) by e; and use the local conservation property (1.3b) to obtain

1 d €iy1e; —ee;_ Ujg] — @i
2 1.~ ~ ~ L Eir1€; J€j-1 1 J+1 J—1

Ed_tej + §(“j+l +Mj + uj_l)‘\z}z\ + gej(ejﬂ +€j +€j_1)T

2 2 2 2

1€/¢1) +3j€j+l —e_e — ej_,ej.

3 h
Now sum over J and use summation by parts leads to

1d 3 ﬁj+2—ﬁjA1
5?17;81 _;ef"j“ 3

=¢;Ti(z). (3.40)

1 Ujry —ii;_
+§}j:ej<e,~+1+e,- e =jZej7}(z). (3.41)

Notice that from (3.36) that

ij — i) = O(h).

One sees from (3.41) that
d
T2 SCYT@R + D, (3.42)
J J

The Gronwall inequality and truncation estimate (3.39) then yields
2gh ety T’h < OA®). (3.43)
] J

This completes the proof of the theorem. 0

Remark. The idea used in Theorem 3.1 can be generalized to systems with strictly convex entropy function when
the numerical scheme has the same entropy function.

In the numerical experiments in Sections 3. and 3.2 we saw that the envelop of oscillations connects with the
nonoscillatory region with a parabolic curve. We now give an explanation. Assume that the solution of (3.30) has
the following self-similar form:

_ 1 By
Z(y,s) = af/oTsf (ﬁ) , (3.44)
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where
51/8
= Wi’

a=tap. (3.45)

By plugging the above into (3.30) and scaling the coefficients, we obtain

f+6fe = fege +6f2f = 0. (3.46)
This equation can be integrated once to find
fee=2f+&f+vy (3.47)

for some constant y. Eq. (3.47) is the Painlevé equation of the second kind, whose solution is the second Painlevé
transcendent [14]. One can see by directly analyzing (3.47) as § — oo that f has the asymptotic behavior

f& ~ e (3.48)
Hence, by (3.44),

1By _1\/@_}@\/?
alas\ Yas eVas YV 5 Vs

Therefore, we have from (3.31) that

Y P
u,-(t)~ﬁ+(—1)1‘/65—u,/ijit—+0(h).

This shows that the period-two oscillation in the phase-transition region matches the outside large oscillations in a
parabolic curve, thereby recovering (3.34).

The above analysis is consistent with the numerical experiments in Sections 3.1 and 3.2. As we have showed
analytically in (2.24) and numerically in Figs. 1 and 5, oscillations propagate into a nonoscillatory region with
a velocity that is the negative of the convection velocity. Period-two oscillations that mark the transition from
nonoscillatory to oscillatory behavior are described by the second Painlevé transcendent that matches to a parabolic
envelope.

Z(y,s)~

4. Breakdown of period-two oscillations
4.1. Loss of hyperbolicity for period-two oscillations

The following numerical experiment illustrates what happens when a period-two oscillation evolves into the
elliptic region (2.10) at some location [23]. We consider scheme (1.2) with the initial data

u™(x) = —0.3 sin(7rx). (4.1)

Clearly, singularities will form in the solution of the Hopf equation (1.1) whent = l atx =0, &1, &2, ... Fora
grid size h = 0.005, we plot the numerical solution at 1 = 6,1 = 11 and r = 12 in Figs. 6(a)—(c), respectively. The
ODE (1.2) is solved using the Adams-Bashforth method with the CFL number equal to 0.2.

The discontinuity in the envelope of period-two oscillations at the center of Fig. 6(a) is again a contact discontinuity
(with no flux across it). The period-two oscillations are generated at the central contact discontinuity and fan out
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Fig. 6. (a) The solution of the scheme (1.2) with initial data ¥i"(x) = —0.3 sin(rx) at + = 6. The grid size is & = 0.005.
The solution develops period-two oscillations when the solution of the Hopf equation (1.1) develops a singularity. Their envelope
fans out as time increases and has a contact discontinuity at the origin.

(b) A continuation of the solution shown in Fig. 6(a) to + = 11l. The period-two oscillations have evolved to a
point where their envelop has just left the hyperbolic region (2.9). Notice the slight irregularity in the oscillations near
x = 0.3 where the hyperbolicity condition has just been violated.

(c) A continuation of the solution shown in Figs. 6(a) and (b) to # = 12. The envelope of period-two oscillations has broken down, and a
spatially and temporally chaotic region has developed. Notice that a well-defined region of period-two oscillations persists.

in both directions as time increases. The oscillations are slowly varying in space and time, and their envelope is
smooth expect at the central contact discontinuity and at the endpoints of the oscillating region where the envelope
has a square root behavior. Fig. 6(b) shows the growth of the oscillatory region and the development of two small
defects in the envelope at x ~ 0.3 where the solution has just moved out of the hyperbolic region (2.9). The resulting
dramatic local breakdown of the period-two oscillations is shown in Fig. 6(c), where the solution is seen to remain a
perfect period-two oscillation throughout much of space. Within the breakdown region the solution becomes rapidly
varying in both space and time, behaving in a chaotic way. Notice that this breakdown occurs far from the central
contact discontinuity. In order to ensure that this phenomenon is not simply generated by the numerical ODE solver,
we halved the time step and obtained indistinguishable results. We believe that Fig. 6(c) depicts the dynamical
behavior of ODE (1.2). Our numerical evidence was inconclusive regarding the question of whether or not a weak
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Fig. 7. The same solution of scheme (1.2) that was shown in Figs. 6(a)~(c) is depicted here in the (v, w)-plane. The initial data (a) lie on
the curve w = v2. At = 6 (b) the solution lies completely within the hyperbolic region(2.9). Atz = 11 (c) it has just crossed the curve
w = 10v2, thereby entering the elliptic region (2.10) and triggering the local breakdown of period-two oscillations. At 1 = 12 (d) the
solution is well into the elliptic region and the period-two oscillations have broken down. Near the boundary curve w = 1002, parts of
the solution maintain a period-two structure even in the elliptic region.

limit exists in this region. Indeed, given the complexity of the observed dynamics, it would seem that convincing
evidence on the matter could only be obtained from much larger experiments.

To further illustrate this connection between the local loss of hyperbolicity and the breakdown of the modulated
period-two solutions, in Figs. 7(b)—(d) we depict the solution of Figs. 6(a)—(c) in the (v, w)-plane. The initial data
in Fig. 7(a) lie on the curve w = v2. As the period-two oscillations are developed, Fig. 7(b) shows that the solution
enters the hyperbolic region (2.9). Atz = 11, Fig. 7(c) shows that the solution has just passed the curve w = 10v?
and entered the elliptic region (2.10). While the breakdown time of the period-two oscillations is seen to coincide
with the time, the solution enters the elliptic region, notice in Fig. 7(d) that some period-two structure persists into
the elliptic region. The cause for this persistent structure is not well understood.
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Fig. 8. The solution of the integrable scheme (4.2) (the Kac—Moerbeke lattice) with initial data u"(x) = —0.3 sin(7x) at: (a) £ = 10; (b)
t =20; (c) t = 30; (d) r = 40. The grid size is & = 0.01. The solution develops period-two oscillations when the solution of the Hopf

equation (1.1) develops a singularity. Their envelope fans out as time increases and has a contact discontinuity at the origin. Unlike the
solution of the nonintegrable scheme shown in Figs. 6(a)—(c), here the period-two oscillations never break down.

4.2. Comparison with an integrable scheme

The breakdown of period-two oscillations in this way has not been observed in integrable schemes. For compar-
ison, we approximate the Hopf equation (1.1) with initial data (4.1) by the dispersive scheme

=0,  u;(0)=u"(x)), 4.2)

and plot the numerical solutions at times ¢ = 10, ¢t = 20, t = 30 and ¢ = 40 in Figs. 8(a)—(d), respectively. The
above scheme were shown by Goodman and Lax [7] to be equivalent to the Kac~von Moerbeke lattice [16], provided
the initial data have same sign, and hence are integrable. They used the variables

uj = (@ +bj) + (=1 3(a; — b)) 4.3)
to describe the period-two oscillations and obtained the following modulation equations:
dra +adyb =0, 0;b + bora = 0. 4.4)

As in Section 2.1, we use two conserved qualities to rederive the modulation equation of the period-two oscilla-
tions. Being integrable, (4.2) has infinitely many conservation laws. We chose the following two conservation laws
to derive the modulation equations:

d(log |u;|) I Bl el RO duj w1 — iU
ds 2h 7 dr 2h

We define the following two variables which is enough to determine the period-two oscillations:

=0. 4.5)

viriy2 = 50 + ujr1), wjs1/2 = —3 (log |uj| + log Ju;11]). (4.6)
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Indeed, we can recover the oscillatory solution «; by

uj = vjr12 £ (=17 Jv? 172 — €Xp(—2wjt1/2),
j+1/
We have from (4.5) and (4.6) that
dwjt12 V432 —Vj-172 dvjprp  1e 2032 — e=2w-122
_ —0, - —0. 47
dt 2h dt + 2 2h @D

This is the modulation equation for the period-two oscillations of scheme (4.2) and indeed it is just Toda lattice. We
can also view (4.7) as the central difference scheme for the following p-system with exponential law:

Jw—3dv=0, Jv+1ide ¥ =0 (4.8)
with initial data

(v, w)li=o = (uo(x), —log up(x)).
By convexity, we known that the solution can only appear in the following region:

{(v,w) | w = —log|vl}. (4.9)

Clearly, system (4.8) is always strictly hyperbolic in the above region. This differs from the modulation equations
(2.6) of the nonintegrable scheme (1.2) which can change type.

The relation between the stability of numerical schemes and their integrability was also studied by Herbst and
Ablowitz [10] through a finite difference approximation to the cubic Schrodinger equation. They found that the
standard central difference scheme (which is nonintegrable) could induce numerical chaos in the solution while an
integrable scheme (obtained through a minor modification in the approximation of the cubic term) performs better.
Of course, some integrable systems have elliptic modulation equations, but we know of no integrable systems with
modulation equations that dynamically change type as was shown for Eqgs. (2.6).

4.3. A phase instability in period-two oscillations

The contact discontinuity in the solution of the modulation equations that arises at the origin in the last two
experiments is a delicate point. We now illustrate the instability of the solution at that point to fractional shifts of
the grid. The above two numerical experiments are reperformed with the computational grid points x; = (j +a)h,
where 0 < @ < 1 and @ # 0.5. The initial data will then no longer have an odd symmetry with respect to the grid.
The initial data used in Figs. 9 and 10 are the same as that used in Figs. 1 and 6, respectively, except that the grid
has been shifted by choosing @ = +/2 — 1, a negligible amount on the continuum scale.

Figures 9 and 10 clearly demonstrate again that the period-two oscillations generated at the origin fan out as
time increases. In Fig. 9 the period-two oscillations persist but develop a long wavelength modulation. However,
in Fig. 10 the period-two oscillations are destroyed in a region near the origin that also fans out as time increases.
The period-two oscillations always move fastest, and so are found furthest from the origin. Notice that the dramatic
behavior characteristic of entering the elliptic region in Figs. 6(b)-(c) also appears in Figs. 10(c)-(d).

It was shown above that wherever the modulation equations (2.6) are strictly hyperbolic their classical solutions
describe period-two oscillations that are insensitive to shifts in the underlying grid. Hence, the differences seen in
the corresponding runs above are generated at the contact discontinuity located at the origin and then propagate out
from there. This indicates a grid-scale sensitivity on the initial data.
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Fig. 9. The solution of the scheme (1.2) for the same initial data as in Fig. 1 except that the grid is shifted by (-\/i —1)h. The odd symmetry
is therefore broken, and while still composed of period-two oscillations, structure is formed on long wavelengths.
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Fig. 10. The solution of the scheme (1.2) for the same initial data as in Fig. 6 except that the grid is shifted by (+/2 — 1)k. The odd
symmetry is therefore broken, and the solution is no longer composed solely of period-two oscillations.

5. Modulation of period-three oscillations

Of course, oscillatory behavior in the solution of a dispersive numerical scheme is generally not period-two in
nature. One might therefore consider making a more general Whitham ansatz of the form

u=U(,x,0(,x)/ h), 5.1
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where 6(t, x) is some smooth function. However, the discrete nature of the computational grid is not consistent with
such an ansatz because on fine scales there is not a continuum of wave numbers available to the solution. We shall
therefore consider a more modest extension of the preceding theory — namely to period-three oscillations.

The period-three oscillations are very different from period-two oscillations because, while exact period-two
oscillations are stationary, exact period-three oscillations vary rapidly in time. Here, we derive modulation equations
for period-three oscillations through by averaging the local conservation laws (1.3).

Exact period-three solutions are completely determined by (ug, ), u3), which will sastisfy the three-particle
version of system (1.2), namely

ug 0 I -1 ug

d 1

= | =—§5°+;h& 1 0 1 |{w]. (5.2)
Uz 1 -1 0 u;

Since the quantity ug + 11 + 4> is conserved by solution of (5.2), denoting its value by 3a, the general solution of
this system may be expressed as

up(t) a uo(0)

ui(t) | =exp (~—M) u1(0) ], (5.3)
u2(1) u2(0)

where the matrix M is defined by

0 I -1

The solution of this system is constrained to move around the circle that is the inter-section of the plane and sphere
determined by the conserved quantities ug + u; + up and u% =+ u% + u%. Upon denoting the value of the latter
quantity by 342, an orbit in the family of period-three oscillations is uniquely determined by the values of a and a2,
Moreover, one can show that for each such orbit

3oy + urus + uzug) = $(3a* — a?), (5.4
and
1 T
T /(“1“2(“1 + u2) + wpuo(uz + ug) + upuy (ug + u1)) dt = 6a°, (5.5)
0

where T = %\/gnh /a is the period of the orbit.
Now, we derive equations that govern a modulation of this family of exact period-three oscillations. It is natural
to introduce the variables

uj = %(uj_1 +uj +uj), wj = %(uf_l —}—ujz- +u12+1). (5.6)

Both v; and w; are locally conserved densities of the scheme (1.2) and are smoothly varying for modulated period-
three oscillations. The evolution of v; and w; is obtained by averaging the local conservation laws (1.3) over three
adjacent spatial points as

dv;  Fp—Fiop _0 dw; + Giti2—=Gj—12

, 0, 5.7
dr h dt h ' .7
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where the fluxes are

2 2, .2 2., .2 2
Fit1p = 13 (uj_l tuj tup g tuju w2 U UGy +“j+2)’

1
(5.8)
Gjsizz = g (#j-1j Qejmt +uj) + wujgr () + 1) + g2 (er +uj42))

Now formally pass to the continuum limit. For an exact period-three oscillation the flux F is a constant that can be
evaluated using (5.4) as %(&2 + @2). The flux G on the other hand must be averaged over the rapid time variation
using (5.5). One finds that the modulation equation for period-three oscillations are

dv+ o +w) =0, dw+3a’ =0 (5.9)

Note that these modulation equations differ from those obtained for period-two oscillations (2.6).
System (5.9) is hyperbolic wherever v # 0, in which case it is strictly hyperbolic with its characteristic velocities
given by v and — % v. The system has the Riemann invariant form

3 (2v° + w) + v9, v + w) = 0, 3 (w — v?) — $vd (w —v?) = 0. (5.10)

The second equation shows that the region v? < w is invariant for classical solutions of (5.9), a fact consistent with
the origins of v and w. Indeed, if one sets w = v, which corresponds to there being no oscillations, in (5.9) then v
is seen to satisfy the Hopf equation (1.1). The first equation in (5.10) shows that the region 2v% 4+ w > 0 is invariant
too, but this region is contained in the first.

It is reasonable to expect that classical solutions of (5.9) that satisfy 0 < v> < w will describe the modulation
of period-three oscillations so long as they do not develop a singularity. This can be illustrated through numerical
experiments. We consider initial data that are period-three oscillations with a long wave length modulation as
shown in Fig. 11(a). The numerical solutions of (1.2) at t+ = 0.1, 0.2, and 0.3 are plotted in Figs. 11(b), (c) and
(d), respectively. The dynamic nature of period-three oscillations make them hard to observe directly in numerical
experiments. However, the averages of u; and uj2 over three adjacent points are slowly varying, thereby making the
underlying period-three behavior clear. In Figs. 12(a)—(b) we plot the solution (v, w) of the modulation equations

1 05 0 05 1
initial data of u numerical solution at time = .1

(2) (b)

-1 05 0 05 1 05 0 0.5 1
numerical solution at time =.2 numerical solution at time = .3

© )

Fig. 11. Modulated period-three oscillations of the dispersive scheme (1.2): (a) the initial data; (b), (c) and (d) the numerical solutions at
t = 0.1, 0.2 and 0.3, respectively.
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1.25r
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1.2
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_ —— L4 ) \
! 15-1 -05 0 0.5 1 -1 -05 0 05 1
modulational solution v modulational solution w
(a) (b)
13 v - T 1.8 —
L7F
1.25
16 / \
12 W s W
1.1 L - ; L4
5—1 -0.5 ¢ 0.5 1 -1 -0.5 0 05 1
numerical solution v numerical solution w
© [CY

Fig. 12. The modulational behavior of period-three oscillations: (a) and (b) v and w, respectively, from the solution of the modulation
equations (4.7); (c) and (d) three point averages of u ; and ujz., respectively, of the same solution of the scheme (1.2) shown in Fig. 11.

(5.9) which are solved by a well-resolved Lax—Friedrichs scheme. For comparison, in Figs. 12(c)—(d) we plot the
averages over three adjacent points of #; and ujz. from the numerical solution. We can see that the modulation
equation give a good description of the modulated period-three solution.

6. Discussion

We have studied modulated oscillatory behavior in solutions of a nonintegrable dispersive numerical scheme that
approximates the Hopf equation. Oscillations are generated in the numerical solution when the classical solution of
the Hopf equation develops an infinite derivative. In some cases these oscillations are period-two, and we derived
a2 x 2 system of modulation equations to describe it. The modulation equations are strictly hyperbolic in a region
containing nonzero initial data. We showed that, so long as a solution of these equations remains sufficiently regular
and inside the strictly hyperbolic region, it describes the weak limit of the modulated period-two oscillations.

More remarkably, we found that some nonsmooth solutions of the modulation equations describe the weak limit
near points of transition between regions of nonoscillatory and oscillatory behavior. The matching between these
regions was found to be described by a second Painlevé transcendent. These latter results are largely formal or local
in nature. Some of the difficulties of trying to rigorously extend the validity of the modulation equations (2.6) in this
nonintegrable setting were shown in Section 4. Further evidence for at least some extended validity of modulation
theory was given for period-three oscillations. It is hoped that some of these extensions of the validity of modulation
theory can be made rigorous.
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