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PROJECTION METHOD II: GODUNOV-RYABENKI ANALYSIS*
WEINAN E! AND JIAN-GUO LIU%

Abstract. This is the second of a series of papers on the subject of projection methods for viscous incompressible
flow calculations. The purpose of the present paper is to explain why the accuracy of the velocity approximation
is not affected by (1) the numerical boundary layers in the approximation of pressure and the intermediate velocity
field and (2) the noncommutativity of the projection operator and the laplacian. This is done by using a Godunov—
Ryabenki type of analysis in a rigorous fashion. By doing so, we hope to be able to convey the message that normal
mode analysis is basically sufficient for understanding the stability and accuracy of a finite-difference method for the
Navier—Stokes equation even in the presence of boundaries. As an example, we analyze the second-order projection
method based on pressure increment formulations used by van Kan and Bell, Colella, and Glaz. The leading order
error term in this case is of O (At) and behaves as high frequency oscillations over the whole domain, compared with
the O (Ar1/2) numerical boundary layers found in the second-order Kim—Moin method.
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1. Introduction. This is the second of a series of papers on the subject of projection
methods for viscous incompressible flow calculations. The purpose of the present paper is to
explain why the accuracy of the velocity approximation is not affected by (1) the numerical
boundary layers in the approximation of pressure and the intermediate velocity field and (2)
the noncommutativity of the projection operator and the laplacian. This is done by using a
Godunov-Ryabenki type of analysis in a rigorous fashion. By doing so, we hope to be able
to convey the message that normal mode analysis is basically sufficient for understanding the
stability and accuracy of a finite-difference method for Navier—Stokes equations even with the
presence of boundaries.

Projection method in the presence of solid boundaries has been the focus of much dis-
cussion. The main issue is whether the accuracy in the interior of the domain is polluted by
large errors made at the boundary from imposing inconsistent boundary conditions. Indeed a
crude analysis [3, 1] suggests that both the formally first- and second-order accurate (this is the
accuracy for periodic problems) projection methods could deteriorate to 1/4-order accurate
when solid boundaries are present. This is due to the fact that in this case, the projection
operator no longer commutes with various other operators involved, as was the case with pe-
riodic boundary conditions. On the other hand, numerical evidence seems to indicate that the
projected velocity field has full accuracy all the way up to the boundary [3, 1]. The mechanism
according to which the full accuracy is retained has been a mystery for more than 25 years.

Several issues were resolved in our previous paper [4] where we characterized explicitly
the structure of the numerical boundary layers in the first-order projection method and the
second-order Kim and Moin method. As a consequence we proved that the projected velocity
has full accuracy (namely first-order for the formally first-order method and second order for
Kim and Moin’s method) all the way up to the boundary. We also studied the effect on the
overall accuracy of choosing different numerical boundary conditions at the projection step.
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In the present paper, we explain the numerical phenomena mentioned above by resorting
to a classical tool in numerical analysis: the normal mode analysis. With boundary conditions,
this is usually referred to as the Godunov—-Ryabenki analysis. As we will see, there are two
principle factors which contribute to the full accuracy of the projected velocity field. The first
is that the boundary layer mode created by the inconsistent boundary condition is orthogonal to
the space of divergence-free vector fields. Consequently, the projected velocity field does not
contain any numerical boundary layers. The second is that the commutator terms (resulting
from the noncommutativity of the projection operator P with the laplacian, etc.) have a very
special structure (see §3.3). As aresult, although the magnitude of the commutator terms can
be quite large, it does not accumulate since the approximate evolution operator acts efficiently
to suppress it.

Compared with other approaches, normal mode analysis has the advantage of being much
more explicit. As an example, we analyze the second-order projection method based on
pressure increment formulations used by van Kan and Bell, Colella, and Glaz. The leading
order error term in this case is of O (At) and behaves as high frequency oscillations over the
whole domain, in contrast to the O(A¢'/?) numerical boundary layers found in the second-
order Kim—Moin method.

The standard calculation of the normal mode analysis was carried out in [11]. These
results give explicit and concrete information about the behavior of the classical projection
method. Nevertheless, [11] did not go further to the full nonlinear equations and identify the
two main factors mentioned previously. Consequently, the result of [11] was often viewed as
being restricted to a linear model and not rigorous. Indeed for hyperbolic equations there is
a gap between the predictions of normal mode analysis and the true behavior of a numerical
method. Identifying that gap was a major task of classical numerical analysis [15, 7, 12, 13, 5].
In this paper, we answer that criticism by translating the predictions of normal mode analysis
into rigorous theorems. So although the main result in this paper can be obtained using other
approaches [4, 14, 16] (indeed sharper and more general results were proved in [4, 14, 16]),
we feel the proof we present in this paper is more explicit and addresses directly the issues
that have been puzzling for quite some time.

The rigorous side of the normal mode analysis can be understood as follows. We know
from Strang’s theorem that for general nonlinear problems, as long as the exact solutions are
smooth, L2-stability of the linearized scheme implies convergence in the L>-norm for the full
nonlinear problem with maximum accuracy. In his paper [17], Strang only dealt with 2-level
explicit schemes without boundary. The generalization to multilevel scheme in the presence
of boundary was done by Michelson [10]. For parabolic equations, this can be reduced even
further to the study of the (frozen coefficient) leading-order equations which are then amenable
to normal mode analysis. This is the content of an earlier result of F. John [8] which also deals
only with the boundary-free case. The generalization to problems involving boundaries was
recently done by Kreiss and Wu [20]. In the present context, the problem is reduced to the
study of the Stokes equation. We emphasize that we will not actually use Strang’s trick of
constructing asymptotic solutions with high accuracy, as a device to overcome the difficulties
in obtaining an L* estimate from L?-stability. We believe that for equations of parabolic type,
this is not necessary and should be avoided since it usually requires far more regularity than
is actually needed. To implement the program described above, we use a discrete semigroup
formulation which allows us to fully explore the regularizing effect of the parabolic equations.

This paper is organized as follows. In §2, we review the Godunov—Ryabenki analysis for
the first-order projection method. In §3, we prove our main theorem which basically asserts
that everything predicted by the Godunov-Ryabenki analysis for the Stokes equation holds
for the full Navier—Stokes equation. Since the proof is a bit technical, an outline is given in
the beginning of §3. In §4, we study the second-order projection methods based on pressure
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increment formulation using normal mode analysis. Finally, the Appendix contains the proof
of some technical results needed in §3.

2. Godunov-Ryabenki analysis. In this section, we review the standard Godunov-
Ryabenki analysis. We begin by writing down the viscous incompressible Navier-Stokes
equation (NSE):

2.1)

ou+ (u-Viu+Vp = Au,
Viu=0,

on a domain . We will focus on the most commonly used boundary condition, the no-slip
boundary condition:

2.2) u=20 ondf2.

One way of solving (2.1) is the backward Euler scheme:

un+1 —u"
+ (un. V)un + Vpn+1 — Aun—H ,
2.3) At
V.t =0,

plus some spatial discretization and the boundary condition (2.2). However, this is a rather
inefficient method since at each time step, one has to solve a coupled system of Stokes-type
equations for (w"*!, p"*1).

Projection method is a way of discretizing (2.1) in time so that the computation of velocity
and pressure becomes decoupled. As a result, at each time step, we only need to solve
a few Poisson-type equations separately for velocity and pressure, instead of the coupled
system (2.3). This is done by first ignoring the incompressibility constraint, computing an
intermediate velocity field #* using the momentum equation, and then projecting u* back to
the space of incompressible vector fields to obtain #"*! and p"*!. We write the analogous
projection method of (2.3) as follows [2, 18]:

Step 1. the evolution step

u* —u"
(2.4) At

u*=0 on 082.

+ @ Vyu" = Au*,

Step 2. the projection step

u*t = un+l + At Vpn+1 ,
2.5) Vautl =0,
utl.n =0 on 9%2.

Equations (2.5) are equivalent to solving a Poisson equation for pressure together with a
Neumann boundary condition

V-u*

A n+1 —
P At

(2.6)

apn+1

=0 082.
o on
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In this case (2.5) is simply the standard Helmholtz decomposition for the vector field u*.
One could argue that other types of boundary conditions for (2.6) are equally plausible. The
effect of choosing different numerical boundary conditions is discussed in [4]. Notice that
the boundary condition for pressure in (2.6) is inconsistent with the Navier-Stokes equation
(NSE) (2.1)—(2.2). If we take the inner product of (2.1) with the unit normal vector at €2, we
arrive at

B_p =n-Au on 082,

on
which is in general not zero. Therefore we expect that numerical boundary layers must be
present if the method converges sufficiently strongly.

In the presence of physical boundaries, the projection method exhibits a number of inter-
esting numerical phenomena including numerical boundary layers and boundary-excited high
frequency oscillations. This made the task of analyzing such methods much more difficult
than the periodic case. However, most of these phenomena can be understood by studying a
simple model problem, the linear Stokes equation in a channel, for which an exact solution
can be explicitly obtained, even for the numerical scheme.

Consider the Stokes equation on = [—1, 1] x [0, 2x]:

[ u+Vp=Au,

@7 Viu=0.

We impose a periodic boundary condition at the boundaries {y = 0} and {y = 27}, and a
no-slip boundary condition at the boundaries {x = —1} and {x = 1}. After a Fourier transform
in the y variable, the problem is reduced to a family of one-dimensional problems indexed by
keZ:

du+d,p = (32— k)u,
dv +ikp = (82 — kv,
ou+ikv=0,

u(£l,1) = v(£l,1) =0.

(2.8)

Here and in what follows, we use the notation u = (u, v).
We will use the following notation in the rest of the paper:

0
A= @ —Ku,  Vip= ( ihp ) :
Vi-u =0u +ikv, curl yu = —iku + o,v,
2 )
ur(x) = / u(x, y)e_’ky dy,
0

and for two complex vector-valued functions f and g, f = (f1, f2),& = (g1, &2) (these are
functions of x), we define the inner product:

1
), g)) = / (Fia ) + An)dx

where overbar means complex conjugate.

The normal mode analysis of this problem and the associated projection method (2.4)—
(2.5) was carried out [11]. Following is a review of their results. We will use the same
notations.
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The normal mode solutions of (2.8) are of the form
2.9 , p)(x,1) =" (@, p)(x).
For these solutions, (2.8) becomes

ou+ Vip = AL,
(2.10) Viu=0,
u(+£1) =0.

This is a system of linear ordinary differential equations (ODEs) with constant coefficients
whose solutions can be found exactly. The symmetric solutions are

" cosh kx
u(x) = cos ux — cos it ,
coshk
1 inh k
(2.11) (%) = ,E—sinux—i—fcosugm—x,
ik i coshk
S) = o sinh kx
P = g SO oshk
where u satisfies
(2.12) putanp + ktanhk =0
and
(2.13) o =—k>—pu?.

In the interval ((j — %)n, G+ %)n), there is a unique solution wj; to (2.12). We will denote
the solution in (2.11) as W, Vjx, and Pj, etc.
The antisymmetric solutions are

700 N x — sin sinh kx
x) =si —sinpyy——,
" i K’ sinh k
~ 1. hk
(2.14) V(x) = ——_lﬁ cos ux + — sin ;Lfi’f——f ,
ik i sinh k
5 o sin coshkx
X) = —S1 3
P K Sinhk
where p satisfies
(2.15) ucoty —kcothk =0

and 0 = —k? — u?. For (2.8) the projection method (2.4)—(2.5) takes the following form:
ut —u"

= Awu*,
At k

(2.16)
u*(£1,71) =0,
u* = un+1 + At Vkpn+1 ,
2.17) Vieuwtl =0,
wtl.n(+1,1) =0.
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The normal mode solutions of these equations are of the form
(2.18) @", p")=«"@,p), uw=«
Again the set of equations obtained by substituting (2.18) into (2.16) and (2.17) can be solved

and we get the following.
Symmetric modes:

n+l1 .

(2.19)
%(x) = cos X coshkx
ulx) = X — co
g oyt
1 _sinhkx
v(x) = —smux + Ccosfi— -,
coshk
*(x) = cos cos ~ coshkx BAt cos i coshAix coshkx
x) = X = — cos _
" & M oshk H cosh A coshk
) = n + 1 sinh kx kB A cos fi 1sinhAx 1sinhkx
— s1n — CoS - 0s - 1
’ o M oshk l H A cosh A k coshk
B(x) = —Bec 1 sinh Ax 1 sinhkx
X —p cos —
P z A coshn  k coshk

where
(2.20) A=@E+ArH2 =k -,
and 1, B, and A satisfy

~ o~ k
(2.21) tan i + k tanhk = Bk At (tanhk -3 tanhk) .

In each interval ((j — 2)7': G+ 2)zr) there is a un1que solutlon ILjk, which gives rise to B
and A,. We will denote the solution in (2.19) as & ks v]k, ; o v; e and p Djk- Itis easy to check
that

1
(2.22) Kk =

1- ﬂjykAt '
Antisymmetric modes:
(2.23)

~sinh kx

U(x) = sinx — sin i ——— praal

7 1 ., _coshkx
T(x) = 7 cosix + — smum— ,
T = sinfix — smusmh kx BArsingi (smh Ax sinhkx)
sinh k nh A sinh k

~

" 1 . ._coshkx
7'(x) = ——Ecosuxﬁ——sm,u

K ~,3Atsmu(

1 cosh Ax 1 coshkx
A sinh A "k sinhk

1 cosh Ax 1 coshkx
A sinh A "~k sinhk

p(x) = —Bsinix <
where A = (k2 + At~1)1/2 and B = —k? — [i? and satisfies

~ k
(2.24) peotr — kcothk = Bk At (cothk —3 coth A) .

What was said about the symmetric modes also holds for the antisymmetric ones.
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It is clear from these formulas that the numerical scheme (2.16)—(2.17) has a couple
of new modes not shared by the original partial differential equation (PDE). These are the
boundary layer modes represented by A. It is also important to notice that the boundary layer
mode in (*, 7*) is an exact gradient. Therefore it does not contribute to (i, ¥) which is the
divergence-free part of (#*, 9*). This is the primary reason why the projected velocity still
has O (At) accuracy up to the boundary, whereas the approximate pressure is only O(Az'/?)
accurate at the boundary.

From another point of view, it is well known that the linearized Navier-Stokes equation—
the Orr—Sommerfeld equation—is of fourth order. In comparison, the normal mode equation
of (2.16)~(2.17) is of sixth order with small coefficient At at its leading order. This can be
most clearly seen from the equations for pressure. Equation (2.10) implies that

(2.25) Ay p=0,
whereas (2.16)—(2.17) gives
(2.26) (I —AtA) Ay p=0.

This clearly indicates that we are dealing with a singular perturbation problem and we expect
to have a boundary layer of width O(At'/?) in the approximation of pressure. We remark
that (2.26) was derived previously by Gresho [6].

In the following we will often omit the subscripts j, k for notational simplicity. We will
also use the following notations:

lellge = sup [luC,)|lge  and  Ju"llge = sup |@*]pe,
0<t<T 0<t"<T
where " = nAt. We will use || - || to denote L2-norm in space.

3. Convergence results.

3.1. Statement of the theorem and outline of the proof. Let 7 > 0 be fixed and S(-)
be the solution operator of the linear Stokes equation (2.7). The main result we want to prove
is the following theorem.

THEOREM 1. Assume that u € L*®([0, T); H’) and 3,S(t)u € L*([0, T); H?3) is the
solution of Navier-Stokes equation (2.1)~(2.2) on domain Q = [—1, 1] x [0, 27 with no-slip
boundary condition at x = £1 and periodic boundary condition at y = 0, 2. Then we have

(3.1 Jmax I, ) —u" ()| < CAL (llullys + 18:SOullze),
where C is independent of At and u.
Outline of the proof. We assume a priori that

(3.2) max (|lu" | gL + 13,8” | mine=) < M,
Oft"ST

where M is a constant independent of Az. There are two ways of proving this a priori estimate.

One is given in [4]. The other is a direct proof based on the semigroup type of argument that

we will use later. Here we will not give the details of that since it is rather standard and tedious.
Write (2.4) as

(3.3) w = (I — AtA) @ — At@”- Vyu™)
and denote by P the projection operator in the Helmholtz decomposition:

(34 u=v+Vg, v = Pu,
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where
3.5) V=0, v-n=0 on a2,
Then the projection method can be written as
(3.6) utl =P - AtA) T (W — At Vu").
On the other hand, we can write (2.1) in an integral form:
t
3.7 u(t) =S@t)ug — / St — 1)) Vu(r)dr.
0
We then have
tn+l
(3.8) u(@ = S(ADu(E") — SE! - () Vu(r)dr.

in
To compare (3.8) with (3.6), let us denote
3.9) Sar =PUI — AtA)'P.
Equation (3.6) now becomes
(3.10)  w" =Spu" — AtSa W VIU" — At P — AtA)TH T = P Vu".
Lete® = u(t*) — u". From (3.8) and (3.10), we obtain
311 et =85 e — AtSa [ V)" + (€ VIu(t™)]
+ E" + At P(I — AtA)~Y(I - P)@™- V)u",

where
E" = (S(At) — SA,)[u(t") — At (u- V)u(t")]

(3.12) i
+ S — Y- Vyu(r)dt — AtS(AD) (- Vu@").

m

The last term in (3.11) is the commutator term and is the main source of difficulty. Its magnitude
can be of order At so standard estimates would give a O (1) bound for the error in maximum
norm. To obtain a better estimate, we need to take into account the cumulative effect of the
approximate solution operator.

The recurrence formula (3.11) gives

e =83, — At Esg;‘ [t V)e* + (e° Vyu(th)]
(3.13) . =
+Y SREPE ALY SAEPU = AtA)TNT = P)@t Vyut
=0 £=0
This is the basic equation we will work with. In the following we will need some technical

lemmas whose proofs will be given in the Appendix.
LEMMA 1. Assume thata € W', V.a =0, anda-n = 0, on 3. Then

(3.19) IS (@-Vyul < CmAt)™* |a] = ul,
(3.15) ISF (- Vyall < CmAt)™* |allwie |lull,

where C is independent of m, At, a, and u.
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Applying Lemma 1, we get

n—1 n—1
lell < el + CAtY ((n— AN *|lefl| + D ISx;* ECIl
=0 £=0

(3.16) -
+ ALY ISR PU - AtA) T = PY@- V.
£=0
The truncation error terms can be estimated using the following lemma.
LEMMA 2. Let S = S(At). Then we have

n

(3.17) ISR (S — Sanull < CAt (lullgs + 13,S@)ull ),
m=1 n
(3.18) IS (S — Sar)(@-Vyul| < C |lu|lZs,
m=1
and

tn+l

(3.19) SE" — v)(u- Vu(r)) dr — AtS(A)u- Vu(t"))| < CAL lullys -

m

Before going into the details of the proof, we remark that since both S(At?) and Sy, are
self-adjoint operators in the space L3(div) = {u € L*(R2), V-u = 0}, their complete sets of
eigenfunctions {#j; ¢™*} i, {# ¢’*’};x form complete orthogonal bases in L2(div).

3.2. Proof of Theorem 1. From here on, we will only deal with the symmetric modes.
The reader can easily check that the argument works equally well when the antisymmetric
modes are also taken into account.

The main problem is to estimate of the effect of the commutator terms. We write

(3.20) J"=PU - AtA) A =P)" Vu" =)yt x) e .
Jok
To compute the coefficient y;j;, we have from the Helmholtz decomposition
" - Vu" =Pw"- Vu" + Vq,
where g satisfies
Ag =V-(@"- Vyu"),

(3.21) dq
on

0 on082.

Denote
(3.22) w=PU - AtA)'vg.
Expand g and w as

g ) =Y @, wey) =Y wxer.
k k

Then for each k we have
(3.23) wi(x) =PI — AtA) ' Vigr(x),

(wi(x), wjx(x))

3.24 = — — .
.24 Vi E ) i)
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Let us compute

Wi, W) = @, I — AtA) ' Viegr) = (Vg , (I — At D)™ Ujy)

1
= f Vige()-(I = At A ™l dx
-1

1
__ f 90 (0:T — Arag™

~ ~coshk
—(I — AtAY)™18,) | cosix — cosp,COS ad
coshk

It is straightforward to compute

cos 1L hk L hk h Ax
I — ArAY-! ospfc _ coshkx) jkcosujc __ coshkx L _Kjk)cos X
cos i coshk cos L coshk cosh A
and
(I — AtA)! <_ﬁsinﬁj _ksinhkx)
cos [L coshk
. sinix sinh kx ~ .. sinhAx
= —k; - ktanhk ik Lt .
ik m cos [k coshk +(kta e ptan i) sinh A
Therefore
o hk
(0.1 — AtA)™ — (I — Ara~la,) (22 _ 222
cos iU coshk
sinh Ax
= ((1 — kjp)Atanh A — ktanh k — Ky [ tan & .
(A = Kjrta anhk — i ftan ff) ———
Using (2.21) we get
~  ~  —Bikkjk
(1 — kj)rtanh A — ktanhk — kjgpitan L = ———tanhA .
k
Hence we obtain
~ —Bijkkjk cOS L /1 sinh Ax
3.25 , Uiy = ————— dx.
(3.25) (Wi, wji) " _IQk(x) woshx &

Using the fact that %, (x) is divergence-free, we have from integrating by parts that

1

(Wi , wjy) = —ﬁflujk cos ux dx

B K2—p? 2k 5
= 1+—2—msm2u—mcos ptanhk ) .

Substituting (3.25) and (3.26) back into (3.24), we obtain

1 sinh Ax
k d
/_1 () cosh A x

(3.26)

k .
(3.27) Iyl < c%ﬁ
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Next we write #” = (u, v) and

(3.28) V(@ V") = 92u?) + 20,8y (vu) + 82 () = Y fi(x) €.
k

We have from (3.28) and (3.21) that

{ Ak gk = fi(x),

(3.29) Beqr(£1) = 0

Integrating by parts and using (3.29) gives
(3.30)

1
/ e )S‘“ DI x = A1) + k(1) + A / Arkar ()

sinh Ax
h A

dx

sinh )»x
cosh A

= AAt (kg (1) + kg (=1)) — At/ kfi(x)
Since
ikfi(x) =ik f " (82 + 28,8, (vu) + 87 (v%)) e~ dy
=9} (8_}’”“2)1: + 2ikd, (3y () — K> By v )i,

we have

] kfk(x)smh’\x dx / <x2(a U2), + 2iAk(By (i) )i — K2 (3,0 Z)k)

< Cagll9y@” @u")ell -

sinh Ax
osh A

Here we have used tensor product notation # ® u = uu” . Using Sobolev inequality, we obtain

1
K2qi(1)* < Ck* /0 (@e(0)? + Beqr(x))?) dx < C |8, @"-Vu" )] .

Consequently we get
! inh A
3.31) V kg () Y gy
1 cosh A

Coming back to (3.27), we obtain

< C A At (|0, @" @ u")e |l + 118y (" - V")) -

(3.32) lvjel < C kAL kji(118, @" @ u")e |l + 119y @™ - Vu")ell) -
Since

SX; Jt = Z'}/jk ku]k(x)e

and

C
WGP AL < — ZK;',;“ Ar<C,
m
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we have

2 2 2 2
ISZIM% =Y v lull
j?k

< CY kPG + K AL (10y " @ u)el® + (19, " - Ve )|
J.k

VAL — ) )
=C—px Z};xjk“(mm)”z (118, @ @ u"ell? + 118, @ -V )
Js

W At n n n n

< O 2B, @l + 13, Sl
W At n n n n

< 325 (10,@” @ u)IP + 1, @ Vur)|P)

Thus

YoUSm It < CAME ST m T (19, " @ w) 1P + 118, (- V) |[?)
(3.33) m m<T/At
< C " 10 1058 |20 < CM.

Together with (3.16)—(3.19), we obtain
n—1

(3.34)  lle"ll < 1€l + CAr Y ((n —)A)™* €|l + C At (lullys + 19, SOull ) .
£=0

By Gronwall’s inequality, we get

(3.35) le* |l < C At (lullys + 13 S@ullms) -

This completes the proof of Theorem 1. 0

3.3. Structure of the commutator term. Itis of interest to find out the detailed structure
of the commutator term. We start from the Helmholtz decomposition

(I - AtA)'Vg =PI — AtA) Vg +Vr =w + Vr

for some function . Hence

Vg = - AtAyw + (I — AtA)Vr
or

Vig— U — AtA)r) = — AtA)w.
Taking curl on both sides gives

(I — AtA)curlw = 0.

Therefore, for each k, we have

wi(x) = P(I — AtAY) ' Vige (x)

(3.36) (I — AtAp)curl yw, = 0.
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The solution to (3.36) is given by
curl yw; = AcoshAx + BsinhAx
for some constant A and B. Hence w; must be of the form
Wi (x) = (e hie(x) + e e (x)),
where

coshkx _ coshix sinhkx _ sinhAx
coshk cosh A 7 sinhk sinh A
(3.37) h(x) = , h(x)= ) .

»sinhkx _ iX sinhAx : cosh kx i) coshAx

L oshk k ‘cosh ! Sinhk & “sinhx

To compute 7, we use the orthogonality of ¢'® for different k, and the orthogonality of Ay
and Ay, to get

1
ﬂkflhk|2 =f hi-(I — AtAY) ™ Vige(x)
—1

1
= / 1 Vige(x)-(I — AtAy) "y

1 hkx  coshAx
_ I— U — Araya, cos _ .
LIQk(x) (ax( AtA) (I = AtAy) 9 ) ( coshk cosh A

It is straightforward to compute

_y {coshkx  coshAx
(I — AtAy) —
coshk cosh A
_ coshkx 1+ tanh A\ coshAx n 1 xsinhAx
" coshk 2AAt ) coshA 2AAt coshA
and
sinh kx sinh Ax
I —AtA) & —A
( 2 ( coshk cosh A )
sinh kx 1 sinh Ax 1 xcoshAx
= — | — 4+ ktanhk | — + —
coshk 2At sinh A 2At coshA
Therefore
coshkx  coshAx
(I — AtA)™ = (I — AtAY 1D -
( i ©) ( K x) coshk cosh A
_ 1 —=A(2AAf + tanhA) + A(1 + 2k At tanh k) coth A sinh Ax
- 2AAL cosh\
Hence
1 .
sinh Ax
(3.38) N = Ck/ qr(x) dx
_1 cosh A
for some constant ¢. Similarly,
1
_ _ cosh Ax
(3.39) e = & / () A
-1 sinh A

In summary, we have the following theorem.
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THEOREM 2. Let
q=) qx)e®.
k

Then we have
PU — AtA) Vg = e (x) + ik i (x)] € .
k

This result says that for each k, the commutator term lives in a two-dimensional space
spanned by h; and hy.

4. Second-order projection method based on the pressure increment formulation.
There are at least three different ways of getting formally second-order projection methods.
These are, respectively, projection methods based on: (1) accurate boundary conditions for the
intermediate velocity field [9]; (2) accurate pressure boundary conditions [11]; (3) pressure
increment formulation [1, 19]. In [4], we proved second-order convergence of the first type of
projection methods in L*°-norms and characterized the numerical boundary layers. Similar
results are expected to hold for the second type of projection methods. Here we will analyze
the third type of projection methods which turns out to exhibit completely different numerical
behavior.

We concentrate on the version used by Bell, Colella, and Glaz [1].

Step 1. the evolution step

u* — un u* + un
+ un-}-l/z.v un+1/2 + V n—1/2 — A
@.1 ar TS ) b 2
u' =0 on 9<2.
Step 2. the projection step
u* = un+1 + At V(pn+1/2 _ pn—l/Z) ,
4.2) Vautl =0,
wtln=0 ondQ.
The cost of solving (4.1) and (4.2) is basically the same as for the first-order projection method.
The nonlinear convection term (#"1/2. V)u"*1/2 can be treated in many ways, such as the
explicit Adams—Bashforth formula, %(u” -Vu* — %(u”‘1 -V)u"~1, which is the one used in
use flux (slope)-limited finite difference methods.

To carry out the normal mode analysis, we will adopt the same geometry and boundary
condition as we had earlier, and consider the linear Stokes equation. Equation (4.1) becomes

b

u*—u" u* +u" .
= Ay - Vip",
4.3) At
u*(£1) =0,
and (4.2) becomes
W —uw = —At Vig",
Vk-u"+1 =0 s

44 e gl

@'.n)(£1) = 0.
1

For simplicity in notation, we shifted the index of p and g by ;. The normal mode solutions

of these equations are of the form
(45) (un+1, pn—f—l, qn+1, u*) — (a" ’b‘y a‘, ’l‘l‘*) Kn+1 .
u

Again we can solve explicitly the set of equations for (&, P, ¢, #*), and we get the following.



PROJECTION METHOD II: GODUNOV-RYABENKI ANALYSIS 1611

Symmetric modes:
(4.6)

7) o ~coshkx
X) = COSix — ¢
. z Aok
n 1 _sinhkx
(x) = — sm ox + = cosu
coshk ’
~ ~ ~coshkx 26At \* _[cosix coshkx
U (x) = cos ix — Cos i - cos —
oshk 2+ BAt cos A coshk
T = n +1 S . sinhkx " 28A1 \? o 1sinAx 1sinhkx
X ——s1nx - Co! —ik| m———— ) co - - -
. M oshk 2+ BAt A cosA  k coshk

500 4B + 2B At ~ (1sinAx 1sinhkx

xX)y=————"——cosu |- - -

P Q1 Ban? P\ Xcosa  k coshk
where

2k 12

4.7 A=—"F—— k) , B=-K -1
4.7 <(1—K)At ) B u
i, B, and A satisfy
4.8) Zanfi + ktanhk = k( <2222\ (tannk — ©rann

. an anhk = k| ——— anhk — —tanA | .

pranp 2+ BAt P

There is a unique solution of (4.8), [i;x, in each interval ((j — %)n, G+ %)Tl’). We will denote
the solution in (4.6) as Uk, Vj, ﬁ;‘fk, U}, and pji. It is easy to check that

2+ At
4.9 k= .
( ) Kjk 5 ,Bj,kAt
We also have the antisymmetric modes:
(4.10)
7o) = sin . sinhkx
u(x) =sinjix — _,
z A Sihk
T = m o + 1 . _coshkx
- —sin ,
o ik C sfix A hk sinh k
“(x) = sin .~ sinh kx 2B At 2 sin 7 sinAx  sinhkx
w(x) = X — sin — —_ =
z el CwyY, sinA  sinhk
T = i +1 . coshkx " 28At \* . _[{1lcosix 1coshkx
B cos fix+ < sin — ikl ———— ) sinp| -
%) =~ oS Ly 2+ BAr % sink  k sinhk
50 48 +2B%At “in i l1cosix 1coshkx
X)) = ——— —S1 — _ =
P Q2+ BAN? » sinh  k sinhk
where

@.11) P e) B =k
' “\a=oar P w
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FIiG. 1. Relative error in pressure for the second-order projection method based on pressure increment formu-
lation (solid line) and the Kim—Moin method (dashed line). The fundamental symmetric mode j,k = 1 was taken
as the exact solution. Spatial variables are not discretized, so the results plotted are obtained from normal mode
analysis, not direct computations. Parameters: viscosity = 0.1, At = 0.05.

L, B, and A satisfy

28A1 \? k
4.12) /'Zcotﬁ—kkcothk:k(z—_gﬂ;) (cothk—xcot)»>.

Again there is a unique solution of (4.12), [, in each interval ((j — %)Tl’, G+ %)n).

Several things can be observed from (4.6)—(4.12). First, the normal modes of (4.3)-(4.4)
for the projected velocity approximate the exact ones (2.11)—(2.15) to second-order accuracy
in At, the growth rate ; ; approximates the growth rate e”+“ of the Stokes equation to third-
order accuracy in A¢. This implies that for the linear Stokes equation, the accuracy of this
projection method is indeed second order for the projected velocity.

Secondly, from (4.6) and (4.10) we see that there is a fundamental change of character
in the numerical profile of p. The spurious numerical mode represented by A, introduced by
the projection procedure, is of the type of high frequency oscillations with wavelength and
magnitude of order A¢. This should be compared to the spurious modes in Kim and Moin’s
method which is of a boundary layer type with width O(+/At) and magnitude O (+v/At).
This comparison is made in Figure 1 where we plot the error in pressure for the fundamental
symmetric mode u = 2.883356, k = 1.

However in actual computations, the spatial discretization, which was neglected in the
analysis presented above, has an important effect in these spurious numerical modes. If one
uses a finite-difference method in space together with (4.1)—(4.2), then the intrinsic numerical
diffusion in the finite-difference method will damp out the oscillations. Their effect will be
limited to a region near the boundary. This is shown in Figures 2 and 3. On the other hand, we
also expect if we use a spectral method in space, then the structure of the spurious numerical
modes will be close to the one shown in Figure 1 since spectral methods are infinite order
accurate and do not introduce numerical dissipations.

Appendix. Proof of the technical lemmas.
Proof of Lemma 1. Expand (a-V)u as

(5.1) @Vu=> apiipe®, opliul® = (@ V), @) .
Jjk
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FIG. 2. Relative error in pressure for the second-order projection method based on pressure increment formu-
lation (solid line) and the Kim-Moin method (dashed line). The fundamental symmetric mode j,k = 1 was taken
as the exact solution. Spatial variables are discretized using straightforward second-order centered differencing.
Parameters: viscosity = 0.1, Ax = 0.001, At =0.05,¢t = 1.
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FIG. 3. Detailed view of the pressure error near the boundary in the second-order projection method based on
pressure increment formulation. This figure shows in more detail the oscillatory nature of the error. Parameters:
viscosity = 0.001, Ax = 0.001, At = 0.001,¢ = 1. Notice that the numerical parameters are different from the
previous figure. Here we choose a set of parameters in order to show more drastically the oscillatory nature of the
error. Notice also that the magnitude of the error is quite small. In practice, the oscillations can hardly be noticed if
a finite-difference method is used in the spatial discretization.

Integrating by parts and using the fact that V-a = 0 and a-n = 0 on 952, we have

Since

o 1]l ?

~ 2
ll0xjicll © <

YY) 2
Jo+ k%)
C———k2

= —((aw)x , Oxljr) — ik((bu)y , Ujk)

< [1Cam)ell 105l + Ikl Il Guo)cll Nl -
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therefore
(52) af il < € (2 law)ill> + & [ Gu)ll?) -
Hence
1S (@- Vyul 2 Zx,k o Nl
5.3)
Z " (G2 N Gawyill> + K2 | ue]|?) -
Using the fact that
Kin j? < m and Z Vmht < C,
we get

Z " 2 (au)ll* < C (mAt)” 3/22 1 (m A || (au)i ]|

< C(mAt)” 3/2Zn(au)kn2 C (mar)™ |laul)?

Similarly we have

Z 2R byl < € (mAD)T ||bul?.

Therefore
1S (a-Vyu|? < C (mA)™> (laul|® + [|bul|?) < C (mAH) ™ ||al|fw [lee]| >

This leads to (3.14). Equation (3.15) is straightforward to prove. This completes the proof of
Lemma 1. O
The following three lemmas will be used in the proof of Lemma 2.

LEMMA 3.
(5.4) e — Bl < € min1, (17| + 1) k| AP)
- — V% +k? -
(5.5) 8 (x) — @ ()| < c—’lT e — Fjel,

where C is independent of j, k, and At.
Proof. We only need to show (5.4) for the case when (j 2+ k?)At < 1. The other case is
trivial. To prove (5.4), we subtract (2.12) from (2.21) to get

< 2|BkAt].

~ k
(5.6) |[ftan i — ptan u| = ‘,BkAt <tanhk —3 tanh A)

Here we used |k/A| < 1 and |tanh k|, | tanh A| < 1. Taylor expansion gives
5.7) Ftanfi — ptanp = (xtanx) o= (i — ),

where £ is a number between X and u.
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We estimate from below (x tan x)|,—¢. It is enough to consider the case k, j > 0. Since
~ o~ k
pmtan it — pwtan u = BkAt tanhk—xtanhk <0

and

1
(5.8) (xtanx) =tanx + >0, forx> X

cos? x

we know that [Zjx < wj for j > 1. On the other hand, since

(5.9 (x tanx)” = (1+xtanx) <0, forg<x<u,

cos? x

we get
(5.10)

k k?
(xtanx)'|y—¢ > (xtanx)’|y=, =tanpu + = ——tanhk +u (1 +— tanh? k) .
m m

cos? i

Clearly, if k = 0 then w tan u = fitan ;& = 0. Hence (5.4) holds. For the case k = O(1)
and j = 0, we can easily check that (5.4) holds.

Next we consider the case |k| > 1 and j = 0. In this case, we know that |u|, || > C
for some positive constant C. We have from (5.10) that

|(x tan x)'|,—¢ | > CK>.
This gives
Tjk — il < CALKP /K> = CAt k]

Now consider case k # 0 and j # 0. Using (5.10) and fact that (e — 1)/(e + 1) <
|tanh k| < 1,

|(x tan x)'|x=¢| = C(Ij] + K*/1 1) .
Hence
(5.11) ik — mjrl < CAt|jk|.

Noticing that |ujx — fijx| < m, we obtain (5.4) directly from (5.11). Finally using the
divergence-free property of u and %, we get

~ L [ . ~
2 (x) — wjeO)II? = 7 /(ujk(x) — uj(0)) A (i (x) — uji(x)) dx

f fx — co + (cos S )COSh kx ﬁ cos I p COS 4X
=— COS [IX — COS (X —co — X ——=
H i ’ B oshk 2 SO H 2 K

-2 2
Jo+EkS
< T -l

which gives (5.5). This completes the proof of Lemma 3. O
LEMMA 4. Let u be a divergence-free vector field satisfying u |y—+1 = 0, and

1 - ~ 1 ~
(5.12) ajp = ij'(uk(x), ujr(x)), Qi = ﬁ;<uk(x)’ ujr(x)),
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where M, and My are the normalizing constants

~

(5.13) M = @ (x), Up(x)), Mj = @(x), w(x)).

Then we have

~ C
(5.14) el el < =5 (ll(a;‘aiu)k I+ 1070wl + ||(afa;‘u)k||)
and
~ . 1 1
(5.15) ol @l < C mln(J—_iﬁ : m) (ll(a;‘u)ku + 1@ 0yu)ell + n(afayzu)kn) ,

and similarly if we replace ;. and W by & and Wjy, respectively. We also have

e — Ml (||(a§a§u)k|| + 11303 u)x u),

- - C
(5.16) lojie — ol lwjell < s

where C is independent of j, k, and At.
Proof. Using divergence-free property of u and %, and integrating by parts, we have
ﬂ 1
(5.17) (wie(x) , wi(x)) = _ﬁ/ u;(x) cos ux dx .
-1
Since 0 uy + ikvy = 0 and (u, v)i |x=+1 = 0 we get

@u(ED = 8 (@u(£1) = 0.

Integrating by parts three times, we obtain
(5.18)

1 1 1
/ ur(x)cosuxdx = 7 / (ayzu)k(x) cos ux dx
-1 -1

1
= aﬁ(agu)k (x)cos uxdx
1

TRt )
2sinp, 5., LS PO :
= _W(axayu)k(l) + P /_l(axayu)k(x) sin ux dx.

Using Holder and Sobolev inequalities, we have
|@8wi()] < C (ll(a,%ayu)kn + u(azayu)ku> :

From (2.12) we see that | sin | < |k/w|. This gives

2sin @

C
W@iaﬁu)k(l)’ < W(u(afayunu + ll(a,?ayu)kn) :

(5.19)

To estimate the second term in (5.18), we integrate by parts once again to obtain

2cos i

1 1 1
/ (8302u)y (x) sin pux dx = — (8302u)(1) + " / (0702u)(x) cos px dx . -
-1 -1
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Therefore, we have

1
(5.20) ‘ f (83 02u)c (x) sin pux dx
-1

C
< l—j—l(n(a;‘aiu)ku + ||(a,?a§u)ku) :

Combining (5.18), (5.19), and (5.20) we obtain

! o)
(5.21) ’ /_ k() cos pr dx| < < (n(aj:a;u)ku + ||(a,?a§u)k||) :

Similarly, we have

C
< (n(aiasu)k I+ ||<3333u)k||) .

1
5.22 d
( ) ‘/_luk(x)cosux x g

Therefore, we have from (3.26), (5.12), (5.17), and (5.21)

Lo | W

APTR

Ikl

: 1 1 492 3a3 293

< min (W ) m) (Il(axayu)k” + 1195 05l + 115 05wl
C

< =g (||<8::a§u)kn + 13385u)ell + ||(a,%aju>k||) :

This proves (5.14). Equation (5.15) can be proved similarly. To prove (5.16), we write

~ ﬂ /1 ~ ,BMjk - EMjk ~
5.23 Yy = _ d roux PR
( ) Qjk — Qjg 2 P _l(cosux cos wx)ur(x)dx + Bl Qjk

Similar to (5.21) and (5.22) we have

c .
< = 17— sl Q@0 + 1@

1
’/ (cos ux — cos x)ug(x)dx| <
-1
and

1
’/ (cos wx — cos x)ug(x) dx
-1

C ~ 303 243
< e Iz — pl (1@ 95wl + (35 B5u)kll) -

From (5.12) and (3.26) we have

BMj, — BM; ~
————| < C |k — Mkl -
‘ BM; j j
Now (5.16) follows easily. 0
LEMMA 5.
(5.24) o, S@ull < C llullps .

Proof. We expand u as

-~ ik
u= Z(Xjk ujk(x) e,
Jjk
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Then
2 2 e~ 2 2
13:S@ul? =Y of o [@(x)|> .
Jjk

Using Lemma 4, we have

1 1
2 2 : 4 2 2 2
|m8mM|sc%kﬂmm(ﬁH,zﬂ)wwunu+u@auM|+maaww>
1
sczjﬁwwﬁnW+n@%me+mxmmm%scmm@. O
Jjk
Proof of Lemma 2. Proof of (3.17). Write
(5.25) u(x,y) = Y apip() e =) En i)™
Jj.k J.k
and

SI(S—Sadu = Za]k exp(ojx A1) — 1) (SZ, — k) Wk (x) €™

+ Z Kk (otji Wik (x) — Wy Wjx (x)) (exp(ojx At) — 1) ™

(5.26)
+ Z 7 ik (exp(oj A1) — ki) Tjx(x) €™
_h+b+h
Let
(5.27) > i (exploje AN — 1) @jp(x) € = (S(Ar) — T u = u(x, ).

Jk
Denote by 7 and 7;x the Fourier coefficients of @ in {#;;} and {1}, respectively. We have

(5.28) Z KT %k (exp(ojx At) — 1) Ujr(x) &R = Z K Njk Wi (x) e
J.k

Expanding %y in the basis {#},
Bix) = Y yelin(x),
¢

we get

Z aji (exp(oji Ar) — 1) S, Wik (x)

ik
(5.29) = Zkek aji exp(o']k At) —1 Z Vie o (x)

= Z Ko Wer (X) Z Ve @jk (exp(oji At) — 1) ZK[Z Ter Uk (x) -
ok

Using Lemmas 3 and 4, we have

e @i (x) = Wi W QO < Imje — Wjael Nejacll + (77| % — |

(5.30) P . .
<C 7k min(1, [jk|A?) (135 @)l + (35 dyu)kll) -
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Therefore

Z 14y

"k i) — T (x)) e

Z mm(l |7k AL (1@Fi)ell + 11328y id)ell)
Tk T Kk

<C Zk —j—z—,; ||<a§ﬁ)k, @20,a)ll < C llillw,
J

where we used

min(1, | jk|At) < C.

1 — ki
Since
lallgs = 1(S(A) — Dullgs < At |8, S@ullys
we get
(5.3 Y Ll = CAt 13 SOullg: -

To estimate I,, we have, similar to (5.30), that

At
(n(a“a w)ell + 113] 07 u) ||) .

o Wik — Q|| < 2|k|

Hence

anzn < Z

<CAr Zk W 1@ dyu)i, (8302u)ill < C At ||ul| s,
J

Iexp(ajk At) — 1] ||ajkujk(~x) - a]kujk(x)“
(5.32)

where we have used

|exp(ojr At) — 1| < C.
I—Kjk

Finally

175]1? Z " | exp(oji At) — Kjil® @5 [l (x) |
<CZ ™ (j% 4 k*)*At* min BE
J j6k2’ j2k6

><(||(8,‘,‘u)k||2 + 133 85u)ell® + 107 85u)ell* + ||(axa§’u)k||2).

Using

%(m (12 + k2)4At4 < CAt9/4m*5/4(j9/2 + k9/2) ,
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we get
1612 < cafrtms (3 e >
3™ = m L e T L e
j<k jzk
x (ll(a,?u)kll2 + 1030, w)ell® + 1705 u)ell® + ||(3x33u)k||2>
< CAP A m™ M lulys .
Hence

Y Bl < CAPlullys Y mT < CAtullys .
m 0<m<T/At

Proof of (3.18). Clearly
1S = Sanull < IS — Dull + 1(Sar — Dull -
By Lemma 5, one has
(S = Dull = CAt|lullge .
Similarly, we have
1(Sar — Dull < CAt ||ull g .
Hence

Y ISE (S = Saull < C llullae

Since
l@-Vyullge < C llull%s

we obtain (3.18).
Proof of (3.19). We have

g+l

S+ — 1) - Vyu(r) dr — AtS(A) - V)u(")

=/ [S(" — 1) — S(AD) (- VIu@") dt

n

and hence from Lemma 5

i+l

S — 1) Vyu(r) dr — AtS(A) - V)u(")

m

< CAP 19, S(t) - Vyu|| < CAL* ||(u- VYullgs < CAL* |lullZs .

This completes the proof of Lemma 2. g
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