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PROJECTION METHOD I: CONVERGENCE AND NUMERICAL
BOUNDARY LAYERS*

WEINAN Ef AND JIAN-GUO LIU#

Abstract. This is the first of a series of papers on the subject of projection methods for viscous
incompressible flow calculations. The purpose of these papers is to provide a thorough understanding
of the numerical phenomena involved in the projection methods, particularly when boundaries are
present, and point to ways of designing more efficient, robust, and accurate numerical methods based
on the primitive variable formulation. This paper contains the following topics:

1. convergence and optimal error estimates for both velocity and pressure up to the boundary;

2. explicit characterization of the numerical boundary layers in the pressure approximations and
the intermediate velocity fields;

3. the effect of choosing different numerical boundary conditions at the projection step. We
will show that a different choice of boundary conditions gives rise to different boundary layer struc-
tures. In particular, the straightforward Dirichlet boundary condition for the pressure leads to O(1)
numerical boundary layers in the pressure and deteriorates the accuracy in the interior; and

4. postprocessing the numerical solutions to get more accurate approximations for the pressure.

Key words. viscous incompressible flows, projection method, convergence, numerical boundary
layers

AMS subject classifications. 65M06, 76M20

1. Introduction. The projection method was introduced years ago in a series of
papers by Chorin [5]-[7] as a way of computing efficiently the solutions of incompress-
ible Navier-Stokes equations (NSE). Similar ideas can also be found in the papers of
Temam [25]. The method is getting increasingly popular in applications to viscous
incompressible flows at a moderate Reynolds number. With periodic boundary condi-
tions, the performance of the projection method is well understood from the work of
Chorin [7]. Much less is known when physical boundary conditions such as the no-slip
boundary conditions are used, although convergence was already proved in [7]. It has
been a mystery for twenty-five years that the projection method seems to perform
better than expected. There are still controversies with regard to the optimal choice
of boundary conditions at the projection step. Furthermore, although it is clear that
numerical boundary layers must be present, little is known about their structures.

It is the purpose of this series of papers to fully clarify these issues. Besides
being able to answer all these questions, we find that the effect of solid boundaries
is not restricted to creating numerical boundary layers; they can also give rise to
high-frequency oscillations in the leading-order error term, reducing the order of ac-
curacy even in the interior of the domain [9]. But when formulated appropriately, the
projection method is indeed an efficient numerical procedure for viscous incompress-
ible flow calculations. Before our work, comparison of different formulations of the
projection method was only possible through careful numerical experiments. These
numerical experiments are made difficult by the fact that in actual computations,
the effect of temporal and spatial discretizations, as well as the numerical boundary
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conditions, are all mixed together. Moreover, they usually involve a systematic study
of two-dimensional problems for which the resolution power of modern computers is
still quite limited. In our work, we have developed procedures for studying separately
the effect of different components of the projection method. In forthcoming papers,
we will also make extensive use of one-dimensional models which capture much of the
computational difficulties for incompressible flow calculations.

The present paper is devoted to the explicit characterization of the numerical
boundary layers. As a consequence, we also get optimal convergence and error esti-
mates for both velocity and pressure up to the boundary. The boundary layer struc-
ture is strongly influenced by the numerical boundary condition for pressure at the
projection step. We will study different choices of the pressure boundary conditions
and compare their performance in terms of the accuracy of the numerical solutions.
Our analysis favors strongly the choice of Neumann boundary conditions.

Roughly speaking, the projection method was based on the following philoso-
phy: In incompressible flows, pressure does not carry any thermodynamic meaning
and is present only as a Lagrange multiplier for the incompressibility constraint [6].
This observation motivated a time-splitting discretization scheme which decouples the
computation of velocity and pressure, a key feature of the projection method. In the
first step, an intermediate velocity field is computed using the momentum equation
and ignoring the incompressibility constraint. In the second step, the intermediate
velocity is projected to the space of divergence-free vector fields to get the next up-
date of velocity and pressure. This procedure is much more efficient than solving a
coupled system of Stokes equations for velocity and pressure which would arise from
a straightforward time discretization of the NSE (see §2). The price that has been
paid, as we will see below, is that it introduces a numerical boundary layer on the
pressure approximations and the intermediate velocity fields. This also signifies the
main difficulty in the design and implementation of more efficient projection methods:
treatment of the boundary conditions.

Over the years the projection method has played a dominant role in the computa-
tion of viscous incompressible flows based on the primitive variable formulation. It has
also acquired other names such as the splitting scheme, fractional step method, etc.
Recently there has been a flourish of interest in the application of projection methods
for the direct simulation of viscous incompressible flows at moderate Reynolds num-
bers [3], [4], [15], [16], [20], [28], etc. Notable in these applications are the various
spatial discretizations used, including flux (slope)-limited finite difference methods
(3], (4], upwind differencing [20], and spectral-element methods [15].

The analysis of the projection methods was also initiated by Chorin and Temam.
In the case of periodic boundary conditions Chorin proved the convergence of a pro-
jection method which uses a backward Euler in time and centered differencing in
space. His analysis can be easily extended to other methods of a similar nature as
long as the periodic boundary condition is retained. Chorin’s analysis was facilitated
by the fact that with periodic boundary conditions, the projection operator and the
laplacian commute. This no longer holds for other types of boundary conditions. As
a result, it is much more difficult to study the projection methods when the boundary
condition is changed to more physical ones such as the no-slip condition, especially
when it comes to the issue of accuracy. Indeed a crude analysis indicates that there
is a real danger that the numerical boundary layer in pressure could pollute the nu-
merical solutions in the interior and significantly reduce the overall accuracy (even for
velocity) [3], [7], although numerical evidence seems to indicate otherwise. For more
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recent results on the analysis of the projection method, we refer to [21]-[23]. Some
of the results in [22], [23] were disputed in [13]. Related work on the analysis of the
Euler—Stokes splitting procedure can be found in [2].

One result of this paper is a proof that the numerical approximation of velocity
indeed has the maximum accuracy. The proof is based on a systematic asymptotic
analysis of the numerical solutions. The numerical method is viewed as a singular
perturbation of the original NSE, and boundary layer analysis is used to construct
approximate solutions which satisfy the numerical scheme to high-order accuracy.
This, plus the linear stability of the scheme, implies the convergence results. This line
of thought is often used in applied analysis and was first used by Strang [24] in the
context of numerical analysis, although Strang only dealt with a regular perturbation
problem. By using similar ideas, Michelson [17] extended Strang’s argument to initial-
boundary value problems for hyperbolic systems.

The advantage of this approach is that the numerical boundary layers are explic-
itly characterized. This enables us to propose simple ways of removing the numerical
boundary layer by postprocessing the numerical solutions. The disadvantage, how-
ever, is that it requires far more regularity of the exact solutions than necessary. This
translates to a Reynolds number dependence of the error estimates that is far from
being optimal. This is an important issue since very often in actual computations,
the smallest mesh size is set by the memory of the machine, and the issue is to resolve
flows with the largest possible Reynolds number. In the second paper of this series [9],
we will give an entirely different proof based on Godunov-Ryabenki analysis which
not only gives the optimal convergence results with minimum assumptions, but also
exhibits clearly the effect of noncommutativity of the various operators involved.

For convenience, we list here the content of the rest of the paper: §2 review of
the projection methods, §3 summary of results and outline of proofs, §4 first-order
schemes without spatial discretization, §5 effect of numerical boundary conditions,
§6 second-order schemes without spatial discretization, §7 generalizations, and in the
Appendix, postprocessing for the pressure.

2. Review of the projection methods. In primitive variables, NSE takes the
- following form

(2.1)

du+ (u-V)u+ Vp = Au,
Vau=0.

Here u = (u,v) is the velocity, and p is the pressure. For simplicity, we will only
consider the case when the no-slip boundary condition is supplemented to (2.1):

(2.2) u=0 on 09,

where € is an open domain in R? with a smooth or piecewise smooth boundary.

2.1. Time discretization. As a first step toward the construction of an efficient
numerical scheme for (2.1)-(2.2), we discretize (2.1) in time using backward Euler
methods: '

un+] —um
(2.3) At
V-urt! =0.

+ (unv)un + vpn+l — Aun-H ,
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We do not hesitate to use implicit schemes since the NSE is intrinsically implicit
anyway. Alternatively we can discretize (2.1) using the trapezoidal rule, resulting in
the Crank-Nicholson scheme:

un+1 + um

+ (u"+1/2-V)u"+1/2 +Vpn+1 — A—-———2—————,

un+1 —u”
(2.4) At
V-unrtl =0.

It is not important at this point to specify the discretization for the convection terms.
(2.3) and (2.4) are solved together with the boundary condition:

(2.5) u"t' =0  ondN.

However, both schemes are highly inefficient since they require, at each time step,
the solution of (2.3) or (2.4) which are coupled systems of Stokes-like equations for
(u™tl,pntl). This is precisely the reason for proposing the projection method as a
numerical device to decouple the computation of u™*! and p"*! [5]. Instead of simul-
taneously satisfying the momentum equation and the incompressibility constraint, the
projection method proceeds by first ignoring the incompressibility constraint, com-
puting an intermediate velocity field u* using the momentum equation, and then
projecting u* back to the space of incompressible vector fields to obtain w™*! and
p™t!. The actual realization of this procedure for the first-order scheme can be sum-
marized as the following.

First-order scheme.

Step 1.
(26) 1_‘_*% + (u™-V)u" = Au*,
u* =0 on 0.
Step 2.
2.7) { ut = utt 4 AtVpTH,
V-urt! =0.

The boundary condition for u* in (2.6) is rather natural, at least for the first-order
scheme. The agonizing decision to be made is the boundary condition for (2.7). If we
take the inner product of (2.1) with the unit normal and tangent vectors at 052, n,
and t, respectively, we arrive at

(2.8) g% =n-Au, % =t-Au on 0N2.

So both the Neumann and Dirichlet boundary conditions seem plausible for the pres-
sure in (2.7). The prevailing point of view for resolving this ambiguity is the following
[8]. The boundary condition in (2.7) is part of the specification of the projection
operator. If one requires that the space of divergence-free vector fields be orthogonal
(with respect to the usual L? inner product) to the space of irrotational vector fields,
then the divergence-free fields have to satisfy the boundary condition:

(2.9) un=0 on 09Q.
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Therefore for (2.7) one has

apn+1
(2.10) u"tl.n =0, or =0, on 09.
on
In this case (2.7) is none other than the standard Helmholtz decomposition. This
boundary condition is strongly favored in the literature. The question to be addressed
then is whether orthogonality is really important.!

The bottom line is that in most situations, large errors will be introduced at
the boundary, either on velocity or on pressure, because of the inconsistency of the
boundary conditions. The hope is that these large errors will be restricted to a
boundary layer and not affect the accuracy in the interior. Whether this actually
happens is precisely the question to be addressed here.

To give an indication that the numerical solution contains boundary layers, let us
consider the linear case. Without the nonlinear term, (2.6), (2.7), and (2.10) combine
to give

(I — AtA)Apr+! =0,

2.11 n+1
( ) o =0 on 00).
on

In contrast, the linear Stokes equations imply
Ap=0

without boundary condition on p. Therefore if p"*!(x) has any chance of being close
to p(x, (n + 1)At), there must be numerical boundary layers in p"*! with thickness
O(At'/?). This is indeed the case as will be seen in §§3 and 4.

Second-order schemes. There are at least three different ways to decouple the
system (2.4) to get a formally second-order scheme. These are, respectively, projec-
tion methods based on (1) accurate boundary conditions for the intermediate velocity

field [16]; (2) accurate pressure boundary conditions [19]; (3) pressure increment for-
mulation [3], [28]. Below is a summary of these methods.

(1) Projection method based on accurate boundary conditions for the intermediate
velocity field (Kim and Moin’s method [16]):

C ut —un
At
u* +u" = AtVpr /2 on 89,
u* = utl 4 AtVprtl/2)
V.urtt =0,

| n-u™tt =0 ond9.

u* +u"”

+ (un+l/2.v)un+1/2 =A 5 ,

(2.12)

In this formulation, homogeneous Neumann boundary condition for pressure is re-
tained. An inhomogeneous boundary condition for u* is introduced so that the slip
velocity of u™*! at the boundary is of order At?.

! Here and in the following, the term “projection” should be understood in a more general sense
than the Helmholtz decomposition since more general boundary conditions are allowed.
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Remark. The nonlinear convection term (u"t'/2.V)u"*!/2 can be treated in
many ways. In Theorems 3.2 and 3.4, we use an explicit Adams—Bashforth formula,
3(un-V)ur — (w1 V)ur~!, which is the one used by Kim and Moin.

It is readily seen that the projection step enforces

apn+1/2 apn—l/z 6p—1/2
2.13 = =...= o0
(2.13) on on on on
for the numerical solution. In general this is not satisfied by the exact solution of
Bpnti/2

(2.1). Therefore we expect that “2-=— has O(1) error at the boundary. As will be
seen in §4, this causes u* and p"*1/2 to have numerical boundary layers.
(2) Projection method based on an accurate pressure boundary condition [19]:

* _ * n
( = Atu + (w22 = A% ;u‘,
u*=0 on 00,
Vaurtl =0,
apn+1/2

n =-—n-[Vx(Vxu*) on 09).

\

In this formulation, the homogeneous Dirichlet boundary condition for the intermedi-
ate state u* is retained. An inhomogeneous Neumann boundary condition for pressure
is introduced so that the slip velocity of u™t! at the boundary is of order O(At?).

The boundary condition for pressure in (2.14) is motivated by the first relation
n (2.8). Notice that imposing (2.8) directly may not be consistent with the Poisson
equation for pressure

1
1 A n+1/2 I v U
which implies
n+1/2
(2.16) P 45 =0.

80 on

However, the revised form of the pressure boundary condition is guaranteed to be
consistent with the above relation. For more discussion see the end of §5.

(3) Projection method based on the pressure increment formulation (3], [4], [28]:
u* + un

( u* —u”
2 k)

At
u* =0 on 0f2,
u* = untl 4 Af(Vprtl/2 — ypr-1/2)
V-urtl =0,
nurt! =0 on 0.

+ (un+l/2_v)un+1/2 + Vpn—1/2 =A

(2.17) 4

\

Again the spurious slip velocity of u™t! at the boundary is of order At?, and the
numerical solutions satisfy (2.13). If we let & = u* — AtVp™~ /2 in (2.12), then we
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Jt+l @ A A A——H A—
O D D D D
Vi,j+1/2
J m A 2 A—H A—m A st
Pij  Uit1/2j
D O > >, N,
J-l@m A @ A @ A @\ A 0m
i—1 1 1+1
Fi1Gg. 1. The MAC mesh.
have
( £ n > n At
u—u” (/2.2 g l/2 = AY +tu + 2t a1z,
At 2 2
u+u"=0 on 99,
(2.18) ¢ .

@ = unrt! + At(Vpn+1/2 _ Vpn—l/Z) ,
V.urtl =0,
| ™t =0  on Q.

Except for the last term in the first equation, this is basically the same as (2.17).
This suggests that (2.17) should behave similarly to (2.12). Surprisingly enough,
(2.17) exhibits some peculiarities not shared by either (2.12) or (2.14). This will be
the subject of a subsequent paper [9].

2.2. Spatial discretization. The remaining task is to solve the Poisson-type
equations in (2.6)—(2.7), etc., instead of the coupled system of Stokes-like equations
in (2.3) and (2.4). Any of the popular methods, such as finite difference, finite element,
spectral, or spectral element, can be used for this purpose. In many cases, fast Poisson
solvers or domain decomposition methods can be used to drastically speed up the
calculation. When the Reynolds number is large, the NSE are effectively convection
dominated. One can then borrow the techniques developed in the numerical solutions
of hyperbolic equations or compressible flows. Such examples can be found in [3], [4],
[20].

As an example of how the fully discrete schemes can be analyzed in the same
fashion as the spatially continuous schemes, we consider in [10] the well-known spatial
discretization scheme: centered difference on a staggered grid (also known as the MAC
mesh), coupled with the time-splitting schemes.

An illustration of the MAC mesh near the boundary is given in Fig. 1, following
the presentation of [1]. Here pressure is evaluated at the square points (4, ), the u
velocity at the triangle points (i%3, j), and the v velocity at the circle points (i, 5+ )
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The discrete divergence is computed at the square points:

Uit1/2,j — Yi-1/2,5 |, Vi, j+1/2 — Vij—1/2
2.19 V) ;= .
(2:19) (V- ~ + =R

Other differential operators are discretized as
(2.20)

A _ Uit3/2,5 — 21/, F U125 | Wit1/2,541 ~ 2Uit1/2,5 + Uit1/2,5-1
(Aw)iy1/2; = +

Az’ Ay?

_ Ui1,j41/2 ~ 24172 F Uim1t1/2 | Vig43/2 — 2igi1/2 HVi-1/2
(Av)ijt1/2 = Ap2 + Ay’ ;

Di+1,5 — Pij
(pz)i+1/2,j B JAx L )

(2'21) (p ). ] — Dij+1 — Pij |
y)i,j+1/2 ‘_"_Ay‘ —

(2.22) Ui jr1/2 = 5 (Uit1/2,§ + Uim1/2,5 F Yit1/2,5+1 + Ui-1/2,441) 5

(Vig1,541/2 + Vi1,j—1/2 + Vij41/2 T Vij-1/2);

B N

Vit1/2,§ =

(2.23)
@i43/2,§ — Qi-1/2,j | - Qit+1/2,j+1 ~ Fit1/2,5-1
(u-Va)iy1/2,5 = UYit1/2,5 JzA:n B 2Ay1 —

_ bit1,541/2 — bi—1,541/2 bijraz = bij-1/2
(U~Vb)i’j+1/2 = Usj41/2 2Amz : + Vi, j+1/2 = szz ;

(2.24) Ni(w,a) = (w-Va)iy1/2,5, (€ Vb); jr1/2) -

The boundary condition » = 0 is imposed at the vertical physical boundary,
whereas v = 0 is imposed at the “ghost” circle points which are Az/2 to the left or
right of the physical boundary. Similarly the boundary condition v = 0 is imposed at
the horizontal physical boundary, but u = 0 is imposed at the “ghost” triangle points
with a distance of Ay/2 away from the physical boundary.

Notations. We will use C to denote generic constants which may depend on the
norms of the exact solutions. Norms will be taken over the entire domain 2.

3. Summary of results and outline of proofs. For simplicity of presentation,
we will concentrate on the situation when Q = [—1,1] x [0, 2] with periodic bound-
ary condition in the y-direction and no-slip boundary condition in the z-direction:
u(z,0,t) = u(z,2m,t),u(-1,y,t) = 0,u(l,y,t) = 0. We will use 8'Q) to denote the
part of the boundary at £ = £1 where the no-slip boundary condition is applied.
We will always assume that Az ~ Ay and h = min(Az, Ay). Extensions to general
domains will be discussed in §7. We will concentrate our discussions on the spatially
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continuous schemes since the main issue is in the temporal-discretization, as we have
illustrated above.

The main results of this paper are the following (the constants are independent
of At and h).

THEOREM 3.1. Let (u,p) be a smooth solution of the Navier-Stokes equation
(2.1) with smooth initial data u®(z) and let (uat,pat) be the numerical solution for
the semidiscrete projection method (2.6), (2.7), and (2.10). Then we have

1/2

(3.1) lu — watlle o2y + A% |Ip — patllzo,1;L2) < CAL.

Furthermore, if u®(x) satisfies the compatibility condition
(3.2) u’(z) =0, O,p(x,0)=0%,p(x,00=0 ondQ,

then we have

(3.3) lu —uaellze + AtY2|p = pasllre < CAL,
(3.4) lp — pat = pellL= < CAL,
where

e i 1/2
pe(z, t) EAtl/Z——le ==/ A8 g pa(z — A2y, t)

€
+At1/2e - 1€_|I+1|/Atl/2 dopat(e + A2y, ).

Remark. It is rather common to require compatibility conditions on the initial
data in order to get full accuracy of a numerical scheme, although here we require more
than necessary. We refer to the work of Heywood and Rannacher [14] and Okamoto
[18] on discussions of minimum compatibility assumptions.

THEOREM 3.2. Let (u,p) be a smooth solution of the Navier-Stokes equation
(2.1) with smooth initial data u®(zx) and let (uay, pas) be the numerical solution for
the semidiscrete projection method (2.12). Then we have

(3:5) lu — uatllLooo,7;02) + Atllp — padll L= o,1;22) < CAL
Furthermore, if u®(x) satisfies the compatibility condition

(3.6) 8;'18;2110(:1:) =0 ondQ forai+as<6,
then we have

(3.7) lw— uagllze + O3 |p — pagllLe < CAL2,

(3.8) max Ip — patl < CAL?,
dist(T-8'Q)>At1/2

(3.9) Ip = pat = pell= < CAL,
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where
At e‘/§ _ _ 2
pe(@,t) =4[— 21 V2e-1/882 G pas(@ — A2y, 1)
At e —V2lo1l/ A8/ 1/2
+ 7 e 2_18 8szt($+At 7?l,t)-

Remark. The Appendix contains a discussion on how to remove the next order
boundary layer errors in the numerical approximations of pressure to get a uniform

O(At?) convergence rate.
THEOREM 3.3. Let (u,p) be a solution of the Navier-Stokes equation (2.1) with
smooth initial data u®(x) satisfying the compatibility condition

(3.10) u¥(z) =0, d,p(z,0)=82p(x,0)=0 ond

Let (wp,pp) be the numerical solution of the projection method (2.6), (2.7), and (2.10)
coupled with the MAC spatial discretization. Assume that At << h. Then we have

(3.11) u—upllzeo + AY2(p — prllLe < C(At+R2),
(3.12) lp—pr — pellLe < C(At+R?),
where

ea

pc(:l:,t) = At1/2 ,8——1' e—a]:z:ull/Atl/Q Df_ph(l’— Atl/z,y,t)

ex —

(313) @ 1/2
+O2 B el IIAN DEpy (g ALy, 1),
t1/2 sz Az 1/2
= 1+ =2 = (1 — emoA/AE -
o Ao arccosh ( + 2At> ) B At1/2( € )

THEOREM 3.4. Let (u,p) be a smooth solution of the Navier-Stokes equation
(2.1) with smooth initial data u°(z) satisfying the compatibility condition

(3.14) 02102 u’(z) =0 ondQ for ay + 0z <6.

Let (up,pr) be the numerical solution of the projection method (2.12) coupled with the
MAC spatial discretization. Assume that At? << h. Then we have

(3.15)  [lu — unllze + At2|p — pallLe + Atllp — pall e (o,rir2) < C(AL + h2),

(3.16) I = Ph — pellze < C(AL +R?),
where

pe = Atl/zﬂea—ei——l emele= /A2 D, (4 - AEY2 y, )
(3.17) o

+A8? s eV AE Drpy (2 4 A2 1),
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£1/2

Az

Az? Az Az A2
- _ pmalz/AtY2 1
arccosh (1+ ; ) , b= t1/2(1 e ).

o=

Remark. We refer to §7 for extensions to general domains.

There are three major steps in the proofs of these results. Here we illustrate these
steps for the first-order scheme (2.6), (2.7), and (2.10).

Step 1. Using boundary layer analysis, we construct approximate solutions of the
form (t™ = nAt):

U*(z, t%) = ul(z, t") + A2 ui(x, (z £ 1)/ A8 0) + -+
(3.18) U™ @, 1) = to(@, ") + A2 iy (, (z £ 1)/ A2, %) + -+
Pz, t") = po(a, t") + AtY? py(z, (z £ 1)/ A2 ) + -

satisfying the numerical scheme to high-order accuracy:

( -U—*A_t—m + (U™ V)U™ = AU* + At f7,
U*=0 on 02,
(3.19) < g—%—@ + VP" = At*g",
v.urtl =0,
Url.n=0 ondQ,
[ U0 = u® + At*w?,

where « is a predetermined number.
Step 2. The L?-stability of these numerical schemes can be proved using energy
estimates. Together with (2.6), (2.7), (2.10), and (3.19), we get

[u™ = U™z < C* At
(3.20) u* = U*||r2 < C* At
[p" = P*||p2 < C* At

where the constant C* depends on

lullze = sup [lu”(:,t)||Le -
0<t<T

Step 3. To complete the proof, we need to

(1) establish a priori estimates on [|u™||Lee;

(2) convert the L? estimates in (3.20) to L™ estimates.

The standard way of achieving (1) and (2) for fully discrete methods is to use the
inverse inequality:

unllpe < B2 |upl|z2,

where h is the spatial mesh size, and d is the dimension. This is also the major
component of Strang and Michelson’s analysis. This standard trick is used to prove
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Theorems 3.3 and 3.4 for the fully discrete schemes. However, this trick cannot be
used to prove Theorems 3.1 and 3.2, which deal with the spatially continuous schemes.
In this case, we get (1) and (2) directly by using careful a priori estimates and the
regularity theory for elliptic equations.

The actual proofs are quite complicated. In the next section, we provide the
detailed proof of Theorem 3.1. The proof of Theorem 3.2 is analogous although some
details in estimates are different. This is done in §6. The proof of Theorems 3.3 and
3.4 for the fully discrete schemes goes along the same line. The details of that can be
found in [10].

4. First-order schemes without spatial discretization. We will concentrate
on the following version of the first-order projection method:

( u* —u”
% + (U™ V)u" = Au®,
u*=0 on 90,
(4.1) ! ur=ut 4 Atvp,
V-urtl =0,
%% =0 on ON).

The corresponding fully discrete scheme with the standard MAC spatial dis-
cretization is studied in [10]. Many variants of (4.1) are possible. Some of them
are discussed in the next section.

4.1. Asymptotic analysis of the numerical solutions. Denote the solutions
of (4.1) as (ua¢, uh,,pat). Motivated by the discussions in §2, we make the following
ansatz, valid at " = nAt,n=1,2,...,

[ uh(@,t) = u(@,1) + el luj(=,1) +aj (& u,t)],
Jj=1
(42) unt(z,t) = uo(x, t) +;sjuj(w, t),
pAt(ma t) = po(:B,t) + 900(5, Y, t) + Zej[pj(w7 t) + on(éa Y, t)] .
j=1

\

Here ¢ = At'?, & = (v + 1)/e,u} = (u},v}),a} = (a},b}),u; = (uj,v;) . We
assume that the &-dependent functions decay super algebraically as £ — +o0o. In
doing so, we have committed our attention to the left boundary at z = —1. Clearly
a similar analysis can be done at the right boundary {z = 1}. Our purpose is to
find the coefficients in this expansion such that the truncated series satisfies (4.1) to
high-order accuracy. Using the notation V. = (9,0), V, = (0,9,), we have

(4.3) Aul, = Agui+ Y ¥ (Agu} +e7%02a) +02a)),
Jj=1
(4.4) V-ua: =Vm'uO+Z€jv;p'uJ‘ ,

=1
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(4.5) Voar = Voo + E_lvgpo + vaO() + ZEj(Vmpj + E*IVEQOJ‘ + Vygoj) R
Jj=1

um(z) = uo(x, ™) + Zefuﬂw, )

(4.6)
- Z 152ku(()k) (2, + 3 e Z k'62ku(k)(w ).

7=1

From now on we will omit the subscript « for operators with respect to x.

Next we substitute these relations into (4.1) in order to determine the coefficients
of €7 in (4.2). We get hierarchies of equations by collecting equal powers of ¢.

The first equation in (4.1) gives

(47) ua =1Ug,
(4.8) ul+al —u; = 3520.’{‘ ,
(4.9) ul +ab — up + (uo-V)ug = A%uf + Aga§ .
For j > 1,
J
(4.10) Ulig+ @iy —Ujp2t Z(uk~V)uj_k = Auj + sza;” + 8y2a;-‘ .
k=0

The second equation in (4.1) implies

(4.11) Uy = U,
(4.12) u] +aj =u; + Veypo,
(4.13) u3 + ay = ug + Ozug + Vpo + Vepr + Vypo .

Forj=20—1,0>1,

¢

* * 1 k
(4.14)  wfp +afyp = ujpa + By + Vi + Vewjun + Vyps + ) 7g—lu§'—)2k+2 :
k=2

Forj=2¢,0>1,

Ujip + @y = Ujit2 + 0w+ Vi + Vepinn + Vyp;
(4.15) (£+1) N Z
(€ + 1)' ! 7 2k+2
From the third equation in (4.1), we obtain

(4.16) V=0, j=0,1,...
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The boundary conditions become

(4.17) uy =0, Otpo=0, at z=-1, £=0,
(4.18) u;+a; =0, O,pj-1+0p;=0, at z=-1, £=0
for j > 0.

Our next task is to analyze these equations to see whether they are solvable. We
begin by noticing that (4.8) and (4.12) imply

(4.19) ul =up,

(4.20) a} =02a; = Vepo
since u} and u; do not depend on €. From (4.17), we get
(4.21) ai =0, ¢ =0.

Next we collect the &-independent part of (4.9), (4.13), and (4.16) to obtain

4.22
( ) V-UO =0.

{ By + Vpo + (uo-V)ug = Aug,
The remaining part of the these equations gives

(4.23) a; = 852(1; ,

(4.24) a; =Vep1 + Vypp.

Not surprisingly, the leading-order terms in (4.2) satisfy the original NSE (4.22) with
the boundary condition uo = 0 on &' Q. It is natural to associate (4.22) with the
initial condition uo(zx,0) = u’(zx). It is easy to see that (4.23)—(4.24) are satisfied if
we choose

(4.25) b3=0, a3=0,

(4.26) o1 =0F¢1.
The boundary condition for (4.26) can be obtained from (4.18) with j = 1:
(4.27) Oepr +0zpo =0, at £€=0, z=-1.
(4.26) and (4.27) imply
(4.28) 01(&,Y,t) = 8epo(—1,y,t) €75
So far we have obtained solutions for ug, ug, po,a}, vo,a%, 1. Let 7 = 1 in (4.10),

j=3in (4.14), and j =1 in (4.16); we get

(4.29)

Oyuy + Vpy + (uo-V)ul + (uyq V)uo = Auy,
V-u1 = O,
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a¥ = 82a* ,
(4.30) 2T
a3 =Veps+ Vypr.

The boundary condition for (4.29) is u;|5 g = 0. The initial data for (4.29) is u; |s=0
= 0. Therefore we have

(4.31) u; =0, p =0.

From (4.18) and (4.30), we have

(4.32) Ocpa =0, at xz=-1, £=0.

The solutions of (4.30) and (4.32) are given by

(4.33) p2=0, b3=0yp1, a3=0.

These give us (u}, u1,p1, a3, p2). Similarly, we have the next set of equations:

Oruz + Vpa + (ug-V)us + (us-V)ug
(4.34) = Auy + A(dyuo + Vpo) — 362uq,
V"I.LQ = 0,

a*=82a*+82a*,
(4.35) { 47 e Ty T

a; =Vepz+Vypa.
The boundary conditions can be obtained from (4.18) and (4.13):

(4.36) uz+Vpo+Vep1 =0, at =0, z=-1,

(4.37) Ocp3 +0;p2=0, at £€=0, z=-1.

However, choosing the right initial data for (4.34) is a rather subtle issue. We will
defer the discussion to the end of this subsection.

Notice that (4.36) and (4.27) imply that us -m = 0 on ' Q. In general, (4.14),
(4.15), and (4.18) imply that this is true for all u;.

Solutions of (4.35), (4.37) are given by

(4.38) bz =0, aZ = 3E<p3 .

(4.39) ©3(§,y,t) = (Ozp2 + -;—axaipo) lz=—1 et + %@aayzpo lz=—1 56“5 .

This set of equations determines (u},us,ps,a}, p3). If we now look at the next
equation in each of the groups (4.10), (4.14), and (4.16), we obtain

(4.40) Oruz + Vp3 + (uo-V)us + (u3-V)ug = Auz + AVps,
' V'ua = 0,
(4.41) a; = 8la; + 0} a3,
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(4.42) as = Ogpa, by = 0yp3.

Usually one would expect that (us,ps) = 0, since they are the coefficients of N
terms. But the boundary layer in p gives rise to a nonzero boundary condition for
(4.40). This is seen from (4.14), which for j = 3 reads

(4.43) u3 +aj = ug + Gu; + Vp; + Veps + Vypr =us + Vypr .
Therefore (4.18) implies that
uz+Vyp1 =0, at z=-1, £=0.

(4.44)
(4.40) and (4.44), together with a suitable initial condition that matches (4.44) at
t = 0, determine (ug,p3). This in turn determines the boundary condition for ¢4,

(4.45) Ocps = —0Ogp3, at £=0, z=-1.

(4.41) and (4.45) can be solved for ¢4, etc. This set of equations determines (u3, us,
D3, at,p4). Obviously this procedure can be continued and we obtain

(4.46) a; = O¢pj-1, bj =0ypj-2,
(4.47) 0;=0Fp; +0.pj-2,
[i/2)
(4.48) 0; =Y Fr(y)Ete ™.
k=0
Now if we let
( 2N )
U* =uj+ ZE](U; +aj),
=1
2N )
(4.49) J Un=uo+3 elu,
j=1
2N )
Pr=po+ Y el (pj+ ;) +e N oansa,
j=1
then we have
(T wrwun = ave + 864y,
U*=0 ondQ,
(4.50) { Ur=Umt 4 ptVPT 4 AN gy
V.Ut =0,
opn

=nU" =0 on BIQ,

on

\



PROJECTION METHOD I 1033

where the coefficients f, and gy are functionals of (ug,po). They are bounded and
smooth if (ug, pp) are sufficiently smooth.

We now come to the choice of initial conditions. If we do not require extra
compatibility conditions for the initial data u°(x), then to have solutions (u2,p2)
that are smooth at ¢ = 0, we need to choose an initial data for us that matches
(4.36). While there is no difficulty in doing this, it restricts the approximation of the
initial data to

(4.51) U(z) = up(x,0) + Atw(x)

where w? is a bounded function. This is enough for proving the L? estimate, but not
enough for proving the L* estimate.

However, if we assume that the initial data u®(x) for NSE (2.1) satisfies the
following compatibility condition

(4.52) w(x) =0, dpo=0 ondQ,

then we can choose

(4.53) uy(x,0) =0

since

(4.54) Uz |z=—1,t=0= —VD0 |z=—1,t=0 —Vep1 |e=0,t=0 = (0, =0yPo |z=—1,t=0) = 0.
Likewise, if we assume

(4.55) 8:0,p0=0 ondQ,

then we have

(4.56) uz(x,0) =0.

Hence we have

(4.57) U'(x) = uo(z, 0) + At 2w (z),
where w? is a bounded function.

4.2. Proof of Theorem 3.1. We first prove the following proposition.
PROPOSITION 4.1. Let u™, u*, and p™ be the solution of (4.1). Let U™, U*, and
P™ be the constructed approximate solution satisfying

( _({fz—t_Uﬁ + (U™ V)U™ = AU* + At® f°,
U*=0 ondQ,
n+1 _ Jr*
(4.58) ‘U*’FU_ + VP = Atg",
V.Ut =0,
a;: =U"'n=0 ondQ,
U° = + At* w°
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and

(4.59) max  |U()wre <C*,  a>1.
0<ng[ K ]+1

Then for 0 <t < T we have

1/2
(4.60) u” — U"|| g2 + AtH? (Z p" — P"| ?,lAt) < C At*
and
(4.61) [u™ = U™l + At ||p" — Py < Cy At1/2
where

1/2
(462) G =C |lw’||z2 +C(CY) (Z At F"1I2= + llg™ |22 + Atllgnllf"{z)) :
Here C and C* are constants and n < [5] + 1.
Proof.  Assume a priori that

. )
(4.63) Ogggnglu o= <C

In the following estimates, the constant will sometimes depend on C* and C. Later
on we will estimate C.

Step 1. Basic energy estimates. Let
(4.64) e"=U"-u", e*=U"-u*, q"=P"-p".
Subtracting (4.58) from (4.1) we get the following error equation:
( e* —en

At
e*=0 on 092,

+(e™V)U™ + (u™-V)e" = Ae* + At f™,

en+l —e*
(4.65) 3 At
V.ertl =0,
0" _
on

e = At* w?.

+Vgq" = At%g",

e"tl.n=0 on 09,




PROJECTION METHOD I 1035

Taking the scalar product of the first equation of (4.65) with 2e* and integrating by
parts, we obtain

le*l|® = lle™ | + lle* — e™||* + 24t | Ve | 2
< A2 + At e
—2At /Qe*-(e"-V) Umdx — 2Lt /Qe*'(u"‘V) e" dx
(4.66) S A2+ At ||e)) 2+ C At e e
+2At /Qe"'(u"-V) e*dzx
< AL 2 407 At e
+(C* 4+ C?) At ||e™||2 + At ||Ve*|| 2.
Taking the scalar product of the second equation of (4.65) with 2e™*! yields
(467) [l = flet]1 + [l — e[| < At e |2 + A2+ |gn 2,
Combining (4.66) and (4.67), we get
(468) eI — fle™]|® + [le* — e™)| + [le"t! — e*||2 + At || Ve*||2
< C At (lem 12+ le|?) + AL F7112 + llg™l|2)-

Applying the discrete Gronwall lemma to the last inequality, we arrive at

n

1/2
(4.69) [le”|| + At ||Ve| + (Z(Ile* —e™|?+ |lentt - e*||2)) < ClAL.

Hence, from the second equation of (4.65), we have

1/2
e + atY/2 (Z g™ 12 At) <At

We have proved (4.60), assuming that C in (4.63) is bounded independent of At.
Step 2. L™-norm estimates.  Taking the divergence of the third equation of
(4.65) we obtain

n V-e a n
Aq" = N At*V-g" |
(4.70) n
ai =0 on 0.
on

Without loss of generality, we can normalize the pressure, such that fQ q"dx = 0.
Applying standard regularity theorems to the above Neumann problem, we arrive at

(4.71) g™z < C ALY Ve*|| + C At ||g™ g < CLAE*™3/2,
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From the second equation in (4.65) we also have

(4.72) IVe™| < [Ver|l + At [lg™| = + At g™ < CLAET2.
From the first equation of (4.65) and (4.71), (4.72), we obtain

(473)  ||Ae*]| < At [le* — e[|+ C(le"] + Ve || + At [ ) < Crae* !
This implies

(4.74) le* ||z < CLAt> .

Using the Sobolev inequality, we get

(4.75) le*llze < fle*l]/2 lle” s < Crtre=/2.

From (4.70), we have

(4.76) JAG 1 < At~ e[z + At g™l < CLAE2,

This implies

(4.77) lq" s < G2,

Notice that the second equation of (4.65) gives

(4.78) Vg™ [z < At™Hle™H — e[| + At*|lg"||ze < QLA
Therefore with the Sobolev inequality, the Poincare inequality, and (4.77) we have
(4.79) IVg"llz= < Vg™ [Va" [z < G2

Using the second equation of (4.65) one more time, we get

(4.80) €™tz < €z + AL [Vg" |1 + At [|g" |1 < CrAE*T,
Since a > %, if we choose At small enough, we will always have

(4.81) le™+ |z < 1.

Therefore in (4.63) we can choose

(4.82) C=1+ max | U™)|Le

ns1+(Z]
which depends only on the exact solution (u,p). This proves (4.61) and (4.62).
Proof of Theorem 3.1. Now, we simply use the above proposition and choose

N = 3 in the expansion (4.49) to obtain

(4.83) [u™ = U™y o,m522) + O3 [Ip™ = Pl 120,1322) < CAL.
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But the boundary layer terms in P™ can be estimated as

1/2
Ip(,t) = P*llz2o,miz2) < (Z IIAt1/2¢?II2At)
1/2
(4.84) = At (Z ol 2)

1/2
= At%/4 (Z (8.2 || zAt) <ont®t,

Combining (4.83) and (4.84), we obtain (3.1). Clearly (3.3) is a direct consequence of
Proposition 4.1.
Recall the expansion

(4.85) pac(E,t) = po(z, t) + At 28,p0(—1,y,t)e ™ + O(Ab).

To get a uniform approximation for the pressure we need to subtract from pa; the
second term at the right-hand side. Note that this term involves py, which is not
known. We need to approximate it by the numerical solution pa:. This can be done

using (4.85) evaluated at z = —1 + At'/%:
(4.86) 18apat(—1+ A2y, 8) = (1 — e 1)Bppo(—1,5,1)| < A2,
Hence we get

(487)  pac(@,1) = po(@, ) + At —=upar(~1+ At'/%,y, 1)~ + O(AD).

This proves (3.4).

5. Effects of numerical boundary conditions. In this section we focus on
the issue that is the main source of confusion in the subject of projection methods: the
boundary condition for pressure at the projection step. We will examine the effect of
different boundary conditions on the accuracy of the numerical approximations using
the explicit asymptotic analysis presented in the last section. As we have seen earlier,
the Neumann boundary condition for pressure leads to numerical solutions with the
following asymptotic form (¢t = nAt):

u™(x) = u(,t) + Atug(x, t) + AtPuy + -+,
(5.1) u* (@) = u(,t) + At [uj(x,t, At) + aj((z £ 1)/t y,8)] +---,
(@) = (@, ) + A 1 (@ £ 1)/A82,y,8) + Atpa(@,1) +---.

We see that boundary layer terms of the order At'/? and At appear, respectively, in
the pressure approximation and the intermediate velocity field, whereas the projected
velocity field does not have numerical boundary layers.
Let us now replace the Neumann boundary condition (2.10) by a Dirichlet bound-
ary condition:
I
(5.2) %1—){ =0 on 09,
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or more specifically
(5.3) p" =0 ondN.

To analyze the boundary layer structure of the resulting scheme, we proceed as in §4.1
and make the same ansatz as (4.2). Equations (4.7)-(4.16) remain valid. However,
the boundary conditions are changed to

(5.4) uy=0, po+po=0, at z=-1, £=0,
(5.5) uj+a;=0, pjt+y;=0, at z=-1, £=0,
for j > 1.

We still have (4.22) which, together with the boundary condition ug |sn= 0 and
the initial condition, determines ug and py. This in turn gives the boundary condition
for pq:

(5.6) ®0 le=0 = —Po |z=-1 -
Going back to (4.20), we obtain

(5.7) o} = Bepo, b =0,

(5.8) @o(&,y,t) = —po(~1,y,t) €.

Although (uy,p1) still satisfies the same equations (4.29), u; no longer vanishes at
the boundary. Instead, we have

(59) (ul,vl) Iz:—l = (_aé(p() |£=0’0) = (_pO(_l,y)t)aO) .

This implies that, in general, we will have (uj,p;) # 0. Therefore the numerical
solution with the boundary condition (5.3) will have the following form (¢t = nA¢):

u™(z) = u(x, t) + At uy(x,t) + -,
(5.10) v (@) = u(x, t) + AP (i (@, 8) + a1 (€, 1)) + -+,

pn(w) = p(w’t) + QOO(E, Y, t) + At1/2(pl (m’t) + 900(5’ Y, t)) T+

As a result of using the Dirichlet boundary condition (5.3), not only the accuracy of
the pressure approximation deteriorates to order zero because of the appearance of
O(1) numerical boundary layer, the overall accuracy of the velocity approximation is
also reduced to O(Atl/ 2). Note also that the leading-order error term in the velocity
is not of boundary layer type. Clearly the boundary condition (5.3) is a bad choice.
A potentially better choice is suggested by (2.8):
op"
5.11 — =t-Au" on 0Q.
(5-11) at "
This may not be consistent since fan 92" ds = 0, whereas the line integral of t-Au™
over O may not be zero. Therefore we replace (5.11) by

o t-Au™ — —i—/ (t-Au™)ds on 09,
a0

(5.12) 5= 5]
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where || denotes the total length of 9. For the geometry we are considering, this
becomes

Y 27
(5.13) " (£1,y,t) =/ Av™(£1,2,t)dz — % Av™(£1,2,t)dz.
0 0

To see the effect of this boundary condition, we follow the same procedure as
described above. Again, (4.7)-(4.16) remain valid whereas (4.17)—(4.18) are changed
to
(5.14) uy=0, uj+a;=0, at rz=-1, £=0,

Y 2m
615 G+e)-lud = [ Au-Latd- L [ an(-Labd,
0 0

for j > 0. The leading-order (wo, po) still satisfies (4.22) which in turn determines the
boundary condition for ¢y. Notice that at = = -1, (4.22) implies

(5.16) ypo = Avy.

Consequently we have (from the periodicity in y)

2m

y
(5.17) Avg(—1,y,t)dy =0, p0(~1,y,t)=/ Avg(-1,2,t)dz.
0 0

Hence we obtain

(5.18) wo=0, at £=0.

Going back to (4.20), we get

(5.19) ai=0, ¢=0.

We now turn to the next-order terms. Obviously we still have
(5.20) u; =0, p =0.

Hence we get from (4.23), (4.24), and (5.15),

(5.21) 01=0, al=0.

The high-order terms will also be nonzero in general.

(5.22) p2 0, aj#0,

We conclude that with the boundary condition (5.12) or (5.13), the numerical
solutions take the following form (¢t = nAt):

u*(z) = ug(w, t) + At ug(,t) + O(ALY?),
(5.23) u™(z) = ug(, t) + At ug(e,t) + O(At?),
P(@) = po(x,t) + At [pa(a,t) + pa(&,y,1)] + O(AEY?).
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We see that the effect of (5.13) is to suppress the leading-order boundary layer terms
in (5.1).

To obtain an improved Neumann boundary condition based on the first relation
in (2.8), let us observe that p™ satisfies the Poisson equation

‘A ]' *
(5.24) Ap" = Ev-u
which implies

op™ 1 /
5.25 —ds=—— u*nds=0.
( ) 80 8‘"; At 80
Direct imposition of
(5.26) op" =n-Au* or n-Au" on 0N}
on

may not be consistent with (5.25). However, since
(5.27) Au =V (V-u) - Vx(Vxu)

and V-u™ =0, V-u* ~ 0, we can use instead

(5.28) {Z)Ln =-n-[Vx(Vxu*) on 9Q
or
(5.29) %‘% = —-n-[Vx(Vx u")] on 91

It is easy to check that both (5.28) and (5.29) are consistent with (5.25) and lead to
(5.23). However, it remains an open question to rigorously justify these asymptotic
statements.

6. Second-order schemes without spatial discretization. In this section
we carry out the same program as in §4 for Kim and Moin’s method (2.12). Again,
we will concentrate on the time-discretized version and leave the fully discrete scheme
to [10]. The second-order projection method with pressure increment formulation will
be dealt with in a subsequent paper [9]. Analysis for the improved pressure boundary
conditions still remains open.

6.1. Asymptotic analysis of Kim and Moin’s method. Here we will leave
out the nonlinear term since it does not affect the major steps but substantially
complicates the presentation. The reader can readily fill in the missing terms when
any standard second-order approximation of the nonlinear term is added in.

We begin with the following ansatz:

(w'(@) = wyle, ™) + 3 e (@, t7) + a6, )]
j=1

u"(x) = uo(x,t") + Zz—:juj(w', t"),
Jj=1

PPV (@) = po(, t7 %) + D el [pj(@,t" ) + (€, y, 0 VR)].

i=1
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Here again we set ¢ = At'/2, ¢ = (z+1)/e, t" = nit, t"~1/2 = (n-LHiat,n=1,2,....
Substituting (6.1) into (2.12) and collecting equal powers of &, we get the following
equations.

From the first equation in (2.12), we get

(6.2) uj = U,

(6.3) uj +a;f —u = 30%af,

(6.4) uj + a3 — uy = 3(Auf + 9fas + Auo).

For j > 1,

(6.5) Ujpg + Qo — Ujra = %(Au +9, E J+2+62a; + Au;).

From the third equation in (2.12), we get

(6.6) ui +al =uy,

(6.7) u3 + a3 = uz + Giuo + Vpo + Ve,
(6.8) uz + a3 = uz + 0yuy + Vpr + Veps + Vypr .
For j =2¢,£> 1,

(l+1)

* 1
Ui+ @iy = Ui + 0w + Vi + Vepin + Vyp; + Zrnte

-1

0 I o (k)
(6.9) +Zk' 3-2k2 2fz'vp Z:TVPJ -2

I
+ Z 9%k k! (VE‘PE'—)%H + Vy80§'_)2k) .
k=1

Forj=20+1,{>1,

41
* * k
Ujio + @5 = Ujp2+ Ouy + Vpj + Vet + Vyp; + E k' § )2k+2

(6.10)

¢

1 k k

+ Z Qkkl vP; Do + VE‘PJ 2k+1 T Vy‘Pg'_)zk)'
k=1

From the incompressibility condition, we get

(6.11) Vaul=0 for j>0.
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The boundary conditions imply that for z = -1, £ =0,

(6.12) up+uy =0,

(6.13) u; +uj +aj =0,

(6.14) uz +uj + a3 = Vpg + Ve,
(6.15) uz +u3 + a3 = Vpr + Veps + Vyor;
for j=2¢,¢>2,

uj+ujt+a; =Vpj_2+Vepj1+Vyp;o

-2
(G (£-1) (=¥
+ 26-1 (¢ — l)!v‘p0 + Z okl VD, Zok—2
(6.16) k=1
-1
(_1)k k k)
+; ok ! (vﬁa;_)zk_] + vyso‘g'_)mc_z);

for j=20+1,¢02>2,

uj+uj+aj =Vpj_2+Vepj1+ Vypi-2

-1 k
(6.17) (-1 k k k
+ Rl (VPE'-)zk—z + VE‘PE'—)zk—l + Vy‘P§—)2k—2)§
k=1
and for j > 0,
(6.18) Ospj + Oepj+1 = 0.

Next we go through all these equations, order by order, to see if they are solvable.
Since this is very similar to what we did in §4.1, we will only give a summary of the
results.

The coefficients in the expansions (6.1) can be obtained successively in the fol-
lowing order:

(619) '”'3(5'% t) = UO(CE, t) 5
(6.20) ui(z, t) = uy(z,t),

(6.21) ai =0,
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8tu0 + Vpo = Auo,
(6.22) Vg =0,
ug =0 on §Q,

(6.23) uy = ug + Gug + Vpo,
(6.24) o1 =300¢1,
1 le=0 = =02po Jo=-1,
1 Y
(6.25) p1 = Eazpo lz=—1€ \/25,
(6.26) 0y =depr, b5=0,

61;'"41 + Vp] = A’ul 5
(6.27) Vouy =0,
Uy |gq=0, wui(x,0)=0.

This implies
(628) u; = 0, pP1 = 0.
We next have

(629) u§ =u3,
(6.30) p2=0, a3=0, b3=0yp1,

Oruz + Vpy = Aug + 3A(8uo + Vo) — 202uo — 36, Vo,
(6.31) Vouy =0,
U2 [5rq=0, wu2(x,0)=0.

This also implies

(6.32) uz =0, p2=0,
(6.33) 3 = 30803 + 001,
. Ogp3 le=0 =0,
1 1 —
(634 o6 1nt) = G0emmn e (75 +€) &V,

(6.35) af = Oeps + L0V, by =0,
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(6.36) u; = ug + %u(()m + %Vpél) s

(6-37) us =0, D3 :O,

639 =0, =0, 5 =0yt oY,
(6.39) ul = us,

Oyug + Vpy = Auy + iA(ugf) + Vp(()l)) - éu(()?’) - éVp((f) ,
(6.40) V-uy =0,

Uy |o=—1 = —38:(VPo + 3Ve01) le=—1,6=0 -
In the last equation, there is a similar boundary condition at z = 1. With suitable
initial data, (6.40) has a smooth solution. Again we will defer the discussions on

choosing the initial data until the end of this subsection.
Continuing in this fashion, we obtain

= 1(02ps5 + 02¢3),
(6.41) ps = 5(05ps + 0ps3)
O¢ps le=0 = —02p4 |o=—1,
(6.42) ay = Ogps + 50:0p3, b3 =0,
(6.43) uy = ug +ud) + 1ul® + Vpy + 1vp{?,
Oius + Vps = Aus,
(6.44) Vous =0,

Us [g=—1= —%atvy‘Pl lo=-1,6=0 -

Notice that as in the case of the first-order scheme, we generally have (us,ps) # 0,
because of the contributions from the boundary. We have

= 3(82¢ps + 0 p4),

(6.45) ve = 5( £ P6  P4)
Ot 06 le=0 = —0zP5 |z=—1,
(6.46) a3 = Oeps, b5 =Oyps + 20,05,
(6.47) u3 = u7 + Ous + Vps,
1 1 1
( Orug + Vps = Aug + §A(6tu4 + Vps + éu(()3) + gVP(()2))
Lw_ 1@ 16 _ og®

(6.48) At Tt 233!Vp0 Ve

V-u6=0,

1 2 1 2
| %6 |za=—1= ZVP(()) |z=-1 —§V§¢§ " Je=o,
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(6.49) o7 = 5(0201 + 070s) s
O 7 |e=0 = —02D6 |z=—1,
3
(6.50) ag = Z 5 k,agsoj bks b3 = Bype,
(6.51) ug = ug + u(] + u(z) + = u(4) + Vpe + Vp(l) + — Vp(3)

2 4! 48

Oyur + Vpr = Auy + A(at'll,5 + Vps) — (2) IVp(l) ,
(6.52) V-ur =0,
w7 om1= —3Vy (05 — 08 + 20{) o= 1620 -
In general, if we let
l5/2]

, 1 1 1
(6.53) Y=Y 2;%,@; ok =05+ 500052 + 20705+
k=0

such that {¢;};>4 satisfies

(6.54)

¢ = 5(080; +0]0j-2),
O¢j le=0 = —O0uPj-1 |z=-1

and ¢; decays exponentially as { — +o0, then we have
(6.55) aj = 0gthj—1, b =0yhj-2.
Clearly a} also decays exponentially as £ — +00. On the other hand, (uj,pj) solves

a system of linear Stokes equations with source terms.

Now if we let
4

2N
U*=uo+Z€j(u* +a*)
i3

2
Pn—1/2 = po + Zgj(p] —+ 50]) + E2N+1802N+1 3
j=1

then we have

( U ;tU _ AU -l2-U +AtN_1/2fN,

U*+U"=AtVP* 12 on 6Q,

(6.57) U* = Untl 4 AtVPHY/2 4 AN 2

V‘Un+1 = 07

a(Pn+l/2 _ Pn_l/g)
on

=n.U"l =0 on 09},
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where fy, gy are bounded and smooth if (ug,po) is sufficiently smooth.

As in §4.1, if we do not assume any compatibility condition for u°, then the
smoothness of (u4,p4) at ¢ = 0 requires us to choose initial data for (6.40) such that
it matches the boundary condition in (6.40). This restricts the approximation at t = 0
to
(6.58) UC(x) = u®(x) + At *w’(x),
where w? is a bounded function.

However, it is straightforward to check that under the compatibility conditions
stated in Theorem 3.2, we can choose

(659) U4($, 0) = U5(m, O) = UG(ZB,O) = u7(m, O) =0.
Consequently, we have
(6.60) U(z) = u®(x) + At*w’(x),

0

where w" is a bounded function.

6.2. Proof of Theorem 3.2. As in the proof of Theorem 3.1, Theorem 3.2 is a
direct consequence of the following result, together with (6.56) with N = 5.

PROPOSITION 6.1. Let u™, u*, and p" be the solution of (2.12) with initial data
u®. Let U™, U*, and P" be the constructed approzimate solution satisfying

At 2
U*+U" = At VP1/2 on 89,
n+1 _ Jr*
vt -u + VP2 = Ategh
(6.61) ﬁ At
v.Urtl =9,
n+1/2 __ pn—1/2
or L ) =n.U"! =0 on 09,
on
\ UO = uo + Atawo
and
(6.62) max  ||[U"()|lwie < C*, a>1.
osn<[ &+
Then we have
(6.63) ’ lu™ = U™||p2 + At |p"™ — P™||gr < C1 OOt
and
(6.64) [w”® = U"||pee + At]p" — P™||lw1ce < C1 ALY T/4)

where C) is the same as in Proposition 4.1.
Proof. As in the proof of Proposition 4.1, we assume a priori that

(6.65) lutflz= < €
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forn <[]+ 1.
Step 1. Equation for error functions. We first reformulate Kim and Moin’s scheme
(2.12) by introducing the new intermediate variables @*,U*:

u* +um — At Vpr1/2 = 24*

6.66 .
(6.66) U*+ U™ — At VP 1/2 = o0+,

(2.12) becomes

( 2(0* —un)

1
n—1/2 _ =~ t A n—1/2
N, +V <p 2A P )

=Ad* — g(u"V) u” + %(u"‘l‘V) u"t,

(667) J o = 0 on 89,

™t u” — 24
At

V.aurtl =0,

L v 1.n=0 ondQN.

+V(@E T2 —prt/2) =0,

The approximate solution (6.57) changes similarly. Let
(668) e” =U"_un’ e* :0* _ﬁ*, qn :Pn-1/2_pn—l/2‘

Subtracting the reformulated form of (6.57) from (6.67), we get an equation for the
error functions:
( 2(e* —e")

n_l n\ _ * _]_’ n—1 n-—1
A7 +V(q 2AtAq>—Ae +2(e wWu

1
+5 " v) e - i25(«2"-V) U - SV) & AL ST
e* =0 ondN,

(6.69) { el +em —2e*
At
V-e"t! =0,
g™ - g™)
on
ed = At®uw?.

+ V(" - ¢") = Ateg",

=e""l.n=0 on N,

\

Step 2. Basic energy estimate. Taking the scalar product of the first equation of
(6.69) with e* and integrating by parts, we get

le*? — lle™| + lle* — e™||* + At | Ve ?
* n 1 n 2a+1 n| 2
(6.70) < -At/ﬂe v <q - 5AtAq ) dz + C AL £

1
+C AL (el + [lemH |2 + lle*]| ) + At [ Ve
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Taking the scalar product of the second equation of (6.69) with e"*!, we obtain
e+ 1% — lle*]|? + [le"*! — e*||?
(6.71) —z(le™* |2 — [le™]|?) — 3lle™*! — em||?
S OO gM||2 + C At |len+)2.

Combining these two estimates we obtain
1 -
SUem™ 12~ fle]1?) + lle” — e)|2 + e — e
1

T n 3 *
—sllemt! —e™| 2+ JAt [ Ver||?
(6.72) 2 4

1
<=t [ &9 (5= jang) das oot + 1971
Q
+C At ([len]|? + [le™ 12 + lle*]| % + [le ]| %).
Since
(6.73)  2|le* —e™||? +2|le"! —e*||2 = |le"! —e™||2 + ||le™t! + e" — 2e*| 2,
we get

3 *
”en+1”2 _ ||e"||2 + ||en+1 + e — 26*”2 + §At Ve ”2

< =2At / e*-V (q" - lAtAq") dx
Q 2

+C At (le™]? + [le™H|% + [lem*H|2)
+C A(IF% + 1g™)1%) -

To estimate the first term on the right-hand side of (6.74), we let

(6.74)

I = _-2At/ e*-V (q” - 1At Aq")ld:z:
Q 2

(6.75)
= —2At/ e*-Vq"dx — Atz/(v-e*)Aqndm =L+ 1.
Q Q

Using the second equation in (6.69) and integrating by parts, we can write the first
term as

L =—2At/ e*-Vq'dz
Q
= —AtQ/ V(" - ¢")Vq" dx - At"‘+2/ g"-Vq"dx
Q Q
(6.76) :
= LAV - |V

-i-éAtﬂ]V(q”Jrl —q")||2~—At°‘+2/g"~Vq" dz .
Q
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Since

1 n 1 n_ o

SOV — g2 = Sl + e - 2e7)|?
(6.77) 1 2042 ny 2 atl +1, n *

+ AT g + At /9"-(e" +e" —2e")de,
Q
we have
(6.78)
1 1 . 1
I = =5 A2([Vg 1% = [Vg"|?) + 5 lle™! + e — 2e¥| 2 + S A%+ g |

+At°‘+1/ g"-(e"t! +e™ —2e*)dx — At"”/ g"-Vq'dx.
Q Q

Next we rewrite the second term as
I, =-At? / (V-e*)Aq" dx
Q

= JA#/ A" — ¢")Aq™ dx — 1At°‘+3/(v-gn)Aqn dx
2 o 2 o

1 n n 1 n n
= —728(1A¢" |12 = 1A %) + A8 A (g™ - ))|?
(6.79)

—lAt‘”'a/(V'g")Aq" dx
2 Q
1 n n * 1 (o3 n
= —ZAts(IIAq 2 - 1ag?) + At V-2 + ZAt"’ v-gn||?
—At"“/(V‘gn)(Vce*)dm— %At“”/(v-g"mqndm.
Q Q

Combining these two terms we arrive at

I= —%Atz(IIan“II 2= Ive"l®) - ;iAtg’(IIAq"’”II2 ~ 1ag"1%)
+%l|e3"+l +e" —2e"||? + At ||V
(6.80) +At>H! /Q g"-(e™! +e" — 2e%) dx — At*F? /Q g"-Vq'dx
—At°'+2/Q(V-9")(V-e*)dm— %AtMS/Q(V'Q")Aqndw
+%At?a+3||v-g"|| 2+ %IIAt"+‘g"II""

This gives
I < —3A%(|Vg |2 - Vg™ 2) - $A8°5(1Ag™ |2 - [|Ag™(|?)
(6.81) +3]lemt! +em —2e*||2 + At |[Ve*||% + Atlle™t! + em — 2e*||2
+2A08%||Vgr(|2 + 2884 A1 2 + 2882 (||gn | 2 + Atllg™ | 2) -
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Going back to (6.74) we obtain
e H2 = len)? + llem +en — 2712 + At Vet
+3Ot3(IVg 12 = 1Vg™]1%) + 1AL (1A |12 ~ [ Ag™|?)
< ALV % + A A2+ C At ([len]|? + [len | + [lemt|2)
+C AT F1% + Otllgnll ) -

(6.82)

Gronwall’s inequality gives
(683) el + e’ + At [V | + AP [Aq™]| + A8Y2|[Ve'|| < CLAL*.

Step 3. L°°-norm estimate. Taking the divergence of the second equation in
(6.69), we obtain

V-e*
nt+l _ ny _ ayy, n
Alq qm) 2—————At + At*V.g",
(684) n+l _ n
g™ —q") _ 0 ondQ.
on

We can always normalize pressure such that fn(q"Jrl —q¢")dx = 0. Applying the
standard regularity theorem to (6.84) and using (6.83), we have

(6.85) g™ = g"la= < C A" —g™)|| < COt* /2,

The second equation of (6.69) implies directly

(6.86) [V(ert! +em)| < 2(Ver|| + A¢llg™t — g™ |luz + At |g™ | g
' < CALV2(Cy + AP g™ ).

Obviously, we have
n
(6.87) [Ver| < S IV(ek +ef 1) < ¢y At 32,
k=0
From the first equation of (6.69) we obtain

lae*| < At™'ler — e[| +Cllen]| + || Vel + C At £

(6.88)
< C a2,
Consequently, we have
(6.89) le*llaz < LA™, |le*||pe < CLAt* Y1,

From the second equation of (6.69), we have

(6.90) [V(g"t! —g™)|| < CLAt*!
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and
(6.91) IA@@™ = gl < At e*|la + At%(|g™ | a2
' < CAt52(Cy + AL gh | e) .

Hence, we have

(6.92) g™ = q™||ge < CLALY/2
and
(6.93) V(g™ = q™)[lL= < CrAL>T/4,

Using the second equation of (6.69) once more, we get

(6.94) ller™ +e|lLe < [le*[lrx + At V(g™ = ¢")|lLe + At g"]| Lex
' < C AL3/4

Hence we have
(6.95) lle™lze < Cr At~/

As in §4.2, if we choose At small enough, we have ||e™||L<~ < 1. Hence in (6.65) we
can choose

C=1+ max [U"()~

n<| Ay

which depends only on the exact solution (u, p). Combining (6.66), (6.68), and (6.95),
we get

(696)  [[u" — U"lloo + [ = U%llge + Atlp" = Plwre < G/,

This completes the proof of the proposition.

7. Generalizations. Our goal is not to prove the most general theorems possi-
ble, but rather to elucidate the numerical phenomena involved. Nevertheless, we will
mention here briefly some possibilities of generalizing the main results. The proofs
of these statements are more or less straightforward, following the ideas presented
above, although the actual details can be very tedious.

(1) There is no difficulty in generalizing Theorems 3.1-3.4 to three-dimensional
problems. Only obvious changes are required for the statement of the results and
their proofs. This also marks an advantage of the projection method: In going from
two to three dimensions, the formulation basically remains the same.

(2) More general spatial discretizations can be considered, such as the spectral
method, finite element method, or more general finite difference method. However,
one has to be careful in the projection step since it is in the mixed formulation:

unt! + AtVprtl = u*
V. .urtl =0,

apn-H
on |0

(7.1)
=0.
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The basic stability criteria for mixed problems such as the inf-sup condition has to
be satisfied. In other words, the null space of the discrete laplacian for pressure
may contain functions other than the constant functions. These so-called “parasitic
modes” have to be subtracted to obtain the pressure approximation (see [1]).

(3) More interesting is the generalization to general domains. Obviously the
stability and a priori estimates in §§4.2 and 6.2 require no change. The changes
required for the asymptotic analysis are described below.

Let z = R(s) + epn, where R(s) is a point at 0, s is the arclength of 6Q from
a reference point to R(s), and n is the inward normal of 99 at R(s). We will use
(s,p) as our coordinates for the boundary layer terms, and denote by e; and e, the
unit coordinate vectors. This is a well-defined coordinate system near the boundary.
It is an orthogonal system. The scaling factors h; and hs are given by

oz ox\'/? oz ox\?
(7.2) h = (E . 5;) =1+epk(s), ha= ((')_p . B_p) =g,

where & is the curvature of Q at R(s), positive for a convex curve. In this coordinate
system, the differential operators take the following form:

. 1 0 e Ou 0 (14 epkOu
(78)  dulsp) = + €pK) [38 (1+6pﬂ$) " ( € 37)] ’

1 Op 10p

(7.4) Vp = 1+Ep/€&es+g-8_p ps
1 ou 0
(7.5) V- (ues + ve,) = A repm) {E& + é—p[(l + EpK,)’U]} .

Now we can repeat the analysis in §§4.1 and 6.1 using these formulas. Here we will
only outline the necessary changes for the first-order scheme analyzed in §4. The
interested reader can fill in the details for the other cases.

The ansatz remains the same as (4.2), with £ replaced by p and y replaced by s
in the boundary layer terms. We should keep in mind that (4.2) is only valid near the
boundary and the vectors are decomposed using the basis {es, e,}. In the interior of
the domain, the numerical solution admits a regular perturbation expansion.

It is easy to see that u}, u;, pj, j =0,1,2,... still satisfy the same equations as
in §4, whereas the equations for the boundary layer terms are changed as follows:

(7.6) ai =0,
* 6203 * 8(»01
(77) a2 = a_p2, 0,2 = —(—9-;ep,
0
(7.8) Oor|  _ _Om|
9p |p=o on |og
Therefore we have
_ Opo —p
(7.9) e1(p;s) = B |y e’
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For a% and ¢, we have
3 ®

* _ 6()02 a()01 * _ 02 _%qg 2 8(13
(7.10) a; = —a—p—e,, + S5 & 3= 0“a30p° + k B
(7.11) Op2|  _ ¢
ap p=0
From (7.10) and (7.11), we get
(7.12) p2(p, 8) = (S) (I+p)e”.
ETo)

We next have

«_ Ops3 02 01
(7.13) ai =5 7er ( . 5o ) e
,_ 0%a  da3 ,0a3  0%a}
(7.14) a; = —- 7 + kK (9_p K 3 52
Op3 apz
7.15 -
(7.15) op |,=0 3n

In a priori, it is not clear whether (7.13) and (7.14) are consistent (which means that we
might have to introduce boundary layer terms in ™). But if we write a} = a}e,+bje;,

and use the fact that Qa%i = Kep, % = —kKes, we see that (7.14) is equivalent to
Pa; | P o1 By Op1
7.16 * = 4 — 2 _ 2
(7.16) % 0p? T op? P Op? + Op0s? Bp
82b* 8 §01 6 ( 34,01
7.17 by = == +2k = .
(7.17) 1= 2 T e0s T s \“p )

(7.16) serves as the equatlon for (,03, together with the boundary condition (7.15).
(7.17) is satisfied by b} = - pn—f— This procedure can obviously be continued to
as high order as we w1sh

In summary, we obtain the following extension of Theorem 3.1.

THEOREM 7.1. Let (u,p) be a smooth solution of the Navier-Stokes equation
(2.1) with smooth initial data u®(x) and let (uas,pat) be the numerical solution for
the semidiscrete projection method (2.6), (2.7), and (2.10). Then we have

4172

(7.18) lu — uatllLer;L2) + A7 |p — patllLzo,r;i2) < CAL.

Furthermore, if u®(x) satisfies the compatibility condition

(7.19) u’(x) =0, gg(a:,O):O on 89,
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then we have
(7.20) lu = uail|ne + A2 |p = paclli= + |Ip — pac — pellr= < CAE
where

e IN
. = At/2_E_-pPPAt A2 1),
pe(,1) 1€ "o, (&Pt 1)

The required change for the extension of Theorem 3.2 to general domains is more

or less the same.
(4) One can also consider the generalization to other types of boundary conditions,

including inhomogeneous ones.

Appendix 1. Postprocessing for the pressure. Theorem 3.2 tells us how
to correct the leading-order boundary layer error in the numerical approximations of
pressure. Here we will show how the next order boundary layer terms can also be
corrected. The asymptotic analysis in §6.2 gives

(8.1) Pat =po + ey + 33 + O(AL?)
where
1 -va
8.2 = —e V29,00 |p=_1,
(8.2) (o} 7 D0 |z=—1
1,1 ~V3

(8.3) ¢3 = 2\ 2 +&)e OzyyPo lz=—-1 -
All these and the following formulas are evaluated at (n — %)At. From (8.1) we have

Ozpat |z=—1+At1/2 = OzPo |z=—]+At1/2 “e—ﬁazpo lo=—1
8.4 At _
( ) ——=€ ﬁazyypo Iz:—l +O(At3/2).

V2

Hence we have
eV2

(8.5) OryyDo |o=—1= o3 _ la:z:yypAt lz=—1+At1/2 +O(At1/2).
Taylor expansion gives

02po |z=—l+At1/2 = 0zpo |z=-1 —533.1’0 |z=--1+At1/2
(8.6) g2

— 5020 o1y a2 FO(AE?).

Again from (8.1) we have
€02par = €d2po + 8¢y + 20293 + O(ALY?)

&7) = e02po + V2 V% O,pg |am—1

1 .
+e’ (§ - ﬁ) €™V 8oy 0 |o=—1 +O(AEY/?),



PROJECTION METHOD I 1055

62 3 62 3 1 3 52 3 3/2
Eampm = 531100 + §a§¢1 + 535153 + O(At77)

2
[ _
(8.8) = 5 02p0 — eV 0upo o=

+¢? (1 - %) eV 8,00 |o=—1 +O(AEY/?),

1/2

Evaluating these expressions at x = —1 + At/ ~, we get

2 -2
Eagpm |gc=—1+At1/2 = Eazpo |z=—1+At1/2 +\/§e fazPO |z=—1

8.9 1
(8.9) +¢? <1 - ﬁ) B*ﬁazyypo lo=—1 +O(At3/2),

2
£ & —

'2_ 3pAt |z=—1+At1/2 = 5631)0 |z=—1+At1/2 —€ ﬁazpo Iz:—]
(8.10)

+e’ (1 - %) e_ﬂazyypo lz=—1 +O(AEY?).

Combining (8.4), (8.6), (8.9), and (8.10), we obtain

2
(6z + 562 + %62) DAt |:L'=——1+At’/2= [1 - (2 - \/i)e‘\/i]azpo lw=—l

(8.11)
2v2 -3
+At ‘(/5 €™V2 Byyo a1 +O(AEY?).
Or
(8.12)

eV? s €24
Ol = 7 (2 24 508 s
At 2v2 -3 5 |
T BV 12 -3V 4 2(VE - 1)e V2 owPAt le=—1tans

+0(At3?).

Finally, using (8.5) and (8.12) in (8.1), (8.2), and (8.3), we get
(8.13) pat = po — pe + O(At?)
where

At
P = At/ 2e= V2 ((995 + At1/23§ + 782) DAt Iz=—1+Atl/2
(8.14)
+(8+ 7§)At3/26_ﬂ£ Ooyypart |z=—l+At1/27
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where
222+ 2eV?’
g - ! eV? 2v2 -3
(8.15) 7322 —2 Vier12—3vV2+2(v2—1)e V2’
v 2eVZ _ 2’
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