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Abstract—Direct method for Yau filtering system has been stud-
ied since 1990s and all these work are limited in time-invariant sys-
tems. In this work, we extend the direct method so that it is appli-
cable to time-varying cases. We need less assumptions compared
with our previous work. The novelty of this work is that we propose
several transformations on the forward Kolmogorov equation so
that it can be solved by means of solving some ordinary differential
equations if the initial distribution is Gaussian. The corresponding
results for any non-Gaussian initial distributions can be obtained
via Gaussian approximation. It can be seen that our new scheme
direct method can treat nearly most general Yau filtering problems
under natural assumptions. Our algorithm has been compared with
the extended Kalman filter, multilevel particle filter, and ensemble
Kalman filter by numerical examples and the simulation results
show the efficiency of our method.

Index Terms—Direct method, Duncan-Mortensen-Zakai (DMZ)
equation, Gaussian approximation, nonlinear filtering (NLF), time-
varying Yau system.

|. INTRODUCTION

How to estimate the state of a stochastic dynamical system from
noisy observations taken on the state is of central significance in engi-
neering and filter is a powerful tool to estimate unobservable stochastic
processes that arise in many applied fields including communication,
target tracking, and mathematical finance. The continuous time-varying
filtering problem can be stated as follows:

{dzt = f(xs,t)dt + g(t)dv,

&)
dyz = h(xt, t)dt + dwt

where z,, f € R"*!, ¢ is an n x r matrix, v, is an r—vector
Brownian motion process with E[dv,dv] | = Q(t)dt and Q(t) > 0,
yi, h € R™*1 and w, is an m—vector Brownian motion process with
Eldw,dw!] = S(t)dt and S(t) > 0. Here we refer z; as the state of
the system at time ¢, f(x;,t) as the drift term, Q(¢), S(t) as the co-
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variance of the noises, and y; as the observation at time ¢ with yy = 0.

Interest in filtering problem can be dated back almost two centuries
to the work of Gauss and later, the names of Wiener and Kalman are
associated with advances in filtering theory. The most influential work
in filtering theory are the classical Kalman filter (KF) [16], which was
published in 1960, and its continuous counterpart Kalman—Bucy filter
[17]. Since most systems considered in real applications are nonlinear,
there have been a lot of work which extend the filtering results to the
nonlinear filtering (NLF) problems, such as the extended KF (EKF),
ensemble KF (EnKF) [11], and particle filter (PF) [9], [13]. In fact, EKF,
which is the simplest filter for NLF systems, performs poorly when the
dynamic system is significantly nonlinear and is very sensitive to initial
value due to Taylor approximation. EnKF is the NLF theory unifying
the data assimilation and ensemble generation problem, and has been
key foci of prediction and predictability research for numerical weather
and ocean prediction applications [2], [3], [19]. PF is also one of the
most popular method nowadays, which can be referred to in [4] and [5],
and references therein. And more recently, it uses diffusion processes
to model continuous-time phenomena [12]. Besides, multilevel Monte
Carlo framework is extended to PF, which is called the multilevel PF
(MLPF) in [15].

Since our interest lies especially in the conditional mean, which is
the minimum variance estimate, another way to NLF problem is to
derive the conditional probability of the state. It is known that the
unnormalized probability density function of the state satisfies the
Duncan—-Mortensen—Zakai (DMZ) equation [10], [23], [36]. And the
third author proposed an algorithm [21] to solve general NLF problems
using DMZ equations in real-time manner. “Real-time” means that the
decision of the states is made on the spot instantaneously, while the
observation data keep coming in. Obviously, the real-time property is
of much significance in practical applications. For example, it is hard
to implement PF in real time due to time-consuming Monte Carlo
simulation.

However, we usually cannot get the explicit solution of the DMZ
equation in most situations and there are two methods to solve it ex-
plicitly to the best of our knowledge for the past quarter of a century.
One of them is to use Lie algebraic method proposed by Brockett [6]
and Mitter [22], and the details of this method were worked out in
[26]. The basic idea is to solve the DMZ equation by solving a finite
system of ordinary differential equations (ODE), Kolmogorov equa-
tion, and several first-order linear partial differential equations (PDE).
However, one must know the basis of the estimation algebra. Yau
and his coworkers [8], [28], [33] have completely classified all finite
dimensional estimation algebras of maximal rank. In particular, they
have proved that for all finite dimensional filters, the observation terms
hi(z),1 < i < min (1), must be polynomials of degree one.

The other approach to solve DMZ equation is the direct method
which works particularly well for the Yau filtering system, i.e., f(z, )
in (1) is of the form f(z,t) = Lz + | + V¢(z) where L and [ are
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matrices with proper dimensions and ¢(z) is a C™ function. This
method was introduced in [27] and generalized in [14], [29], and
[30]. Unlike the Lie algebra method, direct method does not need
to integrate n first-order linear PDEs. However, for the direct meth-
ods in [14], [27], [29], and [30], they need to assume that the ob-
servation terms h;(z),1 <i <m in (1) are degree one polynomi-
als. In [31], Yau and Lai solved DMZ equation by solving a se-
ries of ODEs when the initial distribution is Gaussian. In [32], Yau
and Yau transformed the DMZ equation to time varying Schrodinger
equation in very general cases where observation terms are of linear
growths.

However, all these existing results about direct method are for time-
invariant systems and they need to assume that g(t)Q(t)g” (t) is an
identity matrix, and these conditions are also needed for the recent
work [25]. More recently, we extended the related results to time-
varying situations with some restrictions to the filtering system [7]. In
this work, we remove these restrictions and extend the direct method
to nearly most general Yau filtering systems and the only two assump-
tions for the filtering system seem very natural. Here we study the
time-varying Yau filtering system with arbitrary initial distributions by
two steps. First, we transform the DMZ equation to the Kolmogorov
forward equation (KFE), and then obtain the explicit solution to the
KFE by solving some ODEs when the initial distribution is Gaussian.
Second, in the non-Gaussian cases, we approximate the non-Gaussian
distribution by several Gaussian distributions by the use of Gaussian
approximation proposed in [25], and then continue this procedure using
results obtained in the first step.

This paper is organized as follows. In Section II, we recall some
basic concepts and existing results with respect to (w.r.t.) the filter-
ing problem. In Section III, we give the explicit solution of the KFE
when the initial distribution is Gaussian. Section IV is devoted to ob-
tain the numerical results of the KFE with arbitrary initial distribution
with the assistance of Gaussian approximation. We present numerical
simulation results in Section V and draw our conclusion in the last
section.

Il. BASIC FILTERING PROBLEMS

In the considered continuous time-varying filtering system (1), we
assume that G(t) 2 g(t)Q(t)g" (t) is C* smooth, f(z,t) and h(z, t)
are C'>* smooth in both state and time. For the sake of clarity, we shall
explain some notations first: A;; denotes the ijentry of an arbitrary
matrix A, a; denotes the ith element of an arbitrary vector a, and A”
denotes the transposition of A.

In terms of the density function p(¢,z) of x, conditioned on the
observation history .%, £ {y, : 0 < s <t}, we know that it must
satisty the normalization condition, i.e.,

/P(tz)dﬂﬁ =1 (2)
Actually, if there is any function o (¢, ) which satisfies
p(t,z) < o(t,z) wrt. = 3)
then we can compute p(t, z) by normalization
,T)
t,x) = 4

In [10], we know that the unnormalized density function o (¢, ) of x;
conditioned on the observation history .%; satisfies the DMZ equation

0o

do
do(t,) = |5 Ty Gus0) g () = Ty £ 5 (0)
of,

o) Sy Pl wﬂ a
+o(t,z)hT (2,t)S(t)dy,
0(0,z) = op(x)

(&)
where oy () is the probability density of the initial state . For each ar-
rived observation, making an invertible exponential transformation [24]

u(t,x) = exp [-h" (z,t)S™ (t)ye] o(t, x) (6)

the DMZ equation is transformed into a deterministic PDE with
stochastic coefficients

ou 0*u
8t( ) 721]1 ()81'8 (f I.)
n n 6K a
50 (Z“ Gy (t) 5~ f) S ()
+( aa(hTS Ny
PK oK oK | (D
+35 sz 1 ) 8:161830] +8£CI(9.’L'/:|
af;
1 e o, P
—% (h/TS’I}L)) u(t, )
U(0733) = UO(I)

in which

K(z,t) = T (x,6)S™ (t)y, . (8)

We shall call (7) “pathwise-robust” DMZ equation in this paper.
However, the exact solution to (7), generally speaking, does not have
a closed form. Therefore, many mathematicians try to seek an efficient
algorithm to construct a good approximation. Let us assume that the
observations arrive at discrete instants, therefore we construct the ap-
proximation as in [21] and [35], and get the robust DMZ equation (9)
in each time interval.

Let us denote the observation time sequence as Py = {0 = 7y <
71 <--- <7y =T}. Let u; be the solution of the robust DMZ
equation with y, = y., | on the time interval 7, <t <7, k=
1,2,...,N

8’U,k _ 1 n 62uk
W(t:x) 3 2uig=1 ”()axiax‘,. (t, )
) oK Ay,
+>0i Z/ 1GZ7() o, fz) o, (t,x)
9 7
+ _E(h 5 ) Yri
PK 0K OK
2109
*3 27] 1 ) Ox; 8.IJ 8LL 8'1J:|
n Ny O
*Zi,:lfz@*zj(tal) D 6z7¢(t’x)
—% (hTSflh)) uy, (¢, )
0 (0,2) = 04 (x)
ug (Tp-1, @) = up-1(76-1,2), k=2,3,...,N
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with

K(z,t) = h" (z,)S™ ()y., - (10)
Define the norm of Pj, by |Py.| = sup, <, <n (7 — 7-1). By [34], we
know that in both point-wise sense and L? sense

)= li
u(r,z) = \P:rilo u (1, ).

(1D

Therefore, uy, (¢, x) is a good approximation of u(t, z) in the interval
[Tk-1, 7 ]. We only need to seek the solution of DMZ equation (9).

In [21], Luo and Yau proposed an on- and off-line algorithm to solve
the NLF problems in real time, which has been verified numerically
as an effective tool in very low dimension. The key observation is that
the heavy computation of solving PDE can be moved to off-line by the
following proposition.

Proposition 1: (Proposition 2.1, [21]) For each 7., <t <

Tr, k=1,2,..., N, u; (¢, z) satisfies (9) if and only if
ay (t,x) = exp [hT (x,t)S™! (t)lln.,l] ug (t, ) (12)
satisfies the KFE
8ﬂk o 82’& 8uk
at(7 ) 721] 1 )8$18$J( Zzlfl 2 )
n 6fz ot ) -
(zi:l T'I;L(t’z) + §h S h U (t7$)
@ (0,2) = 00 (2)
iy, (Ti—1, ) = exp [AY (2, 7-1) S (Th1) (Yr s — sy )]
'akfl (kalvz)7 k= 2737 s 7N'
(13)

IIl. EXPLICIT SOLUTION OF THE DMZ EQUATION IN
TERMS OF SOLUTIONS OF ODES

The results for time-invariant Yau filtering system [14], [27], [34]
have been extended in [7] and [25]. In this section, we aim to extend
the results to the more general time-varying Yau filtering systems

flz,t) = L)z + 1(t) + V. (L, )

where L(t) = (1; (t)),1 <i,5 <n, T (t) = (L (t),...,1,(t)), and
g(t, x) is C* w.rt. x on R". For the conciseness of notation, we
shall omit the ¢ in [ and L in the sequel if no confusion will arise.
Now we give the first assumption.
Assumption 1: G(t) is a positive definite matrix.
Under this assumption, we can obtain the following proposition.
Proposition 2: [7] Suppose iy, (¢, x) is the solution to (13) in the
interval [1, 1, 7], k=1,2,..., N, and f(z,t) is of the form (14).
Let

(14)

s)

where ¢(t, z) satisfies V, ¢(t,2) = G~ (t)V, ¢(t, ), then we have

the following equation for vy, (¢, x):

)
Tt = 5T Gt g (ta)
(Lo + )T Vit 2) — %q(t,x)f;k (t,)
01(0,2) = o9 (x)e*‘*”m’x)
O (Tp—1,2) = exp [hT (@, 7-1)S ™ (7o) W, — Yrp s )}
Vg1 (Tp-1,2), k=2,3,...,N

(16)

where

Q(t’x) = = Z Gl/ (t) 62;&3] (tvx)
)GV, o(t, z)
V. é(t, o)

D ¢(t, 09(t,
r23 T a0

+ V. o' (1,
+2(Lx + )"

I

p,l=1

(z,t)hy(z, t) + 2tr(L).  (17)

Since G(t) is positive definite, then we can find a positive definite
matrix F'(¢) > 0 such that
G(t) = F()F" (1) (18)
according to Cholesky decomposition.
Theorem 1: Under Assumption 1, suppose vy, (¢, z) is a solution of
(16) and let

Ui (t, @) = vy (£, 2) (19)
where
z = B(t)z
and B(t) = F7'(1). (20)
Then vy, (¢, z) is the solution of the following equation:
, 1
%(t, 2) = 5Au(t,2) = 30 (L F(1)2) it 2)
B T
- dcTtB +BLB™' | z+ Bl| Vu(t,z)
v1(0,2) = 09 (F(0)z) exp (—¢(0, F(0)z))
Uy (Tk—l s Z) = exp [hT (F(Tk,l )Z, Th -1 )571 (Tk—l )
’(yﬂ»,l - yﬂg,z )] Uk —1 (Tk'*l ) Z)
k=2,3,...,N.
@n
Proof: Through direct computations, we have
vy, . Ouy ~ Ovy dBj; (t)
(00 = G+ 3 G T
vy dB(t) \'
= W(t7 )+ ( T Vo (t, 2) (22)
6f)k - a’t)k
t —(t,2)By; 23
8:171'(7;1:) o 821(72) 1 ( )
and
82{)k - 8 Vi
)B,;By;. 24
83:28:16] Z 8,21,821 (t,2)Byi By (24)
Then we can get the compact form
Vi (t,z) = BT Vo, (t, x) (25)
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and

61}k

0z, (t,2)

> Gyl

i,j=1

= i i BilGZpB ank tZ)

A Jp az182] ( )
i1,j=1p,l=1

n 621}k
T
> (BGBT), 9507,

ij=1

= Qv (t, )

(t,2)

(26)

since BGBT = I by (18) and (20), and I is the n x n identity matrix.
Substitute (19), (25), and (26) into (16), we can easily arrive at (21),

which is the desired result. (]
Let
q(t,z) = q(t, F(t)z) 27
and we rewrite (21) as in the following form before we proceed:
v 1.
8tk (t,z) = ﬂvk (t,2) = 3a(t, 2)oi (¢, 2)
dB | . !
- WB +BLB ' |z + Bl| Vu(t,z)
v1(0,2) = o9 (F(0)x) exp (—¢(0, F(0)x))
O (Th—1, ) = exp [W" (F(75-1)2, 7-1) S (T 21)
(y‘f'k -1 yT;‘,,z )] Vi -1 (Tktfl ) fl?)
k=2,3,...,N.
(28)

Now we continue to seek the explicit solution of the KFE (28).

When the KFE has Gaussian initial value, Yau and Lai [31] wrote
down its solution by means of the solution of certain ODEs, Inspired by
this, we consider how to get the solution of (28) under the assumption
that the initial value vy, (7 _;, ) is Gaussian. In what follows, we shall
need the following natural assumption.

Assumption 2: {(t, z) defined in (27) is quadratic w.r.t. z.
And it is natural that ¢(¢, ) can be written in the following form:

7%(1(157 z) = 2T Q(t)x + p” (t)x + r(t) (29)
where Q(t) is an n X n symmetric matrix, p(¢) is an n x 1 vector, and
r(t) is a scalar.

Now we can draw the similar conclusion which is summarized in
the following theorem.

Theorem 2: Under Assumptions 1 and 2, consider the following
KFE with Gaussian initial distribution:

8vk

1
W(t,ﬁ) = §AUk (t,'E) —

%cj(t, 2)ou (t, )

dB | . !
7 —B ' +BLB ' |z + Bl| Vu(t,z)

v (71, 7) = exp {xTA(Tk,l)I + 0T (1. 1) + c(Tk,l)}
(30

where A(7),_1) is an n X n symmetric matrix, b(7, ;) is an n x 1
vector, 27 = (z1,2s,...,2,) is arow vector, and ¢(7;,_;) is a scalar.
Then the solution of (30) is of the following form:

v (t,z) = exp {a" A(t)z + b" (t)x + (1)} (31)

where A(t) is an n X n symmetric matrix valued function of ¢, b(t) is
ann x 1 vector valued function of ¢, ¢(¢) is a scalar valued function of

t and satisty the following system of nonlinear ODEs:

A(t
A0 _ 22 - 240)0() + Q1)
T
dbdt(t) =207 () A(t) — bT (t)D(t) — 2d" (t)A(t) + p* (t)
dz(;) =trA(t) + %b”'b(t) —d" (t)b(t) +r(t) (32)
with
dB !
D(t) = EB + BLB™,d(t) = B(t)Il(t). (33)
Proof: Let A; be the ith row of A. By direct computations, we have
vy, r dA(t) db’ (t) de(t)
5 —(t,x) = v (¢, z) (m G ettt (34)
ng" (t,2) = v (t,z) (Ajz+ Al 2+ b;) (35)
then it can be easily seen
Ve (t,x) = v (t, x) (Aa: + AT+ b)
= v (t,x) (2Az + D) (36)
since A(t) is symmetric. Following (35), we get
Avg(t,z) = v (t,z) (42" A%z + 42" Ab+ b" b+ 2tr(A)) . (37)
Put (34), (36), and (37) into (30), we have
 dA(t) dbv’ (1) de(t)
1
T a @ Tt a
=227 A%z + 22T Ab + %br]'b +tr(A) — 22" ADx
—(bTD+2dTA)af—dTb—|—;1:TQx+pT.7:+r (38)

and compare the coefficients of both sides of (38), then we can easily
reach the desired result. g

However, the initial value v, (73,1, 2) in (28) in every step usually
cannot be Gaussian. Therefore we need to derive its Gaussian approx-
imation [25] which will be discussed in the next section.

IV. NUMERICAL ALGORITHM

In this section, we derive Gaussian approximation of the initial value
vg (711, ) in (28) in every step and then get the numerical results of
general (28). First, we introduce the Gaussian approximation algorithm
derived in [25].

A. Gauss Approximation

Given a probability density ¢(z) and the threshold E, [25]
proposed a~numerical algorithm to get a Gaussian approximation

o(z) = Zl\;l a; N (i, 0;) which satisfies max lp(z) — o(z)| < E,

and N, a;, j1;, 0; are determined by probability density ¢(x) and the
threshold E. This Gaussian approximation method is summarized in
Algorithm 1.

B. Numerical Solution

Now we use Theorem 2 and Algorithm 1 to derive the numerical
solution of the KFE (28) and then get the conditional density function
o(t,z) as well as the conditional mean of the state. The detailed steps
are shown in Algorithm 2.
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Algorithm 1: Gaussian approximation.

1: Let f(x) = ¢(z) and the threshold E = « x max ¢(x), where
« is a given small number.

2: Fitting the peaks of f () which are larger than E with gaussian
distributions. Suppose the sum of gaussian distributions in this
step is g(x).

3: Let fi(z) = f(x) — g(x). If fi(z) has no peaks whose values
are larger than E, then go to step 4. Otherwise, let
f(z) = fi(z) and go to step 2.

4: Let fo(x) = —fi(z). If fo(x) has no peaks which are larger
than E, then done. Otherwise, let f(x) = f»(x) and go to
step 2.

Algorithm 2: Direct method.

1: Initialization: give T, At ao( ) and the parameter « in
Algorithm I.Let N = 7 and {0 =7 <73 <7y <~
< TN = T}

2: fork=1: N do

3:  Using Algorithm 1 to get the Gaussian approximation

U (Tho1, ) & ZL\:@ O‘k,iN(/flk‘iaUk.i)-

4:  For each Gaussian distribution Ny, ;, 0 ; ), suppose the
solution of (30) with initial condition N (yy, i, 0y ;) is
v (T3, ). Solving (32), we obtain vy, ; (75, z). Then
’Uk(Tk,.”L’) = Zz\ (f) Q. LLLk L(Tk, )

Calculate vy 4 1 (T4, ) by vy (11, ) and (28).

Calculate vy (ty., x), y, (tx, ) by (15) and (19).

Calculate uy, (t, z), o(t., ) by (6) and (12).

Calculate p(t;, x) by (4).

Calculate the conditional expectation of the state ;, .
end for

Sownow

V. SIMULATION

In this section, we use two numerical examples to verify the effi-
ciency of the proposed Algorithm 2, and the filtering system here is as
follows:

dl'L = f(l'“t)dt + d'l)[
dy, (t) = x; sin(x; )dt + dw, (1)
dys (t) = x; cos(xy )dt + dws (t)

oo(z) =

(39)

xp(—zsinz — yxcosx — a? + 3z + 2).

Here, v(t), w;
ons, E(v(t)v(
=02,

To compare the average performance of different methods, we in-
troduce the mean of the squared estimation error (MSE) defined in
[20]. The MSE for M repeated realizations at instant 7, is defined as

follows:

), and wy (t) are scalar independent Brownian moti-

(t
1)) = o2, Ew: (¢ (1) = 03, and B(w, (tws ()

1 M
37 2

where m . is the real state at instant 7. in the ith realization and z m 's
the estimation of z% . by different filtering methods.

In the followmg two examples, the real dynamic system (39) is
approximated by Euler’s method in [18] with time step At = 0.1 where
At is the sampling interval for observations and dy at the discrete
instants is computed by (39) directly.

(40)

TABLE |
NUMBER OF THE PARTICLES USED IN MLPF FOR EXAMPLE 1
Level 1 2 3 4
particle number || 2250 | 2000 | 1750 | 1500
Level 5 6 7 8
particle number 1250 | 1000 | 750 500

5 T T T T T T
O  real state
A Direct method
4.5 estimate-EKF
EnKF
4 VvV  MLPF
3.5
2
g s
3
o 2.5
=
o
o 2
>
©

L L L L L L L L L

0 05 1 15 2 25 3 35 4 45 5
time(s)
Fig. 1. Average estimation results based on 20 simulations of
Example 1.

Example 1: In this example, f(z;,t) = c¢(z; + 1) where ¢ = 0.1
is a constant and 0; = 1 4 0.1sin2t, 09 = 03 = 1. It can be easily
checked that the G (¢) defined for this system is not identity matrix and
therefore we cannot use the result in the previous work [25] to solve
this problem while the direct method proposed in this paper.

The initial values in Algorithm 2 are 7' = 5, At = 0.1, = 0.1, and
the initial value of real state is 2.16. The EKF was numerically imple-
mented by ode45 function in MATLAB with mean 0 and covariance 5.
Besides, when implementing the MLPF, we approximate the dynamic
system (39) by the Euler’s method for MLPF at levels L =1,...,8
[15] and the number of particles in each level is shown in Table I.
Besides, we use 2500 particles at level L = 0. EnKF considered here is
with 80 ensembles. The average estimations over M = 20 simulations
and the MSE for different methods are displayed in Figs. 1 and 2, re-
spectively. It can be seen easily that the direct method performs better
than the EnKF and MLPF, and it can be also concluded from Fig. 2 that
the estimation error is bounded. On the other hand, the MLPF is rather
time consuming since it needs a lot of particles in the Monte Carlo
simulations and the average time cost of different methods is shown in
Table II.

In summary, our direct method gains advantage over the EKF, EnKF,
and MLPF in real applications.

Example 2: In the second example,
where

fae,t) =m + 1+ 45,

. ~(z-§)?
e 2

ando; = 1,09 = 03 = 1 + sin 2¢/10. Then the § is time varying. The
initial values in Algorithm 2 are " = 1.5, At = 0.1, @« = 0.01, and the
integral in (41) is numerically approximated by Gaussian quadrature
method with 60 points [1]. Similarly, the EKF was numerically realized
by ode45 function in MATLAB with initial state 1 and initial covariance
3. And we approximate the dynamic system (39) by the Euler’s method

(41)
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T T T T T T
A Direct method
estimate-EKF
EnKF i
2| v wmpF

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(s)
Fig. 2. MSE of different methods based on 20 simulations of
Example 1.
TABLE Il
AVERAGE TIME COST OF DIFFERENT METHODS FOR EXAMPLE 1
Methods Direct method EKF MLPF EnKF
time(s) 1.7400 0.1586 | 49.3457 | 0.1812
TABLE IlI
NUMBER OF THE PARTICLES USED IN MLPF FOR EXAMPLE 2
Level 1 2 3 4
particle number || 4500 | 4000 | 3500 | 3000
Level 5 6 7 8
particle number || 2500 | 2000 | 1500 | 1000

real state

Direct method
14 EKF 4
MLPF

>o

ok 4
2 L L
0 0.5 1 1.5
time(s)
Fig. 3. Estimation result of different methods based on one simulation
of Example 2.
for MLPF at levels L = 1, ..., 8 and the number of particles in each

level is shown inTable III with 5000 particles at level L = 0. The
performance in one realization can be seen from Fig. 3 and the MSE
over M = 10 simulations is displayed in Fig 4. It is obvious that the
direct method can track the real state better compared with EKF and
MLPF. Besides, the average time cost over 10 simulations are shown in
TABLE IV. It can be seen that the MLPF is even more time consuming
and this is because we need to compute the integral in (41) for every

A Direct method

EKF
MLPF

10f A

sl §
2]

6l g
=

4+ 4

0 0.5 1 1.5
time(s)

Fig. 4. MSE of different methods based on 10 simulations of

Example 2.

TABLE IV
AVERAGE TIME COST OF DIFFERENT METHODS FOR EXAMPLE 2

[ Methods [[ Direct method | EKF |
[ time(s) [ 0.5045

MLPF_|
[ 00712 | 2125157 |

particle when sampling the dynamic system. Considering the tradeoff
between MSE and running time, our direct method is a better choice in
real applications.

VI. CONCLUSION

In this paper, we extended the direct method to a more general case so
that it can be applicable to time-varying Yau systems with arbitrary ini-
tial distributions. Through several transformations, the DMZ equation
can be transformed into a series of ODEs when the initial distribution
is Gaussian and then the non-Gaussian cases can be solved by the
Gaussian approximation. The numerical results show that the proposed
method performs better than the EKF, MLPF, and EnKF considering
about both MSE and running time.
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