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In this paper, we develop a nodal discontinuous Galerkin method for solving the time-
dependent Maxwell’s equations when metamaterials are involved. Both semi- and fully-
discrete schemes are constructed. Numerical stability and error estimate are proved for
both schemes. Numerical results are presented to demonstrate that the method is not only
efficient but also very effective in solving metamaterial Maxwell’s equations.
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1. Introduction

Since early 2000s, the discontinuous Galerkin (DG) method [2] has become one of the most popular methods in solving
various differential equations (e.g., [1,7,18,21,23]) due to its flexibility in mesh construction and its convenience in parallel
implementation. In the mean time, there have been considerable interests in developing DG methods for Maxwell’s equa-
tions in free space [3–6,8,9,11,20]. Very recently, there are some DG work [19,13,25] carried out for Maxwell’s equations
in dispersive media, whose permittivity depends on the wave frequency. However, the study of DG method for Maxwell’s
equations in metamaterials is quite limited, except our recent works [14,17].

The metamaterials are artificially structured electromagnetic composite materials with some exotic properties such as
negative refractive index and amplification of evanescent waves. Intensive study of metamaterials started around 2000,
immediately after the successful construction of such a metamaterial by Smith et al. [22]. Many potentially revolutionary
applications (such as construction of perfect lens, sub-wavelength imaging and cloaking devices) have attracted researchers
from many areas to work in metamaterials. Numerical simulation plays a very important role in the study of metamaterials.
However, such simulations are almost exclusively based on either the classic finite-difference time-domain (FDTD) method
or commercial packages such as COMSOL, a multiphysics finite element package. Due to the constraint of FDTD method
(e.g., difficult in handling the complex geometries) and the black-box characteristics of commercial packages, there is an
urgent call for developing more efficient and reliable software for metamaterial simulations. In recent years, we made some
initial effort [14–16] in developing and analyzing some finite element methods (FEM) for solving the time-domain Maxwell’s
equations in metamaterials.

This paper continues our initial effort [14,17] on developing time-domain DG methods for solving the Maxwell’s equa-
tions in metamaterials. In [14], we extended the nodal DG method of Hesthaven and Warburton [9,10] to metamaterial
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Maxwell’s equations and performed some numerical tests with upwind flux and the classic fourth-order explicit Runge–
Kutta (RK) method. We did not perform any stability and error analysis for the DG method in [14]. Later in [17], we
proposed a leap-frog DG scheme with upwind flux for solving the same model problem as [14]. In [17], we also proved the
numerical stability and the error estimate O (τ 2 +hk) in the L∞(0, T ; (L2(Ω))3) norm, where τ is the time step size, h is the
mesh size, and k is the order of the basis function. Numerical tests in [17] showed the optimal convergence rate O (hk+1),
but the rigorous proof of this fact is still open. In this paper, we propose another leap-frog DG method based on the central
flux. Compared to [17], this new scheme enjoys simpler and more efficient implementation, and a more succinct proof for
the stability and error estimate. Furthermore, practical numerical simulation of backward wave propagation phenomenon is
also demonstrated using this newly developed nodal DG method.

The rest of the paper is organized as follows. In Section 2, we first present the governing equations for metamaterials, and
then develop both semi- and full-discrete nodal DG methods for the metamaterial Maxwell’s equations. Stability and error
analysis are provided. In Section 3, we extend the algorithm and analysis to a perfectly matched layer (PML) model, which
is used for the simulation of backward wave propagation in metamaterials. In Section 4, numerical results are presented
to support our theoretical analysis and demonstrate the efficiency and effectiveness of the nodal DG method for modeling
wave propagation in metamaterials. Section 5 concludes the paper.

2. The DG method for metamaterials

2.1. The governing equations

The governing equations for modeling wave propagation in metamaterials are [14]:

ε0
∂ E

∂t
= ∇ × H − J , in Ω × (0, T ), (1)

μ0
∂ H

∂t
= −∇ × E − K , in Ω × (0, T ), (2)

∂ J

∂t
+ Γe J = ε0ω

2
pe E, in Ω × (0, T ), (3)

∂ K

∂t
+ Γm K = μ0ω

2
pm H , in Ω × (0, T ), (4)

where ε0 and μ0 denote the vacuum permittivity and permeability, ωpe and ωpm are the electric and magnetic plasma
frequencies, respectively, Γe and Γm are the electric and magnetic damping frequencies, respectively, E(x, t) and H(x, t)
are the electric and magnetic fields, respectively, and J (x, t) and K (x, t) are the induced electric and magnetic currents,
respectively. Here Ω is assumed to be a bounded Lipschitz polyhedral domain in Rd (d = 2 or 3) with connected boundary
∂Ω . To make the problem well-posed, we further assume that the system (1)–(4) is subject to the perfectly conducting
boundary condition:

n̂ × E = 0 on ∂Ω, (5)

where n̂ is the unit outward normal to ∂Ω , and the initial conditions:

E(x,0) = E0(x), H(x,0) = H 0(x), (6)

J (x,0) = J 0(x), K (x,0) = K 0(x), (7)

where E0, H 0, J 0 and K 0 are some given functions.

2.2. The semi-discrete DG method

To discretize the system (1)–(4), we consider a shape-regular mesh Th that partitions the domain Ω into NT disjoint
triangular or tetrahedral elements Ti such that Ω = ⋃NT

i=1 Ti . Furthermore, we denote aik = Ti ∩ Tk for an interior face
between two adjacent elements Ti and Tk , and nik for the unit normal vector pointed from Ti to Tk . For any given element
Ti , we denote νi for the set of all neighboring elements of Ti .

In DG methods, we consider the discretization space given by discontinuous piecewise polynomials of degree k on each
element, i.e.,

V h = {
vh ∈ (

L2(Ω)
)d

: vh|Ti ∈ (Pk)
d, ∀Ti ∈ Th

}
, d = 2 or 3.

Multiplying Eqs. (1)–(4) by test functions u, v,φ,ψ , respectively, and integrating by parts over any element Ti ∈ Th , we
have
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ε0

∫
Ti

∂ E

∂t
· u −

∫
Ti

H · ∇ × u −
∫

∂Ti

ni × H · u +
∫
Ti

J · u = 0, (8)

μ0

∫
Ti

∂ H

∂t
· v +

∫
Ti

E · ∇ × v +
∫

∂Ti

ni × E · v +
∫
Ti

K · v = 0, (9)

1

ε0ω
2
pe

∫
Ti

∂ J

∂t
· φ + Γe

ε0ω
2
pe

∫
Ti

J · φ −
∫
Ti

E · φ = 0, (10)

1

μ0ω
2
pm

∫
Ti

∂ K

∂t
· ψ + Γm

μ0ω
2
pm

∫
Ti

K · ψ −
∫
Ti

H · ψ = 0. (11)

Let us look at the semi-discrete solution Eh, Hh, J h, K h ∈ C1(0, T ; V h) as a solution of the following weak formulation:
For any uh, vh,φh,ψh ∈ V h , and any element Ti ∈ Th ,

ε0

∫
Ti

∂ Eh

∂t
· uh −

∫
Ti

Hh · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{Hh}}ik +
∫
Ti

J h · uh = 0, (12)

μ0

∫
Ti

∂ Hh

∂t
· vh +

∫
Ti

Eh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Eh}}ik +
∫
Ti

K h · vh = 0, (13)

1

ε0ω
2
pe

∫
Ti

∂ J h

∂t
· φh + Γe

ε0ω
2
pe

∫
Ti

J h · φh −
∫
Ti

Eh · φh = 0, (14)

1

μ0ω
2
pm

∫
Ti

∂ K h

∂t
· ψh + Γm

μ0ω
2
pm

∫
Ti

K h · ψh −
∫
Ti

Hh · ψh = 0, (15)

hold true and are subject to the initial conditions:

Eh(0) = Π2 E0(x), Hh(0) = Π2 H 0(x), J h(0) = Π2 J 0(x), K h(0) = Π2 K 0(x), (16)

where Π2 denotes the standard L2-projection onto V h . Here and below, for any function vh , we denote the average and
jump through any internal face aik as

{{vh}}ik = 1

2
(v i + vk), � vh �ik = (vk − v i).

Note that the perfectly conducting boundary condition (5) is treated as Ek|aik = −E i |aik and Hk|aik = H i |aik , which lead
to

{{E}}ik = 0, and {{H}}ik = H i|aik for any aik ∈ ∂Ω.

Here and below we denote E i = Eh|Ti , H i = Hh|Ti , J i = J h|Ti and K i = K h|Ti .
Denote the semi-discrete energy Eh:

Eh(t) = 1

2

(
ε0

∥∥Eh(t)
∥∥2

0,Ω
+ μ0

∥∥Hh(t)
∥∥2

0,Ω
+ 1

ε0ω
2
pe

∥∥ J h(t)
∥∥2

0,Ω
+ 1

μ0ω
2
pm

∥∥K h(t)
∥∥2

0,Ω

)
, (17)

and a bilinear form Bi :

Bi(E, H) = −
∫
Ti

H i · ∇ × E i −
∑
K∈νi

∫
aik

Eh · nik × {{Hh}}ik +
∫
Ti

E i · ∇ × H i +
∑
K∈νi

∫
aik

Hh · nik × {{Eh}}ik. (18)

Theorem 2.1. The energy Eh is decreasing in time, i.e., Eh(t) � Eh(0) for any t ∈ [0, T ].

Proof. Choosing uh = Eh, vh = Hh,φh = J h,ψh = K h in (12)–(15), respectively, and adding the results over all elements Ti
of Th , we obtain

d

dt
Eh(t) + Γe

ε0ω
2
pe

∥∥ J h(t)
∥∥2

0,Ω
+ Γm

μ0ω
2
pm

∥∥K h(t)
∥∥2

0,Ω
+

∑
i

Bi(E, H) = 0. (19)

Using the definition of Bi , integration by parts, and the identity (a × b) · c = a · (b × c), we have
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Bi(E, H) =
∑
K∈νi

∫
aik

E i · nik × H i +
∑
K∈νi

∫
aik

E i · {{Hh}}ik × nik −
∑
K∈νi

∫
aik

H i · {{Eh}}ik × nik

=
∑
K∈νi

∫
aik

[
−E i × H i + E i × H i + Hk

2
− H i × E i + Ek

2

]
· nik

= 1

2

∑
K∈νi

∫
aik

(E i × Hk + Ek × H i) · nik. (20)

Summing up (20) over all elements of Th , we obtain
∑

i Bi(E, H) = 0. The proof is completed by substituting this fact
into (19). �

For the semi-discrete scheme (12)–(15), we have the following convergence result [16, Theorem 4.6].

Theorem 2.2. If E, H , J , K ∈ C0([0, T ]; (Hs+1(Ω))d) for s � 0, then there exists a constant C > 0, independent of h, such that

max
t∈[0,T ]

(‖E − Eh‖0,Ω + ‖H − Hh‖0,Ω + ‖ J − J h‖0,Ω + ‖K − K h‖0,Ω

)
� Chmin(s,k)

∥∥(E, H , J , K )
∥∥

C0([0,T ];(Hs+1(Ω))d)
. (21)

2.3. The fully-discrete DG method

To define a fully discrete scheme, we divide the time interval (0, T ) into N uniform subintervals by points 0 = t0 < t1 <

· · · < tN = T , where tk = kτ , and τ = T /N .
Following the idea of our previous work on leap-frog scheme [15,17], we can construct a leap-frog DG scheme as follows:

Given initial approximations of E0
h , H

1
2
h , J

1
2
h , K 0

h , for any n � 0, find En+1
h , H

n+ 3
2

h , J
n+ 3

2
h , K n+1

h ∈ V h such that

ε0

∫
Ti

En+1
h − En

h

τ
· uh −

∫
Ti

H
n+ 1

2
h · ∇ × uh −

∑
K∈νi

∫
aik

uh · nik × {{
H

n+ 1
2

h

}}
ik +

∫
Ti

J
n+ 1

2
h · uh = 0, (22)

μ0

∫
Ti

H
n+ 3

2
h − H

n+ 1
2

h

τ
· vh +

∫
Ti

En+1
h · ∇ × vh +

∑
K∈νi

∫
aik

vh · nik × {{
En+1

h

}}
ik +

∫
Ti

K n+1
h · vh = 0, (23)

1

ε0ω
2
pe

∫
Ti

J
n+ 3

2
h − J

n+ 1
2

h

τ
· φh + Γe

ε0ω
2
pe

∫
Ti

J
n+ 3

2
h + J

n+ 1
2

h

2
· φh −

∫
Ti

En+1
h · φh = 0, (24)

1

μ0ω
2
pm

∫
Ti

K n+1
h − K n

h

τ
· ψh + Γm

μ0ω
2
pm

∫
Ti

K n+1
h + K n

h

2
· ψh −

∫
Ti

H
n+ 1

2
h · ψh = 0, (25)

hold true for any uh, vh,φh,ψh ∈ V h , and any element Ti ∈ Th .

Remark 2.1. We like to remark that the current scheme (22)–(25) is simpler but more efficient than the leap-frog scheme
developed in our early work [17]. Compared to (8)–(9) of [17], use of central flux in (22)–(23) makes the implementation
simpler and more efficient, since we only need to invert the mass matrix, i.e., no extra matrices will be contributed to
coefficient matrix. Moreover, since central flux decouples the E and H fields, the stability and error estimate analysis
for this new scheme can be done more succinctly. Though numerical results with the upwind flux [17] achieve optimal
convergence rate O (hk+1), both schemes have the same theoretical error estimate O (τ 2 + hk).

Denote cv = 1√
ε0μ0

for the wave propagation speed in vacuum, cinv > 0 for the constant in the standard inverse estimate

‖∇ × φh‖0 � cinvh−1‖φh‖0 ∀φh ∈ V h, (26)

and ctr > 0 for the constant in the standard trace inequality

‖φh‖0,∂Ω � ctrh−1/2‖φh‖0,Ω ∀φh ∈ V h. (27)
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Theorem 2.3. Under the CFL condition

τ � min

{
h

2cv cinv
,

h

c2
trcv

,
1√

2ωpe
,

1√
2ωpm

}
, (28)

the solution (E N+1
h , H

N+ 3
2

h , J
N+ 3

2
h , K N+1

h ) of (22)–(25) satisfies the following stability: For any N � 0,

ε0
∥∥E N+1

h

∥∥2
0,Ω

+ μ0
∥∥H

N+ 3
2

h

∥∥2
0,Ω

+ 1

ε0ω
2
pe

∥∥ J
N+ 3

2
h

∥∥2
0,Ω

+ 1

μ0ω
2
pm

∥∥K N+1
h

∥∥2
0,Ω

� C

[
ε0

∥∥E0
h

∥∥2
0,Ω

+ μ0
∥∥H

1
2
h

∥∥2
0,Ω

+ 1

ε0ω
2
pe

∥∥ J
1
2
h

∥∥2
0,Ω

+ 1

μ0ω
2
pm

∥∥K 0
h

∥∥2
0,Ω

]
(29)

holds true, where the constant C > 0 is independent of h, τ , N and T .

Proof. Choosing uh = τ
2 (En+1

i + En
i ), vh = τ

2 (H
n+ 3

2
i + H

n+ 1
2

i ), φh = τ
2 ( J

n+ 3
2

i + J
n+ 1

2
i ),ψh = τ

2 (K n+1
i + K n

i ) in (22)–(25), re-
spectively, we obtain

ε0

2

(∥∥En+1
i

∥∥2
0,Ti

− ∥∥En
i

∥∥2
0,Ti

) + μ0

2

(∥∥H
n+ 3

2
i

∥∥2
0,Ti

− ∥∥H
n+ 1

2
i

∥∥2
0,Ti

)
+ 1

2ε0ω
2
pe

(∥∥ J
n+ 3

2
i

∥∥2
0,Ti

− ∥∥ J
n+ 1

2
i

∥∥2
0,Ti

) + 1

2μ0ω
2
pm

(∥∥K n+1
i

∥∥2
0,Ti

− ∥∥K n
i

∥∥2
0,Ti

)

+ τΓe

ε0ω
2
pe

∥∥∥∥ J
n+ 3

2
i + J

n+ 1
2

i

2

∥∥∥∥
2

0,Ti

+ τΓm

μ0ω
2
pm

∥∥∥∥ K n+1
i + K n

i

2

∥∥∥∥
2

0,Ti

= τ

2

[∫
Ti

H
n+ 1

2
i · ∇ × (

En+1
i + En

i

) −
∫
Ti

En+1
i · ∇ × (

H
n+ 3

2
i + H

n+ 1
2

i

)]

+
∑
K∈νi

∫
aik

τ

2

(
En+1

i + En
i

) · nik × {{
H

n+ 1
2

h

}}
ik −

∑
K∈νi

∫
aik

τ

2

(
H

n+ 3
2

i + H
n+ 1

2
i

) · nik × {{
En+1

h

}}
ik

−
∫
Ti

J
n+ 1

2
i · τ

2

(
En+1

i + En
i

) +
∫
Ti

En+1
i · τ

2

(
J

n+ 3
2

i + J
n+ 1

2
i

)

−
∫
Ti

K n+1
i · τ

2

(
H

n+ 3
2

i + H
n+ 1

2
i

) +
∫
Ti

H
n+ 1

2
i · τ

2

(
K n+1

i + K n
i

)
. (30)

Using the Stokes’ formula, we have∫
Ti

H
n+ 1

2
i · ∇ × (

En+1
i + En

i

) =
∫
Ti

∇ × H
n+ 1

2
i · (En+1

i + En
i

) −
∑
K∈νi

∫
aik

(
En+1

i + En
i

) × H
n+ 1

2
i · nik. (31)

Adding all boundary integral terms in both (30) and (31), and using the average definition, we have

sum1i ≡
∑
K∈νi

∫
aik

τ

2

(
En+1

h + En
h

) · nik × {{
H

n+ 1
2

h

}}
ik −

∑
K∈νi

∫
aik

τ

2

(
H

n+ 3
2

h + H
n+ 1

2
h

) · nik × {{
En+1

h

}}
ik

− τ

2

∑
K∈νi

∫
aik

(
En+1

i + En
i

) × H
n+ 1

2
i · nik

= −τ

4

∑
K∈νi

∫
aik

[(
En+1

i + En
i

) × (
H

n+ 1
2

i + H
n+ 1

2
k

) − (
H

n+ 3
2

i + H
n+ 1

2
i

) × (
En+1

i + En+1
k

)

− 2
(

En+1
i + En

i

) × H
n+ 1

2
i

] · nik

= −τ

4

∑
K∈νi

∫
aik

[
En

i × H
n+ 1

2
k − En

i × H
n+ 1

2
i + En+1

i × H
n+ 3

2
i

+ En+1 × H
n+ 1

2 + En+1 × H
n+ 1

2 + En+1 × H
n+ 3

2
] · nik. (32)
k i i k k i
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Summing up (32) over all elements and using the jump definition, we have

NT∑
i=1

sum1i = τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(
En+1

i × [[
H

n+ 3
2

h

]]
ik − En

i × [[
H

n+ 1
2

h

]]
ik

) · nik. (33)

It is easy to see that we have the following identities:

τ

2

∫
Ti

[∇ × H
n+ 1

2
i · (En+1

i + En
i

) − En+1
i · ∇ × (

H
n+ 3

2
i + H

n+ 1
2

i

)]

= τ

2

∫
Ti

[
En

i · ∇ × H
n+ 1

2
i − En+1

i · ∇ × H
n+ 3

2
i

]
, (34)

∫
Ti

En+1
i · τ

2

(
J

n+ 3
2

i + J
n+ 1

2
i

) −
∫
Ti

J
n+ 1

2
i · τ

2

(
En+1

i + En
i

)

= τ

2

∫
Ti

(
En+1

i · J
n+ 3

2
i − En

i · J
n+ 1

2
i

)
, (35)

and ∫
Ti

H
n+ 1

2
i · τ

2

(
K n+1

i + K n
i

) −
∫
Ti

K n+1
i · τ

2

(
H

n+ 3
2

i + H
n+ 1

2
i

) = τ

2

∫
Ti

(
H

n+ 1
2

i · K n
i − H

n+ 3
2

i · K n+1
i

)
. (36)

Summing up (30) first over all elements of Ω and then from n = 0 to n = N , and using the identities (33)–(36), we have

ε0

2

(∥∥E N+1
h

∥∥2
0,Ω

− ∥∥E0
h

∥∥2
0,Ω

) + μ0

2

(∥∥H
N+ 3

2
h

∥∥2
0,Ω

− ∥∥H
1
2
h

∥∥2
0,Ω

)
+ 1

2ε0ω
2
pe

(∥∥ J
N+ 3

2
h

∥∥2
0,Ω

− ∥∥ J
1
2
h

∥∥2
0,Ω

) + 1

2μ0ω
2
pm

(∥∥K N+1
h

∥∥2
0,Ω

− ∥∥K 0
h

∥∥2
0,Ω

)

� τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(
E N+1

i × [[
H

N+ 3
2

h

]]
ik − E0

i × [[
H

1
2
h

]]
ik

) · nik + τ

2

∫
Ω

[
E0

h · ∇ × H
1
2
h − E N+1

h · ∇ × H
N+ 3

2
h

]

+ τ

2

∫
Ω

(
E N+1

h · J
N+ 3

2
h − E0

h · J
1
2
h

) + τ

2

∫
Ω

(
H

1
2
h · K 0

h − H
N+ 3

2
h · K N+1

h

)
. (37)

Now we try to bound the right hand side terms of (37) by the corresponding terms on the left hand side. Below we will
constantly use the standard arithmetic–geometric mean (AGM) inequality:

(a,b) � δ‖a‖2
0 + 1

4δ
‖b‖2

0. (38)

Using the definition cv , the inverse inequality (26), and the AGM inequality (38), we have

τ

2

∫
Ω

E N+1
h · ∇ × H

N+ 3
2

h = τ cv

2

∫
Ω

√
ε0 E N+1

h · √μ0∇ × H
N+ 3

2
h

� δ1ε0
∥∥E N+1

h

∥∥2
0,Ω

+ 1

4δ1
·
(

τ cv cinvh−1

2

)2

· μ0
∥∥H

N+ 3
2

h

∥∥2
0,Ω

. (39)

Similarly, we can obtain

τ

2

∫
Ω

E N+1
h · J

N+ 3
2

h = τωpe

2

∫
Ω

√
ε0 E N+1

h · 1√
ε0ωpe

J
N+ 3

2
h

� δ2ε0
∥∥E N+1

h

∥∥2
0,Ω

+ 1

4δ2
·
(

τωpe

2

)2

· 1

ε0ω
2
pe

∥∥ J
N+ 3

2
h

∥∥2
0,Ω

, (40)

and
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τ

2

∫
Ω

H
N+ 3

2
h · K N+1

h = τωpm

2

∫
Ω

√
μ0 H

N+ 3
2

h · 1√
μ0ωpm

K N+1
h

� δ3μ0
∥∥H

N+ 3
2

h

∥∥2
0,Ω

+ 1

4δ3
·
(

τωpm

2

)2

· 1

μ0ω
2
pm

∥∥K N+1
h

∥∥2
0,Ω

. (41)

Finally, using the trace inequality (27) and the AGM inequality (38), we have

τ

4

NT∑
i=1

∑
K∈νi

∫
aik

(
E N+1

i × [[
H

N+ 3
2

h

]]
ik

) · nik

� τ

4

NT∑
i=1

ctrh−1/2
∥∥E N+1

i

∥∥
0,Ti

· ctrh−1/2
∥∥H

N+ 3
2

h

∥∥
0,Ti

= τ

4
· c2

trh−1cv

NT∑
i=1

√
ε0

∥∥E N+1
i

∥∥
0,Ti

· √μ0
∥∥H

N+ 3
2

h

∥∥
0,Ti

� δ4ε
∥∥E N+1

h

∥∥2
0,Ω

+ 1

4δ4
·
(

τ c2
trcvh−1

4

)2

· μ0
∥∥H

N+ 3
2

h

∥∥2
0,Ω

. (42)

First choosing δi (i = 1,2,3,4) small enough, then choosing τ satisfying the CFL condition τ � Ch, we can obtain the
following stability

ε0
∥∥E N+1

h

∥∥2
0,Ω

+ μ0
∥∥H

N+ 3
2

h

∥∥2
0,Ω

+ 1

ε0ω
2
pe

∥∥ J
N+ 3

2
h

∥∥2
0,Ω

+ 1

μ0ω
2
pm

∥∥K N+1
h

∥∥2
0,Ω

� C

[
ε0

∥∥E0
h

∥∥2
0,Ω

+ μ0
∥∥H

1
2
h

∥∥2
0,Ω

+ 1

ε0ω
2
pe

∥∥ J
1
2
h

∥∥2
0,Ω

+ 1

μ0ω
2
pm

∥∥K 0
h

∥∥2
0,Ω

]
.

A simple choice is δ1 = δ2 = δ3 = δ4 = 1
8 , and

(
τ cv cinvh−1)2 � 1

4
,

(
τ c2

trcvh−1)2 � 1, (τωpe)
2 � 1

2
, (τωpm)2 � 1

2
,

which leads to a choice of τ as (28). This completes our proof. �
Note that the above stability result is obtained without using the discrete Gronwall inequality often seen in analyzing

time-dependent problems. Finally, we like to point out the following error estimate for our scheme (22)–(25).

Theorem 2.4. Let (En+1, Hn+ 3
2 , J n+ 3

2 , K n+1) and (En+1
h , H

n+ 3
2

h , J
n+ 3

2
h , K n+1

h ) be the solutions of (1)–(4) and (22)–(25). at time
tn+1 or tn+ 3

2
. Then under the CFL condition (28), there exists a constant C > 0, independent of τ and h, such that for any n � 0 we

have

max
n�0

(∥∥En+1
h − En+1

∥∥
0,Ω

+ ∥∥H
n+ 3

2
h − Hn+ 3

2
∥∥

0,Ω
+ ∥∥ J

n+ 3
2

h − J n+ 3
2
∥∥

0,Ω
+ ∥∥K n+1

h − K n+1
∥∥

0,Ω

)
� C

(
τ 2 + hk) + C

(∥∥E0
h − E0

∥∥
0,Ω

+ ∥∥H
1
2
h − H

1
2
∥∥

0,Ω
+ ∥∥ J

1
2
h − J

1
2
∥∥

0,Ω
+ ∥∥K 0

h − K 0
∥∥

0,Ω

)
, (43)

where k � 1 is the order of basis function in the space V h.

Proof. Integrating (8) and (11) from tn to tn+1, and (9) and (10) from tn+ 1
2

to tn+ 3
2

, we have

ε0

∫
Ti

En+1 − En

τ
· u −

∫
Ti

(
1

τ

tn+1∫
tn

H

)
· ∇ × u −

∫
∂Ti

ni ×
(

1

τ

tn+1∫
tn

H

)
· u +

∫
Ti

(
1

τ

tn+1∫
tn

J

)
· u = 0, (44)

μ0

∫
Ti

Hn+ 3
2 − Hn+ 1

2

τ
· v +

∫
Ti

(
1

τ

t
n+ 3

2∫
t
n+ 1

E

)
· ∇ × v +

∫
∂Ti

ni ×
(

1

τ

t
n+ 3

2∫
t
n+ 1

E

)
· v +

∫
Ti

(
1

τ

t
n+ 3

2∫
t
n+ 1

K

)
· v = 0,
2 2 2
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1

ε0ω
2
pe

∫
Ti

J n+ 3
2 − J n+ 1

2

τ
· φ + Γe

ε0ω
2
pe

∫
Ti

(
1

τ

t
n+ 3

2∫
t
n+ 1

2

J

)
· φ =

∫
Ti

(
1

τ

t
n+ 3

2∫
t
n+ 1

2

E

)
· φ, (45)

1

μ0ω
2
pm

∫
Ti

K n+1 − K n

τ
· ψ + Γm

μ0ω
2
pm

∫
Ti

(
1

τ

tn+1∫
tn

K

)
· ψ =

∫
Ti

(
1

τ

tn+1∫
tn

H

)
· ψ . (46)

Denote W̃ h = Π2(W ) − W h and W h = Π2(W ) − W for W = E, H , J , K . Then we can obtain error equations by sub-
tracting (22)–(25) from (44)–(46) with u = uh , v = vh , φ = φh and ψ = ψh:

ε0

∫
Ti

Ẽ
n+1
h − Ẽ

n
h

τ
· uh −

∫
Ti

H̃
n+ 1

2
h · ∇ × uh −

∑
K∈νi

∫
aik

uh · nik × {{
H̃

n+ 1
2

h

}}
ik +

∫
Ti

J̃
n+ 1

2
h · uh

= −
∑
K∈νi

∫
aik

uh · nik ×
({{

H
n+ 1

2
h

}}
ik + Hn+ 1

2 − 1

τ

tn+1∫
tn

H

)

−
∫
Ti

(
Hn+ 1

2 − 1

τ

tn+1∫
tn

H

)
· ∇ × uh +

∫
Ti

(
J n+ 1

2 − 1

τ

tn+1∫
tn

J

)
· uh, (47)

μ0

∫
Ti

H̃
n+ 3

2
h − H̃

n+ 1
2

h

τ
· vh +

∫
Ti

Ẽ
n+1
h · ∇ × vh +

∑
K∈νi

∫
aik

vh · nik × {{
Ẽ

n+1
h

}}
ik +

∫
Ti

K̃
n+1
h · vh

=
∑
K∈νi

∫
aik

vh · nik ×
({{

En+1
h

}}
ik + En+1 − 1

τ

t
n+ 3

2∫
t
n+ 1

2

E

)

+
∫
Ti

(
En+1 − 1

τ

t
n+ 3

2∫
t
n+ 1

2

E

)
· ∇ × vh +

∫
Ti

(
K n+1 − 1

τ

t
n+ 3

2∫
t
n+ 1

2

K

)
· vh, (48)

1

ε0ω
2
pe

∫
Ti

J̃
n+ 3

2
h − J̃

n+ 1
2

h

τ
· φh + Γe

ε0ω
2
pe

∫
Ti

J̃
n+ 3

2
h + J̃

n+ 1
2

h

2
· φh −

∫
Ti

Ẽ
n+1
h · φh

= Γe

ε0ω
2
pe

∫
Ti

(
J n+ 3

2 + J n+ 1
2

2
− 1

τ

t
n+ 3

2∫
t
n+ 1

2

J

)
· φh −

∫
Ti

(
En+1 − 1

τ

t
n+ 3

2∫
t
n+ 1

2

E

)
· φh, (49)

1

μ0ω
2
pm

∫
Ti

K̃
n+1
h − K̃

n
h

τ
· ψh + Γm

μ0ω
2
pm

∫
Ti

K̃
n+1
h + K̃

n
h

2
· ψh −

∫
Ti

H̃
n+ 1

2
h · ψh

= Γm

μ0ω
2
pm

∫
Ti

(
K n+1 + K n

2
− 1

τ

tn+1∫
tn

K

)
· ψh −

∫
Ti

(
Hn+ 1

2 − 1

τ

tn+1∫
tn

H

)
· ψh. (50)

The rest of the proof is similar to the stability proof carried out for Theorem 2.3, and is skipped due to the technical-
ity. �
3. Extension of the DG method to the PML model

To model wave propagation in practice, we need to truncate an infinite physical domain to a bounded domain. To easily
couple with our metamaterial Maxwell’s equations (1)–(4), we choose a perfectly matched layer (PML) model developed
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by Ziolkowski [26] in 1997. Following [26], the PML is assumed to enclose a cubical simulation domain in R3, and the
complete PML governing equations for the corner region are given by [26, Eq. (B.4)]:

∂ E

∂t
+ D1 E = 1

ε0
∇ × H − 1

ε0
J , (51)

∂ J

∂t
+ D2 J = ε0 D3 E, (52)

∂ H

∂t
+ D1 H = − 1

μ0
∇ × E − 1

μ0
K , (53)

∂ K

∂t
+ D2 K = μ0 D3 H , (54)

where ε0 and μ0, E(x, t) and H(x, t), and J (x, t) and K (x, t) have the same meaning as given in the system (1)–(4).
Moreover, D1, D2 and D3 are 3 × 3 diagonal matrices given by D1 = diag(σy + σz − σx, σz + σx − σy, σx + σy − σz), D2 =
diag(σx, σy, σz), D3 = diag((σx − σy)(σx − σz), (σy − σx)(σy − σz), (σz − σx)(σz − σy)). Here σx , σy and σz are nonnegative
functions and represent the damping variations along the x, y and z directions, respectively. Note that the PML equations
(51)–(54) should be modified accordingly at other regions. For example, in the face regions, only one normal direction has
absorbing layers.

Note that the model (51)–(54) with ε0 = μ0 = 1 is the same as (5.12) of Turkel and Yefet [24], and is well-posed
mathematically because it is a symmetric hyperbolic system (i.e., the standard Maxwell equations) plus lower-order terms
[24, p. 545].

We like to remark that all the results in previous section can be extended easily to this PML model, but the proofs
become more involved. For clarity, below we just briefly present the semi- and fully-discrete schemes for solving (51)–(54).

The semi-discrete DG method for (51)–(54): For any uh, vh,φh,ψh ∈ V h , and any element Ti ∈ Th , find Eh, Hh, J h, K h ∈
C1(0, T ; V h) such that

ε0

∫
Ti

∂ Eh

∂t
· uh −

∫
Ti

Hh · ∇ × uh −
∑
K∈νi

∫
aik

uh · nik × {{Hh}}ik +
∫
Ti

( J h + ε0 D1 Eh) · uh = 0, (55)

μ0

∫
Ti

∂ Hh

∂t
· vh +

∫
Ti

Eh · ∇ × vh +
∑
K∈νi

∫
aik

vh · nik × {{Eh}}ik +
∫
Ti

(K h + μ0 D1 Hh) · vh = 0, (56)

1

ε0

∫
Ti

∂ J h

∂t
· φh + 1

ε0

∫
Ti

D2 J h · φh =
∫
Ti

D3 Eh · φh, (57)

1

μ0

∫
Ti

∂ K h

∂t
· ψh + 1

μ0

∫
Ti

D2 K h · ψh =
∫
Ti

D3 Hh · ψh, (58)

hold true and are subject to the initial conditions (16).
Denote the semi-discrete energy E pml

h :

E pml
h (t) = 1

2

(
ε0

∥∥Eh(t)
∥∥2

0,Ω
+ μ0

∥∥Hh(t)
∥∥2

0,Ω
+ 1

ε0

∥∥ J h(t)
∥∥2

0,Ω
+ 1

μ0

∥∥K h(t)
∥∥2

0,Ω

)
. (59)

Theorem 3.1. The energy E pml
h is bounded, i.e., E pml

h (t) � CE pml
h (0) holds true for any t ∈ [0, T ], where the constant C > 0 depends

on T .

Proof. Choosing uh = Eh, vh = Hh,φh = J h,ψh = K h in (55)–(58) and adding the results together over all element Ti ∈ Th ,
we obtain

d

dt
E pml

h (t) +
∥∥∥∥
√

D2

ε0
J h(t)

∥∥∥∥
2

0,Ω

+
∥∥∥∥
√

D2

μ0
K h(t)

∥∥∥∥
2

0,Ω

+
∑

i

Bi(Eh, Hh)

= −
∫
Ω

J h · Eh −
∫
Ω

ε0 D1 Eh · Eh −
∫
Ω

K h · Hh −
∫
Ω

μ0 D1 Hh · Hh +
∫
Ω

D3 Eh · J h +
∫
Ω

D3 Hh · K h

=
∫
Ω

(D3 − I3)Hh · K h +
∫
Ω

(D3 − I3)Eh · J h −
∫
Ω

ε0 D1 Eh · Eh −
∫
Ω

μ0 D1 Hh · Hh, (60)

where we denote I3 for the 3 × 3 identity matrix.
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Using the fact that
∑

i Bi(Eh, Hh) = 0, the Cauchy–Schwarz inequality to those right hand side terms of (60) with the
boundedness of D1 and D3, and the Gronwall inequality, we complete the proof. �

Similar to the metamaterial model, we can construct the following leap-frog DG scheme: Given initial approximations of

E0
h , H

1
2
h , J

1
2
h , K 0

h , for any n � 0, find En+1
h , H

n+ 3
2

h , J
n+ 3

2
h , K n+1

h ∈ V h such that

ε0

∫
Ti

En+1
h − En

h

τ
· uh −

∫
Ti

H
n+ 1

2
h · ∇ × uh −

∑
K∈νi

∫
aik

uh · nik × {{
H

n+ 1
2

h

}}
ik

+
∫
Ti

(
J

n+ 1
2

h + ε0 D1

2

(
En+1

h + En
h

)) · uh = 0, (61)

μ0

∫
Ti

H
n+ 3

2
h − H

n+ 1
2

h

τ
· vh +

∫
Ti

En+1
h · ∇ × vh +

∑
K∈νi

∫
aik

vh · nik × {{
En+1

h

}}
ik

+
∫
Ti

(
K n+1

h + μ0 D1

2

(
H

n+ 3
2

h + H
n+ 1

2
h

)) · vh = 0, (62)

1

ε0

∫
Ti

J
n+ 3

2
h − J

n+ 1
2

h

τ
· φh +

∫
Ti

D2

2ε0

(
J

n+ 3
2

h + J
n+ 1

2
h

) · φh =
∫
Ti

D3 En+1
h · φh, (63)

1

μ0

∫
Ti

K n+1
h − K n

h

τ
· ψh +

∫
Ti

D2

2μ0

(
K n+1

h + K n
h

) · ψh =
∫
Ti

D3 H
n+ 1

2
h · ψh, (64)

hold true for any uh, vh,φh,ψh ∈ V h , and any element Ti ∈ Th .
In implementation, at each time step, we first solve (61) and (64) in parallel; then we solve (62) and (63) simultaneously.

4. Numerical results

Our implementation is based on the package nudg provided by [10]. Note that the theoretical results proved in previous
sections hold true for both 3-D and 2-D cases. Here we show some interesting 2-D numerical results. All our tests are
carried out using MATLAB R2011b running on Dell Precision WorkStation T7500 with 12 GB memory and 2.26 GHz Intel
Xeon CPU.

4.1. Convergence rate test for the metamaterial model

Here we consider the 2-D transverse magnetic (TM) metamaterial model:

∂ Hx

∂t
= −∂ Ez

∂ y
− Kx + gx, (65)

∂ H y

∂t
= ∂ Ez

∂x
− K y + g y, (66)

∂ Ez

∂t
= ∂ H y

∂x
− ∂ Hx

∂ y
− J z + f , (67)

∂ J z

∂t
= ω2

e Ez − Γe J z, (68)

∂ Kx

∂t
= ω2

m Hx − Γm Kx, (69)

∂ K y

∂t
= ω2

m H y − Γm K y, (70)

which is the 2-D version of (1)–(4) with ε0 = μ0 = 1 and added source terms gx, g y and f . In (65)–(70) the subscripts ‘x, y’
and ‘z’ denote the corresponding components in the x, y and z directions, respectively. Note that in TM model, the non-zero
fields are Hx, H y and Ez , and the induced currents Kx, K y and J z .
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Table 1
Example 1. L∞ and L2 errors for magnetic field Hx with linear basis function and τ = 10−5 at 1000 time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 0.0171 0.0095 0.8480 0.0048 0.9849 0.0024 1.0 0.0012 1.0
L2 errors 0.0046 0.0023 1.0 0.0011 1.0641 5.2752e–4 1.0602 2.1700e–4 1.2815
CPU(s) 17.19 17.65 29.61 33.72 44.05

Table 2
Example 1. L∞ and L2 errors for magnetic field Hx with quadratic basis function and τ = 10−5 at 1000 time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 0.0039 9.7298e–4 2.0030 2.1093e–4 2.2056 4.7594e–5 2.1479 2.2728e–5 1.0663
L2 errors 5.6795e–4 1.4231e–4 1.9967 3.3759e–5 2.0757 9.9027e–6 1.7694 7.6578e–6 0.3709
CPU(s) 18.76 19.60 30.38 33.48 58.35

Example 1. To check the convergence rate for our scheme, we use the same exact solutions constructed in our previous
work [14] (assuming that Γm = Γe = π , ωm = ωe = π in (65)–(70)) on domain Ω = (0,1)2:

H ≡
(

Hx

H y

)
=

(
sin(πx) cos(π y)exp(−πt)

− cos(πx) sin(π y)exp(−πt)

)
,

Ez = sin(πx) sin(π y)exp(−πt).

The corresponding magnetic and electric currents are

K ≡
(

Kx

K y

)
=

(
π2t sin(πx) cos(π y)exp(−πt)

−π2t cos(πx) sin(π y)exp(−πt)

)
,

and

J z = π2t sin(πx) sin(π y)exp(−πt),

respectively. The corresponding source terms are

f = (−3π + π2t
)

sin(πx) sin(π y)exp(−πt),

gx = π2t sin(πx) cos(π y)exp(−πt),

g y = −π2t cos(πx) sin(π y)exp(−πt).

Notice that Ez satisfies the boundary condition Ez = 0 on ∂Ω .
We solved this problem with various time steps τ and uniformly refined triangular meshes. In Table 1, we presented the

numerical results obtained with linear basis function, τ = 10−5 running for 1000 time steps. Since the convergence rates
are very similar for all the variables, we just presented Hx in Table 1, which shows clearly O (h) rates in both L∞ and L2
norms.

In Table 2, we presented the numerical results obtained with quadratic basis function, τ = 10−5 running for 1000 time
steps. Results of Table 2 show O (h2) rates in both L∞ and L2 norms, though the rates degenerate as the mesh becomes fine
enough. The reason is that the solution error is dominated by the time error when the mesh is fine enough.

Example 2. To further check the convergence rate and our algorithmic implementation, we construct another exact solution
for (65)–(70) on Ω = (0,1)2 by assuming that Γm = Γe = 2ωπ,ωm = ωe = ωπ :

H ≡
(

Hx

H y

)
=

(
sin(ωπx) cos(ωπ y)exp(−ωπt)

− cos(ωπx) sin(ωπ y)exp(−ωπt)

)
,

Ez = sin(ωπx) sin(ωπ y)exp(−ωπt),

K ≡
(

Kx

K y

)
= ωπ

(
sin(ωπx) cos(ωπ y)exp(−ωπt)

− cos(ωπx) sin(ωπ y)exp(−ωπt)

)
,

J z = ωπ sin(ωπx) sin(ωπ y)exp(−ωπt),

which leads to source terms

f = −2ωπ sin(ωπx) sin(ωπ y)exp(−ωπt),

gx = Kx, g y = K y .
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Table 3
Example 2. L∞ and L2 errors for magnetic field Hx with linear basis function and τ = 10−8 at 1000 time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 1.6979e–4 1.2971e–4 0.3885 7.3808e–5 0.8134 3.8803e–5 0.9276 1.9643e–5 0.9822
L2 errors 5.3631e–5 3.6010e–5 0.5747 1.9377e–5 0.8941 9.8288e–6 0.9793 4.9160e–6 0.9995

Table 4
Example 2. L∞ and L2 errors for magnetic field Hx with quadratic basis function and τ = 10−8 at 1000 time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 1.7836e–4 5.9329e–5 1.5880 1.5958e–5 1.8945 4.1534e–6 1.9419 1.0931e–6 1.9259
L2 errors 2.9229e–5 9.1135e–6 1.6813 2.3892e–6 1.9315 6.0817e–7 1.9740 1.5630e–7 1.9602

Table 5
Example 2. L∞ and L2 errors for magnetic field Hx with cubic basis function and τ = 10−12 at one time step.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 9.5958e–12 1.4932e–12 2.6840 2.0184e–13 2.8871 2.5757e–14 2.9702 3.2474e–15 2.9876
L2 errors 1.2339e–12 1.8039e–13 2.7740 2.3722e–14 2.9268 2.9871e–15 2.9894 3.7331e–16 3.0003

Table 6
Example 2. L∞ and L2 errors for magnetic field Hx with cubic basis function and τ = 10−12 at 1000 time step.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 9.5958e–9 1.4933e–9 2.6839 2.0183e–10 2.8873 2.5762e–11 2.9698 3.2503e–12 2.9866
L2 errors 1.2339e–9 1.8039e–10 2.7740 2.3721e–11 2.9269 2.9867e–12 2.9895 3.7260e–13 3.0029

Table 7
Example 2. L∞ and L2 errors for magnetic field Hx with quadratic basis function, τ = 0.01h and nt = 10/h time steps.

h = 1/5 h = 1/10 Rates h = 1/20 Rates h = 1/40 Rates h = 1/80 Rates

L∞ errors 0.6144 0.1807 1.7656 0.0394 2.1973 0.0112 1.8147 0.0028 2.0
L2 errors 0.0810 0.0216 1.9069 0.0042 2.3626 9.7398e–004 2.1084 2.4353e–004 1.9998

Many numerical tests have been carried out for various h, τ and ω. Selected results are presented for ω = 4 in Tables 3,
4, which again justify the theoretical convergence rate O (τ 2 + hr) for a r-th order basis function when r � 2. When r � 3,
we need smaller time steps in order to see the spatial convergence rate clearly, since the error will be saturated when the
mesh is fine enough. In Tables 5, 6, we presented the results obtained with ω = 4, r = 3, τ = 10−12 at 1 and 1000 time
steps, respectively. Tables 5, 6 show the convergence rate O (h3) clearly.

Finally, we present a test for checking the time convergence rate O (τ 2). Since the time step depends on h, we cannot
check this using the traditional way by fixing a very small h with various τ . Here we solve the problem with quadratic
basis function and ω = 4. We fix τ = 0.01h, and the final time T = 0.1 (i.e., the number of time step varies as nt = 10/h).
A representative result is listed in Table 7, which clearly shows O (τ 2) rate. This result is consistent with the theoretical
analysis, since in this case O (τ 2 + h2) = O (τ 2) when we fix τ = 0.01h.

Remark 4.1. We like to remark that it seems impossible to construct an accurate moving wave solution (i.e., E or H has
time-dependence as sin(ωt) or cos(ωt)) for the metamaterial model, since the metamaterial is a dispersive lossy medium.
This fact can be seen from the system (65)–(70). Substituting solution Ez(x, y, t) = p(x, y) sinωt into (68), we have

J z(x, y, t) = e−Γet J z(0) − ω2
e p(x, y)

[
1

Γ 2
e + ω2

(Γe sinωt − ω cosωt) + ω

Γ 2
e + ω2

e−Γet
]
,

which cannot satisfy (67) unless choosing source term f = J z . However, such a solution does not represent the feature
of dispersive media, since the induced currents are decoupled from the electric and magnetic fields. Unfortunately, this is
exactly what Lanteri and Scheid [13] did in their numerical example for a simple dispersive medium model. It is easy to see
that the right hand side term of the third equation of (5.5) in [13] becomes zero for the exact solution given there, hence
the polarization represented by the fourth equation of (5.5) does not affect the electric and magnetic fields anymore.
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4.2. Example 3: Wave propagation in a rectangular metamaterial slab

Here we consider a wave propagation model originally introduced and solved by FDTD method by Ziolkowski [27]. In
this example, a metamaterial slab is chosen to be [0.024,0.054]m × [0.002,0.062]m, which is located inside a vacuum with
dimension [0,0.07]m × [0,0.064]m. The vacuum is surrounded by a PML with thickness dd = 12h, where h denotes the
mesh size. The 2-D transverse magnetic PML model can be obtained from (51)–(54):

μ0
∂ Hx

∂t
= −∂ Ez

∂ y
− Kx + μ0(σx − σy)Hx,

μ0
∂ H y

∂t
= ∂ Ez

∂x
− K y − μ0(σx − σy)H y,

ε0
∂ Ez

∂t
= ∂ H y

∂x
− ∂ Hx

∂ y
− J z − ε0(σx + σy)Ez,

∂ J z

∂t
= ε0σxσy Ez,

∂ Kx

∂t
= −σx Kx + μ0(σx − σy)σx Hx,

∂ K y

∂t
= −σy K y − μ0(σx − σy)σy H y,

where the subscripts ‘x, y’ and ‘z’ denote the corresponding components in the x, y and z directions, respectively.
The incident source wave is imposed as Ez field and is excited at x = 0.004m and y ∈ [0.025,0.035]m. The source wave

varies in space as e−(x−0.03)2/(50h)2
and in time as [27]:

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for t < 0,

g1(t) sin(ω0t), for 0 < t < mT p,

sin(ω0t), for mT p < t < (m + k)T p,

g2(t) sin(ω0t), for (m + k)T p < t < (2m + k)T p,

0, for t > (2m + k)T p,

where we denote T p = 1/ f0, and

g1(t) = 10x3
1 − 15x4

1 + 6x5
1, x1 = t/mT p,

g2(t) = 1 − (
10x3

2 − 15x4
2 + 6x5

2

)
, x2 = (

t − (m + k)T p
)
/mT p .

In our simulation, we use m = 2,k = 100.
The damping function σx and σx are chosen as a fourth-order polynomial function, more specifically, we choose:

σx(x, y) =
⎧⎨
⎩

σmax(
x−0.07

dd )4 if x � 0.07

σmax(
|x|
dd )4 if x � 0.0

0 elsewhere,

where σmax = − log(err) ∗ 5 ∗ 0.07 ∗ cv/(2 ∗ dd) with err = 10−7. Function σy has the same form but varies with respect to
the y variable.

An unstructured triangular mesh with 14 586 triangles and 7422 nodes is used for our simulation. Furthermore, the
quadratic basis function, mesh size h = 2 · 10−4 and time step size τ = 0.1 ps are used. The mesh and the absolute value of
Ez field at various times are presented in Fig. 1, which clearly shows that the wave propagates backwards in the metamate-
rial slab and demonstrates the re-focusing property of metamaterials. The simulation is consistent with results obtained by
the FDTD method [27] and the finite element method with edge elements [12]. Moreover, the leap-frog DG method is quite
efficient as evidenced by our implementation that the CPU times are 172.71 s, 342.80 s, 510.50 s, 681.63 s, and 854.14 s for
1000, 2000, 3000, 4000, and 5000 time step simulations, respectively.

4.3. Example 4: Wave propagation in a triangular metamaterial slab

The setup of this model is basically same as the last example, the only difference is that the rectangular metamaterial
slab is replaced by a triangular slab with vertices (0.024,0.002), (0.054,0.002), and (0.024,0.062). A similar example was
developed [12] to demonstrate Snell’s Law and the negative refractive index of the metamaterial. An unstructured triangular
mesh with 14 600 triangles and 7429 nodes is used for this model. The mesh size h = 2 · 10−4 and the time step size τ =
0.1 ps are used. The mesh and Ez fields at various times are presented in Fig. 2, which clearly shows that the wave bends
toward the same side at the interface between the metamaterial and the vacuum by obeying Snell’s Law. The simulation
is consistent with results obtained by the lowest-order edge elements [12]. Furthermore, the leap-frog DG method seems
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Fig. 1. Example 3. The mesh and contour plots of |Ez | obtained with h = 2 · 10−4, τ = 0.1 ps at 1000, 2000, 3000, 4000, and 5000 time steps.

more powerful and efficient compared to our edge element implementation with a hybrid grid of triangles and rectangles,
since current implementation can use arbitrary order basis functions on unstructured triangular or tetrahedral grids. The
CPU times of our DG method are 173.20 s, 347.58 s, 519.39 s, 691.69 s, and 864.14 s for 1000, 2000, 3000, 4000, and 5000
time step simulations, respectively.
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Fig. 2. Example 4. The mesh and contour plots of Ez obtained with h = 2 · 10−4, τ = 0.1 ps at 1000, 2000, 3000, 4000, and 5000 time steps.

5. Conclusions

In this paper, we develop a nodal discontinuous Galerkin method for solving the time-dependent Maxwell’s equations
in metamaterials. We prove the numerical stability and error estimate for both semi- and fully-discrete schemes. Numerical
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results with analytical solutions are first presented to support the theoretical analysis and check the correctness of our
algorithmic implementation. Then two wave propagation problems are presented to illustrate the interesting backward
propagation phenomenon happened when wave propagates in metamaterials.
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