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Abstract Since 2000, the study of metamaterial has been a very hot topic due to its potential
applications in many areas such as design of invisibility cloak and sub-wavelength imaging.
Although several metamaterial models are often used by physicists and engineers, the study
of their mathematical properties has lagged behind. In this paper, we initiate our investiga-
tion in the plasma-Lorentz model. More specifically, we first discuss the well-posedness of
this model, then develop two fully-discrete finite element methods for solving it. Detailed
stability and error analysis are carried out, and 3-D numerical results justifying our theoret-
ical analysis are presented.

Keywords Maxwell’s equations - Metamaterial - Plasma-Lorentz model - Finite element
method

1 Introduction

In 2000, Smith et al. [42] successfully constructed a composite medium with simultane-
ously negative electric permittivity and magnetic permeability. An electromagnetic material
with this property is usually called metamaterial. Later on, the first experimental demon-
stration of the negative refraction index was carried out for the metamaterial [40]. Since
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2000, there has been a tremendous growing interest in the study of metamaterial and its po-
tential applications in areas ranging from electronics, telecommunications to sensing, radar
technology, sub-wavelength imaging, data storage, and design of invisibility cloak. More
details on metamaterials can be found in some recent monographs such as [9, 12, 17, 29]
and references cited therein.

Though numerical simulations for metamaterials are often used by engineers and physi-
cists, they mainly use the classic finite-difference time-domain (FDTD) method [45]. How-
ever, it is known that the FDTD method has a big disadvantage for solving problems with
complex geometries. Hence it would be quite interesting and useful to develop efficient and
robust finite element methods (FEMs) for modeling metamaterials.

The metamaterial models can be described by the Maxwell’s equations augmented with
some constitutive equations. Hence the study of metamaterial models is more complicated
than the standard Maxwell’s equations in vacuum. Though there exist many excellent work
for Maxwell’s equations in vacuum (e.g., papers [2, 4, 6-8, 14, 16, 19, 20, 22, 27, 34, 35],
books [10, 18, 30] and references cited therein) and in dispersive media (e.g., [1, 5, 11,
26, 28, 36-38, 44, 46]), to our best knowledge, there are not much work devoted to the
development and analysis of FEMs for the Maxwell’s equations when metamaterials are
involved [13]. In recent years, we made some initial effort [21, 23-25] in developing and
analyzing some FEMs for time-domain Maxwell’s equations involving metamaterials. How-
ever, our previous papers were restricted to metamaterial models whose permittivity and
permeability are given by the same type constitutive relations such as the so-called Drude
model or Lorentz model.

In this paper, we will investigate another type metamaterial model used by engineers and
physicists, in which the permittivity is described by a plasma model, while the permeability
is described by the Lorentz model. To be specific, we denote this model as the plasma-
Lorentz model, which has not been studied before from the mathematics point view, though
this model has been used by engineers and physicists [3, 32, 33, 39, 41]. Here we first
study its well-posedness, then develop two fully-discrete finite element methods for solving
this model. Detailed stability analysis, error estimates and numerical results supporting the
analysis are carried out.

In this paper, C > 0 denotes a generic constant, which is independent of the finite element
mesh size h and time step size 7. Let (H%(£2))? be the standard Sobolev space equipped
with the norm ||-||, and semi-norm ||-||,. Specifically, ||-|lo will mean the (L?(£2))3-norm.
We also introduce some common notation [30]:

Hcurl; 2) = {v e (L2(2)); V xve (LX(2))’],
Hy(curl; 2) = {v € H(curl; 2); n x v=00n 3£},
H"(curl; £2) = {v € (H"‘(.Q))S; Vxve (H"(.Q))S},

where o > 0 is a real number, and §2 is a bounded Lipschitz polyhedral domain in R3 with
connected boundary 02. We equip H (curl; §£2) with norm ||v||o.cunn = (||v||g + ||curl v||5)1/2,
and H*(curl; £2) with norm ||v||y.curt = (||v||§ + ||curl v||§)1/2. For clarity, we introduce the

vector notation
L’@)=(L2))’, H @) =(H*®),  Hcul; ) = (H*(curl; 2))’.

The rest of the paper is organized as follows. In Sect. 2, we present the governing equa-
tions for the plasma-Lorentz metamaterial model. In Sect. 3, we develop two fully-discrete
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schemes, and prove the corresponding stability analysis and error estimates. Then in Sect. 4,
we present some numerical results justifying our theoretical analysis. Finally, we conclude
our paper in Sect. 5.

2 The Governing Equations

To simulate electromagnetic wave propagation, we have to solve the general Maxwell’s
equations

0B oD
VXE=——, VxH=—,
at at

where E(x,t) and H(x,t) are the electric and magnetic fields, D(x,t) and B(x,?) are
the corresponding electric and magnetic flux densities. In a general medium, D and B are
related to E and H through the constitutive relations

(2.1)

D=cE+P=cE, B=pH+M=uH, 2.2)

where €y and 1 are the permittivity and permeability in free space, respectively, and P and
M are polarization and magnetization, respectively. Moreover, € and p are the permittivity
and permeability of the underlying medium, respectively.

The permittivity can be described by the cold electron plasma model [32, 33]:

- 1 w%’ 23
== 551 7) -

where o is the excitation angular frequency, w, > 0 is the effective plasma frequency, v > 0
is the loss parameter, and j = 4/ —1 is the imaginary unit. On the other hand, the permeabil-
ity can be described by the Lorentz model [39, 41]:

Fo?
ww) = Mo(l - m>’ 24

where wy > 0 is the resonant frequency, y > 0 is the loss parameter, and F € (0,1) is a
parameter depending on the geometry of the unit cell of the metamaterial.

Using a time-harmonic variation of exp(jwt), and substituting (2.3) and (2.4) into (2.2),
respectively, we obtain the time-domain equation for the polarization:

2P 9P ,
W + UW = eowa, (25)

and the equation for the magnetization:

M oM

2 2

+y—+oyM = poFoyH. 2.6

912 4 ot 0 Ho 0 (2.6)

To facility the mathematical study of the model, by introducing the induced electric cur-
rent J = % and magnetic current K = %, we can write the time domain governing equa-

tions for the plasma-Lorentz model as following:

oE
€0E=VXH—J, (27)
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oH
uo— =—Vx E - K, (2.8)
ot
1 K 1
——+ Y _Kk+—M=H, (2.9)
wows F 0t wows F o
1 oM 1
———=—K, (2.10)
ok 9t poF
1 0
J e J=E. (2.11)

2 2
€0y, at €0,

To complete the model problem (2.7)—(2.11), we assume that the boundary of £2 is per-
fect conducting so that

nxE=0 onods2, (2.12)

where n is the unit outward normal to 9 2. Furthermore, we assume that the initial conditions
are

E(x,0) = Ey(x), H(x,0)=H((x), (2.13)
K(x,0) = K((x), M(x,0)=My(x), J(x,0)=Jo(x), (2.14)

where Ey, Hy, Ko, My and J are some given functions.
First, we have the following stability for our model problem (2.7)—(2.11).

Lemma 2.1 For the solution (E,H, K, M, J) of the model problem (2.7)—-(2.11) with
boundary condition (2.12) and initial conditions (2.13)—(2.14), the following stability holds
true:

2 2 1 2 | 2 1 )
o ED) o+ mo| HO [+ WHK(’)HO +p MO+ @HN)HO

1 1 1
< el Eoll§ + moll Hollg + —= 1Kollg + —= 1Mol + —= 1ol (2.15)
0 0 ,LL()(U%F 0 ,lL()F 0 60&)?7 0

Proof Note that the problem (2.7)—(2.11) can be rewritten as
ad
EAu(t) =(B+COul(), (2.16)

where we denote u(t) = (E, H, K, M, J)', operators

1 1 1
A= diag(eol, pol, ———1I, ——1, —1),
wowg B o F €3

C=diag<0,0,— Y _1.0,— ”21>,
oy F €ow;,
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and
0 Vx 0 0 -1
-Vx 0 -1 0 0
1
B=| O I 0 -7l 0],
0 0 ——I 0 0
Ko
1 0 0 0 0

here I denotes a 3 x 3 identity matrix. Note that the operator B is anti-symmetric.
To prove the stability, multiplying (2.16) by ', then integrating over £2, and using the
property u’'Bu = 0, we obtain

4 u' Au) =u'Cu <0,
dt

integrating which with respect to ¢ leads to the stability (2.15). 0

Remark 2.1 The stability (2.15) can be proved in a direct way. Multiplying (2.7)—-(2.11) by
E,H,K,M, J and integrating over §2, then adding the resultants together, we obtain

1d 2 ) 1 5 1 s | )
S5 [eOIIE(ﬂ lo+ wol HOLg+ KO+ S IMO g+ e ||J(t)’|0]
v 2 Y 2
+ v lT®|,+ T |K®|,=0.

integrating which from O to ¢ leads to (2.15). This is the main reason why we write the last
three governing equations (2.9)—(2.11) in this way.

Now, let us prove the existence for our model problem (2.7)—(2.11).

Lemma 2.2 The problem (2.7)—(2.11) has a unique solution (E, H) in H(curl; 2) &
H (curl; £2).

Proof From ordinary differential equation theory, we can prove that the solutions of (2.5)
and (2.6) with zero initial conditions can be expressed as

€w? [
P(x,t):%/ (1= e ) E(x, s)ds, 2.17)
0

and

M(x,t):quwS/ gt —s)H (x, s)ds, (2.18)
0

respectively. Here the kernel g(¢) = ée’%’ sin(at), where & = \/w} — (52

Using the definition J = % and K = %, then substituting (2.17) and (2.18) into (2.7)

and (2.8), respectively, we can rewrite (2.7) and (2.8) as follows:
d
TAEHKAE =LEFT, (2.19)
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where we denote £ = (E, H), * for the convolution product, F for source terms obtained
by transforming a problem with non-zero initial conditions to a problem with zero initial
conditions, and operators

6()13 03 6113 03 03 V x
A = K = N L = .
( 03 ,U~013>7 ( 03 M113> <—V>< 03 )

2
In the above, I3 is the 3 x 3 unit matrix, 05 is the zero matrix, €; = 60(:” (u(t) —e™"") and

w1 = uoF a)(z) g(t). Here u(t) denotes the unit step function.
Hence our problem (2.19) is a special case of Problem I of [15], whose existence and
uniqueness is guaranteed by Theorem 3.1 of [15]. O

Finally, we can prove that the Gauss’s Law holds true for our model.

Lemma 2.3 Assume that the initial fields are divergence free:
V- (egEy) =0, V- (uoHp) =0, V-Ky=0, V-M,=0, V-Jo=0,
then for any time t > 0, the fields are still divergence free, i.e., we have
V- (e0E®)=0, V-(uoH®))=0, V- -K()=0,
V-M(t)=0, V.-J(@) =0.

Proof Taking the divergence of (2.7), we have

%(v (eE))+V-J=0. (2.20)

Similarly, taking the divergence of (2.11), we have
d 2
5(V-J)+uV~J:eOwPV-E. (2.21)

Substituting (2.20) into (2.21), we have

92 9
ﬁ(v-eoE)+v5(V~eoE)+a)i(V-60E) =0. (2.22)

By the assumed initial conditions and (2.20), we have initial conditions for V - ¢y E:
a
V-eE(0)=0, E(V -eoE)(0)=-V - J(0)=0. (2.23)
It is easy to see that the ordinary differential equation (2.22) with initial conditions (2.23)
only has zero solution, i.e., V - g E(t) = 0.
Other divergence free conditions can be proved similarly. ]
3 Fully-Discrete Schemes

In this section, we will develop two fully-discrete finite element methods for solving (2.7)—
(2.11). We assume that the domain £2 is partitioned by a family of regular tetrahedral (or
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cubic) meshes T" with maximum mesh size /. Depending upon the regularity of the solution
of (2.7)-(2.11), we can use a proper order Raviart-Thomas-Nédélec (RTN) mixed finite
element space ([30, 31]): For any / > 1, on a tetrahedral element, we can choose

U, = {uh € H(div; 2) :uy|x € (p]_l)3 @ pi_1x, VK € Th},
Vi={vieH(curl; 2): v,k € (p_))’ ® S, VK € T"}, Si={pe(p)’, x- p=0},
while on a cubic element we choose
Uy ={u, € Hdiv; 2) :uylx € Qri—11-1 X Qi—11-1 X Qr—14-14, VK € T},
Vi = {v, € H(curl; 2) 1 vylx € Qro14y X Qric1a X Quia—1, VK € T"}.

Here p; denotes the space of homogeneous polynomials of degree k, and Q; ;; denotes
the space of polynomials whose degrees are less than or equal to i, j, k in variables x, y, z,
respectively. To impose the boundary condition (2.12), we denote Vi={veV,:vxn=0
on d£2}. It is easy to see that

VxV,cU,. (3.1)

To carry out the error analysis below, we need to define two operators. The first one is
the standard Lz—projection operator Pj,: For any H € L*(2), P,H € U, satisfies

(PhH—-H,¢¥,)=0, V¢,cU,.

Another one is the standard Nédélec interpolation operator /7, mapped from H (curl; £2) to
V,,. It is known that IT), satisfies the following interpolation error estimate [30, 31]:

IE — MyEllo+ |V x (E = ILE)|, < Ch'||Elljcon,  VE € H'(curl; 2), 1 <1, (3.2)
and P, has the projection error estimate:
IH — PyHllo<Ch'|HI;, YHeH'(2), 0<L. (3.3)

To define a fully discrete scheme, we divide the time interval (0, T) into N uniform
subintervals by points 0 =1y <t; <--- <ty =T, where ty =kt, T = T /N, and denote the
k-th subinterval by I, = [#_, #]. Moreover, we define u* = u(-, kt) for 0 <k < N, and the
notation:

St = (uh —u )1, u' = (ut +u).
3.1 The Crank-Nicolson Scheme

We start with a Crank-Nicolson type scheme for solving (2.7)—(2.11): Fork=1,2,..., N,
find EX e VY, J¥ € V), H}, K}, M} € U}, such that

h>
co(8.EX. ¢,) — (H). V x ;) + (Ty b,) =0, (3.4)
no(sH ¥,) + (V < By 9,) + (K, ¥,) =0, (3.5)

1 ~ Y =k = —k = —k
Mow(z)F((STKz’VIIh)+—M0w(2)F(Kh’V,lh) (Mha'/’lh)=(Hha'/’1h)a (3.6)

L
woF
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k L=
MoF(S M, '/fzh) MOF(Kha'/’zh)a 3.7
~ | —k ~
@(adﬁ,‘ﬁhﬂ@(Jziy¢h)=(Eh,¢h), (3.8)

hold true for any ¢, € V9, ¢, 1/71,1, 1}2,, €Uy, ¢, € V;, and are subject to the initial ap-
proximations

E)(x)=I,Eo(x),  Hj(x)=P,H(x),
K)(x)=P,Ko(x),  Mj(x)=P,Mo(x),  Jyx)=I,Jo(x).

First, we can show that our scheme (3.4)—(3.8) satisfies a discrete stability, which has
exactly the same form as the continuous case proved in Lemma 2.1.

Lemma 3.1 For any k > 1, we have

1
1
P Howq

|4+ o HE LG+ — | "||o+—||M"

lo

<ol E 5 + ol HY 2+—FHM2H§- (39

o+ vl R s

Proof Choosing ¢, = rfi, ¥, = Tﬁ:, 1[71,1 = rf:, 1/}2;, = TM:, q~5h = rjﬁ in (3.4)-(3.8),
respectively, then adding the resultants together, we have

(||EA||0 [ES 15 +5 (AR L W (IIJHO 175715)
TV k2 1 K12 | k=12 4
b T+ g (KL - 1K u(,>+mwg,,r N
1 _
+m(”Mh“0_ | M} 5) =0,
which easily leads to (3.9). a

For the Crank-Nicolson scheme (3.4)—(3.8), we can prove the following optimal error
estimate.

Theorem 3.2 Let (E™, H", K™, M",J") and (E}', H}}, K}', M}, J}) be the analytic
and numerical solutions of (2.7)—(2.11) and (3.4)—(3.8) at time t,,, respectively. Under the
following regularity assumptions:

E, J,€L*(0,T; H (curl; 2)),

Ey Ju H,; KM,V xE,VxH,eL*0,T; L)),
E,J.V x EeL®(0,T; H (curl; 2)),

H.K.MecL®0,T; H(R2)),
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there exists a constant C > 0 independent of the mesh size h and time step t, such that

A

1’111>alx<60”E" — E;’, ”(2) +,U«0||Hn - HZ ”3

1
pwowi F

|&" —

1
(it e I Mgl ) = ),

where | > 1 is the order of the basis functions in spaces U, and V,.

Proof Integrating (2.7)~(2.11) from f#_; to f, then multiplying test functions ¢, €
VO Y ¥ ¥y, €Uy, ¢, € V), and integrating the resultant equations over domain £2,
we obtain

1 1
(8. E*, ¢,) — <; [ H,V x ¢,1) + <;/I J,¢,,> =0, (3.10)
1 1
po(8:H*, ¥,) + <;/I V xE, w,,) + <?f1 K, w,,) =0, (3.11)
k k
1 L % 1 - 1 (1 -
MOCUOF(8 K '/’lh) ow(Z)F(;/;kK"/,Ih>+M0—F<;/1,(M"/,Ih)

1 ~
= <_ H,wlh), (3.12)

T I

1 1 ~
MOF(5 M-, ¢2h :—F< K, 2h>’
1 1 1 ~
0100+ o ([ 16 )= (5 24 G.13)
I’ k

Let us denote
& =ME' ~E,,  ny=PH' -H, &,=PRK-K|
&), = PM* — Mj, =M J" =T
Subtracting (3.10)—(3.13) from (3.4)—(3.8) gives us the error equations

60(5r§;1,(7 ¢h) - (ﬁ’;l, V x ¢h) + (Eiv ¢h)

= (8. (M, E* — E*), ¢,) — (Phﬁ" - % H,V x ¢h)
Ik

(Hh.] ——f J, ¢h>, (3.14)

_ —k
to(8enf, ¥,) + (V x Eﬁ, V) + (Ee¥a)

= no(8:(PH" — HY), ¥,) + <V X <nhf" — 1/ E) ¢h>
T JI
— 1
+ (th - ;/Ikx,m), (3.15)
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—k 1 =k - -
iz OB ¥) o G )+ o B ) = ()

Mo ()F
1 ~ y — 1 ~
= 8. (P,K* — K", PK——/K, )
MowoF( ( h ) w.h) Mow0F< h <), Vi
1 — 1 ~ — 1 -
+—\PM —— | My, | —|PH — = | H. ¥y, ), (3.16)
,LL()F T I T Iy

- ~ 1 =k -
—F(afsgh’ 1[[2}1) - /,L()—F(glh’ '/,2]1)

I ([ kg
= MOF(‘Sf(PhM M), 'lfzh) M0F<PhK = A K,¢2h>, 3.17)
- Voo o~ o~
—5(6zc£,¢h)+@(éﬁ,m)—(si,m)
1
:eowz (Sr(nh,]k Jk) ¢h)+€0—w(ﬂhJ ——/ J, ¢h)
p p

- (nhi" - l/ E,(Zh). (3.18)
T I

. —k % =+ - * - —k .
Choosing ¢, = 1&,, ¥, = T, ¥y, = 1€, Yoy = T&,,, @), = TC,, in (3.14)=(3.18), re-
spectively, then adding the resultants together and using the projection property, we have

Flo = le o) + P e 1

€ _ M _
S (k15 = &1 + 5 (kg — '”3)+2
1 - 12 ~r_ 112 ~h_1112
+m(||€fh||o—||éf‘hl”o)+ H$1h||o (H%‘zh”o 16 1)

:reo(Sr(HhEk_Ek)ygi)_'r(ﬁk_l H,Vx§:>+1<17hJ ——/ J. 5)
Iy T I

T

= 1 —k — 1 —k
+t|\Vx|ILE —= | E), 7, )+7(K ——- | K,7,
T I T I
(T ) e (7 [ )
+7 K —— | K¢ +r—(M —- | M,§,
M0w3F< T J " o F T Jy ”
(Hk 1/Hg’<> 1 (Kk 1/ K §k>
_.E - - b h _.E_ - - 9
7 ), 1 woF 7 ), 2h

1 —k
8: (M J* = JY), mJ -= /
+160“’%(T( W04 60‘%( ]J T ijgh
— 1 —k
—t\IL,E —— | E, ¢, | (3.19)
T I

The rest proof is standard (see our early work [24]) by estimating each term on the right
hand side of (3.19), and using the triangle inequality and the estimates (3.2)—(3.3). O
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3.2 The Leap-Frog Scheme

We construct a leap-frog type scheme for solving (2.7)—(2.11): For k =1,2, ..., find EZ €

K+ K+ k+3
VO, 1, eV, H, > K\, M, ? €U, such that

Ek_Ek 1 L il
60(%,¢11)—(Hh Z,Vx¢h)+(Jh 2,¢h):0, (3.20)
k+4 k—4
H, >—H, *
o I ) 4 (7% L) + (KL ) =0 G2
1 (Ki-K;™" - y (Ki+Ky' - 1, gl -
3 3 - M 25
Mow(z)F< . Vi +,u0 OIF > Yo )+ oF( w V)
—1 o~
=(H, > ¥u) (3.22)
1 _1
oMM 1
i fﬂ/’zh F( h»'/fzh)
K+ k=1 k+4
1 Jh 2 _‘]h 2 2+Jh it k 7
=(E}, , 3.23
60&)%]( . eow2 ;O (E} &) (3.23)

hold true for any ¢, € V9, ¢, 17/1;1, 1/}2;, €Uy, ¢, €V, and are subject to the initial ap-
proximations

Ej)(x) = [T, Eq(x),

1 . (3.24)
2 —1
H(x)=P, [Ho(x) — o (V x Eo(x) + Ko(x))],

K)) = PKo(x),  ME(x)=P, [Mo(x> + %Kom],
1 (3.25)
Jiw =1, [Jo<x) + 3 (€0 Eol) - UJo(x))]-

First, let us prove the following discrete stability for the leap-frog scheme (3.20)—(3.23).

Lemma 3.3 Denote ¢, = Jﬁ for the speed of light in vacuum, and a constant c;,, > 0 in
the standard inverse estimate

IV x ullo < cinh ™ lunllo,  Vuy € Vi (3.26)

Under the time step constraint

(3.27)

. { 1 1 1 h }
7 =min

26()0\/?’ 2_(1)0’ E’ zcucinv
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for any k > 1 we have

k k 1 1 k
S L e e ol LT Fepmec LA
it 1
§C|:€0HE2”(2)+M0HH§ Hg"‘m”"ﬁ Hi_"ﬂ ngHK2|’o+—HMh “0] (3.28)
P

where C > 1 is independent of h and t.

1 _1 ~
Proof Choosing ¢, = T(EX + EX™)) ¢, = t(H, > + H, ). 9, = t(K\ + K<),
~ 1 1 1 _1
Vo =1(M, 2+ M, 2), @y =1(J, 2+, %) in (3.20)~(3.23), respectively, then adding
the resultants together, we have

1

ol
EC()p

! 2 -12 1 ket ) k=12
o (R = K0+ o (157 15 = 13 )

_ k+4 k-4 k+ 1 k—1
(I3 lo = 125" o)+ mo(lm, [ = [, [0 + = (107 1= 19372 10)

k=% k k-1 kopkts k=3
<t(H, >, Vx(E,+E ") —t(VxEj,H, > +H,")

_1 1 _1 1
(B B ) (B IS ) — (K B LY

k=% T k-3

) 5 _1
(K = K K ()
=e[(, 1 B = (V< B o[(B 0 - (B )

_1 1 _1
(R = (BT K]+ (KM - (k)]

(3.29)

woF

Summing up (3.29) for k from 1 to n, we obtain

n n 1
coll 12— 1B + mollB; 2 — 11 2) + || BR300

1 . 2 1 ntd 2 12
e L L R M—F<||Mh -
% 0 "+% n n "+% 0 %
<t[(H;.Vx E;) = (H, .V x E})|+[(E}. J, *) — (E}. J};)]
1 n+l n L
+e[(H; K) - (H, " K})]+ MOF[(KZ,M Y (KU MP)]. (330)
Using the inverse estimate (3.26) and the basic arithmetic-geometric mean inequality
lab| < 8a® + %bz,

we have
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T(HZ+%,V x Ej) = (MH:+%, tcy/€V x Ef)

(chcinvh_l)z nll2
as clEl

< sy |1+

Similarly, we have

n 1 n l
55 s i)

2
an)p

(twp)’

o gy,

<

€0w2 ” Jh+2 ||0

n F
(Hh+2 Kn) < ,—H +2, wa'\/— KZ)
\ /'LOQ)()F

(taoVF)? 1 Tk
453 powoF 10

< supo B[+

and

Ky M) = (K
qu ! powd F " uoF "

1 (ran)’

n+2
eyl LA TRl AR

<84-

Substituting the above inequalities into (3.30), we have

(tepcimh™?  (tw,)? ) .
<1_ 48, - 48[; )EOHEhH(Z)"'(l_52—53)/,L0”Hh+2”§

+(1=8)- ZHJ"“HO

(T(,UO\/F) 1 n|2 (TwO)Z n+2
+<1_ _84> uow2F||KhH°+<l_ 484 >“ P

455

S ea——
a)f, h 0 0(1)(2) F

012 % 2 012 % 2
= <ol Eqflg + mol H [y + Kh||o+M—FHMh lo

+T(Hf,v x Ej) —t(EY, Jf) +r(Hf, K)) - z(Kg,M,,%). (3.31)

Under the choice §; =, =83 =34 = 4, and

1 1 1 h }

T=mn|——=, ~—, >, >,
{2(00\/1‘7 2C‘)O 26‘)17 chcim}

we can easily see that the coefficients on the left hand side of (3.31) are all larger than

1
2
which easily leads to the stability (3.28). O
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For the leap-frog scheme (3.20)—(3.23), we can prove the following optimal error esti-
mate.

Theorem 3.4 Let (E™, H" 2, K™ M™*2, J"*%) and (E", HZ“%, K", M”‘+2 J'”+2)
be the analytic and numerical solutions of (2.7)—(2.11) and (3.20)—(3.23), respectlvely Un-
der the same regularity assumptions as Theorem 3.2, there exists a constant C > 0 indepen-
dent of h and t such that

l =
sl =l et

n nl|2 1 n+i n+% 2 21 4
= K b ) < o )

where | > 1 is the order of the basis functions in spaces Uj, and V.

Proof Integrating (2.7) and (2.9) from #;,_; to #, (2.8), (2.10)—(2.11) from tk_% to tk+% , then

multiplying proper test functions ¢, € V9, ¥, Vs 1}2,, €Uy, ¢, € V;, and integrating the
resultants over domain §2, we obtain

k k—1
€0<E TE ) ( / H, Vx¢h> <—/ J, (bh) (3.32)
H: — g2 1 [ked 1 [ked
M0<7,¢h>+<—f VxE,l/fh>+(—/ K,l//h):O, (3.33)
T T T
1 Kk_Kk—l N
Mow(Z)F( - Jﬁlh) 102 F ( / K, 'ﬁlh)"‘—( / M, 'lflh)
1 [% ~
:<—/ Hv'ﬁlh)v (3.34)
T Jiy

1 (M MR 11 ) -
-/ =\ > 102/1 =—F\ = Ka ¢2/1 ’
o F T moF\tJ;

k—

1 JkJr% - Jki% ~ v L) - [l -
3 O |+ — (= J.¢, == E.¢,). (339
€owy, T €, \T J; ),

k— k—

I\J
N

(¥l

[N
[

Let us denote
& =ME' ~E,,  ny=pPH' -H, &,=PRK-K|
Eo=PM — M, = - Jk

Subtracting (3.32)—(3.35) from (3.20)—(3.23) gives us the error equations:

€o(8:£5. &) — (nz_% VX ¢,)+ (C:_%,fﬁh) = €(8: (M E* — E*), ¢,)

L[ L[
- (PhH"*% - —/ H,V x ¢h> + (th"*% = —/ J,¢h>, (3.36)
T T—1 T T—1
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M0(5r772+%a '/’h) + (V X E/]:v wh) + (élkh’ wh)

= o (8. (PthJr% - HH%)v V)

1 [hel 1 [l
+ (v x (HhEk - ;/”2 E) Vlh) + (Pth - ;/”2 K, ¢h>, (3.37)
o L1
k=3 2

k

Tk_% ~ 1 Oy _1
g OB V) e G )+ B ) = O )

1 ~ il 1 [ -
= (5 (PK* — KY) ) + — (PhK“——/ Kn/nh)
-1

uoa)OF Howj 2F T

1 1 [ - | 1 [%& -
+ —(Pth —— M, 1/;1h> - (PhH"" - - H, 1/;1h>, (3.38)

OF T t—1 T Ik—1
~k+l o~ 1 ~ ~
7(&52:2 ’ 'l’zh) - M—F(glkh’ '/’211)

1 il el s 1 e 1 tk+% ~
= ——(8:(PaM*T2 — M), 9,,) — —( P.K - K. v, ), (339
Ik_l

woF woF
1 1 ~
€ow? (81§:+2’¢") (gh ¢h) (&4 4) = 2 (51(17th+% —J7),¢,)
o%p €} 0w,
to .
s (HJ" _ l/m J. ¢,,> (HhE" - lf”z E,d),,). (3.40)
€w? ), o)
2

. =k % -7 - = - —k
Choosing ¢, =&, *, ¥, = T}, ¥y, = 76, g Vo =&, ¢y, = 7, In (3.36)~(3.40),
respectively, then adding the resultants together and using the projection property of P, we
have

€ _ % k+1 k=1 _
S (105 = 110 + Z U 15 = I~ 116) + 5 (i lg = 1~ 15)

2¢q w2

! £ k+3 zk—3
+m(|}$fh||o &515) + 2MF(IISJ o= 1% 15)

Tk

5“0(5r(17hEk—Ek)f:f%)—f<Hk p_ 1 H,VX§:7%>

Ty
P 1 [ k-1
+l'<17h.] 77——/ J. &, 2)
T Jny
P fes L X ¢ 1 fes L X
+r(VX<HhE ——/ 2E>,ﬁh>+T<K ——/ 2K,m>
T tk_l T tk_l
2 2

y =1 1 [k k=14 1 . 1 [* —k—3
+7 (K P —— K.§,, >+r—(M 2——/ Mg, )
:U“OC‘)OF Ty of T Jny
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1 [* k-3 T 1 [ '+1 =k
_I(Hk_%__/ H’$1h2>——<Kk__/’<+2 K,Ezh)
T Ji woF TJ

T 1 1 —k
8. (I, J*H2 — JF+2),
+eow§,(’( W= T52), )
— | T 1 (4l
+r— (mJ"——/k+2 J,c,ﬁ) —r(HhEk——/”z E,;Z). (3.41)
€w? ), ),

k- k-

ol
ol

The rest proof follows similarly to our early work [23] by estimating each term on the
right hand side of (3.41), and using the triangle inequality and the estimates (3.2)—(3.3).

Remark 3.1 We want to remark that the Crank-Nicolson scheme (3.4)—(3.8) has an non-
symmetric linear system of as many as 15 unknown functions (five unknown 3D variables),
which results a very large-scale system even for linear edge elements. Hence direct solving
the coupled system is quite challenging. In this aspect the leap-frog scheme (3.20)-(3.23)
is more practical, since each time we only need solve one unknown variable. Of course, we
have the CFL time step constraint. More efficient algorithms will be explorered in the future.

4 Numerical Results

In this section, we implemented the leap-frog scheme (3.20)—(3.23) for the lowest-order
Raviart-Thomas-Nedelec cubic element (i.e., [ = 1 in U} and V,) to confirm our theoretical
analysis and effectiveness of our algorithm. For simplicity, we assume that 2 is the unit
cube [0, 117 and the time interval is I = [0, 1].

To rigorously check the convergence rate, we construct an analytical solution of (2.7)-
(2.11) with all physical parameters in (2.7)—(2.11) being one except that y = w% =2,F= %
and with a source term f(x,t) and g(x, t) added to the right hand sides of (2.7) and (2.8),
respectively. More specifically, the analytical solution is as follows:

E, Acosmxsinwysinmz
E(x,t)=| E, | =| Bsinnxcosnysinmz | e’ cost,
E, Csinmxsinmwycosmz

H, 7(C — B)sinwxcosmycosmz
Hx,t)y=| H, | =| n(A—C)cosmxsinwycosmz e~ 'cost,
H, w(B— A)cosmxcosmysinmz

K(x,t)=| K,

7 (C — B)SInTxCOSTyCOSTTZ 1 1 1
= | n(A—-C)cosmxsinmycosmz | e | —=tsint + = sint + =t cost |,
. 2 2 2
(B — A)cosmxcosmysinmz

M, 7 (C — B)sinmxcosmycosmz
Mx,t)y=| M, | =| 7(A—-C)cosmxsinmrycosmz e . —tsint,
M, (B — A)cosmxcosmysinmz
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Jx Acosmxsinmysinmz
Jx,t)=|J, | =| Bsinwrxcosmysinmz e 'sint,
J; Csinmxsinwycosmz
where constants A = 1, B =2, C = —3. It is easy to check that our constructed solutions

satisfy the boundary conditions
nxE=0 onas2,
and the Gauss’s Law
V-E(x,t)=0, V-H(x,t)=0, V(x,t)e x][0,1].
Furthermore, the source terms f and g are

3E (—A —3An?)cosmxsinmysinmz
flx,0)= Frie VxH+J=| (=B —-3Br?)sinmxcosmysinmz | e’ cost,
! (—C —3Cr?)sinmxsinwycosmz

and

oH
g(x,z):W—FVxE—I—K

7(C — B)sinmxcosmycosmz 1 1 1
=| n(A—-C)cosmxsinwrycosmz | e”"| —=tsint — =sint + =t cost |.
. 2 2 2
(B — A)cosmxcosmysinmz

In practical implementation of (3.20)—(3.23) with added source terms f, g and our as-
sumed parameter values, the scheme can be implemented as follows: at each time step, we
first solve EX and K% (can be done in parallel) from

1 .
2vVX¢h)_(J]}\z
_r
1+t

[SE

(EX ¢,) = (EX' by) + < [(H) L)+ (F2 )] @D
- 1— ~
(K ) = —— (K5 9) +

=1 (B, 2 ) —2(M, 2 9)]. @2)

. MLkl okl .
respectively; then solve H, >, M, *, J, ? (can be done in parallel) from

(S y) = (H ) +o[(g50,) - (V x BS9,) — (K5 w,)]. (43)

Lo _1 . -
(M, ) = (M}, 7 ) + 1 (K ). (44)
k+1 ~ 1-Z% [ T ~
(57 6,) = 1+§(Jh z,¢h)+@(Eﬁ,¢h), (4.5)
respectively.
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Table 2 Total degrees of I
freedom (DOFs) on uniform Mesh Total edge DOFs  Total face DOFs  CPU (in seconds)
cubic meshes and CPU time
h=1/4 108 144 278.10
h=1/8 1176 1344 418.14
h=1/16 10800 11520 1456.92
h=1/32 92256 95232 10044.55
h=1/64 762048 774144 83435.97

X
A

}A
W
KD
N
X

74
Al
X
N
¥
o
}'
s

INETN
N N
2

i

X

e
INEFNLTNLTNLT

L7

e/
A
VA

X
A

AN

Vi

2

Y
L/
LA
A
Ty
o

A

N7
A
S/
K
PV
A,

e

N
AR
=7

Tx >

L7

N/

INET

Y
INETNGFNLT

Fig. 1 Electric fields at 7 = 1 obtained on tetrahedral meshes: on 4 x 4 x 4 mesh (left) and 8 x 8 x 8 mesh
(right)

We tested the algorithm (4.1)-(4.5) on both uniformly refined cubic and tetrahedral
meshes with various time step size t. Exemplary convergence results obtained with 7 =
0.001 are presented in Tables 1 and 3 for cubic and tetrahedral meshes, respectively. The
results in both tables clearly show O (%) convergence in the L, norm as our theoretical anal-
ysis proved in Theorem 3.4. The corresponding total degrees of freedom and CPU time are
shown in Tables 2 and 4, from which we can see that our algorithm is quite efficient. Note
that all our tests are carried out under MATLAB 7.0 running on a Dell desktop with 2 GB
memory and 2.93 GHz CPU.

In Fig. 1 we presented the electric fields obtained with t = 0.001 on two different tetra-
hedral meshes. Since such 3D figures are not easy to see clearly, then we presented some
slice cuts in Figs. 2 and 3 on the plane z = 0.4, i.e., we plotted the electric field (E,, E,)
and (H,, Hy) onz=0.4.

5 Concluding Remarks

In this paper, we carried out the first mathematical study of another popular metamaterial
model (we named it as the plasma-Lorentz model) used by physicists and engineers. Here
we discussed the well-posedness of this model, developed two fully-discrete finite element
methods for solving it, and proved the corresponding stability analysis and error estimates.
Numerical results supporting our analysis are presented. More recently developed numerical
schemes such as hp FEMs [10, 43] and DG methods [18], and practical applications of this
model will be investigated in our future work.
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Table 4 Total degrees of

freedom (DOFs) on uniform Mesh Total edge DOFs  Total face DOFs  CPU (in seconds)
tetrahedral meshes and CPU time
h=1/4 316 672 354.16
h=1/8 3032 5760 1062.75
h=1/16 26416 47616 7820.99
h=1/32 220256 387072 71453.09
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Fig. 2 Slice cuts at T = 1 obtained on cubic meshes: electric field (Ex, Ey) on 8 x 8 mesh (top left) and
16 x 16 mesh (top right); magnetic field (Hy, Hy) on 8 x 8 mesh (bottom left) and 16 x 16 mesh (bottom
right)
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