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1. Introduction

The metamaterials often refer to some artificially constructed
electromagnetic materials whose refraction index is negative. Such
negative refraction index metamaterials were first successfully
demonstrated in 2001 [31]. Due to many potential interesting
applications in various fields such as design of invisibility cloak,
sub-wavelength imaging, antenna and radar technolgy, the study
of metamaterials has attracted a great attention of scientists and
engineers since 2000. Numerical simulation plays a very important
role in the study of metamaterial and its applications due to its cost
effectiveness compared to the physical experiments. However,
simulations are mostly restricted to either the classic finite-
difference time-domain (FDTD) method [12] or commercial
packages such as COMSOL Multiphysics Finite Element Analysis
Software. It is known that the FDTD method has a big disadvantage
for solving problems with complex geometries. Hence it would be
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quite interesting and useful to develop efficient and robust finite
element methods for modeling metamaterials.

The discontinuous Galerkin (DG) method, originally introduced
by Reed and Hill back in 1973, has become one of the most popular
methods used for solving various differential equations (e.g.,
[1,2,5,7,17,18,20,21,27,29,32,35]). The DG method has a great
flexibility in mesh construction by allowing conforming or non-
conforming meshes and using different orders of basis functions
in different elements. In the past decade, there has been a growing
interest in developing DG methods for solving Maxwell’s equations
in free space [3,6,8-11,14,16,28,30]. Very recently, there were
some DG investigations [23,26,19,33] carried out for Maxwell’s
equations in dispersive media, whose permittivity depends on
the wave frequency. However, to our best knowledge, the study
of DG methods for solving Maxwell’s equations in metamaterials
is quite limited.

This paper continues our recent initial effort [22] on developing
DG methods for solving Maxwell’s equations in metamaterials. In
[22], we extended the DG method developed by Hesthaven and
Warburton [14,15] for Maxwell’s equations in free space to
metamaterials. Preliminary numerical results were performed
and good convergence rates were observed, but without any theo-
retical analysis. Here we extend the framework of [14,15] to devel-
op a leap-frog type DG method for solving the time-domain
Maxwell’s equations in metamaterials. Detailed stability results
and error estimates for the scheme are carried out, and numerical
results consistent with the theoretical analysis are provided.

The rest of the paper is organized as follows. In Section 2, we
present our leap-frog DG method, and prove the stability of the


http://dx.doi.org/10.1016/j.cma.2012.02.016
mailto:jichun@unlv.nevada.edu
http://dx.doi.org/10.1016/j.cma.2012.02.016
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

44 J. Li et al./Comput. Methods Appl. Mech. Engrg. 223-224 (2012) 43-54

scheme. Then in Section 3, we prove the optimal error estimate for
the scheme. Numerical results supporting the analysis are pre-
sented in Section 4. Finally, we conclude the paper in Section 5.

2. The leap-frog DG method
2.1. The governing equations
The governing equations for modeling wave propagation in

metamaterials described by the Drude model has been derived in
our early work [25]:

an—f:VXH—], in @ (0,T), 1)
uo%:foE—K, in Q x (0,T), 2)
glt + T = €%E, inQx(0,T), (3)
%LE+F K = py? H, inQx(0,T), (4)

where E(x,t) and H(x,t) are the electric and magnetic fields, J(x,t)
and K(x,t) are the induced electric and magnetic currents, €, and
Lo are the permittivity and permeability in free space, respectively,
wpe and wpm, are the electric and magnetic plasma frequencies,
respectively, I'. and I, are the electric and magnetic damping fre-
quencies, respectively. For simplicity, we assume that Q is a
bounded polyhedal domain of R® (note that our analysis below
holds true for R? also), and the system (1)-(4) is supplemented with
the perfect conducting boundary condition (PEC):

nxE=0 on?dQ, (5)
and initial conditions

E(x,0) = Eo(x), H(x,0) = Hy(x),

Jx,0) =Jo(x), K(x,0) =Ko(x), (6)

where n denotes the unit outward normal to 9€2, and Eo, Ho, Jo, Ko
are some given functions.

2.2. Notation and the DG scheme

We assume that the bounded Lipschitz polyhedral domain € is
partitioned into disjoint tetrahedral elements T; such that Q = U;T;.
For each internal face ay, = T; " Ty, we denote ny, the unit normal,
oriented from T; towards T;. We denote h the maximum mesh size,
v; the set of indices of the neighboring elements of the T;, Fi' the
union of internal faces. Furthermore, we denote the jump terms

[Ei}:E?*Ef, [Hl} :HiJeriiv

where superscripts ‘+’ and ‘~’ refer to field values from the neighbor
element and the local element itself, respectively.
We introduce the discontinuous finite element space:

Vi ={wn € *(Q)’ : vy, € (P(Ty))’ for any T; € Q}, (7)

i.e., the basis function is a discontinous polynomial of degree k over
each element.

To define a fully discrete scheme, we divide the time interval
(0,T) into M uniform subintervals by points O =tg<t; <--- <ty =T,
where t, =kt and 7 is the time step size. Moreover, we define
E} = E(-,ty) as the approximate field on element T;, and Ej, as the
global approximate field, i.e., Ep|;, = E;. Similar notation holds for
other fields Hp, J, and K. Below we also use the average notation

BV = (BB 2, B = (B HY) 2

With the above preparation, now we can construct our leap-frog DG
method. Multiplying (1)-(4) by test functions u;v;¢;; respec-

tively, integrating the resultants over each element T;, and choosing
the upwind flux for the first two equations, we obtain the folloyvmg
leap-frog DG scheme: given initial approximations E?, K?, H2, J2, for

n=0,1,..., find E', K, HI"3, J"** € v, such that

E'' —E! nd [ g
€g———-u;= [ u;-VxH, ] U+ u;
1
T; T T, kex,

i i

%MXQmﬂfwxm%®7 ®)

3 1
H' _H'"
/'uolil.yi:_/yi.vxE?H_/K?H.y]
T T T, T,

i i i

-2

kev; Jaj

x (mex [HP) + [E171]), (9)

] _ n+2 ]n+2 +]7‘l+2 -
Epre/ i ng / ¢i:/TiEi '¢i~,
(10)

. n+l n (Hl n . 1
12 / K; Kl‘%+ sz /K, +K"lﬁ,‘:/H?+;"//i-
#owpm T; T :uowpm JT; 2 Ti
(11)
For a metallic boundary face ay, the boundary condition
n, x E|,, = 0 is implemented as

1
vi ‘inlk

n+2

n

Eil,, = —Eil,, (12)
1 1
H,?| =H" (13)

ik

ik

Remark 2.1. We want to remark that both (8) and (9) are 1mp11c1t
since the upwind fluxes involve unknowns E"+1 and H"+2 on the
right hand sides of (8) and (9), respectively. Hence our leap frog DG
scheme is less efficient than a standard Runge-Kutta DG (RKDG)
[14,15]. However, a complete stability and error analysis for a fully
explicit RKDG method (even for Maxwell’s equations in vacuum)
is still open. Development of more efficient fully-discrete DG
schemes and theoretical analysis are needed.

For our scheme (8)-(11), we can prove the following condi-
tional stability.

Theorem 2.1. Denote C, = 1/,/€ i, for the wave propagation speed
in free space. Under the CFL condition

T < min L h h L L (14)
= 8’502 C, 5CinCo’ 20pm’ 20pe [’

mv

where Cip, > 0 is the constant appearing in the standard inverse esti-
mates [4]:

a1 _
Cinth.Z”u”o,T.a ‘ull.T- < Cinvhr”‘””o,r-a Vu e Vy, (15)

|u|0,ar- <

here and below |ul, ;. and ||u||, s, denote the semi-norm and norm for a
function u in the Sobolev space H¥(T;), respectively, then the scheme
(8)-(11) is stable and has the following stability:

n+} 2
h +o— 2
00 U2

(2)‘9 + HKEHO,Q>’

1
+ 2
0.Q 6060pe

(e, + el o

ol N2 + o [H1

1Kz
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where the constant C>0 depends on the physical parameters
€0, 0, WpesWpm, e and Iy, but is independent of the time step size T
and mesh size h.

Proof. Let us denote EGY] = EGY}, + EGY},, where

EGY?, :% / EOE?~E§‘+— / pH ™ H (16)
n n+2 ﬂ+2 n n
EGY), — 2/ wzl J, 2/ i me K. (17)

Choosing u; = TE,. 3 n (8) and v; = tH"""
resultants together, we have

n (9), then adding the

EGY}'!

n+3 n+1
— EGY!, — 1 / #

T;

VxEM -1 / H"Y
T;

~K,T‘“ -3 T

kev; aj
E +E"'
i [n+1] er A
el ) o f S
% Hn+2 . /JnJr2 En+2 + Z / E - ny,
kev; 2

x ([ - mix [E]). (18)
Using the identity
/ H' V< B = / VxH" M / E'(H™ xny)

T; T; oT;

~E =Ec—E, [H]=H/ —H; =

HEHH] -y,

and the jump definition [E;] = E;
H, — H; in (18), we have

EGY™ = EGY?, 7% / H' .V < B 7% / E(H xm)
T; oT;

Hl[n+1] My X E;:H

_ ‘L'/ Hl[n+1] -K?H _ EE

kev; Qi

Hn+1 Ny, ><En+l _ / HnH Ny
’(El, 2 / kev; 2

x (e x [HP]) + / E - VxH" 1 / JEm

/ En+2 Ny X Hn+2 _ / En+2 Ny X Hn+2
kev, 2 kev; 2

3 [ e )
kev;

EH+1 _ & EnH (H

n+l )
SO X I
2 1

1

= EGY}, 75/T‘H?+2 V x

B ‘E/ Hl[n+1] K- 4/ Hn+2 ny x B!
Qjk

kev;

>3 / H' ny x EM 4 > / H' ny x B

ke», kev;

n+1]
H™" oy

4/ H+2 n,kxE"” Zf

kev; Qi

2/5” va”*Lr/]"*z E"

/ EM' . ny x H”*z + z E' -ny x H; "
’(E\

kev;

EMT. n,><H"+27 /E nka*z
4/ 1K k6‘4 1,

kev; i

| 2/ MYy (m < [E1Y]), (19)
REV;

k €V;

X <nik X {Him—l

Using the identity

2 EM. (H,"“xnl)f 3 / H'™ oy < B - 5 / E!
aT; kev; keh k

a;

~l'lik><Hi 3

in (19), and moving the 6th term to the last and the 12th term to the
second last, we obtain

EGY}y" = EGY}, — - / H' VB 1 / H

k 4/ Hn+2 nlkXEn+l+Z4/ Hn+2 ny,
€v;

kev;

y E?*l B k%‘; : / Hl[n+1] Ny X (nik X [Hl[nﬂ]]) +%

1 1
X/E{‘-Vxﬂ?*z—r/]?*z. /E”
T; T; kev

n+} T n N+
'nikXszszZ/Ei'nikXH,'z Z
€v;

Qi kex,

/ En+1
ke‘ 4 Qg

n,ka”*z— 4 / H’”z ny x E}L.

kev;

/ E - My X n,k X |:E£

(20)

Choosing ¢; = £ (1”*2 +1”*2) in (10) and y; = £ (K;““ H(?) in (11),
and adding the resultants, we obtain

.t 1 1 T [ n2 T
St et

pe

/EnH -’1n+27 Fm‘g /KE’H%] I(["+z]+,
T; :uowpm 2

HH K 4 / H' K. (21)
JT;

EGY}," = EGY}, —

T;

T;

Adding (20) to (21), then expanding H""" E; ™3 and simplifying the
results, we have

EGY!"' = EGY}"! + EGY},

,EGY,"—— / H' V< B -

3 [HK

k 4/ H+2 nlkXEn+1+Z4/ H;H%‘nik
€v;

kev;
1 1 T
XE?+1 — ZE/ H,[H]'nikx (nikx |:I'Il[n+ ]:|) +§
kev; ag,
T
></E" V x H”*z——/]”*z E;’+Z—/ E'
Ti kev,-4 q
Ny X H"*z - / E' - ny x H“*z - z
kE\, kev,
g 1
X / E£n+2] - My X (n,‘k X [ i 4/ En+1
ajie kev, Ay
I, ‘C
g x H z E”+1 ny x H”*z L
ke\, €ow,

‘L'
1n+l n+l / En+1 :Hz _ m
/ "2 Ho

x / K"k L / H™ K.
Ti 1 1 2 T’» 1

(22)



46 J. Li et al. / Comput. Methods Appl. Mech. Engrg. 223-224 (2012) 43-54

Substituting the identity
T 3 T 3 T 3
R L AR SRRt N
2 T; 2 T; kev; 2 [
-y X E:-Hl
into (22), we can rewrite (22) as

EGY?H—F%/E?H 'VXH:»H% / En+1 nszH 2
T;

ke\, Qj

+%/H?+%-K{’“7§ En+1 ]n+2

—EGY!+ 2/5" VXH”*Z 4/ E! n,ka’”z
kev;

oy fEag e o [y
2 /. 2 Jg, kevi 4 Jay
kz . Hl[nﬂ] Ny x (nik « {Hl[nﬂ]])
€V,
7: " il il
= / E?HZ] My X (n,»k X [EI[YHZ]])
Qjk
> / EM'ny x H'

('"*2 K (23)

n+l
/ E'ny xH'? -
7

ke v ka,

/ EM1. n,ka"*z
ka,4

Tt /][n+1] g
an)ge T; 1

Let us denote

+5 /E?.VXH?*Z
JT; ka1

/Hn+2 Kn——/]n+2'E?.

Then we can rewrite (23) as

F1M' = F17 — / H' ny < B 4 / E'-ny
kev; 4 kev
y Hr;+7 B / H[n+1] Ny x (nzk % [H[HH]])
kev

55 8 (o a4 55

/ EM'. n,kxﬂ”*z / E'. n,ka”*z

[n+1] n+1]
6060 / ]

Now summing up (24) over all elements T; of €2, and noting that all
terms of

T [ 1 T 1
%2/ E?H'“ikXH:ﬂ*ZZ/. E;"-ny x H{?

kev;

kev;

F1" = EGY"

4/ E'- n”‘XH+Z+§

kev

kM (24

vanish on both the internal faces FI* and physical boundary 82, we
obtain

n+3
Hi 2.y X E;Jr]
_kEFint
ik €F

F1g" =F1, —ynl 2

T; kev;

T 1 T
i [ B HT - Y i/ (mc < [H41])
T; kev, aeF feFint

fi

”>Af§?%é(kaFT%D'Omx[&“ﬂ)
i="h

p[nﬂ] ‘2 _ I'nt HI([rH%] 2 )
! 02 Uy 0.2

Summing (25) fromn=0tom—1 (forany m >

. (n,-k x [Hl[n+

I'.t
60

(25)

1), we obtain

H™ . ny x E} + ZZ

A
ayeFt T; kev; 4

F1§ =F1 — 224

T; kev;

X / E My X H Z Z 5 (n,-k X [Hlm])

a,»keF’" =0y, EFm[
-wa@ﬂ);ggg (e < [£7])
(o) S
S (26)
Jj= 0l l 0e’

which leads to

F1§ <F1g, — 224

T; kev;

1 T
H Z'HikXEi"JrZZ;l/ B
ay<Fy

ajFyt T; kev;

- M X Hik

Recall the definition of F1, , we obtain

1 m m
FI, = 56l E"lq +5 i B4

m+}
260&)2 H’

G K5 [ B9

+ 2,3,

Hm% K™

m+ m
2 zghsz

42 E"‘ n; x H'”*2 4+
<F1g - zz ' H;”*f -ny x E!
T; kev; ayeFt
1
+zzz/,5$mxm
T; kev; iweFpt
1

- K°
ogz+2€0a)2 I ”09

P+
2

0.0 2u0w2

= w@mQZ%H

E°. VXHzﬁz E. nleZ H’  K°
2 Q TI aT; 2 Q
ﬁ-ﬁ—izzf CH oy < By
T; kev; ayeFt
1
E)-ny x H. (27)

int
aieFy

+YY g

T; kev;

Simplifying the above equation, we obtain

+

Sl E™ 30+ 5 o[ 1K™ I3

H’er2
260w2

1 p%z

+7
00 263, 0. 2,qu2

2;1 0)2

15,0

< llEl3 -+ 4 o

HT"*z _ - H™ . K™

E".V x H™ 4~ 2/ E" . n; x
2 Qp

2 Qh
m+ m
2 I E

T

EO.VXH%WE/ E.n x H
2 o 47 Jar,

H-L[pE_yyl

Qp Qp T; kev;

+YY g

T; kev;

m+1
H; 2 -ny x Ekm
aj eFint
d

E) - ny x H,(. (28)

ay Ele

By the standard inverse estimates (15), we have
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BTV < '”mq(@wﬂ%g+mWW%z),
2 4\/6_:“‘ ’ 0.0
‘EZ/.E,T"-I‘I,-XHZMZ g\/% (60||Em|og+l‘0HHm+z OQ>
% A H™ K" < w,:lmr (uolnmﬁ zg +u w7 ||K”'OQ>

2 wam %‘GMN&+W%VMM)

/ 2 - My X Ek
T; ke‘14 ae F’"[

Clznu‘[h m M+

gwﬁrGM”w+MWZOJ
By choosing the time step T small enough so that the right hand side
terms can be controlled by the corresponding terms on the left hand
side of (28), we can obtain a stability result. An exemplary choice is

T < min 1 h h 1 1
h 8 5C2yC 5CmvC 2(Upm Za)pe

and substituting all above estimates into (28), we have

1 12
€l E" HH”*z T K"
oll HOQJF:UO 052+600)§e o.sz+,uoa)2 [ Hog
2
< C|IE°|2 ‘H% g K2
[ e T AT A

where the physical parameters €o, flo, Wpe, Wpm, I'e and I'y, have
been absorbed into the generic constant C.

Remark 2.2. The tight estimate of the constant Cj,, in the inverse
inequalities (15) depends on the element shape and the order of
the basis functions. Harari and Hughes [13] explicitly derived the
constant G, for some inverse inequalities. A sharp bound for the
constant in the first inverse inequality of (15) is proved in [34].

3. The error estimate
Before we prove the error estimate, we need some lemmas.

Lemma 3.1 24, Lemma 5.1. Denote 1 =u(.,jt). For any u € H*(0, T;L?
(Q)), we have

t.‘l 3 .1

() -7 [Musds <1/’WWU%m,
T Jt . 4 t 4
1*5 ]*7
.1 b : 3 b

(ii) u’*i——/ u(s)ds g—/ (g (5) 12 ds,
T Jy, 0 4 G4

il

1 . i1 1 (b= 2 3 rhn 2
(iff) |5 @ ) — /t u(s)ds| < / [[uc(s)lo ds.
0

j

] s 1 il ] tf%

j(u’ I+ 2) fE/[‘1 u(s)ds
772

Let P, denote the standard L-projection onto V, or Vg. which is
the subspace of V;, with the boundary condition n x E = 0 imposed.
It is known that the projection error estimate

2

3 44
< [l
0 i

=2

(iv)

k41
1t — Pyullr < CRE™ 9wl ., (29)

holds true for any element T, and u € H*I(T).

Lemma 3.2. For any functions 1 *, 1}, &, &~ € v}, we have

' ; i 1
o (e 8) sg [ (20 dn
(om0

i =
X (nik X {i +

)= pmect ot

-~y [ at nmxrfszz it n,kxg,(

T kev; Jaj T kev; Ja

. €J+gj 1

722 11:'+2 nlk><§)+22/

T; kev; J ay T; kev;

gy gt i3 s 3
X (n“‘X dl 2-1 >+ZZ n{ 2]11 Mg
T; kev; J ay

mt
2

X (n,‘k X ) (30)

Proof. Using the jump definition
i1 il i1 i i .
[’7: 2] :’71sz i {4{] :C}k*d
in the left hand-side (LHS) of (30), we have

LHS:-;/ﬁTbnixqﬁ’%-(é’ﬁé{")—ZZ (4 5) St
d+

T; kev; J ay,

we s [ (@) dmooftery [ S8,
Ti kev; J a 2 T; kev; Jay 2
A
X (n,-k X —é{ + Q{ >
. N .
33 [ (nt e ) oix G- [ () Smax d
T; kev; J ay T; kev; J ay, 2
3 i+ 3
+ZZ/ 11} +11) nik><<nik>< ’ﬂ sz’li )
T; kal
—Z —l‘l,><gJ ") -2 inlkx"fk
i T; kev; a,k
_ZZ Cl'l nzerllk +ZZ ]/,12 _n1k><d(
T; kev; T; kev; Jay
+>2> ’71 nthf’ -2 771 —l‘l,kxgl
T; kev; Ti kev; J aj,

20

51, i1 At
% ‘Mg X | My X d +2g1
T; kev; J ay

+>22 7,/’]' 2+’1)iz‘nik><<nik>< ’112;”12}>

T; kev; J ay,
nlk X Vllk

72/—mxd'f ey [ 4

T; kev; J ay

+>220 ’7]JrZ VII+2 _nlk xd

T; kev; J ay, T kev ag
) b

dpdt At
+ZZ = = - X | Mg X d d
T; kev; J ay 2 2
eyy [ A *’7} nk><<nk>< U ;”f'
Theorem 3.1. Under the assumption that the time step t satisfies a
CFL condition such as:

nlk X fk

Ti kev; J ay
which concludes the proof. O
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T =min 11 L h h (31)
8 ,zwpe ' prm ' 5Cinvcv ’ SC?MC,, '
and the solution of (1)-(4) has the following regularity:
Eu,Hyt J i, Kit,V < Ey, V x Hy € L2(0=T§L2(Q)3)7
E.H € L*(0, T;HS*I(Q)3), Vs >0
we have the following error estimate
max (|[E" — Bl + [IH"* = Hy ¥ + 1" = J o + 1K" — K3,
< C(T2 + Thmin{s.k})
1 1 1 !
+ C(IIE° — ERlly + |IH — Hilg + I —Ji o + 1K° — K3lo)-

where k is the degree of the basis function in the finite element space
(7), and the constant

C = C(€o, Uy, Wpe, Wpm, e, I'm, E,H,J, K)

is independent of both time step T and mesh size h.

Remark 3.1. When the initial approximations are accurate
enough, such as

0 0 1 1 14 0 0
IE” — Eyllo + [I1H> — Hillo + U2 =i llo + 1K™ — Kl
< C(T2 + hmin{s.k})‘
then the error estimate of Theorem 3.1 becomes

1 n+l n+d
ma (B — B} + [ — Hy o + 17— 1) o + K" — K}l

< C(T2 + Thmin{s.k})7

which shows that the error grows linearly in time. Note that this L2
error estimate is sub-optimal in spacial error, since the basis func-
tion is k-th order.

3.1. Proof of Theorem 3.1

Integrating the governing Eqgs. (1) and (4) from ¢;_ to tj, and (2)

and (3) from tiy ot then multiplying the respective resultants

by 4, %, & ¥4 and integrating over , we obtain

EF-F' 1[4
€9 (‘E’uh> — (’C Jo, V x H(S) ds,uh>
1 [
- (E [ 1o ds,uh> -0, (32)
t1

i+ -t ta
MO("’Z H 27,,h>+(l ’%VXE(s)ds,vh)
T T Je
5
1

_ (1 Y E(s)ds, gy |, (34)

_ (}: " His)ds, y/h). (35)

Summing all elements together for (8)-(11) with n=j — 1, we have

<€0w7uh> - (V x H’,';iuh) + (]’ﬁuh)

s [wgme (] a0 s
(,U H’+z - HF_ vh> + (V X E’;l, vh) + (K{I, v,.,>
cpn [odne ] )0

! . I, 4
eowﬁe< ],h ¢h> Qo (flh +f/p. ,th) = <th,¢h>, (38)

1 (K, -K,' In (K, +K," 1
= (H,? :
,uowgm ( T 7‘/"1 +/J06012,m 2 7'/Ih ( h 1¢h>
39)
Denote &, = P,E — E,, i, = P\l — H,,, & = PiJf — [, i, = PulC’ — K,
and the backward operator 6.1 = (i — W~ 1)/t.

Subtracting (36)-(39) from (32)-(35) with the corresponding
flux terms added, and using the identity

(V X ’1’,'17%71111) = <17’;%,V X uh) + ;/OT.' n; x 11117% -u;,

we can obtain the following error equations:

() (dl C‘;l h)(n”;iquh)Z . n,-xq{*%.ui
i Jor;

1 -1 gat

- <[,71 e {%
. . . 5}

— €o(Se(PaE — E').uy) — (v x (PhH’%i ' H(s)ds),uh>
G4

-2

T; kev; J ay,

P.E —F +P,E"' —E"
2

i1 101 G 1
+ (_éjh z+P}JJz_E/tj]](s)ds,uh> —ZZ u,—-jn,-k

T; kev; J ay,
) 7

[Pth*% —HH'] —ny x

(40)

- Vllh: v,,) + (V X g”,;,vh) +%:k§i Vi 2“”‘
i1 i1
5 )
= ity (0 (PuH" - H) ) + (Vx (P,,Ej—:/t YE(s)ds ) vh)
.
+ (1?’,',+Ph1(11 /5 1*17 K(s)ds, vh> +%jk€2w 5 v,»%n,-k
X <ni,< X

1 _gt r. (84484
(i) e (dh = 7¢h>+60m§ ( ; ¢h>

nj, X

(i) 1o (’f
i

[

PH P
2

+ {Phsf—EJ’D, (41)

1 i+ -1 I Ph_IH%JrPh_’F% 1 (%4
60(02 ( (Ph"] _‘IJ ) ¢h> a)pe< 2 P - J(s )d5;¢n>
1 []+Z
+<T./[1 E(s)ds— PyB + & ¢h>-, (42)
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o L (i Y, Ta (i)
(IV) :uow;zzm( K T b 7'//}1) +,uo(1)127m< L 2 2 a'//h

o (0:(PuK’ — K7), )
:“0 pm
Iy (PK + P 1
-= K(s)ds,
'uowlzl ( 2 T b ( ) '//h
1 i i1 i1
+ (%/ H(s)ds — P,H' 2 4 17, 2,./,h>. (43)
ti1

Choosing u, = ‘E(f’}'l + 51[';1)‘ v, = T(,ﬁ% + Vl{f%), o = T(a’:% i a‘lf%) i
Yy = T(W]h + ”flh )

resultants from j = 1 to j = n, dropping those zero terms by the pro-
jection property of P, and using (30) and the following identities:

(V&) - (v < & +8™)
= (V) - (Vi)

and

_<E’,f%7 a+ cf’,f) _ (%,11"1 by 11’},7%> N (éJh el 8;:%)
+ ()

= [(&ha) - @8] = [(on) - (i )]

(40)-(43), respectively, then summing up the

we obtain
Eo(Hc“ZHS— : )+uo(||nh*zuo—|mhu) ewz (ufh*zuo—uchu)
o wz (171 = 1215) + ggnf’*w i+ gm];nrﬂh
+ip ! |0‘Cji1<V>< (Pth sz/ H(s ),é{ﬁé‘,ﬂ)
+r}i (P,Jf% — :j J(s)ds,& + é{ﬂ)

n : G 1 i
+T)° (VX (Phsf}:/ ZE(s)ds), 4, )
j=1 t

t. . B
+1 (Phl(f_l / K (s)ds, ﬁw’h%)
j=1 fj,%
3o (Pt ey )L [Mpeas gt g
eowlzjej 1 tjl Teh h
2
nf1 4
s f/ PE(s)ds - PEL ¥ 2
=i\TJe
2
LIRS l(P,,KJ+PhKJ’1>71 / CK(s)ds, 7, + 77, !
MO pmjl 2 T tj 4

n (1 [ il il N+5 on
+TZ< H(s)ds—P,H'2,if, +17, ]) +‘C(f +Z,Qh)
AN

(&)

- T(’Nﬁ’”ﬁ%) “(’72*’7i> ”(V x iﬁ,ni) —r(v x 627112”%)

T nl T 0 3 Cond
305 [ max & =30 [ mix &= / U
i JoT; i JoT; T kev Qi
£n T 0 % j j—1
Mmooy [ dmeci-yyys (<+e ) mi
T; kev; aj, Jj=1T; kev;

. ) I > J-1_ pi-1
X <{PhH]%—Hjé] — My, X {PhE E +I;hE E })

23wy [ (o)

j=1T; kev;
1

PH W P H W
e X 3

+ [P~ ]) zErr,
(44)
Substituting all estimates of Err; (see Appendix) into (44), and first

choosing = small enough (such as (31)) so that those terms ||&; 2
2
n+2 ~n12
. and ||i7f

lov
)’7}1 K [
9,...,18, can be controlled by the corresponding terms on the
left-hand side of (44), then taking the maximum of the resultant
for n and choosing parameters §; small enough such as

fnh

on the right-hand sides of Err;, i=

. €
01:62:5]9:8_;” 03 =04 = 020 = g;-, (45)
. 1 X 1
05 =97 =1 06—10T€0wge, g = 10T o2, (46)
we obtain
max<€o||fh||o+ﬂo|7’lh+2||o P w2 |IS h+2||0 ™ (UZ 7/ho>
< C(‘[,'4 +T2hmm{5‘k})
O I + ol + o IERIE + 3 ). (47)
hlilo 0 hilo 60601%9 >hll0 'uowlz)m hlilo

By using the triangle inequality, (47), and the estimates (29), we get
1 1
1B — Efl + B — H g+ 17— 7 + 1K K
< C(‘EZ + Thmin{s,k})
1 1 1 1
+ C(IIE ~ Eflly + I — Hilg + 02— Jillo + I1K° — K2lo),
which completes the proof. O

4. Numerical results

In this section, we present some 2D numerical results support-
ing our theoretical analysis. Note that all our analysis holds true for
2D problems by noting the scalar and vector curl operators

curlH =

OH, 0OHx OE  OE\’
x oy VXE‘(@’*@

where we consider the TM, mode, which involves a vector magnetic
field H = (H,,H,) and a scalar electric field E.

Example 1. In the first example, we create an exact solution to
check the optimal order convergence rate. For simplicity, we
assume that Q@ =[0,1]% €= pto =1, ®pe = Wpm = I'm = e = 7, and the
exact solution to (1)-(4) with added right-hand side source terms f
and g is

Hy(x,y,t) = si
Hy(x,y,t) = — cos(mtx) - sin(my)e ™

n(7mx) - cos(my)e ™,

E(x,y,t) = sin(mx) - sin(my)e ™
Ky(x,y,t) = T2t - sin(7x) - cos(my)e ™,
Ky(x,y,t) = —m*t - cos(mx) - sin(my)e ™,

Jxy,t) =

7t sin(7x) - sin(my)e ™
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where the source terms

fx,y,t) = (=37 + w*t)e ™ sin(7x) - sin(1y),
g.(x,y,t) = m?te ™ sin(7x) - cos(my),
g,(x,y,t) = —m?te™ cos(7x) - sin(my),

are added to the right-hand sides of (1) and (2), respectively. In
implementation, we have to add a term [; fr%.y; and a term
Jr. 8™ - v; to the right-hand sides of (8) and (19), respectively.

" We solved the problem using various time step sizes T and
mesh sizes with different orders of basis functions. For a fixed
small time step 7 and smooth solutions, our numerical results
showed that the error estimate is as follows:

1 n+l 1 n+l
max(|E" — Eyllo + |H"" — By ¥ lg + 1" =13 o + K" — K, )
k
< CTh*",

which has one order higher convergence rate than that proved in
Theorem 3.1. Recall that k denotes the order of the basis function.
This phenomenon happened for the upwind flux has been men-
tioned in [15, p. 205]. But the rigorous proof of O(h**!) for the up-
wind flux case is still open.

In Tables 1-3, we present the numerical results obtained using
a fixed T = 107° on uniformly refined triangular meshes. The results
show the convergence rate O(h**!) clearly.

The linear growth of errors with T is also observed in our
numerical tests. In Tables 4 and 5, we presented the numerical
results obtained with the same conditions as used for Tables 1 and
2 except the errors are recorded after 10 time steps. Comparing
Tables 4 and 5 with Tables 1 and 2, we can see that the errors of K,,
Ky,JinTables 1 and 2 are almost 10 times large than those in Tables
4 and 5. The errors for the first three solutions do not change that
much with the number of time steps, this is due to the fact that the
exact solutions (Hy,H,,E) change very little with respect to time
since e~ ™ ~ 1. We like to mention that O(t?) could not be observed
due to the CFL condition 7=0(h), since O(t?+h*") is always
dominated by O(7?).

Example 2. We use this example to demonstrate the effectiveness
of our DG method in solving discontinous media problems. For
simplicity, we consider a case when the permittivity is discontinu-
ous: fo=1, wWpe=wpm=I'm=Ie.=7, €=1 in a subdomain
[0.25,0.75]? and €, = 100 elsewhere. For this example, we use the

Table 1

The L? errors obtained after 100 steps on uniform triangular meshes with 7 =105 and k=1.
Meshes h= [ll h= % Rate h= % Rate h= 317 Rate h= é Rate
Hy 0.0455 0.0118 1.9471 0.0030 1.9758 7.5453e—4 1.9913 1.8875e—4 1.9991
H, 0.0517 0.0128 2.0140 0.0032 2.0000 7.9346e—-4 2.0118 1.9849e—4 1.9991
E 0.0486 0.0123 1.9823 0.0031 1.9883 7.7451e—-4 2.0009 1.9370e—4 1.9995
Ky 4.4914e-5 1.1673e-5 1.9440 2.9630e-6 1.9780 7.4472e-7 1.9923 1.8634e—7 1.9988
K, 5.1037e-5 1.2628e—5 2.0149 3.1376e—-6 2.0089 7.8287e—-7 2.0028 1.9582e—7 1.9992
J 4.8251e-5 1.2236e-5 1.9794 3.0708e—-6 1.9944 7.6850e—7 1.9985 1.9217e-7 1.9997

Table 2

The L? errors obtained after 100 steps on uniform triangular meshes with 7 =105 and k = 2.
Meshes h=3 h=4% Rate h=4% Rate h=4% Rate h=4 Rate
H, 0.0047 6.4854e—4 2.8574 8.6694e—-5 2.9032 1.1357e-5 2.9324 1.4646e—6 2.9550
H, 0.0047 6.4894e—4 2.8565 8.7021e-5 2.8986 1.1404e-5 2.9318 1.4699e—-6 2.9558
E 0.0047 6.5112e—4 2.8517 8.6896e—5 2.9056 1.1322e-5 2.9402 1.4544e—6 2.9606
Ky 4.6862e—6 6.4001e-7 2.8723 8.5541e—-8 2.9034 1.1202e-8 2.9329 1.4434e-9 2.9562
K, 4.6398e—6 6.4030e—7 2.8572 8.5847e—-8 2.8989 1.1245e-8 2.9325 1.4481e-9 2.9571
J 4.6696e—6 6.4594e—7 2.8538 8.6171e-8 2.9061 1.1216e-8 2.9416 1.4370e-9 2.9644

Table 3

The L? errors obtained after 100 steps on uniform triangular meshes with =105 and k = 3.
Meshes h=} h=1 Rate h=4 Rate h=4 Rate h=4 Rate
H, 7.3281e-4 5.3071e-5 3.7874 3.6439e—-6 3.8644 2.4100e-7 3.9184 1.5618e—8 3.9478
H, 7.5179e-4 5.5864e—5 3.7503 3.8611e-6 3.8548 2.5572e-7 3.9164 1.6659e—8 3.9402
E 6.4847e—-4 4.9042e-5 3.7250 3.4892e-6 3.8130 2.3667e—7 3.8819 1.5848e-8 3.9005
Ky 7.2325e-7 5.2389e-8 3.7872 3.5986e-9 3.8638 2.3817e-10 3.9174 1.5410e—-11 3.9501
K, 7.4200e-7 5.5150e—-8 3.7500 3.8135e-9 3.8542 2.5272e-10 3.9155 1.6391e-11 3.9466
] 6.4357e-7 4.8697e—-8 3.7242 3.4676e—-9 3.8118 2.3542e-10 3.8806 1.5601e—11 3.9155

Table 4

The L? errors obtained after 10 steps on uniform triangular meshes with 7=10"% and k=1.
Meshes h= 3‘1 h= % Rate h= 11_5 Rate h= 31_2 Rate h= ﬁ Rate
Hy 0.0455 0.0118 1.9471 0.0030 1.9758 7.5479%¢ -4 1.9908 1.8890e—4 1.9985
H, 0.0517 0.0128 2.0140 0.0032 2.0000 7.9325e—-4 2.0122 1.9840e—4 1.9994
E, 0.0487 0.0123 1.9853 0.0031 1.9883 7.7529e—4 1.9995 1.9388e—4 1.9996
Ky 4.4922e—-6 1.1675e—6 1.9440 2.9636e—7 1.9780 7.4496e—-8 1.9921 1.8644e—-8 1.9985
K, 5.1046e—6 1.2630e-6 2.0149 3.1378e-7 2.0090 7.8288e—8 2.0029 1.9580e—-8 1.9994
Iz 5.0436e—6 1.2790e—6 1.9794 3.2102e-7 1.9943 8.0347e-8 1.9983 2.0093e-8 1.9996
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Table 5

The L? errors obtained after 10 steps on uniform triangular meshes with 7 =107 and k =2.
Meshes h= zl; h= % Rate h= % Rate h= 317 Rate h= é Rate
Hy 0.0047 6.4858e—4 2.8573 8.6680e—5 2.9035 1.1349e-5 2.9331 1.4616e—6 2.9569
H, 0.0047 6.4881e—4 2.8568 8.6976e—5 2.8991 1.1390e-5 2.9328 1.4659e—-6 2.9579
E, 0.0047 6.5149e—4 2.8508 8.6889e-5 2.9065 1.1302e-5 2.9426 1.4459¢e—6 2.9665
Ky 4.6873e—7 6.4012e—-8 2.8723 8.5547e-9 2.9036 1.1200e-9 2.9332 1.4424e—-10 2.9570
K, 4.6404e—-7 6.4033e-8 2.8574 8.5838e-9 2.8991 1.1241e-9 2.9328 1.4466e—-10 2.9580
Iz 4.8815e—7 6.7516e—8 2.8540 9.0042e-9 2.9066 1.1712e-9 2.9426 1.4981e—10 2.9668

same f and g as Example 1, but with the following initial

conditions:

Hy(x,y,7/2) = sin (E) . COS (%)e—m/z7

4

Hy(x,y,7/2) = —cos (X

4

E(x,y,0) = sin(mx) - sin(my),
Ky(x,y,0) = K,(x,y,0) =0,

) sin ()e

J(x,y,7/2) = 72 & sin(mx) - sin(my)e "2,

2
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Since the exact solution to this problem is unknown, we just plot
the numerical solutions obtained on different meshes. To verify
the long term stability, we solved this example to 10000 time steps
with 7=107%. The obtained numerical magnetic field H = (H,,H,)
and electric field E on various uniform triangular meshes are pre-
sented in Figs. 1-4, which show that the solutions are convergent.

5. Conclusions

We developed a leap-frog DG method for the Maxwell’s equa-
tions in metamaterials. Rigorous stability and error estimates are

numerical electric field

Fig. 1. Numerical solutions after 10000 time steps with h = 1/4: (Left) The magnetic field H = (Hx,Hy); (Right) The electric field E.
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Fig. 2. Numerical solutions after 10000 time steps with h = 1/8: (Left) The magnetic field H = (Hx,Hy); (Right) The electric field E.
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Fig. 3. Numerical solutions after 10000 time steps with h = 1/16: (Left) The magnetic field H = (Hx,Hy); (Right) The electric field E.
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Fig. 4. Numerical solutions after 10000 time steps with h = 1/32: (Left) The magnetic field H = (Hx,Hy); (Right) The electric field E.

proved for the scheme. Numerical results supporting the analysis
are presented. How to prove the optimal L? error estimate
observed with upwind flux (even for Maxwell’s equations in
free space) is still open. More interesting simulations such as
invisibility cloak with metamaterials will be investigated in the
future.
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Appendix. Estimates of Err;, i=1,...,20

Here we will estimate each Err;. Below we frequently use the
arithmetic-geometric mean inequality

0 2 1 2
(a.b) < 5 llally +55 l1bllo, (48)

where § is an arbitrary positive constant.
Using integration by parts, the projection property, and Lemma
3.1(ii), we obtain

L 2112 1112 T N i1
Brry <ty (e, + 167 ) + 5 IV < B
7

=
1[4 2 n 2 < 11202
-/ V x H(s)ds|l; < t1 '22;\\%”1*@2) +701]|& [
i1 J=
T T3

G
2 L2
N V xH < o0
+25U; 4 ; H X tt(s)HodS\ZT51||ChH[ (Lz)-i-'fél

2
lo

&

-1
”
+ 85, IV x H“”LZ(O,T;LZ(Q)3)7

where we introduced the notation |||y 2, = Max;s;
Similarly, we can obtain

n 11 5 . .
Err, = T,; (JI T /tjilj(s)ds,éil +& 1)

4]

.2 o2 T
< 2T52H§h“1°°(L2) + T52||th0 +8_(52 |Utt”L2(0.T:L2(Q)3)‘

Using integration by parts, the projection property, and Lemma
3.1(i), we have

n . L il i1
Ems =13 [V x B (" v < Es)ds, it o

i T
Jj=1 tj,%

<o (3, ) o 5 [ IV < Esias
Jj=1

o) T2, 54

g
2 ‘L'4 tn%
o V x Eq(s)|2ds.
s IV B
2

1
< 2T53H’7h”12*(L2) + 153‘ "Th
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By similar arguments, we have By the Cauchy-Schwarz inequality, the inverse estimate (15) and
5 T [t 5 the projection error estimate (29), we have
Erra < 2Toalm o, + w0, + g [ IKa(s)1Bds:
t -
: Erme < inv 1HOT
Similarly, we have -
min(s,k)+1
Tl n 05 ||~ 2 -Ch (HHHLX(O,T:H‘“(Q)) + HE||L°<(0,T;HS+1(Q))>
Brs< o2y 2 B S R () -1 " s)ds . - ,
pe |j=1 t]i% o < _L_Z 5192 Hé}hH i H my .Cthm(s‘k)
j=1 T; 0 2019
I, T05 + b 2
< 5’ I 1| G / (s)lleds|. TC
\eowge J h 85 % |Urt )Ho 2T519||§hH[% L2 +T519||éh|‘0 Cthmsk
By similar arguments, we have By the same arguments, we have
2
1 T 2
Errg < 2T6 " 186 &2 E ds. TC 2min(s
6 < 6||§th a2y + Tos||<h 0+8(5 H w(S)Ilo Erry < ZT‘SZOHVIhHIX(LZ +T&20”’7h”0 mv p2min(sk)
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