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1. Introduction

The classical Brunn–Minkowski theory focused on studying geometric invariants such 
as quermassintegrals (which include volume, surface area, and mean width) and geo-
metric measures such as area measures and Federer’s curvature measures. Among these 
measures are surface area measure and (Aleksandrov’s) integral curvature, two most 
studied measures in the Brunn–Minkowski theory. The Minkowski problem and the Alek-
sandrov problem characterizing these two measures are influential problems not only in 
geometric analysis, but also in the theory of fully nonlinear partial differential equations.

The Lp Brunn–Minkowski theory and the dual Brunn–Minkowski theory are two 
theories that fundamentally extended the classical Brunn–Minkowski theory. The last 
two decades saw the rapid development of these two theories and they are now becoming 
the center focus of modern convex geometry.

The Lp Brunn–Minkowski theory came to life when Lutwak [49,50] introduced Lp

surface area measure. When p = 1, the Lp surface area measure is the classical surface 
area measure. Since its introduction, the family of Lp surface area measure has quickly 
become the topic of many influential works. The Lp Minkowski problem is the problem of 
prescribing Lp surface area measure, which greatly generalizes the classical Minkowski 
problem. The family of Lp Minkowski problems contains important singular unsolved
cases such as the logarithmic Minkowski problem (see Böröczky, Lutwak, Yang & Zhang 
[10]) and the centro-affine Minkowski problem.

The dual Brunn–Minkowski theory was introduced by Lutwak (see Schneider [58]) in 
the 1970s. The dual Brunn–Minkowski theory has been most effective in answering ques-
tions related to intersections. One major triumph of the dual Brunn–Minkowski theory is 
tackling the famous Busemann–Petty problem, see Gardner [21], Gardner, Koldobsky & 
Schlumprecht [23], Koldobsky [38–40], Lutwak [48], and Zhang [67]. Over the years, the 
dual theory has produced numerous profound concepts and results. See Gardner [22] and 
Schneider [58] for an overview of the theory. The dual theory makes extensive use of tech-
niques from harmonic analysis. Recently, the dual Brunn–Minkowski theory took a huge 
step forward when Huang, Lutwak, Yang & Zhang [33] discovered the family of funda-
mental geometric measures—called dual curvature measures—in the dual theory. These 
measures are dual to Federer’s curvature measures and are expected to play the same 
important role as area measures and curvature measures in the Brunn–Minkowski the-
ory. The dual Minkowski problem is the problem of prescribing dual curvature measures. 
The dual Minkowski problem not only contains critical problems such as the logarithmic 
Minkowski problems and the Aleksandrov problem (prescribing curvature measure) as 
special cases, but also introduces intrinsic PDEs—something long missing—to the dual 
Brunn–Minkowski theory. The dual Minkowski problem, while still largely open, has 
been studied in [8,12,30,33,68,69].

A recent surprising discovery by Lutwak, Yang & Zhang [53] revealed that there exists 
a unifying theory that includes the classical Brunn–Minkowski theory, the Lp Brunn–
Minkowski theory, and the dual Brunn–Minkowski theory. The latter two were never 
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thought to be connected. In particular, they introduced the Lp dual curvature measure, 
which unifies both the aforementioned Lp surface area measures and dual curvature mea-
sures. The problem of prescribing this unifying family of measures is called the Lp dual 
Minkowski problem.

Problem 1.1 (The Lp dual Minkowski problems). Given a nonzero finite Borel measure 
μ on the unit sphere Sn−1 and real numbers p, q, what are the necessary and sufficient 
conditions so that μ is exactly equal to C̃p,q(K, ·) for some convex body K ∈ Kn

o ?

The Lp dual Minkowski problems will be thoroughly investigated in the current work.
When the given measure μ has a density f , the Lp dual Minkowski problems becomes 

the following Monge–Ampère type equation on Sn−1:

det(hij(v) + h(v)δij) = f(v)hp−1(v)(h2(v) + |∇h(v)|2)n−q
2 , (1.1)

where f is a given positive smooth function on Sn−1, h is the unknown, δij is the 
Kronecker delta, and ∇h and (hij) are the gradient and the Hessian of h on the unit 
sphere with respect to an orthonormal basis respectively.

It is worth noting that the Lp dual Minkowski problem contains the classical 
Minkowski problem and the Aleksandrov problem, as well as the unsolved logarithmic 
Minkowski problem [10,70] and the unsolved centro-affine Minkowski problem [19,71]. It 
not only unifies the Lp Minkowski problem [19,35,49] and the dual Minkowski problem 
posed in [33], but also includes the Lp Aleksandrov problem [34] and many new problems.

As mentioned previously, the family of Lp dual curvature measures, or sometimes 
simply referred to as the (p, q)-th dual curvature measure and denoted by C̃p,q(K, ·)
for q ∈ R, were recently introduced by Lutwak, Yang & Zhang [53] in an effort to 
continue their groundbreaking works [33,34] with the first named author and to unify 
concepts never thought to be connected in the Lp Brunn–Minkowski theory and the dual 
Minkowski theory.

When q = n, the (p, n)-th dual curvature measure is up to a factor of n equal to the Lp

surface area measure which is the core concept in the Lp Brunn–Minkowski theory. In this 
case, the Lp dual Minkowski problem becomes the Lp Minkowski problem, which includes 
the classical Minkowski problem solved by Minkowski, Fenchel & Jessen, Aleksandrov, 
etc. Regularity results on the classical Minkowski problem include the influential paper 
[17] by Cheng & Yau. When p > 1, the Lp Minkowski problem was solved by Lutwak [49]
and Lutwak & Oliker [51] whenever the given data is even and by Chou & Wang [19] in 
the general case. The Lp Minkowski problem when p < 1 is much more complicated and 
contains long open problems such as the logarithmic Minkowski problem (solved in the 
symmetric case by Böröczky, Lutwak, Yang & Zhang [10] with recent major progress in 
the non-symmetric case made by Chen, Li & Zhu [16]) and the centro-affine Minkowski 
problem.

The logarithmic Minkowski problem characterizes cone volume measure which has 
been the central topic in a number of recent works. When the given data is even, the 
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existence of solutions to the logarithmic Minkowski problem was completely solved in 
Böröczky, Lutwak, Yang, & Zhang [10]. In the general case (non-even case), important 
contributions were made by Zhu [70], later by Böröczky, Hegedűs & Zhu [6], and espe-
cially by Chen, Li & Zhu[16] more recently.

The centro-affine Minkowski problem characterizes the centro-affine surface area mea-
sure whose density in the smooth case is the centro-affine Gauss curvature. The charac-
terization problem, in this case, is the centro-affine Minkowski problem posed in Chou & 
Wang [19]. See also Jian, Lu & Zhu [37], Lu & Wang [41], Zhu [71], etc., on this problem.

We emphasize again that the Lp dual Minkowski problem, considered in the cur-
rent work, contain both the unsolved logarithmic Minkowski problem and the unsolved 
centro-affine Minkowski problem.

When q = 0, the Lp dual Minkowski problems becomes the Lp Aleksandrov problem 
posed by Huang, Lutawak, Yang, & Zhang [34], which is the Lp version of the Aleksan-
drov problem. Solutions in some special cases were given in [34].

When p = 0, the L0 dual Minkowski problem becomes the unsolved dual Minkowski 
problem posed by Huang, Lutawak, Yang, & Zhang [33]. When q < 0, a complete solu-
tion to the dual Minkowski problem—including the existence and the uniqueness of the 
solution—was presented in [68]. When q = 0, the dual Minkowski problem becomes the 
Alesksandrov problem solved by Aleksandrov himself using a topological argument. The 
dual Minkowski problem gets much more challenging when q > 0 and only solutions in 
the case when the given data is even exist. When 0 < q < n, a mass subspace inequality 
was given in [33] and proven to be sufficient. Although the condition is apparently nec-
essary when 0 < q ≤ 1, examples of convex bodies that violates the given mass subspace 
inequality when 1 < q < n were independently discovered by Börr̈oczky, Henk, & Pollehn 
[8] and Zhao [69]. A better subspace mass inequality was proposed in [8,69], which was 
shown to be sufficient for the dual Minkowski problem when q ∈ (1, n) is an integer 
in [69] and necessary when q ∈ (1, n) (integers or not) in [8]. Very recently, Böröczky, 
Lutwak, Yang, Zhang & Zhao [12] showed the sufficiency of the subspace mass inequality 
when q ∈ (1, n) is a non-integer, thus settling the existence part of the dual Minkowski 
problem when q ∈ (0, n) and the given data is even. When q = n, the dual Minkowski 
problem becomes the logarithmic Minkowski problem mentioned above. When q ≥ n +1, 
Henk & Pollehn [30] recently proposed a new subspace mass inequality and proved it to 
be necessary for the existence part of the dual Minkowski problem when the given data 
is even. Note again that, except for q = n and q ≤ 0, all existing results on the dual 
Minkowski problem are restricted to the case when the given measure is even.

Even more challenging than finding the correct necessary and sufficient conditions for 
the existence of solution to those newly posed Minkowski-type problems is establishing 
the uniqueness of the solution. So far, uniqueness of the solution has only been established 
for very few cases including the Lp Minkowski problem when p ≥ 1, the Aleksandrov 
problem, the dual Minkowski problem when q < 0, and the logarithmic Minkowski 
problem when the dimension is 2 and the given data is even (see [9]).
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As can be seen from the above discussion, even special cases of the Lp dual Minkowski 
problems can be extremely challenging. In the current work, we will study the Lp dual 
Minkowski problems in the case when p �= q.

In Section 3, we will consider the Lp dual Minkowski problems (when p �= q) in 
the weak sense using variational method. Because the behavior of the functional to be 
optimized changes considerably based on the values of p and q with respect to 0, results 
obtained here have to be split into three parts.

When p > 0 and q < 0, a complete characterization to existence part of the Lp dual 
Minkowski problem will be given. This is an extension to the existence results obtained 
in [68].

Theorem 1.2. Let p > 0, q < 0, and μ be a non-zero finite Borel measure on Sn−1. There 
exists a convex body K ∈ Kn

o such that μ = C̃p,q(K, ·) if and only if μ is not concentrated 
on any closed hemisphere.

When p, q > 0 and p �= q, a complete solution to the existence part of the Lp dual 
Minkowski problem will be presented when the given data is even. Setting q = n, the 
following theorem contains the solution to the even Lp Minkowski problem when p > 0
and p �= n which was obtained in Lutwak [49] and Haberl, Lutwak, Yang & Zhang [27].

Theorem 1.3. Let p, q > 0, p �= q, and μ be a non-zero even Borel measure on Sn−1. 
There exists an origin symmetric convex body K ∈ Kn

e such that μ = C̃p,q(K, ·) if and 
only if μ is not concentrated in any great subsphere.

The Lp Minkowski problem when p ≥ 1 and p �= n was solved in the general case (not 
assuming evenness of the measure) in Chou & Wang [19] and later in Hug, Lutwak, Yang 
& Zhang [35]. Unfortunately, their solutions do not extend to this case in full generality. 
The key obstacle is the lack of a Minkowski type inequality in this more general setting. 
In particular, note that the Lp Minkowski problem when 0 < p < 1 was studied by Zhu 
[72] and was essentially solved by Chen, Li & Zhu [15] recently.

When p, q < 0 and p �= q, the following result will now be established.

Theorem 1.4. Let p, q < 0, p �= q, and μ be a non-zero finite even Borel measure on 
Sn−1. If μ vanishes on all great subsphere, then there exists an origin symmetric convex 
body K ∈ Kn

e such that μ = C̃p,q(K, ·).

Note that the optimization problem to be introduced in Section 3 fails when the given 
measure μ has positive concentration in any great subsphere.

To complement and enrich the results obtained via variational method, solutions via 
continuity methods will be provided. In Section 4, both the existence and the uniqueness
of the solution to the Lp dual Minkowski problem in the smooth category will be pre-
sented. Note that when p = 0, the following theorem provides regularity results to the 
dual Minkowski problem for negative indices.
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Theorem 1.5. Suppose p > q and 0 < α ≤ 1. For any given positive function f ∈
Cα(Sn−1), there exists a unique solution h ∈ C2,α(Sn−1) to (1.1). If f is smooth, then 
the solution is also smooth.

Since when q = n, the dual Minkowski problem becomes the Lp Minkowski problem, 
Theorem 1.5 also solves the Lp Minkowski problem for p > n which was originally solved 
by Chou & Wang [19].

The uniqueness part of the Lp dual Minkowski problem when p > q and the given 
measure is discrete (in the polytopal case) was proved by Lutwak, Yang & Zhang [53]. 
The uniqueness established in Theorem 1.5 settles the case when the given measure 
possesses a sufficiently smooth density and the solution is assumed to possess sufficient 
regularity. It remains unknown whether the uniqueness result still holds if the regularity 
assumption of the convex body is removed (see, for example [57]).

Note again that the uniqueness of the solution to the Lp dual Minkowski problem 
remains one of the biggest challenges in Minkowski type problems. While the uniqueness 
has been established for p ≥ 1 by using the Lp Minkowski inequality [35], very little 
progress has been made for p < 1. Important recent results in this direction include 
Andrews [2], Böröczky, Lutwak, Yang & Zhang [9], Choi & Daskalopoulos [18], Huang, 
Liu & Xu [31], and Jian, Lu & Wang [36].

A major accomplishment in [53] is showing that the Lp dual curvature measures are 
valuations. See, for example, Alesker [1], Haberl [26], Haberl & Parapatits [28], Ludwig 
[42,43,45,46], Ludwig & Reitzner [47], Schuster [59,60], Schuster & Wannerer [61] and 
the references therein for important valuations in the theory of convex bodies.

Acknowledgments. The authors are grateful to the anonymous referee for his/her 
valuable input.

2. Preliminaries

This section is divided into three subsections. In the first subsection, basics in the 
theory of convex bodies will be covered. In the second subsection, the notion of Lp dual 
curvature measure, or the (p, q)-th dual curvature measure, will be introduced. Last but 
not least, in the third subsection, we will present the Lp dual Minkowski problems—the 
characterization problem for (p, q)-th dual curvature measure.

2.1. Basics in the theory of convex bodies

The book [58] by Schneider offers a comprehensive overview of the theory of convex 
bodies.

Let Rn be the n-dimensional Euclidean space. The unit sphere in Rn is denoted by 
Sn−1. We will write C(Sn−1) for the space of continuous functions on Sn−1. The sub-
set C+(Sn−1) of C(Sn−1) contain only positive functions whereas the subset Ce(Sn−1)
contain only even functions. We will also write C+

e (Sn−1) for C+(Sn−1) ∩ Ce(Sn−1).
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A convex body in Rn is a compact convex set with nonempty interior. The boundary 
of K is written as ∂K. Denote by Kn

0 the class of convex bodies that contain the origin 
in their interiors in Rn and by Kn

e the class of origin-symmetric convex bodies in Rn.
Let K be a compact convex subset of Rn. The support function hK of K is defined 

by

hK(y) = max{x · y : x ∈ K}, y ∈ R
n.

The support function hK is a continuous function homogeneous of degree 1. Suppose K
contains the origin in its interior. The radial function ρK is defined by

ρK(x) = max{λ : λx ∈ K}, x ∈ R
n \ {0}.

The radial function ρK is a continuous function homogeneous of degree −1. It is not 
hard to see that ρK(u)u ∈ ∂K for all u ∈ Sn−1.

For each f ∈ C+(Sn−1), the Wulff shape [f ] generated by f is the convex body defined 
by

[f ] = {x ∈ R
n : x · v ≤ f(v), for all v ∈ Sn−1}.

It is apparent that h[f ] ≤ f and [hK ] = K for each K ∈ Kn
0 .

The Lp combination of two convex bodies K, L ∈ Kn
0 was first studied by Firey 

and was the starting point of the now rich Lp Brunn–Minkowski theory developed by 
Lutwak [49,50]. For t > 0, the Lp combination of K and L, denoted by K +p t · L, is 
defined to be the Wulff shape generated by ht where

ht =
{

(hp
K + thp

L)
1
p , if p �= 0,

hKht
L, if p = 0.

When p ≥ 1, by the convexity of �p norm, we get that

hp
K+pt·L = hp

K + thp
L.

Suppose Ki is a sequence of convex bodies in Rn. We say Ki converges to a compact 
convex subset K ⊂ R

n if

max{|hKi
(v) − hK(v)| : v ∈ Sn−1} → 0, (2.1)

as i → ∞. If K contains the origin in its interior, equation (2.1) implies

max{|ρKi
(u) − ρK(u)| : u ∈ Sn−1} → 0,

as i → ∞.
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For a convex body K ∈ Kn
0 , the polar body of K is given by

K∗ = {y ∈ R
n : y · x ≤ 1, for all x ∈ K}.

It is simple to check that K∗ ∈ Kn
0 and that

hK∗(x) = 1/ρK(x),

ρK∗(x) = 1/hK(x),
(2.2)

for x ∈ R
n \ {o}. Moreover, we have (K∗)∗ = K.

By the definition of polar body and the relations (2.2), for K, Ki ∈ Kn
0 , we have Ki

converges to K if and only if K∗
i converges to K∗.

For a compact convex subset K in Rn and v ∈ Sn−1, the supporting hyperplane 
H(K, v) of K at v is given by

H(K, v) = {x ∈ K : x · v = hK(v)}.

By its definition, the supporting hyperplane H(K, v) is non-empty and contains only 
boundary points of K. For x ∈ H(K, v), we say v is an outer unit normal of K at 
x ∈ ∂K.

Let ω ⊂ Sn−1 be a Borel set. The radial Gauss image of K at ω, denoted by αK(ω), 
is defined to be the set of all unit vectors v such that v is an outer unit normal of K at 
some boundary point uρK(u) where u ∈ ω, i.e.,

αK(ω) = {v ∈ Sn−1 : v · uρK(u) = hK(v) for some u ∈ ω}.

When ω = {u} is a singleton, we usually write αK(u) instead of the more cumbersome 
notation αK({u}). Let ωK be the subset of Sn−1 such that αK(u) contains more than 
one element for each u ∈ ωK . By Theorem 2.2.5 in [58], the set ωK has spherical Lebesgue 
measure 0. The radial Gauss map of K, denoted by αK , is the map defined on Sn−1 \ωK

that takes each point u in its domain to the unique vector in αK(u). Hence αK is defined 
almost everywhere on Sn−1 with respect to the spherical Lebesgue measure.

Let η ⊂ Sn−1 be a Borel set. The reverse radial Gauss image of K, denoted by α∗
K(η), 

is defined to be the set of all radial directions such that the corresponding boundary 
points have at least one outer unit normal in η, i.e.,

α∗
K(η) = {u ∈ Sn−1 : v · uρK(u) = hK(v) for some v ∈ η}.

When η = {v} is a singleton, we usually write α∗
K(v) instead of the more cumbersome 

notation α∗
K({v}). Let ηK be the subset of Sn−1 such that α∗

K(v) contains more than one 
element for each v ∈ ηK . By Theorem 2.2.11 in [58], the set ηK has spherical Lebesgue 
measure 0. The reverse radial Gauss map of K, denoted by α∗

K , is the map defined on 
Sn−1\ηK that takes each point v in its domain to the unique vector in α∗

K(v). Hence α∗
K

is defined almost everywhere on Sn−1 with respect to the spherical Lebesgue measure.
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2.2. (p, q)-th dual curvature measures

Dual quermassintegrals are the fundamental geometric invariants in the dual Brunn–
Minkowski theory. Suppose 1 ≤ q ≤ n is an integer. The (n −q)-th dual quermassintegral 
of K ∈ Kn

0 , denoted by W̃n−q(K), can be viewed as the average of q-dimensional inter-
section areas. That is,

W̃n−q(K) = ωn

ωq

∫
G(n,q)

Hq(K ∩ ξq)dξq,

where Hq is the q-dimensional Hausdorff measure and the integration is with respect to 
the Haar measure on the Grassmannian G(n, q) containing all q-dimensional subspaces 
ξq in Rn.

The dual quermassintegrals have the following integral representation (see Lutwak 
[48]):

W̃n−q(K) = 1
n

∫
Sn−1

ρqK(u)du,

which immediately allows us to extend the definition to all q ∈ R.
The exact geometric measures that can be viewed as the differentials of dual quermass-

integrals remained hidden until the ground-breaking work by Huang, Lutwak, Yang & 
Zhang [33]. For q �= 0, the q-th dual curvature measure of K ∈ Kn

0 , denoted by C̃q(K, ·), 
can be defined as the unique Borel measure on Sn−1 that satisfies the following equation 
for each L ∈ Kn

0 :

d

dt

∣∣∣∣
t=0

W̃n−q(K +0 t · L) = q

∫
Sn−1

log hL(v)dC̃q(K, v). (2.3)

Note that there is a corresponding version of the formula that allows us to define C̃0(K, ·), 
see [33]. Dual curvature measures are the notions in the dual Brunn–Minkowski theory 
that are dual to Federer’s curvature measures.

The (p, q)-th dual curvature measure was very recently introduced by Lutwak, Yang 
& Zhang [53]. For p, q �= 0, the (p, q)-th dual curvature measure of K ∈ Kn

0 , denoted by 
C̃p,q(K, ·), is defined to be the unique Borel measure on Sn−1 that satisfies the following 
equation for each L ∈ Kn

0 :

d

dt

∣∣∣∣
t=0

W̃n−q(K +p t · L) = q

∫
Sn−1

hp
L(v)dC̃p,q(K, v). (2.4)

Note that when p = 0, the (0, q)-th dual curvature measure is defined as in (2.3) so that 
they are exactly the q-th dual curvature measure. There is a corresponding version of 
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(2.4) that allows us to define C̃p,q(K, ·) for q = 0. It should also be pointed out that the 
(p, q)-th dual curvature measure defined in [53] is slightly more general than what we 
are using in the current paper.

Key properties of Lp dual curvature measures were shown in [53]. When viewed as a 
function from the set Kn

0 (equipped with the Hausdorff metric) to the space of Borel mea-
sures on Sn−1 (equipped with the weak topology), the (p, q)-th dual curvature measure 
is continuous. That is, for each f ∈ C(Sn−1),

lim
i→∞

∫
Sn−1

f(v)dC̃p,q(Ki, v) =
∫

Sn−1

f(v)dC̃p,q(K0, v),

given that K0, Ki ∈ Kn
0 and Ki converges to K0. Moreover, it is also a valuation. That 

is,

C̃p,q(K ∪ L, ·) + C̃p,q(K∩, ·) = C̃p,q(K, ·) + C̃p,q(L, ·),

given that K, L ∈ Kn
0 are such that K ∪ L ∈ Kn

0 .
It was shown in [53] that the (p, q)-th dual curvature measure is absolutely continuous 

with respect to the q-th dual curvature measure and can be written as

dC̃p,q(K, ·) = h−p
K dC̃q(K, ·).

The above equation works even when p or q is 0. By definition, it is immediate that 
the (0, q)-th dual curvature measure is exactly the q-th dual curvature measure. When 
q = n, C̃n(K, ·) is the cone-volume measure,

dC̃n(K, ·) = 1
n
hKdSK(·),

and thus C̃p,n(K, ·) gives the Lp surface area measure,

dC̃p,n(K, ·) = 1
n
h1−p
K dS(K, ·) = 1

n
dSp(K, ·).

If K is a polytope that contains the origin in its interior with outer unit normals vi, i =
1, . . . , m, then the (p, q)-th curvature measure C̃p,q(K, ·) is discrete and is concentrated 
on {v1, . . . , vm}. Namely,

C̃p,q(K, ·) =
m∑
i=1

ciδvi(·),

where
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ci = 1
n
hK(vi)−p

∫
Sn−1∩Δi

ρK(u)q du,

and Δi is the cone formed by the origin and the face of K with normal vi.
If K is a convex body that has C2 boundary with positive curvature and contains 

the origin in its interior, then C̃p,q(K, ·) is absolutely continuous with respect to the 
Lebesgue measure,

dC̃p,q(K, v)
dv

= 1
n
h1−p
K (h2

K + |∇hK |2) q−n
2 det((hK)ij + hKδij),

where ∇hK and ((hK)ij) are the gradient and the Hessian of hK on the unit sphere Sn−1

with respect to an orthonormal basis respectively.

2.3. The Lp dual Minkowski problems

It is natural to consider the characterization problem for (p, q)-th dual curvature 
measure.

Problem 2.1 (The Lp dual Minkowski problems). Given a nonzero finite Borel measure 
μ on the unit sphere Sn−1 and real numbers p, q, what are the necessary and sufficient 
conditions so that there exists a convex body K ∈ Kn

0 satisfying

C̃p,q(K, ·) = μ ?

When p = 0, the Lp dual Minkowski problems becomes the dual Minkowski problem, 
which since its introduction in [33] has quickly established its fundamental role in the 
dual Brunn–Minkowski theory already generating works such as [8,12,30,33,68,69]. In 
particular, the case of p = 0, q = n is the logarithmic Minkowski problem while p = 0,
q = 0, it is the Aleksandrov problem.

When q = n, the Lp dual Minkowski problems becomes the Lp Minkowski problem 
which is fundamental in the Lp Brunn–Minkowski theory. The Lp Minkowski problem 
when p > 1 was solved in the even case by Lutwak [49] and in the general case by 
Chou–Wang [19]. A different approach was provided by Hug, Lutwak, Yang & Zhang 
[35]. A smooth solution was obtained by Huang & Lu [32] for 2 < p < n. The solution of 
the Lp Minkowski problem plays a vital role in establishing various powerful sharp affine 
isoperimetric inequalities, see, e.g., Cianchi, Lutwak, Yang & Zhang [20], Lutwak, Yang 
& Zhang [52], and Zhang [66]. It contains important and unsolved singular cases such 
as the logarithmic Minkowski problem (p = 0) and the centroaffine Minkowski problem 
(p = −n).

The logarithmic Minkowski problem studies cone volume measures that appeared in 
a growing number of works. See, for example, Barthe, Guédon, Mendelson & Naor [4], 
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Böröczky & Henk [7], Böröczky, Lutwak, Yang & Zhang [9–11], Henk & Linke [29], Lud-
wig [44], Ludwig & Reitzner [47], Naor [54], Naor & Romik [55], Paouris & Werner [56], 
Stancu [62,63], Xiong [65], Zhu [70], and Zou & Xiong [73]. The logarithmic Minkowski 
problem has strong connections with isotropic measures (Böröczky, Lutwak, Yang & 
Zhang [11]), curvature flows (Andrews [2,3]), and the log-Brunn–Minkowski inequality 
(e.g., Böröczky, Lutwak, Yang & Zhang [9], Xi & Leng [64]), an inequality stronger than 
the classical Brunn–Minkowski inequality.

When the given measure μ has a density f , the Lp dual Minkowski problems is equiv-
alent to the following Monge–Ampère equation on Sn−1,

det(hij(v) + h(v)δij) = f(v)hp−1(v)(h2(v) + |∇h(v)|2)n−q
2 , v ∈ Sn−1. (2.5)

Since the unit balls of finite dimensional Banach spaces are origin-symmetric convex 
bodies and the dual curvature measure of an origin-symmetric convex body is even, it is 
of great interest to study the following even Lp dual Minkowski problems.

Problem 2.2 (The even Lp dual Minkowski problems). Given a nonzero even finite Borel 
measure μ on the unit sphere Sn−1 and real numbers p, q, what are the necessary and 
sufficient conditions so that there exists a convex body K ∈ Kn

e satisfying

C̃p,q(K, ·) = μ ?

In the current work, we will study the Lp dual Minkowski problems when p �= q

from two different angles. One is from convex geometric analysis point of view where 
we will solve the Lp dual Minkowski problems using variational method. The solution 
will include cases when the given measure possesses no density. This will be done in 
Section 3. In addition to that, we will solve the Monge–Ampère equation (2.5) by using 
continuity methods and Caffarelli’s regularity results of the Minkowski problem [13,
14]. Both existence and uniqueness of the solution (in the smooth category) will be 
demonstrated. This will be done in Section 4.

3. A variational method to weak solutions

In this section, we will use variational method to study weak solutions to the Lp dual 
Minkowski problems when p �= q and p, q �= 0. Note that when p = 0, this problem is 
known as the dual Minkowski problem, and when q = 0, this problem is known as the 
Lp Aleksandrov problem. Both these special cases have already been considered.

3.1. An associated optimization problem

To obtain a weak solution using variational method, the first step is to convert the 
existence problem into an optimization problem whose optimizer is exactly the solution 
to the original problem.
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For any nonzero finite Borel measure μ on Sn−1 and p, q �= 0, define Φp,q : Kn
o → R

by

Φp,q(Q) = −1
p

log
∫

Sn−1

hQ(v)p dμ(v) + 1
q

log
∫

Sn−1

ρQ(u)q du,

for each Q ∈ Kn
o .

We consider the maximization problem

sup{Φp,q(Q) : Q ∈ Kn
o }.

Lemma 3.1. Let p, q �= 0 and μ be a nonzero finite Borel measure on Sn−1. If K ∈ Kn
o

satisfies ∫
Sn−1

hp
K(v)dμ(v) = W̃n−q(K), (3.1)

and

Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
o }, (3.2)

then

μ = C̃p,q(K, ·).

Proof. For each f ∈ C+(Sn−1), let [f ] be the Wulff shape generated by f , i.e.,

[f ] = {x ∈ R
n : x · v ≤ f(v) for all v ∈ Sn−1} ∈ Kn

o .

Define the functional Ψp,q : C+(Sn−1) → R by

Ψp,q(f) = −1
p

log
∫

Sn−1

f(v)p dμ(v) + 1
q

log
∫

Sn−1

ρ[f ](u)q du.

Note that Ψp,q(f) is homogeneous of degree 0, i.e. for all λ > 0 and f ∈ C+(Sn−1),

Ψp,q(λf) = Ψp,q(f).

We claim that

Ψp,q(f) ≤ Ψp,q(hK), (3.3)

for each f ∈ C+(Sn−1). Indeed, since h[f ] ≤ f and [hK ] = K, we have
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Ψp,q(f) ≤ Ψp,q(h[f ]) = Φp,q([f ]) ≤ Φp,q(K) = Ψp,q(hK),

where the second inequality sign follows from (3.2).
For any g ∈ C(Sn−1) and t ∈ (−δ, δ) where δ > 0 is sufficiently small, let

ht(v) = hK(v)etg(v). (3.4)

By Theorem 4.5 of [33],

d

dt
W̃n−q([ht])

∣∣∣∣
t=0

= q

∫
Sn−1

g(v) dC̃q(K, v). (3.5)

By (3.3), the definition of Ψp,q, and (3.5), we have

0 = d

dt
Ψp,q(ht)

∣∣∣∣
t=0

= d

dt

⎛⎝−1
p

log
∫

Sn−1

ht(v)p dμ(v) + 1
q

log W̃n−q([ht])

⎞⎠∣∣∣∣∣∣
t=0

= −

⎛⎝ ∫
Sn−1

hp
K(v)dμ(v)

⎞⎠−1 ∫
Sn−1

hK(v)pg(v) dμ(v) + 1
W̃n−q(K)

∫
Sn−1

g(v) dC̃q(K, v).

By (3.1), we have

hK(v)p dμ(v) = dC̃q(K, v).

We conclude that μ = C̃p,q(K, ·). �
Whenever p �= q, we can take advantage of the different degrees of homogeneity of the 

two sides in (3.1) and get the following lemma.

Lemma 3.2. Let p, q �= 0, p �= q, and μ be a nonzero finite Borel measure on Sn−1. If 
K ∈ Kn

o satisfies

Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
o },

then there exists a constant c > 0 such that

μ = C̃p,q(cK, ·).
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Proof. Note that since p �= q, we may find a constant c > 0 such that∫
Sn−1

hp
cK(v)dμ(v) = W̃n−q(cK).

Since Φp,q is homogeneous of degree 0, we have

Φp,q(cK) = sup{Φp,q(Q) : Q ∈ Kn
o }.

By Lemma 3.1, we have

μ = C̃p,q(cK, ·). �
We remark that there is an obvious way to adapt Lemmas 3.1 and 3.2 and their proofs 

so that they can be used to treat the case when the given measure μ is even and the 
solution convex body K is origin-symmetric. In particular, we have the following lemma.

Lemma 3.3. Let p, q �= 0, p �= q, and μ be a nonzero even finite Borel measure on Sn−1. 
If K ∈ Kn

e satisfies

Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
e },

then there exists a constant c > 0 such that

μ = C̃p,q(cK, ·).

Lemmas 3.2 and 3.3 convert the existence part of the Lp dual Minkowski problem into 
an optimization problem. The rest of this section is aimed to prove an optimizer exists.

3.2. Existence of an optimizer

Since the behavior of Φp,q changes based on the values of p and q, we shall divide 
our results into three cases: i) p > 0 and q < 0; ii) p, q > 0 and p �= q; iii) p, q < 0 and 
p �= q. The case p < 0, q > 0 remains unsolved. Progress along that direction is of great 
interest.

Let us first deal with the case p > 0, q < 0.

Lemma 3.4. Let p > 0, q < 0, and μ be a non-zero finite Borel measure on Sn−1. There 
exists a convex body K ∈ Kn

o such that Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
o } if μ is not 

concentrated on any closed hemisphere.

Proof. Suppose Ql is a maximization sequence; i.e.,

lim Φp,q(Ql) = sup{Φp,q(Q) : Q ∈ Kn
o}.
l→∞
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Note that Φp,q is homogeneous of degree 0. So we may (after rescaling) assume that ∫
Sn−1 ρ

q
Ql

(u)du = 1.
We claim that Q∗

l is uniformly bounded. If not, after taking subsequence, we may find 
vl ∈ Sn−1 such that ρQ∗

l
(vl) → ∞ as l → ∞. By the definition of polar body and the 

support function,

1 =
∫

Sn−1

ρqQl
(u)du

=
∫

Sn−1

h−q
Q∗

l
(u)du

≥
∫

Sn−1

ρQ∗
l
(vl)−q(vl · u)−q

+ du

= ρQ∗
l
(vl)−q

∫
Sn−1

(v1 · u)−q
+ du.

Here (t)+ = max{t, 0} for any t ∈ R. Since 
∫
Sn−1(v1 · u)−q

+ du is positive and q < 0, 
we have ρQ∗

l
(vl) is bounded. This is a contradiction to the choice of vl. Hence Q∗

l is 
uniformly bounded.

By Blaschke’s selection theorem, (after taking a subsequence) we may assume that 
Q∗

l converges to a compact convex subset K0 ⊂ R
n.

We will show that K0 has the origin in its interior. If not, then the origin is on the 
boundary of K0 and therefore, there exists u0 ∈ Sn−1 such that hK0(u0) = 0. Since Q∗

l

converges to K0, we have

lim
l→∞

hQ∗
l
(u0) = 0.

For each δ > 0, define

ωδ = {v ∈ Sn−1 : v · u0 > δ}.

Since μ is not concentrated in any closed hemisphere, there exists δ0 > 0 such that 
μ(ωδ0) > 0. Since ρQ∗

l
(v)v · u0 ≤ hQ∗

l
(u0), we have ρQ∗

l
(v) goes to 0 uniformly on ωδ0 .

This, together with 
∫
Sn−1 ρ

q
Ql

(u)du = 1 and p > 0, implies

Φp,q(Ql) = −1
p

log
∫

Sn−1

hp
Ql

(v)dμ(v)

≤ −1
p

log
∫

hp
Ql

(v)dμ(v)

ωδ0
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= −1
p

log
∫

ωδ0

ρ−p
Q∗

l
(v)dμ(v)

→ −∞,

which is a contradiction to Ql being a maximization sequence. Hence K0 contains the 
origin in its interior. Let K = K∗

0 . Since Q∗
l converges to K0, Ql converges to K. That 

K is a maximizer now follows directly from the continuity of Φp,q and the fact that Ql

is a maximizing sequence. �
The “if” part of the following theorem follows directly from Lemmas 3.2 and 3.4

whereas the “only if” part is obvious.

Theorem 3.5. Let p > 0, q < 0 and μ be a non-zero finite Borel measure on Sn−1. There 
exists a convex body K ∈ Kn

o such that μ = C̃p,q(K, ·) if and only if μ is not concentrated 
on any closed hemisphere.

Let us now consider the case p, q > 0 and p �= q.
The following two lemmas provide important estimates for establishing the existence 

of an optimizer.

Lemma 3.6. Let p, ε0 > 0 and μ be a non-zero even finite Borel measure on Sn−1. Suppose 
e1l, · · · , enl is a sequence of orthonormal basis in Rn and {al} is a sequence of positive 
real numbers. Assume e1l, · · · , enl converges to an orthonormal basis e1, · · · , en in Rn. 
Define

Gl = {x ∈ R
n : |x · e1l|2 + · · · + |x · en−1,l|2 ≤ a2

l and |x · en,l|2 ≤ ε0}.

If μ is not concentrated in any great subsphere, then there exists c, L > 0 (independent 
of l) such that ∫

Sn−1

hp
Gl

(v)dμ(v) ≥ c,

for each l > L.

Proof. Note that ±ε0en,l ∈ Gl. Hence, by the definition of support function,

hGl
(v) ≥ ε0|v · en,l|, (3.6)

for each v ∈ Sn−1. For each δ > 0, define

ωδ = {v ∈ Sn−1 : |v · en| > δ}.
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By monotone convergence theorem, and the fact that μ is not concentrated in any great 
subsphere,

lim
δ→0+

μ(ωδ) = μ(Sn−1 \ span{e1, · · · , en−1}) > 0

Hence, there exists δ0 > 0 such that μ(ωδ0) > 0.
Since enl converges to en, there exists L > 0 such that for l > L, we have

|enl − en| < δ0/2.

This, together with (3.6), implies that for v ∈ ωδ0 and l > L,

hGl
(v) ≥ ε0(|v · en| − |v · (en − enl)|) ≥ ε0δ0/2.

Hence, ∫
Sn−1

hp
Gl

(v)dμ(v) ≥
∫

ωδ0

hp
Gl

(v)dμ(v) ≥
(

1
2ε0δ0

)p

μ(ωδ0) =: c. �

Let 0 < a < 1 and e1, · · · , en be an orthonormal basis in Rn. Define

Ta = {x ∈ R
n : |x · e1| ≤ a and |x · e2|2 + · · · + |x · en|2 ≤ 1}.

The following lemma estimates the dual quermassintegral of the generalized ellipsoid 
Ta.

Lemma 3.7. Let 0 < a < 1 and e1, · · · en be an orthonormal basis in Rn. If q > 0, then

lim
a→0+

∫
Sn−1

ρqTa
(u)du = 0.

Proof. Since q > 0, we have ρqTa
is bounded. Thus, by dominated convergence theorem,

lim
a→0+

∫
Sn−1

ρqTa
(u)du =

∫
Sn−1

lim
a→0+

ρqTa
(u)du.

It is simple to see that

lim
a→0+

ρTa
(u) =

{
1, if u ∈ span{e2, · · · , en},
0, otherwise.

Hence we get the desired result. �
We are ready to show the existence of an optimizer.
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Lemma 3.8. Let p, q > 0, p �= q, and μ be a non-zero even finite Borel measure on Sn−1. 
If μ is not concentrated in any great subsphere, then there exists K ∈ Kn

e such that

Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
e }. (3.7)

Proof. Let {Ql} ⊂ Kn
e be a maximizing sequence; i.e.,

lim
l→∞

Φp,q(Ql) = sup{Φp,q(Q) : Q ∈ Kn
e }.

Since Φp,q is homogeneous of degree 0, we may assume the diameter of Ql is 1. By 
Blaschke’s selection theorem, we may assume (take subsequence is necessary) that Ql

converges to an origin-symmetric compact subset K of Rn. Note that, by the continuity 
of Φp,q, if K contains the origin in its interior, then K satisfies (3.7).

To prove K contains the origin in its interior, we argue by contradiction and assume 
K is contained in some (n − 1)-dimensional subspace.

Since Ql is origin-symmetric, there exists an ellipsoid El (namely, the John ellipsoid, 
or the ellipsoid of maximal volume contained in Ql) such that

El ⊂ Ql ⊂
√
nEl.

Assume

El =
{
x ∈ R

n : |x · e1l|2
a2
1l

+ · · · + |x · enl|2
a2
nl

≤ 1
}
,

for some orthonormal basis e1l, · · · , enl in Rn and 0 < a1l ≤ · · · ≤ anl ≤ 1. By taking 
subsequences, we may assume

lim
l→∞

ail = ai,

for i = 1, · · · , n and e1l, · · · , enl converges to an orthonormal basis e1, · · · , en in Rn. 
Obviously, 0 ≤ a1 ≤ · · · ≤ an ≤ 1. Since K is contained in some lower dimensional 
subspace and El ⊂ Ql, we have a1 = 0. On the other hand, since the diameter of Ql is 1 
and that Ql ⊂

√
nEl, we have an > 0. Hence there exists ε0 > 0 such that anl > ε0 for 

each l > 0.
Define

Tl = {x ∈ R
n : |x · e1l| ≤ a1l and |x · e2l|2 + · · · + |x · enl|2 ≤ 1},

and

Gl = {x ∈ R
n : |x · e1l|2 + · · · + |x · en−1,l|2 ≤ a2

1l/2 and |x · enl| ≤ ε0/
√

2}.
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It is easy to see that

Gl ⊂ El ⊂ Ql ⊂
√
nEl ⊂

√
nTl.

Hence, by the fact that p, q > 0,

Φp,q(Ql) ≤ −1
p

log
∫

Sn−1

hp
Gl
dμ(v) + 1

q
log

∫
Sn−1

ρ√nTl
(u)qdu.

By Lemma 3.6, there exists L > 0 and c ∈ R such that for each l > L,

−1
p

log
∫

Sn−1

hp
Gl
dμ(v) ≤ c.

This and Lemma 3.7 imply

lim
l→∞

Φp,q(Ql) ≤ c + log
√
n + 1

q
log lim

l→∞

∫
Sn−1

ρTl
(u)qdu = −∞.

This is a contradiction to Ql being a maximizing sequence. �
The “if” part of the following theorem follows immediately from Lemmas 3.3 and 3.8

whereas the “only if” part is obvious.

Theorem 3.9. Let p, q > 0, p �= q, and μ be a non-zero even finite Borel measure on 
Sn−1. There exists K ∈ Kn

e such that μ = C̃p,q(K, ·) if and only if μ is not concentrated 
in any great subsphere.

Finally, let us consider the case p, q < 0 and p �= q. The proof to the following lemma 
is in the spirit of the proof to Lemma 6.5 in [34].

Lemma 3.10. Let p, q < 0, p �= q, and μ be a non-zero finite even Borel measure on Sn−1. 
If μ vanishes on all great subsphere, then there exists K ∈ Kn

e such that

Φp,q(K) = sup{Φp,q(Q) : Q ∈ Kn
e }.

Proof. Suppose {Ql} ⊂ Kn
e is a maximizing sequence. Since Φp,q is homogeneous of 

degree 0, we may assume 
∫
Sn−1 ρ

q
Ql

(u)du = 1. Arguing as in Lemma 3.4, we have Q∗
l

is uniformly bounded. Assume the bound is M . That is Q∗
l ⊂ MBn, where Bn is the 

n-dimensional unit ball.
By Blaschke’s selection theorem, we may assume Q∗

l converges to an origin-symmetric 
compact convex subset Q0 ⊂ R

n. Note that if Q0 contains the origin in its interior, then 
we may take K to be Q∗

0 by the continuity of Φp,q and the fact that Ql converges to K. 
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To show Q∗
0 contains the origin in its interior, let us prove by contradiction. Assume 

there exists u0 ∈ Sn−1 such that hQ∗
0 (±u0) = 0.

For each δ > 0, define

ωδ = {v ∈ Sn−1 : |v · u0| > δ}.

Note that ρQ∗
l

goes to 0 uniformly on ωδ.
Since μ is finite and μ vanishes on all great subsphere, we have

lim
δ→0+

μ(Sn−1 \ ωδ) = 0.

For each ε > 0, choose δ0 > 0 so that μ(Sn−1 \ ωδ0) < εMp/2. Since ρQ∗
l

goes to 0 
uniformly on ωδ0 and p < 0, we may choose L so that for each l > L,

ρQ∗
l
(v)−p <

1
|μ|ε/2,

for each v ∈ ωδ0 .
Thus, we have for each l > L,∫

Sn−1

hp
Ql

(v)dμ(v) =
∫

ωδ0

ρ−p
Q∗

l
(v)dμ(v) +

∫
Sn−1\ωδ0

ρ−p
Q∗

l
(v)dμ(v)

≤ ε/2 + ε/2

= ε

Hence

lim
l→∞

∫
Sn−1

hp
Ql

(v)dμ(v) = 0.

This, and the fact that 
∫
Sn−1 ρ

q
Ql

(u)du = 1, implies that

lim
l→∞

Φp,q(Ql) = −∞,

which is a contradiction to Ql being a maximizing sequence. �
The following theorem follows directly from Lemmas 3.3 and 3.10.

Theorem 3.11. Let p, q < 0, p �= q, and μ be a non-zero finite even Borel measure 
on Sn−1. If μ vanishes on all great subsphere, then there exists K ∈ Kn

e such that 
μ = C̃p,q(K, ·).
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4. Regularity and existence of smooth solutions

In this section, we will consider the regularity of the Lp dual Minkowski problem when 
p > q and the given measure has a density. In particular, the following solution to the 
Monge–Ampère equation (2.5) will be obtained.

Theorem 4.1. Suppose p > q and 0 < α ≤ 1. For any given positive function f ∈
Cα(Sn−1), there exists a unique solution h ∈ C2,α(Sn−1) to (2.5). If f is smooth, then 
the solution is also smooth.

For notational simplicity, define

F (hij , h) = det(hij + hδij),

and

J(∇h, h) = f(u)hp−1(h2 + |∇h|2)n−q
2 ,

for each positive function h ∈ C2,α(Sn−1).

4.1. Uniqueness

In order to prove Theorem 4.1, we first show the uniqueness part as [25,57]. It remains 
unknown whether the uniqueness result still holds if the regularity assumption of the 
convex body is removed (see, for example [57]).

Lemma 4.2. Suppose h1, h2 ∈ C2,α(Sn−1) are solutions to the Monge–Ampère equation 
with p > q

det(hij + hδij) = f(u)hp−1(h2 + |∇h|2)n−q
2 , u ∈ Sn−1. (4.1)

Then h1 ≡ h2.

Proof. We prove this by contradiction. Without loss of generality, we may assume h1 >

h2 somewhere on Sn−1. Hence, there exists a constant t ≥ 1 such that

th2 − h1 ≥ 0 on Sn−1, and th2 − h1 = 0 at some point P ∈ Sn−1.

For p > q, by homogeneity of F and J , the fact that h1, h2 solve (4.1), and that t ≥ 1, 
we have

F (h1
ij , h

1) = J(∇h1, h1),

F (th2 , th2) = tq−pJ(∇th2, th2) ≤ J(∇th2, th2).
ij
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Hence,

0 ≥ F (th2
ij , th

2) − F (h1
ij , h

1) + J(∇h1, h1) − J(∇th2, th2)

=
1∫

0

dF (εth2
ij + (1 − ε)h1

ij , εth
2 + (1 − ε)h1)

dε
dε−

1∫
0

dJ(ε∇th2 + (1 − ε)∇h1)
dε

dε

=
1∫

0

∂F (εth2
ij + (1 − ε)h1

ij , εth
2 + (1 − ε)h1)

∂hij
dε[((th2 − h1)ij + (th2 − h1)δij)]

−
1∫

0

∂J(ε∇th2 + (1 − ε)∇h1)
∂hi

dε(th2 − h1)i

−
1∫

0

∂J(ε∇th2 + (1 − ε)∇h1)
∂h

dε(th2 − h1).

That is, th2−h1 satisfies an elliptic inequality. The strong maximum principle (Theorem 
3.5 in [24]) yields th2 ≡ h1 on Sn−1. This implies that th2 solves (4.1), i.e.,

F (th2
ij , th

2) = J(∇th2, th2)

= t(p−1−q+n)J(∇h2, h2)

= t(p−1−q+n)F (h2
ij , h

2).

But the homogeneity of F implies

F (th2
ij , th

2) = tn−1F (h2
ij , h

2).

Thus, we have tp−q = 1, which implies that t = 1. �
Note that the condition p > q comes in critically in the above lemma.

4.2. Existence

The existence part of Theorem 4.1 will be demonstrated in this subsection.
According to the path (3.4) of variational formula, we define Lh to be the linearized 

operator of (4.1) at h, that is, for each ζ ∈ C2,α(Sn−1),

Lh(ζ) = d(F ((hεζ)ij , hεζ) − J(∇(hεζ), hεζ))
dε

∣∣∣∣
ε=0

= ∂F

∂hij
((hζ)ij + hζδij) −

∂J

∂hi
(hζ)i −

∂J

∂h
hζ, (4.2)

where hε = heεζ .
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Lemma 4.3. Suppose p > q and h > 0 is a solution to (4.1). If ζ ∈ C2,α(Sn−1) solves

Lh(ζ) = 0,

then ζ ≡ 0 on Sn−1.

Proof. From Lh(ζ) = 0 and (4.2), we have

0 = Lh(ζ) = ∂F

∂hij
((hζ)ij + hζδij) −

∂J

∂hi
(hζ)i −

∂J

∂h
hζ

= ζLh(1) + h
∂F

∂hij
ζij + 2 ∂F

∂hij
hiζj − h

∂J

∂hi
ζi.

Note that the matrix 
(

∂F
∂hij

)
(n−1)×(n−1)

is positive definite. Therefore, at any (global) 
minimum point of z, one has

h
∂F

∂hij
ζij + +2 ∂F

∂hij
hiζj − h

∂J

∂hi
ζi ≥ 0,

which implies

ζLh(1) ≤ 0.

By homogeneity of the Monge–Ampère equation (4.1), it is simple to see that if p > q,

Lh(1) = (q − p)J(h,∇h) < 0.

Thus, the minimum value of ζ must be nonnegative. Similarly, the maximum value of ζ
must be nonpositive. Hence ζ ≡ 0. �

Now we are ready to prove Theorem 4.1.

Proof. By Lemma 4.2, only the existence part needs a proof.
We will use the continuity methods to establish the existence. For each t ∈ [0, 1], 

consider the following family of equations

det(hij + hδij) = [(1 − t) + tf ]hp−1(h2 + |∇h|2)n−q
2 . (4.3)

Let I be the set defined by

I = {t ∈ [0, 1]|(4.3) admits a solution ht ∈ Ck+2(Sn−1)}.

Clearly 0 ∈ I since h ≡ 1 is a solution to (4.3) when t = 0. We prove that I = [0, 1] by 
showing I is both open and closed.
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The openness of I follows from Lemma 4.3.
It remains to prove the closeness of I, which is equivalent to making the following 

a priori estimates.

• Step I, C0 estimates: Assume the solution h of (2.5) attains its maximal at u0 ∈ Sn−1. 
Then

h(u0)n−1 ≥ f(u0)h(u0)p−1+n−q ⇒ h(u0) ≤
(

1
inf f

) 1
p−q

provided p > q. In the same way, we have for p > q,

(
1

sup f

) 1
p−q

≤ h ≤
(

1
inf f

) 1
p−q

, x ∈ R
n−1. (4.4)

• Step II, C1 estimates: Assume that h ∈ C2,α(Sn−1) is a solution of (2.5) for q < p. 
By (4.4),

|∇h| ≤
(

1
inf f

) 1
p−q

. (4.5)

Indeed, consider the maximum point u0 of the function h2 + |∇h|2, we have

(hij + hδij)hj = 0.

If det(hij + hδij) �= 0, then |∇h(u0)| = 0. Thus max(h2 + |∇h|2) ≤ max h2. If 
det(hij + hδij) = 0, we consider hε = h + ε for ε > 0. Repeat the above process, one 
has max(h2

ε + |∇hε|2) ≤ max h2
ε. Let ε → 0, we get (4.5).

• Step III, C2 estimates: (4.4) and (4.5) say that the Gauss curvature G satisfies

1
C5

≤ det(hij + hδij) ≤ C5.

With the above bound, Caffarelli’s result [14] implies h ∈ C1,α. Then C2,α follows 
from Caffarelli’s Schauder estimate in Theorem 4 in [13].
To be more precise, we may first transfer (2.5) from Sn−1 to Rn−1 (see pp. 13–18 in 
Pogorelov [57]) and then apply Caffarelli [13,14]. For readers’ convenience, we include 
a brief sketch for the transfer process.
We claim that for e ∈ Sn−1 and a convex solution h to (2.5), then (after extending 
h to Sn−1 \ {o} as a positively homogeneous function of degree 1) the function 
v(x) = h(x + e) defined for x ∈ e⊥ is a solution to
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det(vij) =
f
(

x+e
|x+e|

)
|x + e|n+p

vp−1(|Dv|2 + (v − x ·Dv)2)
n−q

2 , x ∈ e⊥.

Here Dv is the regular Euclidean gradient of v in e⊥.
For x ∈ e⊥, define π(x) = x+e

|x+e| . Lemma 3.1 in Bianchi, Böröczky & Colesanti [5]
showed the claim for q = n. Therefore, to prove our claim, we only need to show(

h2 + |∇h|2
)∣∣

π(x) = |Dv|2 + (v − x ·Dv)2, x ∈ e⊥. (4.6)

Towards this end, notice that since h is positively homogeneous of degree 1,(
h2 + |∇h|2

)∣∣
π(x) = |Dh(x + e)|2. (4.7)

Here Dh is the regular Euclidean gradient of h in Rn. By the definition of v and the 
fact that x ∈ e⊥, we have

Dwv(x) = Dwh(x + e), ∀w ∈ e⊥. (4.8)

On the other side, note that h(x + te) = th(xt + e) = tv(xt ). Hence

∂h(x + te)
∂t

= v
(x
t

)
− 1

t
x ·Dv

(x
t

)
,

or

Deh(x + e) = v(x) − x ·Dv. (4.9)

Equation (4.6) now follows immediately from (4.7), (4.8), and (4.9). �
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