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How Inhomogeneous Site 
Percolation Works on Bethe 
Lattices: Theory and Application
Jingli Ren1, Liying Zhang1 & Stefan Siegmund2

Inhomogeneous percolation, for its closer relationship with real-life, can be more useful and reasonable 
than homogeneous percolation to illustrate the critical phenomena and dynamical behaviour of 
complex networks. However, due to its intricacy, the theoretical framework of inhomogeneous 
percolation is far from being complete and many challenging problems are still open. In this paper, we 
first investigate inhomogeneous site percolation on Bethe Lattices with two occupation probabilities, 
and then extend the result to percolation with m occupation probabilities. The critical behaviour of this 
inhomogeneous percolation is shown clearly by formulating the percolation probability P p( )∞  with given 
occupation probability p, the critical occupation probability p p P p= sup{ ( ) = 0}c ∞ , and the average 
cluster size χ p( ) where p is subject to P p( ) = 0∞ . Moreover, using the above theory, we discuss in detail 
the diffusion behaviour of an infectious disease (SARS) and present specific disease-control strategies in 
consideration of groups with different infection probabilities.

Percolation (for reviews see Stauffer 19791, Essam 19802) is the random occupation of sites or bonds on lattices 
or networks, named as site percolation or bond percolation, respectively. Site percolation is more general than 
bond percolation because every bond model may be reformulated as a site model (on a different graph) and the 
converse is in general not true3. The appeal of percolation is the occurrence of a critical phenomenon, which has 
attracted attention for a wide range of applications: liquid flows in porous media4,5, epidemic spread6–8, granular 
and composite materials9–12, forest fires13–15 and fracture patterns and earthquakes in rocks16.

The research originated from homogeneous percolation, i.e., percolation with a single occupation probability. 
For example, Fisher and Essam (1961) solved homogeneous percolation problems on Bethe lattices17; Sykes and 
Essam (1964) studied the exact critical occupation probabilities in two dimensions18; Gerald (et al., 2001) derived 
the value of critical occupation probabilities for a four-dimensional percolation problem on hyper-cubic lattices19.

Building on those results, researchers began to study inhomogeneous percolation20–26, in which sites  
(or bonds) may have different occupation probabilities. In 1982, Kesten20 obtained a critical surface of occupa-
tion probabilities for inhomogeneous percolation on square lattices. In 2013, Grimmett21 extended the result of 
inhomogeneous bond percolation to triangular and hexagonal lattices utilizing Russo-Seymour-Welsh (RSW) 
theory of box-crossings. Recently, Radicchi27 studied percolation on not necessarily infinite graphs and used 
graph decomposition methods to identify abrupt and continuous changes in percolation.

In the current paper, we focus on inhomogeneous percolation on Bethe lattices. The interest in a good under-
standing of this inhomogeneous percolation process is twofold. Firstly, Bethe lattices might hold fractal struc-
tures, which allow more complex behaviour than square or triangular lattices. The results of this inhomogeneous 
percolation on Bethe lattices have more extensive applications, e.g., the spreading problem of social networks or 
infectious diseases (see section III). Secondly, as is well known, most results on percolation are obtained using the 
heuristic approximation or numerical approaches27–29 and it is difficult to get the exact solutions for average clus-
ter sizes and the percolation probability even for homogeneous percolation. In this paper, we investigate inhomo-
geneous site percolation on Bethe lattices from two occupation probabilities to m occupation probabilities: for the 
case of two occupation probabilities, we present the explicit formula of the critical occupation probability and the 
exact solution of average cluster size χ p( ); and for the case of m occupation probabilities, because of computa-
tional complexity, we formulate and obtain the numerical solutions of average cluster size and percolation prob-
ability, which might shed light on deriving the results of inhomogeneous percolation. Besides, we analyse in detail 

1School of Mathematics and Statistics, Zhengzhou University, 450001 Zhengzhou, P.R. China. 2Center for Dynamics 
& Institute for Analysis, Department of Mathematics, TU Dresden, 01062 Dresden, Germany. Correspondence and 
requests for materials should be addressed to J.R. (email: renjl@zzu.edu.cn)

received: 29 October 2015

accepted: 15 February 2016

Published: 01 March 2016

OPEN

mailto:renjl@zzu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:22420 | DOI: 10.1038/srep22420

the spread of SARS (an infectious disease) using this inhomogeneous percolation on Bethe lattices with dynami-
cally changing parameters. We present specific control strategies for SARS by comparing the critical infection 
probabilities, the average numbers of infected individuals for each day, and the probability of the large-scale 
outbreak of SARS.

Basic theory
In ref. 30 a Bethe lattices is defined to be a tree where each site has Z neighbours, Z is also named coordination 
number. For the sake of convenience, we denote it as BL Z( ).

On a Bethe lattices, if all sites are occupied randomly with the same probability p, independent of its neigh-
bours, we call the percolation process as homogeneous site percolation and write it as PBL Z p( ; ). If the sites of a 
Bethe lattices BL Z( ) are occupied with different probabilities, then the percolation is inhomogeneous. To be con-
crete, without loss of generality, assume that Z neighbours of each site are occupied randomly with m 

∈ ≤m m Z( , ) occupation probabilities 
p p, , m1 , and then, we divide Z neighbours of each site into m 

different groups (m is the number of types of neighbours according to occupation probabilities), where, n1 of Z 
neighbours are sites with occupation probability p1, n2 are sites with occupation probability 

p , ,2   
and nm  are sites with occupation probabilitypm . The inhomogeneous percolation is indicated with 

PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2 . See Fig. 1 for an illustration of  .PBL p p(3; (1, ), (2, ))1 2
In this paper, we first consider inhomogeneous percolation on a Bethe lattices with =m 2, that is 

PBL Z n p n p( ; ( , ), ( , ))1 1 2 2 . Clearly, in this case if =p p1 2 or =n 01  or =n 02 , inhomogeneous percolation will 
specialize to homogeneous percolation on BL(Z)30. In a second step, we generalize the results of 
PBL Z n p n p( ; ( , ), ( , ))1 1 2 2  to the case of 

PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2 .

Critical surface of occupation probability.   Occupation probability is the probability with which the sites 
of a network are occupied. For PBL Z n p n p( ; ( , ), ( , ))1 1 2 2 , assume that a grandparent site is a first type-site on an 
infinite lattice, then for the parent site, there are −n 11  sub-branches that begin with the first type-sites and n2 
sub-branches beginning with the second type-sites (Fig. 1.). According to the binomial distribution, only 
− +n p n p( 1)1 1 2 2 branches are accessible on average. On the other hand, if the grandparent site is a second 

type-site, then for the parent site, there are n1 sub-branches that begin with first type-sites and −n 12  sub-branches 
which begin with second type-sites. In this case, on average, only + −n p n p( 1)1 1 2 2 branches are accessible. 
Recalling that the ratio of these two types of sites is n n/1 2, and according to expectation theory, on average, only

− + + + −

+

n n p n p n n p n p
n n

[( 1) ] [ ( 1) ]

(1)
1 1 1 2 2 2 1 1 2 2

1 2

branches are accessible at each step. In order to get an infinite cluster, it is necessary that the quantity (1) is equal 
or greater than one. Therefore, the critical condition such that an infinite cluster (percolating cluster) first occurs is

− + − + +

+
=

n n p n n p n n p p
n n

( 1) ( 1) ( )
1

(2)
1 1 1 2 2 2 1 2 1 2

1 2

from equation (2), we derive the critical surface of occupation probability

+ =
+
+ −

n p n p n n
n n 1 (3)1 1 2 2

1 2

1 2

this critical surface of PBL Z n p n p( ; ( , ), ( , ))1 1 2 2  is a line with slope −n n/1 2 in the occupation probabilities set 
[0, 1]2. As an example, see Fig. 2(a) for an illustration of the critical surface of PBL p p(3; (1, ), (2, ))1 2 .

In a similar way, we can derive the following result.

Figure 1.  PBL(3; (1, p1), (2, p2)) with 3 sub-generations. 
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Theorem 1. The critical surface of 
PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2  is given by

+ + + =
+ + +
+ + + −

.





n p n p n p n n n
n n n 1 (4)m m

m

m
1 1 2 2

1 2

1 2

Proof of Theorem 1.  For 
PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2 , if the grandparent site is an ith 

= i m( 1, , ) type-site, then for the parent site, there are −n 1i  sub-branches that begin with an ith type-site and 
nk = ≠k m k i( 1, 2, , , ) sub-branches beginning with kth type-sites (Fig. 1). According to the multi-binomial 
distribution, in this case only ∑ + −= ≠ n p n p( 1)k k i

m
k k i i1,  branches are accessible on average.

Recalling the occupation probabilities for all types of sites and according to expectation theory, overall, only

ϕ
∑ ∑ + −

∑
== = ≠

=
ˆ

n n p n p
n

p
[ ( 1) ]

( )
(5)

i
m

i k k i
m

k k i i

i
m

i

1 1,

1

branches are accessible on average. In view that ϕ p( ) is equal to one on the critical surfaces, we have equation (4), 
the critical surface of 

PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2 .
It is clear that >∞P p( ) 0 if ϕ >p( ) 1; =∞P p( ) 0 if ϕ ≤p( ) 1, where, = ∈p p p p( , , , ) [0, 1]m

m
1 2 ; ∞P p( ) is 

the percolation probability (existing infinite clusters). The theory generalizes the concept of exact critical value pc 
in  homogeneous percolat ion.  For consistency,  we a lso indicated the cr it ica l  surface of 

PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2  bypc . The critical surface ϕ= | =p p p{ ( ) 1}c  is the subset of the 
occupation-probability set | ≤ ≤ p p p p p p{ , , , 0 , , , 1}m m1 2 1 2  with all = p p p p( , , , )m1 2  satisfying equa-
tion (4). Then, in the supercritical phase, >p pc stands for ϕ| >p p{ ( ) 1}, and there exists almost surely at least 
one infinite cluster of occupied sites. Contrarily, in the subcritical phase, <p pc stands for ϕ| <p p{ ( ) 1}, and all 
clusters of occupied sites are almost surely finite. For an illustration, Fig. 3(b) is the critical surface of 
PBL p p p(6; (1, ), (2, ), (3, ))1 2 3 .

For an intuitive understanding, take =p p1  as a reference, and = = p k p i m, 2, 3, ,i i , we have from equa-
tion (4) that = + + +

+ + + − + + +


 

pc
n n n

n n n n k n k n( 1) ( )
m

m m m

1 2

1 2 1 2 2
. In this case pc is degenerated to a critical point, which is 

consistent with homogeneous percolation (in the supercritical phase, >p pc and in the subcritical phase, <p p )c .
The critical surface of occupation probabilities consists of those probabilities at which the percolation behav-

iour of the system changes essentially. We can control the percolation behaviour if we know the critical surface of 
occupation probabilities.

Figure 2.  Critical surface of occupation probability. (a) Critical surface of occupation probability of 
PBL p p(3; (1, ), (2, ))1 2 . (b) Critical surface of occupation probability of PBL p p p(6; (1, ), (2, ), (3, ))1 2 3 .
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Average cluster size of occupied sites.  The average cluster size χ p p( , )1 2  of occupied sites is the mean 
size of the finite (non-percolating) clusters of occupied sites. It is closely related to the critical surface of occupa-
tion probabilities. We consider χ p p( , )1 2  and the relationship between χ p p( , )1 2  and critical surface.

Theorem 2.  Assume that the Bethe lattice BL Z( ) is infinite with occupation probabilities =p p p( , )1 2  such that 
≤ ≤p p p p{ , 0 , 1}1 2 1 2 , then the average cluster size of occupied sites of PBL Z n p n p( ; ( , ), ( , ))1 1 2 2  satisfies

χ =
+ + + + + +

+ + + − | − |
p p

n n p p p p B n p n p A
n n n n p p B

( , )
( )(1 ) ( )

( )[1 ( 1) ] 1 (6)1 2
1 2 1 2 1 2 1 1 2 2

1 2 1 2 1 2

where = + + +A n p n p n n p p( )1 1 2 2 1 2 1 2, = − + − + + −B n p n p n n p p( 1) ( 1) ( 1)1 1 2 2 1 2 1 2.

Proof of Theorem 2. If the Bethe lattice is infinite, all sites are equivalent for evaluating the average cluster size of 
occupied sites. Let χ p p( , )i 1 2  be the average cluster size of the centre sites which are of type i =i( 1, 2), and 

=B i j( , 1, 2)ij  be the contribution (to the average cluster size) from a sub-branch which begins with a jth type-site 
and whose parent site is an ith type-site (Fig. 1). Then

χ = + + =p p n B n B i( , ) 1 , 1, 2 (7)i i i1 2 1 1 2 2

where, the first term is the contribution from the centre site itself, the second term is the contribution from the 
first type branches, and the third term is the contribution of the second type branches.

According to expectation theory, on average, the average cluster size is

χ
χ χ

=
⋅ + ⋅

+
p p

n p p n p p
n n

( , )
( , ) ( , )

(8)1 2
1 1 1 2 2 2 1 2

1 2

Based on definition of inhomogeneous percolation on a Bethe lattice, the following recurrence relations can 
be concluded

∑=





+ + −







=
= ≠

B p n B n B i j1 ( 1) , , 1, 2
(9)

ij j
k k i

k jk i ji
1,

2

Solving Bij from equation (9), we have from (7) and (8) that

χ χ=
+ + + +

+ + − | − |
=

+ + + +

+ + − | − |
p p

p p p A p p B
n n p p B

p p
p p p A p p B
n n p p B

( , )
1

[1 ( 1) ] 1
, ( , )

1
[1 ( 1) ] 11 1 2

1 2 1 1 2

1 2 1 2
2 1 2

1 2 2 1 2

1 2 1 2

and

χ =
+ + + + + +

+ + + − | − |
p p

n n p p p p B n p n p A
n n n n p p B

( , )
( )(1 ) ( )

( )[1 ( 1) ] 11 2
1 2 1 2 1 2 1 1 2 2

1 2 1 2 1 2

where, = + + +A n p n p n n p p( )1 1 2 2 1 2 1 2 and = − + − + + −B n p n p n n p p( 1) ( 1) ( 1)1 1 2 2 1 2 1 2.
For =p p1 2 or =n 01  or =n 02 , equation (6) reduces to χ = +

− −
p( ) p

Z p
1

1 ( 1)
.

Figure 3.  Average cluster size χ(p) of PBL(3; (1, p1), (2, p2)). The left-hand curve is a sketch of the average 
cluster size χ p( ) and the right-hand curve is a sketch of the mean size of finite clusters of occupied sites when 
>p pc.



www.nature.com/scientificreports/

5Scientific Reports | 6:22420 | DOI: 10.1038/srep22420

The average cluster size (of occupied sites) χ p p( , )1 2 , which is a function of the occupation probability 
=p p p( , )1 2 , can reveal the intensity of percolation. For <p pc , χ p( ) increases rapidly with p (Fig. 3), and 

diverges in a power law of the distance between p and pc, as p approaches pc from below. For >p pc, there exist 
infinite clusters of occupied sites and their number increases as →p 1. On the other hand, the numbers of finite 
clusters (of occupied sites) and their sizes are reducing. Therefore, for >p pc, the average sizes of finite clusters 
χ p p( , )1 2  decrease with p increasing (Fig. 3).

Simi lar ly,  genera l iz ing  the  resu lt  to  
PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2 ,  we  f i rst  solve 

= B i j m( , 1, 2, , )ij  from equation (10), where the Bij have the same meaning as above

∑=





+ + −







= .
= ≠

B p n B n B i j m1 ( 1) , , 1, 2, ,
(10)

ij j
k k i

m

k jk i ji
1,

Then, substitute the solution of equation (10) into equation (11) to get the values of χ = p k m( ), 1, 2, ,k , 
here = p p p p( , , , )m1 2 .

∑χ = + =
=

p n B k m( ) 1 , 1, 2, ,
(11)

k
j

m

j kj
1

According to expectation theory, the average cluster size is

χ
χ

=
∑ ⋅

∑
=

=

p
n p

n
( )

( )

(12)
k
m

k k

k
m

k

1

1

Because the explicit expression of χ p( ) is very complex, we provide only the derivation process.

Percolation probability.  In this part, we mainly discuss the percolation probability, i.e., the probability that 
the origin site belongs to a percolating infinite cluster. Percolation probability is indicated as ∞P p( ) that can reveal 
the intensity of percolating, for >p pc (Fig. 4).

For PBL Z n p n p( ; ( , ), ( , ))1 1 2 2 , in order to determine ∞P p( ), let ∞P p( )i  denote the probability that an ith type 
origin site belongs to a percolating infinite cluster, where =p p p( , )1 2 , =i 1, 2.

A site belongs to a percolating infinite cluster, which means, not only the site itself is occupied, but also at least 
one of the = +Z n n1 2 branches (originating from the site) connects to the percolating cluster. Both of these are 
independent of each other, so, = −∞P p p p Q Q( , ) (1 )i

i i
n

i
n

1 2 1 2
1 2 . According to mean theory, it can be concluded that

=
⋅ + ⋅

+

=
⋅ ⋅ − + ⋅ −

+

∞
∞ ∞P p p

n P p p n P p p
n n

n p Q Q n p Q Q
n n

( , )
( , ) ( , )

(1 ) (1 )

(13)

n n n n

1 2
1

1
1 2 2

2
1 2

1 2

1 1 11 12 2 2 21 22

1 2

1 2 1 2

where, =Q i j, , 1, 2ij , is the probability that a sub-branch does not connect to the percolating cluster and the 
sub-branch begins with a jth type-site, whose parent site is an ith type-site. Then, we have

Figure 4.  Percolation probability P∞(p) of PBL (3; (1, p1), (2, p2)). 
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
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1 2

for each equation of (14), the first term is the probability that the root site of a sub-branch is not occupied and the 
second term is the probability that the root site of the sub-branch is occupied but no child sub-branch connects 
to the percolating cluster.

If ≤p pc , equation  (14) has only the trivial solution = =Q i j1, , 1, 2ij , then from (13) we have 
= = =∞ ∞ ∞P p P p P p( ) ( ) ( ) 01 2  (Fig. 4). If >p pc, there is a nontrivial solution for equation (14) and then equa-

tion (13) has a nonzero solution. In this case, it is not easy to get the exact nontrivial solution of equation (14) for 
it is a set of multivariable high-order equations. By employing fixed-point iteration, we get a numerical solution 
of equation (14) instead and then obtain the percolation probability from (13). From the numerical solution 
(Fig. 4), it can be seen that ∞P p( ) picks up abruptly at pc then increases rapidly with p increasing.

We extend the result to 
PBL Z n p n p n p( ; ( , ), ( , ), , ( , ))m m1 1 2 2  by a similar analysis. In this general case, 

= Q i j m, , 1, 2, ,ij  satisfy Q( ij meaning the same as above)

∏= − + = .−

= ≠
Q p p Q Q i j m(1 ) , , 1, 2, ,

(15)
ij j j ji

n

k k i

m

jk
n1

1,

i k

Firstly, derive the solution of (15) by fixed-point iteration, and then substitute Qij into (16),

=
∑ ⋅ ⋅ − ∏

∑
.∞

= =

=



( )
P p p p

n p Q

n
( , , , )

1

(16)m
k
m

k k j
m

kj
n

k
m

k
1 2

1 1

1

j

This way, we get ∞P p( ), where = p p p p( , , , )m1 2 .

Percolation model of the disease spreading (SARS in Beijing, 2003).  Severe acute respiratory syn-
drome (SARS) is a viral respiratory illness caused by a corona-virus. In Beijing (China), about 2523 cases have 
been infected with SARS in 2003. At the beginning of emergence, because of the lack of understanding of SARS 
and the high mobility of the modern-social activities, SARS spread rapidly. Afterwards, when people found the 
high infectivity and death rate of SARS, they begun to limit social activity of the public and take strict isolated 
measure to prevent the spreading of disease then the disease was contained. Is this the proper infection control 
measure of SARS? Which kind of infectious diseases are suitable for this approach?

In fact, the spreading of SARS is a percolation process. Considering the differences of physical resistibility or 
intimate contact with the infected individual, we divided people into two groups: the people with higher infection 
probability (e.g., infants and elderly or healthcare workers), named as susceptible persons; and the people with 
lower infection probability, named as common persons. Then this disease is modelled as inhomogeneous perco-
lation on Bethe lattices with two occupied probabilities, i.e., −PBL Z S p Z S kp( ; ( , ), ( , )). Here, Z is the average 
contact number of each person, S (of Z) denotes susceptible persons with infection probability p and Z-S (of Z) is 
common persons with infection probability kp ≤ ≤k(0 1).

The first case of SARS was confirmed on March 5 (in Beijing, 2003) and the government started reporting 
the cases from April 20. According to case-reporting data from April 20 to June 23 (in Beijing, 2003) (from the 
government bulletin) and the control activities of government, we find three other critical time points of SARS: 
May 1 (it is legal holidays from May 1 to May 7), May 14 (people generally panicked over SARS and limited their 
social activities), and May 30 (new cases of SARS considerably decreased). Correspondingly, the spreading pro-
cess of SARS was divided into five stages. Then, by random simulation, we found that the spreading of SARS has a 
fifteen-day time delay. Therefore, we changed the five stages of the spreading process of SARS into: stage 1—from 
March 20 to May 4, stage 2—from May 5 to May 15, stage 3—from May 16 to May 28, stage 4—from May 29 to 
June 13, and stage 5—from June 14 to June 23.

In the initial stage, the average contact number of one infected patient was around fifteen =Z( 15), in which 
two or three person had infected SARS (Gong et al.31), so the infection probability was around . = .p0 149( 0 149). 
We take =S 4 according to the percentage of susceptible people in the population and we set = .k 0 4 by statistical 
investigation. It is worth noting that the infection probability p is the manifestation of the spreading intensity of 
the disease, which can only be slightly affected by the protective approach. Therefore, the infection probability was 
adjusted to 0.1425 in the second stage and third stage, and was adjusted to 0.141 in the fourth stage and fifth stage. 
The other parameters, i.e., Z and S would change with prevention (isolation of infected patient and restriction of 
travel) and k remains unchanged in different stages. By statistical investigation, we set Z =  13 and S =  4 in second 
stage, Z =  12 and S =  3 in third stage, Z =  11 and S =  3 in fourth stage, Z =  8 and S =  2 in fifth stage.

Obviously, the spreading model of SARS (in Beijing) is inhomogeneous percolation on a Bethe lattice with 
dynamically changing parameters. See Table 1 for the model division and the parameters.

Results of percolation model and control measures.  From equation (3), equation (6), and equa-
tion (13), we acquire the critical infection probabilities, average number of infected individuals, and the probabil-
ity of large-scale outbreak for the SARS percolation model −PBL Z S p Z S kp( ; ( , ), ( , )) in different spreading 
stages (Table 1).
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It can be concluded from Table 1, that, if one is infected with SARS and would live as a normal person, then 
the disease would infect a massive crowd of healthy people except for ≤Z 13 and ≤S 3. That warns us, at the 
initial stage of SARS, humankind should try their best to find SARS patients as early as possible and isolate them 
from healthy people. Nevertheless, during the incubation period, it is inevitable that some infected persons, who 
cannot be found and live as the normal person around us that is quite dangerous. At this time, the most effective 
way is to reduce outdoor activities of public then cut down the average contact number.

For more accurate and meticulous disease-control strategies, we scrutinized the dynamic-dependent relation-
ship between p p, c and the average number of infected cases with subtle parameters by a Monte-Carlo simulation. 
In the initial stage of the SARS process, from March 20 to April 8, according to the above analysis, 
= = = .Z S k15, 4, 0 4, and = .p 0 149, based on these, the average number of infected cases of each day was 

simulated. See Fig. 5(a) for an illustration. It is clear that the random variation of the infected number has an 
incremental trend and that implies that the disease would infect a large amount of persons. Then from April 9 to 
April 19, during the second stage of SARS, some protective measures were taken with the understanding of the 
disease, so parameters changed to = = = .Z S k13, 4, 0 4, and = .p 0 1425. By simulation, we found that the 
infected number changes chaotically as in Fig. 5(b). With the time going by, from April 20 to May 4, the severity 
of the disease gradually being known, more protective measures were taken and parameters reduced further to 
= = = .Z S k12, 3, 0 4, and = .p 0 1425. In this stage, the simulation revealed that the average infected number 

of each day fluctuates with a trend of decline and it would be zero after a period, which predicates the infectious 
disease can be controlled without any additional measures (Fig. 5(c)). In fact, by simulating the percolation, we 
acquire = . <p p0 1276( )c  in the initial stage, = . =p p0 1425( )c  in the second stage, and = . >p p0 1653( )c  in the 
third stage, i.e., the initial stage is a supercritical phase of the spread of SARS, the second stage is a critical phase, 
and the third stage is a subcritical phase, which agrees with the simulation. We could conclude that, near the 

Mar. 20-May 4 May 5-May 15 May 16-May 28 May 29-June 13 June 14-June 23

Infection probability—p 0.149 0.1425 0.1425 0.141 0.141

Average contact number—Z(S, Z-S) 15(4, 11) 13(4, 9) 12(3, 9) 11(3, 8) 8(2, 6)

Critical infection probability—pc 0.1276 0.1425 0.1653 0.1774 0.2597

Average infected persons by one patient infinite infinite 74.77 17.4 3.0277

Probability of large-scale outbreak—p∞  0.0233 0.0045 0 0 0

Table 1.   The results of inhomogeneous percolation of SARS and some parameters by simulation and 
statistical analysis.

Figure 5.  The average number of infected individuals versus every day with infection probabilities that are 
larger, equal, and smaller than critical infection probability. 
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critical point, slightly adjusting of the system parameters would cause a fundamental change of the trend of infec-
tious diseases. Therefore, in order control the large-scale outbreak of the disease, we must try our best to make 
<p pc, even if the infection probability is only a little smaller than the critical infection probability. Actually, if 
<p pc, the probability of a large outbreak of SARS is zero; and if p reaches and crosses pc, the probability picks up 

as a power law with exponent one in terms of p-pc, and the disease will outbreak rapidly.

Figure 6.  Simulation results (a) Cumulative cases of SARS with simulation data and actual data. (b) Daily new 
cases of simulation and report. (c) The cumulative cases and daily new cases by simulation.
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As we know, reducing outdoor activities of the public is a powerful strategy for infectious disease with latent 
period but it severely obstructs the people’s daily life and social economy. The methods in this paper will supply a 
quantitative measure for the risk of disease outbreaks and to guide our practice more appropriately.

Predictions
Based on the model of the spreading of SARS, we could supplement the data of cases from March 5 to April 20, 
during which the recording data was missing. See Fig. 6.

Figure 6(a) is the actual cumulative case-reporting data and simulative data. New cases of each day are dis-
played in Fig. 6(b). We can find that the inhomogeneous percolation is in good fitting with the dynamic process 
of SARS spreading and time delay is the considerable feature of SARS. The relationship between cumulative con-
firmed cases and cases out of effective control displays in Fig. 6(c). It can be seen that there will be many persons 
infected with SARS even if only a few cases of SARS are out of effective control.

Sensitivity analysis.  The sensitivity index is the ratio of the change in output to the change in input of 
parameters or variables32. Taking into account the characteristics of the model, we employ a one factor at a time 
(OAT) approach, which is more agile and easy to interpret. The popular sensitivity index of OAT approach is 

θ = ⋅
θ

θ∂
∂

SI Y( , ) Y
Y

, where Y is the output, θ is the input, θSI Y( , ) is the sensitivity index of Y to θ, and 
θ
∂
∂
Y  is the 

partial derivative of Y with respect to θ. The quotient θ
Y

 is introduced to normalize the index by removing the 
affects of units33.

First, we get =
− + −

pc
Z

Z S k Z S( 1) [ ( ) ]
 from equation (3), and then derive that:

= −
+ −

− + −

= −
−

+ −
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.
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c
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Where, pc is the critical infection probability, one of the output of the SARS-percolation model; Z S k, ,  denote the 
average contact number of each patient, the number of susceptible persons of Z, the ratio of infection probabilities 
of susceptible person to common person (see page 12), respectively. They are all input parameters.

Based on the Table 1, the sensitivity indexes of pcto three input parameters at five critical time points are 
obtained, which are all negative scalars. These suggest that the decreasing of each input parameters correspond to 
the increasing of pc. Among them, the absolute value of SI p Z( , )c  is about 0.8, which is maximum, | |SI p k( , )c  is 
about 0.5, and | |SI p S( , )c  is about 0.3. It is clear thatpc  has greater sensitivity to Z. See Fig. 7(a) for an 
illustration.

By a similar analysis with a numerical approach, we obtain χSI p p( ( ), ) and ∞SI P p p( ( ), ). The sensitivity index 
χSI p p( ( ), ) is shown in Fig. 7(b). It indicates that χ p( ) is more sensitive near the pc. Since χ p( ) is the average size 

Figure 7.  Sensitivity index (a) Sensitivity index of critical infection probability to input parameters-Z, S and k 
on five critical days of SARS in Beijing (2003) (b) Sensitivity index of the average infected cases by one patient 
to input variable p (infection probability). (c) Sensitivity index of the probability of SARS large-scale outbreak to 
input variable p.
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of all-finite clusters of infected cases, the χSI p p( ( ), ) exhibits negative value when p is greater than pc. By a 
numerical approach, the sensitivity of the probability of large-scalar outbreak of SARS ∞SI P p p( ( ), ) is displayed 
in Fig. 7(c). ∞SI P p p( ( ), ) has similar characteristics as χSI p p( ( ), ). They are both more sensitive near the pc.

Conclusion
In this paper, we present a theoretical framework for inhomogeneous site percolation on Bethe Lattices, and 
apply it to investigate a diffusion problem of an infectious disease. It is found that the inhomogeneous percolation 
on Bethe lattices serves as an appropriate model to describe the dynamic spreading behaviour of the infectious 
disease (SARS). The percolation model of SARS is not only in good agreement with the actual recorded data, but 
also can be used to predict the future trend of the disease and supply the missing data of the past. Moreover, it can 
provide quantitative results for government to make more proper disease-control strategies.
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