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A well known theorem of Kuratowski in 1932 states that a 
graph is planar if, and only if, it does not contain a subdivision 
of K5 or K3,3. Wagner proved in 1937 that if a graph other 
than K5 does not contain any subdivision of K3,3 then it is 
planar or it admits a cut of size at most 2. Kelmans and, 
independently, Seymour conjectured in the 1970s that if a 
graph does not contain any subdivision of K5 then it is planar 
or it admits a cut of size at most 4. In this paper, we give a 
proof of the Kelmans-Seymour conjecture. We also discuss 
several related results and problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

For a graph G, we use TG to denote a subdivision of G, and the vertices in TG that 
correspond to the vertices of G are said to be its branch vertices. Thus, TK5 denotes a 
subdivision of K5, and the vertices in a TK5 of degree four are its branch vertices. For 
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graphs H and K, we say that H contains TK if H contains a subgraph isomorphic to 
a TK.

The well known result of Kuratowski [18] states that a graph is planar if, and only 
if, it does not contain TK5 or TK3,3. A simple application of Euler’s formula for planar 
graphs shows that, for n ≥ 3, if an n-vertex graph has at least 3n − 5 edges then 
it must be nonplanar and, hence, contains TK5 or TK3,3. Dirac [5] conjectured that 
for n ≥ 3, if an n-vertex graph has at least 3n − 5 edges then it must contain TK5. 
This conjecture was also reported by Erdős and Hajnal [7]. Kézdy and McGuiness [15]
showed that a minimal counterexample to Dirac’s conjecture must be 5-connected and 
contains K−

4 , where K−
4 is the graph obtained from the complete graph K4 by deleting an 

edge. (However, Kelmans [14] and Seymour (see [22]) knew in the 1970s that a minimal 
counterexample to Dirac’s conjecture must be 5-connected.) After some partial results 
in [28,30,33,34], Dirac’s conjecture was proved by Mader [22], where he also showed that 
every 5-connected n-vertex graph with at least 3n − 6 edges contains TK5 or K−

4 .
Seymour [26] (also see [22,34]) and, independently, Kelmans [14] conjectured that ev-

ery 5-connected nonplanar graph contains TK5. Thus, the Kelmans-Seymour conjecture 
implies Mader’s theorem. This conjecture is also related to several interesting problems, 
which we will discuss in Section 7.

The authors [9–11] produced lemmas needed for resolving this Kelmans-Seymour con-
jecture, and we are now ready to prove it in this paper.

Theorem 1.1. Every 5-connected non-planar graph contains TK5.

The starting point of our work is the following result of Ma and Yu [20,21]: Every 
5-connected nonplanar graph containing K−

4 has a TK5. This result, combined with the 
result of Kézdy and McGuiness [15] on minimal counterexamples to Dirac’s conjecture, 
gives an alternative proof of Mader’s theorem. Also using this result, Aigner-Horev [1]
proved that every 5-connected nonplanar apex graph contains TK5. A simpler proof of 
Aigner-Horev’s result using discharging argument was obtained by Ma, Thomas, and Yu, 
and, independently, by Kawarabayashi, see [13].

We now briefly describe the process for proving Theorem 1.1. For a more detailed ver-
sion, we recommend the reader to read Section 6 first, which should also give motivation 
to some of the technical lemmas listed in Sections 2, 3, 4 and 5.

Suppose G is a 5-connected non-planar graph not containing K−
4 . We fix a vertex 

v ∈ V (G), and let M be a maximal connected subgraph of G such that v ∈ V (M), G/M

(the graph obtained from G by contracting M) is nonplanar, G/M contains no K−
4 , and 

G/M is 5-connected (i.e., M is contractible). Note that V (M) = {v} is possible. Let x
denote the vertex of H := G/M resulting from the contraction of M . Then, for each 
subgraph T of H with v ∈ V (T ) and with T ∼= K2 or T ∼= K3, H/T is planar, or H/T

contains K−
4 , or H/T is not 5-connected. If, for some T , H/T is planar or contains K−

4
then we can find a TK5 in G using results from [9–11]. Thus, in this paper, our main 
work is to deal with the final case: for any subgraph T of H with x ∈ V (T ) and with 
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T ∼= K2 or T ∼= K3, it follows that H/T is nonplanar, H/T contains no K−
4 , and H/T is 

not 5-connected. In this case, there exists ST ⊆ V (H) such that V (T ) ⊆ ST , |ST | = 5 or 
|ST | = 6, and H − ST is not connected. We will be using such cuts to divide the graph 
into smaller parts and use them to find a special TK5 in H. The reason to also include 
the case T ∼= K3 is to avoid the situation when T ∼= K2, |ST | = 5, and H − ST has 
exactly two components, one of which is trivial. This situation does not cause problems 
when T ∼= K3, as the graph H would then contain K−

4 , and we could use results from 
[9–11].

We will need a number of results from [9–11], which are given in Section 2. In Section 3, 
we derive a simplified version of a result on disjoint paths from [39–41], which will be 
used several times in Section 4. For each subgraph T of H with v ∈ V (T ) and with 
T ∼= K2 or T ∼= K3, we will associate to it a quadruple (T, ST , A, B), where, roughly, 
A ∩B = ∅, H −ST = A ∪B, and H has no edge between A and B. (A precise definition 
of a quadruple is given in Section 4.) In Section 4, we prove some basic properties of 
quadruples, and take care of two special cases involving quadruples (using disjoint paths 
results from Section 3). In Section 5, we take care of other cases involving quadruples. 
We complete the proof of Theorem 1.1 in Section 6, and discuss several related problems 
in Section 7.

We end this section with some notation and terminology. Let G be a graph. By S ⊆ G

we mean that S is a subgraph of G. We may view S ⊆ V (G) as a subgraph of G with 
vertex set S and no edges. For S ⊆ G, we use G[S] to denote the subgraph of G induced 
by V (S). For any x ∈ V (G) we use NG(x) to denote the neighborhood of x in G, and 
for S ⊆ G let NG(S) = {x ∈ V (G) − V (S) : NG(x) ∩ V (S) 	= ∅}. When understood, the 
reference to G may be dropped. For S ⊆ E(G), G − S denotes the graph obtained from 
G by deleting all edges in S; and for K, L ⊆ G, K −L denotes the graph obtained from 
K by deleting V (K ∩ L) and all edges of K incident with V (K ∩ L).

A separation in a graph G consists of a pair of subgraphs G1, G2 of G, denoted as 
(G1, G2), such that V (G) = V (G1) ∪ V (G2), E(G1) ∪ E(G2) = E(G), E(G1 ∩G2) = ∅, 
E(G1) ∪ (V (G1) − V (G2)) 	= ∅, and E(G2) ∪ (V (G2) − V (G1)) 	= ∅. The order of this 
separation is |V (G1) ∩ V (G2)|, and (G1, G2) is said to be a k-separation if its order is 
k. A set S ⊆ V (G) is a k-cut (or a cut of size k) in G, where k is a positive integer, if 
|S| = k and G has a separation (G1, G2) such that V (G1) ∩ V (G2) = S, V (G1 −S) 	= ∅, 
and V (G2 −S) 	= ∅. (Thus, for a separation (G1, G2) in a graph G, V (G1) ∩V (G2) need 
not be a cut in G.) If v ∈ V (G) and {v} is a cut of G, then v is said to be a cut vertex
of G. For A ⊆ V (G) with G − A 	= ∅ and for a positive integer k, we say that G is 
(k, A)-connected if, for any cut S with |S| < k, every component of G − S contains a 
vertex from A. Thus, if G is a k-connected graph and (G1, G2) is a separation in G such 
that V (G2) − V (G1) 	= ∅, then G2 is (k, V (G1 ∩G2))-connected.

Given a path P in a graph and x, y ∈ V (P ), xPy denotes the subpath of P between 
x and y (inclusive). The ends of the path P are the vertices of the minimum degree in 
P , and all other vertices of P (if any) are its internal vertices. A path P with ends u
and v (or an u-v path) is also said to be from u to v or between u and v. A collection of 
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paths is said to be independent if no vertex of any path in this collection is an internal 
vertex of any other path in the collection.

Let G be a graph. Let K ⊆ G, S ⊆ V (G), and T a collection of 2-element subsets of 
V (K) ∪ S. Then K + (S ∪ T ) denotes the graph with vertex set V (K) ∪ S and edge set 
E(K) ∪ T , and if T = {{x, y}} we write K + xy instead of K + {{x, y}}.

For any positive integer k, let [k] := {1, . . . , k} (and let [0] = ∅). A 3-planar graph
(G, A) consists of a graph G and a set A = {A1, . . . , Ak} of pairwise disjoint subsets of 
V (G) (possibly A = ∅ when k = 0) such that

(a) for distinct i, j ∈ [k], N(Ai) ∩Aj = ∅,
(b) for i ∈ [k], |N(Ai)| ≤ 3, and
(c) if p(G, A) denotes the graph obtained from G by (for each i) deleting Ai and adding 

edges joining every pair of distinct vertices in N(Ai) that are not already adjacent in 
G, then p(G, A) may be drawn in a closed disc D in the plane with no pair of edges 
crossing such that, for each Ai with |N(Ai)| = 3, N(Ai) induces a facial triangle in 
p(G, A).

If, in addition, b1, . . . , bn are vertices of G such that bi /∈ Aj for any i ∈ [n] and j ∈ [k]
and b1, . . . , bn occur on the boundary of the disc D in that cyclic order, then we say 
that (G, A, b1, . . . , bn) is 3-planar or, simply, (G, b1, . . . , bn) is 3-planar (if there is no 
need to mention A). If there is no need to specify the order of b1, . . . , bn then we simply 
say that (G, A, {b1, . . . , bn}) or (G, {b1, . . . , bn}) is 3-planar. When A = ∅, we say that 
(G, b1, . . . , bn) or (G, {b1, . . . , bn}) is planar (in this case, G is actually a planar graph).

Note that if (G, {b1, . . . , bn}) is 3-planar and G is (4, {b1, . . . , bn})-connected, then 
(G, {b1, . . . , bn}) is in fact planar and G has a plane drawing in a closed disc with 
b1, . . . , bn on the boundary of the disk.

2. Previous results

In this section, we list a number of previous results which we will use as lemmas in 
our proof of Theorem 1.1. We begin with the following result of Ma and Yu [20,21].

Lemma 2.1. Every 5-connected nonplanar graph containing K−
4 has a TK5.

We also need the main result of [10], to take care of the case when the vertex x in 
H = G/M (see Section 1) is a degree 2 vertex in a K−

4 (which is y2 in the lemma below).

Lemma 2.2. Let G be a 5-connected nonplanar graph and {x1, x2, y1, y2} ⊆ V (G) such 
that G[{x1, x2, y1, y2}] ∼= K−

4 with y1y2 /∈ E(G). Then one of the following holds:

(i) G contains a TK5 in which y2 is not a branch vertex.
(ii) G − y2 contains K−

4 .
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(iii) G has a 5-separation (G1, G2) such that V (G1 ∩G2) = {y2, a1, a2, a3, a4}, and G2

is the graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4
a1 and the 4-cycle b1b2b3b4b1 by adding y2 and the edges y2bi for i ∈ [4].

(iv) For all distinct w1, w2, w3 ∈ N(y2) − {x1, x2}, G − {y2v : v /∈ {w1, w2, w3, x1, x2}}
contains TK5.

To deal with conclusion (iii) of Lemma 2.2, we need Proposition 1.3 from [9] in which 
a plays the role of y2 in Lemma 2.2.

Lemma 2.3. Let G be a 5-connected nonplanar graph, (G1, G2) a 5-separation in G, 
V (G1∩G2) = {a, a1, a2, a3, a4} such that G2 is the graph obtained from the edge-disjoint 
union of the 8-cycle a1b1a2b2a3b3a4b4a1 and the 4-cycle b1b2b3b4b1 by adding a and the 
edges abi, i ∈ [4]. Suppose |V (G1)| ≥ 7. Then, for any distinct u1, u2 ∈ N(a) −{b1, b2, b3}, 
G − {av : v /∈ {b1, b2, b3, u1, u2}} contains TK5.

Next we list a few results from [9–11]. For convenience, we state their versions from 
[11]. First, we need Theorem 1.1 in [11] to take care of the case when the vertex x in 
H = G/M (see Section 1) is a degree 3 vertex in a K−

4 (which is x1 in the lemma below).

Lemma 2.4. Let G be a 5-connected nonplanar graph and x1, x2, y1, y2 ∈ V (G) be distinct 
such that G[{x1, x2, y1, y2}] ∼= K−

4 and y1y2 /∈ E(G). Then one of the following holds:

(i) G contains a TK5 in which x1 is not a branch vertex.
(ii) G − x1 contains K−

4 , or G contains a K−
4 in which x1 is of degree 2.

(iii) x2, y1, y2 may be chosen so that for any distinct z0, z1 ∈ N(x1) − {x2, y1, y2}, G −
{x1v : v /∈ {x2, y1, y2, z0, z1}} contains TK5.

When applying the next three lemmas, the vertex a will correspond to the vertex x
in H = G/M in Section 1. The following result is a direct consequence of Theorem 1.1 
in [9], which deals with 5-separations with an apex side.

Lemma 2.5. Let G be a 5-connected nonplanar graph and let (G1, G2) be a 5-separation 
in G. Suppose |V (Gi)| ≥ 7 for i ∈ [2], a ∈ V (G1 ∩G2), and (G2 − a, V (G1 ∩G2) − {a})
is planar. Then one of the following holds:

(i) for any a∗ ∈ V (G1 − G2) ∪ {a}, G contains a TK5 in which a∗ is not a branch 
vertex.

(ii) G − a contains K−
4 , or G contains a K−

4 in which a is of degree 2.

The next result is Lemma 2.8 in [11], which will be used to take care of 5-cuts con-
taining the vertices of a triangle.
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Lemma 2.6. Let G be a 5-connected graph and (G1, G2) be a 5-separation in G. Suppose 
that |V (Gi)| ≥ 7 for i ∈ [2] and G[V (G1 ∩G2)] contains a triangle aa1a2a. Then one of 
the following holds:

(i) G contains a TK5 in which a is not a branch vertex.
(ii) G − a contains K−

4 , or G contains a K−
4 in which a is of degree 2.

(iii) For any distinct u1, u2, u3 ∈ N(a) − {a1, a2}, G − {av : v /∈ {a1, a2, u1, u2, u3}}
contains TK5.

The following is Lemma 2.9 in [11].

Lemma 2.7. Let G be a graph, A ⊆ V (G), and a ∈ A such that |A| = 6, |V (G)| ≥ 8, 
(G − a, A − {a}) is planar, and G is (5, A)-connected. Then one of the following holds:

(i) G − a contains K−
4 , or G contains a K−

4 in which the degree of a is 2.
(ii) G has a 5-separation (G1, G2) such that a ∈ V (G1 ∩G2), |V (G2)| ≥ 7, A ⊆ V (G1), 

and (G2 − a, V (G1 ∩G2) − {a}) is planar.

We need Theorem 1.4 in [9]. This will be used to show that, for a quadruple 
(T, ST , A, B) in H = G/M with x ∈ V (T ) (see Section 1), x has a neighbor in A
(which corresponds to G1 −G2 in the statement).

Lemma 2.8. Let G be a 5-connected graph and x ∈ V (G), and let (G1, G2) be a 
6-separation in G such that x ∈ V (G1 ∩G2), G[V (G1 ∩G2)] contains a triangle xx1x2x, 
and |V (Gi)| ≥ 7 for i ∈ [2]. Moreover, assume that (G1, G2) is chosen so that, sub-
ject to {x, x1, x2} ⊆ V (G1 ∩ G2) and |V (Gi)| ≥ 7 for i ∈ [2], G1 is minimal. Let 
V (G1 ∩G2) = {x, x1, x2, v1, v2, v3}. Then N(x) ∩ V (G1 −G2) 	= ∅, or one of the follow-
ing holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exists x3 ∈ N(x) such that for any distinct y1, y2 ∈ N(x) − {x1, x2, x3}, 

G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.
(iv) For some i ∈ [2] and some j ∈ [3], N(xi) ⊆ V (G1 −G2) ∪ {x, x3−i}, and any three 

independent paths in G1 − x from {x1, x2} to v1, v2, v3, respectively, with two from 
xi and one from x3−i, must contain a path from x3−i to vj.

We remark that conclusion (iv) in Lemma 2.8 will be dealt with in Section 4, using a 
result on disjoint paths from [39–41]. We also need Proposition 4.1 from [9] to deal with 
the case when H/T is planar (see Section 1) for some T ⊆ H with x ∈ V (T ) and with 
T ∼= K2 or T ∼= K3.



D. He et al. / Journal of Combinatorial Theory, Series B 144 (2020) 309–358 315
Lemma 2.9. Let G be a 5-connected nonplanar graph, x ∈ V (G), and T ⊆ G, such that 
x ∈ V (T ), T ∼= K2 or T ∼= K3, and G/T is 5-connected and planar. Then G − T

contains K−
4 .

We conclude this section with three additional results, first of which is a result of 
Seymour [25]; equivalent versions are proved in [31,24,27].

Lemma 2.10. Let G be a graph and let s1, s2, t1, t2 ∈ V (G) be distinct. Then either G
contains disjoint paths from s1 to t1 and from s2 to t2, or (G, s1, s2, t1, t2) is 3-planar.

The second result is due to Perfect [23].

Lemma 2.11. Let G be a graph, u ∈ V (G), and A ⊆ V (G − u). Suppose there exist k
independent paths from u to distinct a1, . . . , ak ∈ A, respectively, and internally disjoint 
from A. Then for any n ≥ k, if there exist n independent paths P1, . . . , Pn in G from u
to n distinct vertices in A and internally disjoint from A then P1, . . . , Pn may be chosen 
so that ai ∈ V (Pi) for i ∈ [k].

The third result is due to Watkins and Mesner [38], which gives a characterization 
of graphs G with no cycle through three given vertices y1, y2, y3. Roughly, G has 2-cuts 
separating these three vertices. See Fig. 1 for an illustration.

Lemma 2.12. Let G be a 2-connected graph and let y1, y2, y3 be three distinct vertices 
of G. Then G has no cycle containing {y1, y2, y3} if, and only if, one of the following 
holds:

(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs Dyi
of G −S, 

i ∈ [3], such that yi ∈ V (Dyi
) and each Dyi

is a union of components of G − S.
(ii) There exist 2-cuts Syi

in G, i ∈ [3], and pairwise disjoint subgraphs Dyi
of G, 

such that yi ∈ V (Dyi
), each Dyi

is a union of components of G − Syi
, there exists 

z ∈ Sy1 ∩ Sy2 ∩ Sy3 , and Sy1 − {z}, Sy2 − {z}, Sy3 − {z} are pairwise disjoint.
(iii) There exist pairwise disjoint 2-cuts Syi

in G and pairwise disjoint subgraphs Dyi
of 

G − Syi
, i ∈ [3], such that yi ∈ V (Dyi

), Dyi
is a union of components of G − Syi

, 
and G −V (Dy1 ∪Dy2 ∪Dy3) has precisely two components, each containing exactly 
one vertex from Syi

for i ∈ [3].

3. Obstruction to three paths

In order to deal with (iv) of Lemma 2.8, we need a result of the third author [39–41], 
which characterizes graphs G in which any three disjoint paths from {a, b, c} ⊆ V (G) to 
{a′, b′, c′} ⊆ V (G) must contain a path from b to b′. The objective of this section is to 
derive a much simpler version of that characterization by imposing extra conditions on 
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Fig. 1. No cycle containing {y1, y2, y3}.

G. This result will be used several times in the proofs of Lemmas 4.4 and 4.6. To state 
the result from [39–41], we need to describe rungs and ladders.

Let G be a graph, {a, b, c} ⊆ V (G), and {a′, b′, c′} ⊆ V (G). (Here, a, b, c are pairwise 
distinct, and a′, b′, c′ are pairwise distinct.) Suppose {a, b, c} 	= {a′, b′, c′}, and assume 
that G has no separation (G1, G2) such that |V (G1 ∩ G2)| ≤ 3, {a, b, c} ⊆ V (G1), and 
{a′, b′, c′} ⊆ V (G2). (So {a, b, c} and {a′, b′, c′} are independent sets in G.) We say that 
(G, (a, b, c), (a′, b′, c′)) is a rung if one of the following holds:

(1) b = b′ or {a, c} = {a′, c′}.
(2) a = a′ and (G − a, c, c′, b′, b) is 3-planar, or c = c′ and (G − c, a, a′, b′, b) is 3-planar.
(3) {a, b, c} ∩ {a′, b′, c′} = ∅ and (G, a′, b′, c′, c, b, a) or (G, a′, b′, c′, a, b, c) is 3-planar.
(4) {a, b, c} ∩ {a′, b′, c′} = ∅, G has a 1-separation (G1, G2) such that (i) {a, a′, b, b′} ⊆

V (G1), {c, c′} ⊆ V (G2), and (G1, a, a′, b′, b) is 3-planar, or (ii) {c, c′, b, b′} ⊆ V (G1), 
{a, a′} ⊆ V (G2), and (G1, c, c′, b′, b) is 3-planar.

(5) {a, b, c} ∩ {a′, b′, c′} = ∅, and G has a separation (G1, G2) such that V (G1 ∩G2) =
{z, b} (or V (G1 ∩ G2) = {z, b′}), and (i) (G, a, a′, b′, b) is 3-planar, {a, a′, b, b′} ⊆
V (G1), {c, c′} ⊆ V (G2), and (G2, c, c′, z, b) (or (G2, c, c′, b′, z)) is 3-planar, or (ii)
(G, c, c′, b′, b) is 3-planar, {c, c′, b, b′} ⊆ V (G1), {a, a′} ⊆ V (G2), and (G2, a, a′, z, b)
(or (G2, a, a′, b′, z)) is 3-planar.

(6) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge disjoint subgraphs Ga, Gc, M
of G such that G = Ga ∪ Gc ∪ M , V (Ga ∩ M) = {u, w}, V (Gc ∩ M) = {p, q}, 
V (Ga∩Gc) = ∅, and (i) {a, a′, b′} ⊆ V (Ga), {c, c′, b} ⊆ V (Gc), and (Ga, a, a′, b′, w, u)
and (Gc, c′, c, b, p, q) are 3-planar, or (ii) {a, a′, b} ⊆ V (Ga), {c, c′, b′} ⊆ V (Gc), 
(Ga, b, a, a′, w, u), and (Gc, b′, c′, c, p, q) are 3-planar.

(7) {a, b, c} ∩ {a′, b′, c′} = ∅, and there are pairwise edge disjoint subgraphs Ga, Gc, M
of G such that G = Ga ∪ Gc ∪M , V (Ga ∩M) = {b, b′, w}, V (Gc ∩M) = {b, b′, p}, 
V (Ga ∩ Gc) = {b, b′}, {a, a′} ⊆ V (Ga), {c, c′} ⊆ V (Gc), and (Ga, a, a′, b′, w, b) and 
(Gc, c′, c, b, p, b′) are 3-planar.

Let L be a graph and let R1, . . . , Rm be edge disjoint subgraphs of L such that
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(i) (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)) is a rung for each i ∈ [m],
(ii) V (Ri ∩Rj) = {xi, vi, yi} ∩ {xj−1, vj−1, yj−1} for i, j ∈ [m] with i < j,

(iii) for any i, j ∈ [m] ∪ {0}, if xi = xj then xk = xi for all i ≤ k ≤ j, if vi = vj then 
vk = vi for all i ≤ k ≤ j, and if yi = yj then yk = yi for all i ≤ k ≤ j, and

(iv) L = (
⋃m

i=1 Ri) + S, where S consists of those edges of L each of which has both 
ends in {xi, vi, yi} for some i ∈ [m] ∪ {0}.

Then (L, (x0, v0, y0), (xm, vm, ym)) is a ladder with rungs (Ri, (xi−1, vi−1, yi−1), (xi, vi,
yi)), i ∈ [m], or simply, a ladder along v0 . . . vm.

By definition, for any rung (Ri, (xi−1, vi−1, yi−1), (xi, vi, yi)), Ri has three disjoint 
paths from {xi−1, vi−1, yi−1} to {xi, vi, yi}. So for any ladder (L, (x0, v0, y0), (xm, vm,

ym)), L has three disjoint paths from {x0, v0, y0} to {xm, vm, ym}.
For a sequence W , the reduced sequence of W is the sequence obtained from W by 

removing all but one consecutive identical elements. For example, the reduced sequence 
of aaabcca is abca. We can now state the main result in [41].

Lemma 3.1. Let G be a graph, {a, b, c} ⊆ V (G), and {a′, b′, c′} ⊆ V (G) such that 
{a, b, c} 	= {a′, b,′ c′}. Assume that G is (4, {a, b, c} ∪ {a′, b′, c′})-connected. Then any 
three disjoint paths in G from {a, b, c} to {a′, b′, c′} must include one from b to b′ if, and 
only if, one of the following statements holds:

(i) G has a separation (G1, G2) of order at most 2 such that {a, b, c} ⊆ V (G1) and 
{a′, b′, c′} ⊆ V (G2).

(ii) (G, (a, b, c), (a′, b′, c′)) is a ladder.
(iii) G has a separation (J, L) such that V (J ∩ L) = {w0, . . . , wn}, (J, w0, . . . , wn) is 

planar, {a, b, c} ∪ {a′, b′, c′} ⊆ V (L), (L, (a, b, c), (a′, b′, c′)) is a ladder along a se-
quence v0 . . . vm, where v0 = b, vm = b′, and w0 . . . wn is the reduced sequence of 
v0 . . . vm.

Remark 1. We may remove the assumption that, for any T ⊆ V (G) with |T | ≤ 3, every 
component of G − T contains some element of {a, b, c} ∪ {a′, b′, c′}. When we do, the 
conclusion of Lemma 3.1 holds by simply replacing “(J, w0, . . . , wn) is planar” in (iii)
with “(J, w0, . . . , wn) is 3-planar”.

Remark 2. We may view (ii) as a special case of (iii) by letting J be a subgraph of L. 
In the applications of Lemma 3.1 in this paper, we will consider rungs and ladders in 
a 5-connected graph without TK5. With such extra conditions, the rungs have much 
simpler structure, as given in the next three lemmas. See Fig. 2. This first lemma follows 
from a simple inspection of the definition of rungs.

Lemma 3.2. Let (G, (a, b, c), (a′, b′, c′)) be a rung. If {a, c} ∩{a′, c′} = ∅ and a and c have 
the same set of neighbors in G, then b = b′.
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Fig. 2. The simple rungs as in Lemma 3.4.

Lemma 3.3. Let G be a 5-connected graph and (R, R′) a separation in G such that R′ −
R 	= ∅, V (R ∩ R′) = {a, b} ∪ {a′, b′, c′}, a 	= b, {a, b} � {a′, b′, c′}, and a′, b′, c′ are 
pairwise distinct. Let R∗ be obtained from R by adding the new vertex c and joining c
to each neighbor of a in R with an edge, and assume (R∗, (a, b, c), (a′, b′, c′)) is a rung. 
Then b = b′, V (R) = {a, b, a′, c′} and E(R) = {aa′, ac′}.

Proof. Note that if (R∗, (a, b, c), (a′, b′, c′)) is a rung of type (3)–(7) then a and c must 
have different sets of neighbors in R∗. For otherwise, by checking each of these five 
types, we see that R∗ would admit a separation (H1, H2) such that |V (H1 ∩H2)| ≤ 3, 
{a, b, c} ⊆ V (H1), and {a′, b′, c′} ⊆ V (H2).

Hence, since a and c have the same set of neighbors in R∗, (R∗, (a, b, c), (a′, b′, c′)) is of 
type (1) or (2). Thus, |V (R ∩R′)| = |{a, b} ∪ {a′, b′, c′}| ≤ 4 and, since G is 5-connected 
and R′ −R 	= ∅, it follows that V (R) = {a, b} ∪ {a′, b′, c′}.

Suppose (R∗, (a, b, c), (a′, b′, c′)) is of type (2). Then, since c 	= c′, we have a = a′

and (R∗ − a, c, c′, b′, b) is 3-planar. Hence, cb′ /∈ E(G) or c′b /∈ E(G). Thus, {a, b, c′} or 
{a, b′, c} would be a cut in R∗ separating {a, b, c} from {a′, b′, c′}, a contradiction.

So (R∗, (a, b, c), (a′, b′, c′)) is of type (1). Then b = b′, as c /∈ {a′, c′}. Since {a, b} �
{a′, b′, c′}, we have a 	= a′. Hence, since R∗ has no separation of order at most 3 separating 
{a, b, c} from {a′, b′, c′}, we deduce that E(R) = {aa′, ac′}. �

Note that the conclusion of Lemma 3.3 is a special case of (i) of the next lemma.

Lemma 3.4. Let G be a 5-connected nonplanar graph and (R, R′) a separation in G
such that |V (R′)| ≥ 8, V (R ∩ R′) = {a, b, c} ∪ {a′, b′, c′}, {a, b, c} 	= {a′, b′, c′}, and 
(R, (a, b, c), (a′, b′, c′)) is a rung. Then for every x ∈ V (R′ − R), G contains TK5 in 
which x is not a branch vertex; or G contains K−

4 ; or one of the following holds:

(i) b = b′.
(ii) {a, c} = {a′, c′}, V (R) = {a, c, b, b′}, and E(R) = {bb′}.

(iii) V (R) − ({a, b, c} ∪ {a′, b′, c′}) = {v} and NG(v) = {a, b, c} ∪ {a′, b′, c′}, and either 
a = a′ and E(R− v) = {bb′, cc′} or c = c′ and E(R− v) = {bb′, aa′}.

(iv) {a, b, c} ∩{a′, b′, c′} = ∅, V (R) −{a, a′, b, b′, c, c′} = {v}, NG(v) = {a, a′, b, b′, c, c′}, 
and E(R− v) = {aa′, bb′, cc′}.
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Proof. By the definition of a rung, R has three disjoint paths from {a, b, c} to {a′, b′, c′}, 
with one path from b to b′. So by the symmetry between a and c and the symmetry 
between a′ and c′, we may let A, B, C be disjoint paths in R from a, b, c to a′, b′, c′, 
respectively. First, we consider the case when {a, b, c} ∩ {a′, b′, c′} 	= ∅. If b = b′ then 
(i) holds; so we may assume b 	= b′. If a = a′ and c = c′ then, since G is 5-connected, 
V (R) = {a, b, b′, c}; so bb′ ∈ E(R) (because of the paths A, B, C), and we have (ii). 
Thus by symmetry between {a, a′} and {c, c′}, we may assume c 	= c′. Suppose a =
a′. Then by the definition of a rung, R − a has no disjoint paths from b, c to c′, b′, 
respectively. So by Lemma 2.10, (R − a, c, c′, b′, b) is 3-planar. Since G is 5-connected, 
R−a is (4, {b, b′, c, c′})-connected; so (R−a, c, c′, b′, b) is in fact planar. If |V (R)| ≥ 7 then 
G contains TK5 or K−

4 (by Lemmas 2.5 and 2.2, using the separation (R, R′)). If V (R) =
{a, b, b′, c, c′} then, since (R−a, c, c′, b′, b) is planar, either {a, b, c′} or {a, b′, c} is a 3-cut 
in R separating {a, b, c} from {a′, b′, c′}, contradicting the definition of a rung. Thus, 
we may assume |V (R)| = 6 and let v ∈ V (R) − {a, b, b′, c, c′}. Since G is 5-connected, 
NG(v) = {a, b, b′, c, c′}. Therefore, since (R − a, c, c′, b′, b) is planar, bc′, cb′ /∈ E(R). So 
bb′, cc′ ∈ E(R), as otherwise {a, v, c} or {a, v, b} would be a 3-cut in R separating {a, b, c}
from {a′, b′, c′}, contradicting the definition of a rung. Hence, (iii) holds.

Thus, we may assume that {a, b, c} ∩ {a′, b′, c′} = ∅. We need to deal with (3)–(7) in 
the definition of a rung. We deal with (4)–(7) in order, and treat (3) last (which is the 
most complicated case where we use the discharging technique).

Suppose (4) holds for (R, (a, b, c), (a′, b′, c′)). By symmetry, assume that R has 
a 1-separation (G1, G2) such that {a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2), and 
(G1, a, a′, b′, b) is 3-planar. Let V (G1 ∩ G2) = {v}. Note that v /∈ {a, b, c, a′, b′, c′}; 
otherwise, {a, b, c′} or {a′, b′, c} would be cut in R separating {a, b, c} from {a′, b′, c′}. 
Since G is 5-connected, V (G2) = {v, c, c′}. Again, since G is 5-connected, G1 is 
(5, {a, a′, b, b′, v})-connected; so (G1, a, a′, b′, b) is planar. Moreover, vc, vc′, cc′ ∈ E(G); 
for otherwise {a, b, c′} or {a′, b′, c} or {a, b, v} would be a cut in R separating {a, b, c}
from {a′, b′, c′}. If |V (G1)| ≥ 7 then the assertion follows from Lemmas 2.5 and 2.2, using 
the separation (G1, G2 ∪ R′). So we may assume |V (G1)| ≤ 6. If |V (G1)| = 6 then let 
t ∈ V (G1) −{a, a′, b, b′, v}; now NG(t) = {a, a′, b, b′, v} and |(NG(v) −{c, c′}) ∩NG(t)| ≥ 2
(since G is 5-connected), and hence R (and therefore G) contains K−

4 . So we may assume 
V (G1) = {a, a′, b, b′, v}. Then va′ ∈ E(G); otherwise NG(v) = {a, b, b′, c, c′} and, hence, 
a′b /∈ E(G) (as (G1, a, a′, b′, b) is planar), which implies that {a, b′, c′} is a cut in R
separating {a, b, c} from {a′, b′, c′}, a contradiction. Similarly, va, vb, vb′ ∈ E(G). Then 
by planarity of (G1, a, a′, b′, b), we have ab′, ba′ /∈ E(G). So aa′, bb′ ∈ E(G) as {b, c, v}
and {a, v, c} are not 3-cuts in R separating {a, b, c} from {a′, b′, c′}. Thus we have (iv).

Suppose (5) holds for (R, (a, b, c), (a′, b′, c′)), and assume by symmetry that (R, a, a′,
b′, b) is 3-planar, and R has a separation (G1, G2) such that V (G1 ∩ G2) = {z, b}, 
{a, a′, b, b′} ⊆ V (G1), {c, c′} ⊆ V (G2), and (G2, c, c′, z, b) is 3-planar. Since G is 
5-connected, V (G2) = {b, z, c, c′}. Then cz, cc′ ∈ E(G) as, otherwise, {a, b, c′} or {a, b, z}
would be a 3-cut in R separating {a, b, c} from {a′, b′, c′}. Hence, since (G2, b, z, c′, c) is 
planar, bc′ /∈ E(G). Since (R, a, a′, b′, b) is 3-planar, (G1, a, a′, b′, b) is 3-planar. Thus, 
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the separation (G1, G2 − b) shows that (R, (a, b, c), (a′, b′, c′)) is of type (4); so we may 
assume that (iv) holds by the argument in the previous paragraph.

Now suppose (6) holds for (R, (a, b, c), (a′, b′, c′)), and, by symmetry, assume that 
there are pairwise edge disjoint subgraphs Ga, Gc, M of R such that R = Ga ∪Gc ∪M , 
V (Ga∩M) = {u, w}, V (Gc∩M) = {p, q}, V (Ga∩Gc) = ∅, {a, a′, b′} ⊆ V (Ga), {c, c′, b} ⊆
V (Gc), and (Ga, a, a′, b′, w, u) and (Gc, c′, c, b, p, q) are 3-planar. Since G is 5-connected, 
V (M) = {p, q, u, w}. Also since G is 5-connected, Ga is (5, {a, a′, b′, w, u})-connected and 
Gc is (5, {c′, c, b, p, q})-connected; so (Ga, a, a′, b′, w, u) and (Gc, c′, c, b, p, q) are planar. 
We may assume that |V (Gc) − {b, c, c′, p, q}| ≤ 1 and |V (Ga) − {a, a′, b′, u, w}| ≤ 1, 
as otherwise the assertion follows from Lemmas 2.5 and 2.2 (using the separation 
(Gc, Ga∪M∪R′) or (Ga, Gc∪M∪R′) in G). If there exists v ∈ V (Gc) −{b, c, c′, p, q} then, 
since G is 5-connected, NG(v) = {b, c, c′, p, q} and |(NG(p) − {u, w}) ∩ {b, c, c′, q}| ≥ 2; 
so R (and hence G) contains K−

4 . Thus we may assume V (Gc) = {b, c, c′, p, q}. 
Since G is 5-connected, p and q each have at least five neighbors in Gc ∪ M . Hence, 
since (Gc, b, c, c′, q, p) is planar, NG(p) = {u, w, b, c, q} and NG(q) = {u, w, c, c′, p}; so 
G[{p, q, u, w}] (and hence G) contains K−

4 .
Suppose (7) holds for (R, (a, b, c), (a′, b′, c′)). Then there are pairwise edge disjoint 

subgraphs Ga, Gc, M of R such that R = Ga ∪ Gc ∪ M , V (Ga ∩ M) = {b, b′, w}, 
V (Gc ∩ M) = {b, b′, p}, V (Ga ∩ Gc) = {b, b′}, {a, a′} ⊆ V (Ga), {c, c′} ⊆ V (Gc), and 
(Ga, a, a′, b′, w, b) and (Gc, c′, c, b, p, b′) are 3-planar. Since G is 5-connected, V (M) =
{b, b′, p, w}, Ga is (5, {a, a′, b′, w, b})-connected, and Gc is (5, {c′, c, b, p, b′})-connected. 
Hence, (Ga, a, a′, b′, w, b) and (Gc, c′, c, b, p, b′) are actually planar. If |V (Gc)| ≥ 7 then 
the assertion follows from Lemmas 2.5 and 2.2 (using the separation (Gc, Ga ∪M ∪R′)
in G). So we may assume |V (Gc)| ≤ 6. If there exists q ∈ V (Gc) − {b, b′, c, c′, p} then 
NG(q) = {b, b′, c, c′, p} (as G is 5-connected); therefore, since (Gc, c′, c, b, p, b′) is planar, 
NG(p) ⊆ {b, b′, w, q}, a contradiction. Thus V (Gc) = {b, b′, c, c′, p} and, hence, NG(p) =
{b, b′, c, c′, w}. Similarly, by considering Ga, we may assume NG(w) = {a, a′, b, b′, p}. 
Thus G[{b, b′, p, w}] (and hence G) contains K−

4 .
Finally, assume that (3) holds for (R, (a, b, c), (a′, b′, c′)). So (R, a′, b′, c′, c, b, a) is pla-

nar (as G is 5-connected), and we may assume that R is embedded in a closed disc 
in the plane with no edge crossings such that a, b, c, c′, b′, a′ occur on the boundary 
of the disc in clockwise order. We apply the discharging method. For convenience, let 
A = {a, b, c, a′, b′, c′}, F (R) denote the set of faces of R, and f∞ denote the outer face 
of R (which is incident with all vertices in A). For each f ∈ F (R), let dR(f) denote the 
number of incidences of the edges of R with f , and ∂f denote the set of vertices of R
incident with f . For x ∈ V (R) ∪ F (R), let σ(x) = dR(x) − 4 be the charge of x.

We claim that R is connected. As G is 5-connected, each component of R must contain 
a vertex of {a, b, c} ∪ {a′, b′, c′}. Recall that R has disjoint paths A, B, C from a, b, c to 
a′, b′, c′, respectively. Therefore, if R is not connected then R would have separation 
(R1, R2) such that V (R1 ∩R2) = {a, b, c′} or V (R1 ∩R2) = {a, b′, c′}, {a, b, c} ⊆ V (R1)
and {a′, b′, c′} ⊆ V (R2), a contradiction. So R is connected.
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Hence, by Euler’s formula, 
∑

x∈V (R)∪F (R) σ(x) = −8. We redistribute charges ac-
cording to the following rule: For each v ∈ V (R) − A, v sends 1/2 to each f ∈ F (R)
that is incident with v and has dR(f) = 3. Let τ(x) denote the new charge for all 
x ∈ V (R) ∪ F (R). Then

∑

x∈V (R)∪F (R)

τ(x) =
∑

x∈V (R)∪F (R)

σ(x) = −8.

Note that we may assume K−
4 � G. Thus, each v ∈ V (R) −A is incident with at most 

�dR(v)/2� faces f ∈ F (R) with dR(f) = 3; so τ(v) ≥ 0 (as dR(v) ≥ 5). Moreover, for 
f ∈ F (R), τ(f) ≥ 0 unless dR(f) = 3 and f is incident with at least two vertices in A.

Since R has no separation (R1, R2) of order at most 3 such that {a, b, c} ⊆ V (R1) and 
{a′, b′, c′} ⊆ V (R2), we see that {a, b, c} and {a′, b′, c′} are independent in R. Moreover, 
since (R, a, a′, b′, c′, c, b) is planar, it follows that ab′, ac′, ba′, bc′, ca′, cb′ /∈ E(R), and 
dR(v) ≥ 2 for v ∈ A. (For example, if ab′ ∈ E(G) then {a, b′, c′} would be a cut 
in R separating {a, b, c} from {a′, b′, c′}, and if dR(a) = 1 then NR(a) ∪ {b, c} would 
be a cut in R separating {a, b, c} from {a′, b′, c′}.) Then bb′ /∈ E(R); otherwise, since 
(R, a, a′, b′, c′, c, b) is planar and G is 5-connected, V (R) = A (to avoid 4-cuts {a, a′, b, b′}
and {b, b′, c, c′}), which in turn would force dR(v) ≤ 1 for some v ∈ A.

From above, we have E(R[A]) ⊆ {aa′, cc′} and dR(v) ≥ 2 for v ∈ A. Hence, dR(f∞) ≥
10, and if f ∈ F (R) with dR(f) = 3 and |∂f ∩ A| ≥ 2 then ∂f ∩ A = {a, a′} or 
∂f ∩A = {c, c′}. Hence,

∑

x∈V (R)∪F (R)

τ(x) ≥
∑

v∈V (R)

τ(v) +
∑

f∈F (R),|∂f∩A|≥2

τ(f)

≥
∑

v∈A

(dR(v) − 4) + (dR(f∞) − 4) +
∑

dR(f)=3,|∂f∩A|≥2

(dR(f) − 4 + 1/2)

≥ (−12) + (10 − 4) + (−1/2) × 2

= −7,

a contradiction. �
4. Quadruples and special structure

As mentioned in Section 1, we need to deal with 5-connected graphs in which every 
edge or triangle at a given vertex is contained in a cut of size 5 or 6. Thus, for convenience, 
we introduce the following concept of a quadruple.

Let G be a graph. For x ∈ V (G), let Qx denote the set of all quadruples (T, ST , A, B), 
such that

(1) T ⊆ G, x ∈ V (T ), and either T ∼= K2 or T ∼= K3,



322 D. He et al. / Journal of Combinatorial Theory, Series B 144 (2020) 309–358
(2) ST is a cut in G with V (T ) ⊆ ST , A is a nonempty union of components of G −ST , 
and B = G −A − ST 	= ∅,

(3) if T ∼= K3 then 5 ≤ |ST | ≤ 6, and
(4) if T ∼= K2 then |ST | = 5, |V (A)| ≥ 2, and |V (B)| ≥ 2.

Note, in particular, that if T ∼= K3, then we allow |V (A)| = 1 or |V (B)| = 1.

The purpose of this section is to derive useful properties of quadruples, in particular, 
of those (T, ST , A, B) that minimize |V (A)|. We begin with a few simple properties, first 
of which gives a bound on |V (A)|.

Lemma 4.1. Let G be a 5-connected graph, x ∈ V (G), and (T, ST , A, B) ∈ Qx. Then G
contains K−

4 , or min{|V (A)|, |V (B)|} ≥ 5.

Proof. Suppose there exists (T, ST , A, B) ∈ Qx such that |V (A)| ≤ 4 or |V (B)| ≤ 4. We 
choose such (T, ST , A, B) ∈ Qx with |V (A)| minimum. Then |V (A)| ≤ 4. Let δ denote 
the minimum degree of A, and let u ∈ V (A) such that u has degree δ in A.

We may assume δ ≥ 1. For, suppose δ = 0. If T ∼= K3 then, since G is 5-connected, 
|NG(u) ∩ ST | ≥ 5; so G[T + u] contains K−

4 . Hence we may assume T ∼= K2. Then 
|V (A)| ≥ 2 (see (4) above). Indeed, |V (A)| = 2 and A consists of two isolated vertices 
(as otherwise (T, ST , A − {u}, G[B + u]) contradicts the choice of (T, ST , A, B) (that 
|V (A)| is minimum). Now G[A ∪ T ] contains K−

4 .

Case 1. δ = 1.
Then |NG(u) ∩ ST | ≥ 4. Let v be the unique neighbor of u in A. Since |V (A)| ≤ 4

and G is 5-connected, |NG(v) ∩ST | ≥ 2. We may assume |NG(u) ∩NG(v) ∩ST | ≤ 1; for, 
otherwise, G[ST ∪ {u, v}] contains K−

4 .
Suppose |NG(v) ∩ ST | ≥ 3 or NG(u) ∩ NG(v) ∩ ST = ∅. Then |ST | = 6 and, hence, 

T ∼= K3. Therefore, |NG(u) ∩ V (T )| ≥ 2 or |NG(v) ∩ V (T )| ≥ 2; so G[T + u] or G[T + v]
contains K−

4 .
Hence, we may assume that |NG(v) ∩ ST | ≤ 2 and |NG(u) ∩NG(v) ∩ ST | = 1. Then, 

since |V (A)| ≤ 4 and G is 5-connected, |NG(v) ∩ ST | = 2, |NG(v) ∩ V (A)| = 3, and 
|V (A)| = 4. Let v1, v2 ∈ V (A) − {u, v}, and let w ∈ NG(u) ∩ NG(v) ∩ ST . Since G is 
5-connected, |NG(vi) ∩ ST | ≥ 3 for i ∈ [2].

We may assume w /∈ V (T ); for, if w ∈ V (T ) then |V (T ) ∩ NG(u)| ≥ 2 or |V (T ) ∩
NG(v)| ≥ 2, and G[T +{u, v}] contains K−

4 . We may also assume w /∈ NG(vi) for i ∈ [2], 
as otherwise G[{u, v, w, vi}] contains K−

4 .
If v1v2 /∈ E(G) then |NG(vi) ∩ ST | ≥ 4 for i ∈ [2]; so |NG(vi) ∩ V (T )| ≥ 2 for 

i ∈ [2] (since w /∈ NG(vi) and w /∈ V (T )), and hence, G[T + {v1, v2}] contains K−
4 . So 

assume v1v2 ∈ E(G). Since G is 5-connected and w /∈ NG(vi) for i ∈ [2], there exists 
w′ ∈ NG(v1) ∩NG(v2) ∩ ST . Now G[{v, v1, v2, w′}] contains K−

4 .

Case 2. δ ≥ 2.
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If |V (A)| = 3 then A ∼= K3 and, since G is 5-connected, |NG(a) ∩ ST | ≥ 3 for all a ∈
V (A); hence, since |ST | ≤ 6, G[V (A) ∪ST ] contains K−

4 . So assume |V (A)| = 4. We may 
further assume that A is a cycle as otherwise A contains K−

4 . Hence, |NG(a) ∩ST | ≥ 3 for 
all a ∈ V (A). Moreover, we may assume that for any st ∈ E(A), |NG(s) ∩NG(t) ∩ST | ≤ 1; 
for otherwise G[{s, t} ∪ ST ] contains K−

4 . Let A = uvwru.
Suppose T ∼= K2. Then for any st ∈ E(A), (NG(s) ∪ NG(t)) − V (A) = ST and 

|NG(s) ∩NG(t) ∩ST | = 1. Let ST = {x1, x2, x3, x4, x5} and, without loss of generality, let 
NG(u) ∩A = {x1, x2, x3} and NG(v) ∩A = {x3, x4, x5}. Since (NG(w) ∪NG(r)) −V (A) =
ST , wx3 ∈ E(G) or rx3 ∈ E(G). Then G[{u, v, w, x3}] ∼= K−

4 or G[{r, u, v, x3}] ∼= K−
4 .

Now assume T ∼= K3. Let ST = {x1, x2, x3, x4, x5, x6} such that V (T ) = {x1, x2, x3}. 
We may assume |NG(a) ∩V (T )| ≤ 1 for each a ∈ V (A), for, otherwise, G[T +a] contains 
K−

4 . Hence, we may assume by symmetry that x4, x5 ∈ NG(u), x5, x6 ∈ NG(v), and 
x6, x4 ∈ NG(w). Note that NG(r) ∩ {x4, x6} 	= ∅. If x4 ∈ NG(r) then G[{u, w, r, x4}] ∼=
K−

4 , and if x6 ∈ NG(r) then G[{v, w, r, x6}] ∼= K−
4 . �

Next, we show that if a graph G has no contractible edge or triangle at some vertex 
x then every edge of G at x is associated with a quadruple in Qx.

Lemma 4.2. Let G be a 5-connected graph and x ∈ V (G). Suppose for any T ⊆ G

with x ∈ V (T ) and with T ∼= K2 or T ∼= K3, G/T is not 5-connected. Then for any 
ax ∈ E(G), there exists (T ′, ST ′ , C, D) ∈ Qx such that {a, x} ⊆ V (T ′).

Proof. Let T1 = ax. By assumption, G/T1 is not 5-connected. So there exists a 5-cut 
ST1 in G with V (T1) ⊆ ST1 . We may assume that G − ST1 has a trivial component; for 
otherwise, let C be a component of G −ST1 and D = (G −ST1) −C. Then (T1, ST1 , C, D) ∈
Qx is the desired quadruple, with T1 as T ′.

So let y ∈ V (G) such that y is a component of G − ST1 . Since G is 5-connected, 
NG(u) = ST1 . Let T2 := G[T1 + y] ∼= K3. By assumption, G/T2 is not 5-connected. 
So there exists a cut ST2 in G such that V (T2) ⊆ ST2 and |ST2 | ∈ {5, 6}. Let C be a 
component of G −ST2 and D = (G −ST2) −C. Then (T2, ST2 , C, D) ∈ Qx is the desired 
quadruple, with T2 as T ′. �

We now show that if (T, ST , A, B) is chosen to minimize |V (A)| then we may assume 
T ∼= K3. Throughout Sections 4, 5, and 6, we use Fig. 3 to illustrate the parts of G
divided by two quadruples.

Lemma 4.3. Let G be a 5-connected graph and x ∈ V (G). Suppose for any T ⊆ G with 
x ∈ V (T ) and with T ∼= K2 or T ∼= K3, G/T is not 5-connected. Then G contains K−

4 , 
or, for any (T, ST , A, B) ∈ Qx with |V (A)| minimum, T ∼= K3.

Proof. Let (T, ST , A, B) ∈ Qx with |V (A)| minimum, and assume T ∼= K2. Then 
|ST | = 5. Let a ∈ NG(x) ∩ V (A) (which exists as G is 5-connected). By Lemma 4.2, 
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Fig. 3. Two quadruples (T, ST , A,B) and (T ′, ST ′ , C,D).

there exists (T ′, ST ′ , C, D) ∈ Qx such that {a, x} ⊆ V (T ′). Note that T ′ ∼= K2 and 
|ST ′ | = 5, or T ′ ∼= K3 and |ST ′ | ∈ {5, 6}. We may assume

min{|V (A)|, |V (B)|} ≥ 5 and min{|V (C)|, |V (D)|} ≥ 5;

for, if not, then G contains K−
4 by Lemma 4.1.

We may assume that if A ∩ C 	= ∅ then |(ST ′ ∪ ST ) − V (B ∪ D)| ≥ |ST ′ | + 1. For, 
suppose A ∩ C 	= ∅ and |(ST ′ ∪ ST ) − V (B ∪D)| ≤ |ST ′ |. If |V (A ∩ C)| ≥ 2 or T ′ ∼= K3
then (T ′, (ST ′ ∪ST ) −V (B∪D), A ∩C, G[B∪D]) ∈ Qx and |V (A ∩C)| ≤ |V (A) −{a}| <
|V (A)|, contradicting the choice of (T, ST , A, B) that |V (A)| is minimum. So assume 
|V (A ∩C)| = 1 and T ′ ∼= K2. Then |ST ′ | = 5. Since |(ST ′∪ST ) −V (B∪D)| ≤ |ST ′ | and G
is 5-connected, |(ST ′∪ST ) −V (B∪D)| = 5. Assume for the moment A ∩D = ∅. Then, since 
|ST ′ | = 5, |V (A ∩C)| = 1, and x ∈ ST∩ST ′ , it follows that |ST ′∩V (A)| = 4, |ST ′∩ST | = 1, 
|ST ′ ∩ V (B)| = 0, and |ST ∩ V (C)| = 0 (as |(ST ′ ∪ ST ) − V (B ∪ D)| = 5). Since 
|V (C)| ≥ 5, B ∩ C 	= ∅. So ST ∩ ST ′ is a 1-cut in G, contradicting the assumption that 
G is 5-connected. Hence, A ∩D 	= ∅. Suppose for the moment |(ST ′ ∪ST ) −V (B ∪C)| =
|ST ′ |. Then we may assume |V (A ∩ D)| ≥ 2; as otherwise, since G is 5-connected, 
G[(A ∩C) ∪(A ∩D) ∪{a, x}] ∼= K−

4 . Now (T ′, (ST ′∪ST ) −V (B∪C), A ∩D, G[B∪C]) ∈ Qx

and 2 ≤ |V (A ∩ D)| < |V (A)|, contradicting the choice of (T, ST , A, B) that |V (A)| is 
minimum. Hence, |(ST ′ ∪ST ) −V (B ∪C)| ≥ |ST ′ | +1 = 6; so |(ST ′ ∪ST ) −V (A ∪D)| =
|ST | + |ST ′ | − |(ST ′ ∪ ST ) − V (B ∪ C)| ≤ 4. Since G is 5-connected, B ∩ C = ∅. Since 
|(ST ′ ∪ ST ) − V (B ∪D)| = 5, |ST ∩ V (C)| ≤ 3. Therefore, |V (C)| ≤ 4, a contradiction.

Similarly, we may assume that if A ∩D 	= ∅ then |(ST ′ ∪ST ) −V (B ∪C)| ≥ |ST ′ | +1.
Suppose A ∩ C = A ∩D = ∅. Then, since |V (A)| ≥ 5, |ST ′ | ≤ 6, and x ∈ ST ∩ ST ′ , 

it follows that |ST ′ ∩ V (A)| = |V (A)| = 5, |ST ∩ ST ′ | = 1, and |ST ′ ∩ V (B)| = 0. Since 
|ST | = 5 and G is 5-connected, we see that B ∩ C = ∅ or B ∩ D = ∅. However, this 
implies |V (C)| ≤ 4 or |V (D)| ≤ 4, a contradiction.

We may thus assume by symmetry that A ∩C 	= ∅. Then |(ST ′ ∪ ST ) − V (B ∪D)| ≥
|ST ′ | +1. So |(ST ′∪ST ) −V (A ∪C)| = |ST | +|ST ′ | −|(ST ′∪ST ) −V (B∪D)| ≤ 4. Since G is 
5-connected, B∩D = ∅. In addition, A ∩D 	= ∅; as otherwise, |V (D)| ≤ 4, a contradiction. 
Therefore, |(ST ′ ∪ ST ) − V (B ∪ C)| ≥ |ST ′ | + 1. Hence, |(ST ′ ∪ ST ) − V (A ∪ D)| =
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|ST | + |ST ′ | − |(ST ′ ∪ ST ) − V (B ∪ C)| ≤ 4. Since G is 5-connected, B ∩ C = ∅. Thus, 
|V (B)| ≤ |ST ′ − V (T ′)| = 3, a contradiction. �

The next lemma will allow us to assume that if (T, ST , A, B) ∈ Qx with |V (A)|
minimum and (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩A 	= ∅ then T ∼= K3 and T ′ ∼= K3.

Lemma 4.4. Let G be a 5-connected graph and x ∈ V (G). Suppose for any T ⊆ G with 
x ∈ V (T ) and with T ∼= K2 or T ∼= K3, G/T is not 5-connected. Let (T, ST , A, B) ∈ Qx

with |V (A)| minimum and (T ′, ST ′ , C, D) ∈ Qx with T ′∩A 	= ∅. Suppose T ′ ∼= K2. Then 
one of the following holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist distinct x1, x2, x3 ∈ NG(x) such that for any distinct y1, y2 ∈ NG(x) −

{x1, x2, x3}, G′ := G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.

Proof. Lemma 4.1, we may assume min{|V (A)|, |V (B)|} ≥ 5 and min{|V (C)|, |V (D)} ≥
5. By Lemma 4.3, we may assume T ∼= K3. By Lemma 2.6, we may further assume 
|ST | = 6. Note the symmetry between C and D, and assume that V (T ) ⊆ ST − V (D). 
Since |V (T ′)| = 2, |ST ′ | = 5. Since T ′ ∩A 	= ∅, |V (A ∩ C)| + |V (A ∩D)| < |V (A)|.

Suppose A ∩ C 	= ∅. Then |(ST ′ ∪ ST ) − V (B ∪D)| ≥ 7; otherwise, (T, (ST ′ ∪ ST ) −
V (B ∪ D), A ∩ C, G[B ∪ D]) ∈ Qx and 0 < |V (A ∩ C)| < |V (A)|, contradicting the 
choice of (T, ST , A, B) that |V (A)| is minimum. Hence, |(ST ′ ∪ ST ) − V (A ∪ C)| =
|ST | + |ST ′ | − |(ST ′ ∪ ST ) − V (B ∪ D)| ≤ 4. Since G is 5-connected, B ∩ D = ∅. We 
may assume A ∩ D 	= ∅; otherwise, |V (D)| ≤ |ST − V (T )| = 3, a contradiction. We 
may also assume |V (D)| > |V (A)|; otherwise, (T ′, ST ′ , D, C) ∈ Qx and, by Lemma 4.3, 
G contains K−

4 . Hence, |V (D) ∩ ST | > |V (A ∩ C)| + |V (A) ∩ ST ′ | ≥ |V (A) ∩ ST ′ | + 1. 
Then, since |ST | = 6 and V (T ) ⊆ ST − V (D), |V (D) ∩ ST | = 3 and |V (A) ∩ ST ′ | = 1. 
Hence, |(ST ′ ∪ ST ) − V (B ∪ D)| = |ST − (V (D) ∩ ST )| + |ST ′ ∩ V (A)| = 4. However, 
(ST ′ ∪ ST ) − V (B ∪D) is a cut in G, a contradiction as G is 5-connected.

Now assume A ∩C = ∅. Then, since |ST ′ ∩V (A)| ≤ 4 (as x ∈ ST ∩ST ′ and |ST ′ | = 5), 
A ∩D 	= ∅.

Suppose |(ST ′ ∪ST ) −V (B∪C)| = 5. Then |V (A ∩D)| = 1; otherwise, since |V (C)| ≥
2 as |ST ′ | = 5, (T ′, (ST ′ ∪ ST ) − V (B ∪ C), A ∩ D, G[B ∪ C]) contradicts the choice 
of (T, ST , A, B) that |V (A)| is minimum. Hence |V (A) ∩ ST ′ | = 4; so V (B) ∩ ST ′ =
V (D) ∩ ST = ∅ as x ∈ ST ∩ ST ′ . Since G is 5-connected, B ∩D = ∅. So |V (D)| = 1, a 
contradiction.

Hence, we may assume |(ST ′ ∪ ST ) − V (B ∪ C)| ≥ 6. Then ST ∩ V (D) 	= ∅ because 
|ST ′ | = 5. So B ∩ C 	= ∅ (otherwise |V (C)| ≤ 4 as V (C) = V (C) ∩ ST , |ST | = 6, x ∈
ST ∩ST ′ , and ST ∩V (D) 	= ∅). Hence, since G is 5-connected, |(ST ′∪ST ) −V (A ∪D)| ≥ 5. 
Since |(ST ′ ∪ ST ) − V (A ∪ D)| + |(ST ′ ∪ ST ) − V (B ∪ C)| = |ST | + |ST ′ | = 11, we 
have |(ST ′ ∪ ST ) − V (A ∪ D)| = 5. If |V (B ∩ C)| = 1 then, since G is 5-connected 
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and T ⊆ ST − V (D), G[T ∪ (B ∩ C)] ∼= K−
4 . If |V (B ∩ C)| ≥ 2 then, since V (T ) ⊆

(ST ′ ∪ ST ) − V (A ∪D), the assertion follows from Lemma 2.6. �
The proofs of the remaining two results in this section use Lemmas 3.1, 3.3, and 3.4. 

The result below will allow us to assume that if (T, ST , A, B) ∈ Qx is chosen to minimize 
|V (A)| then NG(x) ∩V (A) 	= ∅, which in turn will allow us to choose another quadruple 
at x.

Lemma 4.5. Let G be a 5-connected nonplanar graph and x ∈ V (G). Suppose for any 
H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. Let 
(T, ST , A, B) ∈ Qx minimizing |V (A)|. Then N(x) ∩ V (A) 	= ∅, or one of the following 
holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist distinct x1, x2, x3 ∈ NG(x) such that for any distinct u1, u2 ∈ NG(x) −

{x1, x2, x3}, G′ := G − {xv : v /∈ {x1, x2, x3, u1, u2}} contains TK5.

Proof. Suppose NG(x) ∩V (A) = ∅. Then, since G is 5-connected, it follows that |ST | = 6, 
T ∼= K3, and every vertex in ST − {x} has a neighbor in A. Let V (T ) = {x, x1, x2} and 
ST = {x, x1, x2, v1, v2, v3}. By Lemma 2.8, we may assume NG(x1) ⊆ V (A) ∪ {x, x2}, 
and any three independent paths in GA := G[A + (ST − {x})] −E(ST ) from {x1, x2} to 
v1, v2, v3, respectively, with two from x1 and one from x2, must include a path from x2
to v1.

We wish to apply Lemma 3.1. Let G′
A be obtained from GA by adding a new vertex 

x′
1 and joining x′

1 to each vertex in NG(x1) ∩V (A) with an edge. Thus, in G′
A, x1 and x′

1
have the same set of neighbors. Note that {x1, x′

1, x2} and {v1, v2, v3} are independent 
sets in G′

A.

Claim 1. If (A1, A2) is a separation in G′
A such that |V (A1 ∩A2)| ≤ 3, {x1, x′

1, x2} ⊆
V (A1), and {v1, v2, v3} ⊆ V (A2), then x2 has a unique neighbor in A, say x′

2, V (A1 ∩
A2) = {x1, x′

1, x
′
2}, and V (A1) = {x1, x′

1, x2, x′
2}.

To prove Claim 1, let (A1, A2) be a separation in G′
A such that |V (A1 ∩ A2)| ≤ 3, 

{x1, x′
1, x2} ⊆ V (A1), and {v1, v2, v3} ⊆ V (A2).

We may assume {x1, x′
1} � V (A1 ∩ A2). For, suppose {x1, x′

1} ⊆ V (A1 ∩ A2). Then, 
since {x1, x′

1, x2} is independent in G′
A, x2 /∈ V (A1 ∩ A2) and A1 − {x1, x′

1, x2} 	= ∅. 
Since G is 4-connected, {x1, x2} ∪ (V (A1 ∩ A2) − {x1, x′

1}) is not a 3-cut in G. Hence, 
|V (A1)| = 4 as NG(x2) ∩ V (A) 	= ∅. So x2 has a unique neighbor in A, say x′

2, and we 
must have V (A1 ∩A2) = {x1, x′

1, x
′
2} and V (A) = {x1, x′

1, x2, x′
2}.

Thus, we may assume by symmetry that x1 /∈ V (A1 ∩ A2). Then (A1, A2) may be 
chosen so that x′

1 /∈ V (A1 ∩ A2) (as x′
1 and x1 have the same set of neighbors in G′

A). 
Moreover, V (A1) − V (A2) ⊆ {x1, x′

1, x2}; otherwise S′
T := V (A1 ∩ A2) ∪ V (T ) is a 

cut in G with |S′
T | ≤ 6, and G − S′

T has a component strictly contained in A (as 
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V (A2) 	= {v1, v2, v3} since {v1, v2, v3} is independent in G′
A), contradicting the choice of 

(T, ST , A, B) that |V (A)| is minimum.
Hence, x1 ∈ V (A1) − V (A2). Recall that NG(x1) ⊆ V (A) ∪ {x, x2}. So V (A1 ∩

A2) ∪ {x, x2} is a cut in G. Since G is 5-connected, V (A1 ∩ A2) ∪ {x, x2} is not a 
4-cut in G. Hence, x2 ∈ V (A1) − V (A2) and |V (A1 ∩ A2)| = 3. Since G is 5-connected 
and V (A1) − V (A2) ⊆ {x1, x′

1, x2}, it follows that NG(x1) = {x, x2} ∪ V (A1 ∩ A2). 
Since NG(x2) ∩ V (A) 	= ∅ and NG(x2) ∩ V (A) ⊆ NG(x2) ∩ V (A1 ∩ A2), there exists 
v ∈ V (A1 ∩A2) such that vx2 ∈ E(G). Now G[{v, x, x1, x2}] ∼= K−

4 and (ii) holds. �
Since any three disjoint paths in G′

A from {x1, x2, x′
1} to {v1, v2, v3} contain a path 

from x2 to v1, it follows from Claim 1 and Lemma 3.1 that G′
A has a separation (J, L)

such that V (J ∩L) = {w0, . . . , wn}, (J, w0, . . . , wn) is planar, (L, (x1, x2, x′
1), (v2, v1, v3))

is a ladder along some sequence b0 . . . bm, where b0 = x2, bm = v1, and w0 . . . wn

is the reduced sequence of b0 . . . bm. (Note that if (ii) of Lemma 3.1 holds then 
(G′

A, (x1, x2, x′
1), (v2, v1, v3)) is a ladder. For convenience, we let L = G′

A, let J con-
sist of v1 and x2, or let J consist of v1, x2, x′

2 if x2 has a unique neighbor x′
2 in GA.)

Since L is a ladder, L contains three disjoint paths P1, P2, P3 from x1, x2, x′
1, respec-

tively, to {v1, v2, v3}, with v1 ∈ V (P2). Without loss of generality, we may further assume 
that v2 ∈ V (P1) and v3 ∈ V (P3). Let (Ri, (ai−1, bi−1, ci−1), (ai, bi, ci)), i ∈ [m], be the 
rungs in L, with ai ∈ V (P1), bi ∈ V (P2), and ci ∈ V (P3) for i = 0, . . . , m. Since G is 
5-connected, (J, w0, . . . , wn) is planar and, by Lemmas 3.3 and 3.4, we may assume that 
the rungs in L have the simple structures as in Lemma 3.4. For convenience, we view P3

as a path in GA from v3 to x1.

Claim 2. There exist t ∈ V (A) and independent paths Q1, Q2, Q3, Q4, Q5 in GA such 
that Q1, Q2, Q3, Q4 are from t to x1, x2, v1, v2, respectively, and Q5 is from x1 to v3; 
and there exist t′ ∈ V (A) and independent paths Q′

1, Q
′
2, Q

′
3, Q

′
4, Q

′
5 in GA such that 

Q′
1, Q

′
2, Q

′
3, Q

′
4 are from t′ to x1, x2, v1, v3, respectively, and Q′

5 is from x1 to v2.
First, we may assume that for i ∈ [m], (Ri, (ai−1, bi−1, ci−1), (ai, bi, ci)) is not of 

type (iv) as in Lemma 3.4. For, suppose (Ri, (ai−1, bi−1, ci−1), (ai, bi, ci)) is of type 
(iv) for some i ∈ [m], and let v ∈ V (Ri) − ({ai−1, bi−1, ci−1} ∪ {ai, bi, ci}). Then 
Claim 2 holds with v, vai−1 ∪ ai−1P1x1, vbi−1 ∪ bi−1P2x2, vbi ∪ biP2v1, vai ∪ aiP1v2, P3

as t, Q1, Q2, Q3, Q4, Q5, respectively, and with v, vci−1 ∪ ci−1P3x1, vbi−1 ∪ bi−1P2x2, 
vbi ∪ biP2v1, vci ∪ ciP3v3, P1 as t′, Q′

1, Q
′
2, Q

′
3, Q

′
4, Q

′
5, respectively.

We claim that there exists q ∈ [m] with x1bq ∈ E(G). To see this, let q ≥ 1 be 
the smallest integer such that (Rq, (aq−1, bq−1, cq−1), (aq, bq, cq)) is not of type (ii) as in 
Lemma 3.4, which must exist as x1 /∈ {v1, v2, v3}. Then aq−1 = x1 and cq−1 = x′

1. Since G
is 5-connected, (Rq, (aq−1, bq−1, cq−1), (aq, bq, cq)) cannot be of type (iii); for, otherwise, 
{aq−1, bq−1, cq−1} ∪ {aq, bq, cq} would give a 4-cut in G consisting of x1, bq−1, bq and one 
of {aq, cq}. Thus, (Rq, (aq−1, bq−1, cq−1), (aq, bq, cq)) must be of type (i) as in Lemma 3.4. 
Since x1 and x′

1 have the same set of neighbors in G′
A, aq 	= x1 and cq 	= x′

1. Since G is 
5-connected, {x1, aq, bq, cq} cannot be a cut in G; so V (Rq) = {x1, x′

1, aq, bq, cq}. Since 
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NG(x1) ⊆ V (A) ∪ {x, x2}, NG(x1) ⊆ V (Rq) ∪ {x, x2}. Hence, since G is 5-connected, 
NG(x1) = {x, x2, aq, bq, cq}. In particular, x1bq ∈ E(G).

Recall that L is a ladder with rungs (Ri, (ai−1, bi−1, ci−1), (ai, bi, ci)) for i ∈ [m], 
b0 = x2 and bm = v1, and P2 is a path through b0, b1, . . . , bm in order. So we choose 
bq such that x1bq ∈ E(G) and, subject to this, q is maximum. Note that q < m as 
x1v1 /∈ E(G) (since NG(x1) ⊆ V (A) ∪ {x, x2}).

We now show the existence of t and Qi, i ∈ [5]; the proof of the existence of t′ and 
Q′

i, i ∈ [5], is symmetric (by exchanging the roles of v2, P1 and v3, P3).
We may assume that there does not exist r, with q < r ≤ m, such that L has disjoint 

paths S, S′ from br, x1 to v2, v3, respectively, and internally disjoint from J ∪ P2. For, 
suppose such r, S, S′ do exist. By Claim 1, J ∪ P2 or (J ∪ P2) − x2 is 2-connected. 
Let P ′

2 denote the path between x2 and v1 in J ∪ P2 such that P ′
2 ∪ P2 bounds the 

infinite face of J ∪ P2. (Here we assume that J ∪ P2 is drawn in a closed disc in the 
plane with w0, . . . , wn on the boundary of the disc in cyclic order.) Let t ∈ V (P ′

2)
such that x2t ∈ E(P ′

2). If there exist independent paths L1, L2 in J ∪ P2 from t to 
bq, br, respectively, and internally disjoint from P ′

2, then L1 ∪ bqx1, tx2, tP ′
2v1, L2 ∪ S, S′

give the desired paths Q1, Q2, Q3, Q4, Q5, respectively. Thus we may assume that such 
L1, L2 do not exist. So by Menger’s theorem, J ∪ P2 has a separation (J1, J2) such 
that |V (J1 ∩ J2)| ≤ 3, t ∈ V (J1) − V (J2), and {bq, br, v1, x2} ⊆ V (J2). Because of P ′

2, 
V (J1 ∩ J2) contains x2 and a vertex t∗ ∈ V (tP ′

2v1). Note that V (J1 ∩ J2) 	= {t∗, x2}
as otherwise by planarity of J ∪ P2, {t∗, x2} would be a cut in G separating t from 
B ∪ P1 ∪ P2 ∪ P3. So let v ∈ V (J1 ∩ J2) − {t∗, x2}. If v /∈ V (P2) then by planarity 
of J ∪ P2, {t∗, v, x2} is a cut in G separating t from B ∪ P1 ∪ P3, a contradiction. So 
v ∈ V (P2). If v ∈ V (x2P2bq) then by planarity of J ∪ P2, {t∗, v, x1, x2} is a cut in G
separating t from B ∪ P1 ∪ P3, a contradiction. So v ∈ V (brP2v1) and we may assume 
v = bs for some s with r + 1 ≤ s ≤ m. Then V (T ) ∪ {as, bs, cs} is a cut in G separating ⋃s

i=1 Rs from B + t, contradicting the choice of (T, ST , A, B) that |V (A)| is minimum.
Hence, for any r > q, it follows from the nonexistence of S, S′ above and the max-

imality of q that (Rr, (ar−1, br−1, cr−1), (ar, br, cr)) must be of type (i) or (ii) as in 
Lemma 3.4, and there is no edge in G′

A from bqP2v2 − bq to P1 − x1.
Also notice that, for r ≤ q with br−1 	= bq, because of the edges x1bq, x′

1bq in G′
A, 

(Rr, (ar−1, br−1, cr−1), (ar, br, cr)) must be of type (ii) as in Lemma 3.4. For r ≤ q with 
br−1 = bq, we see that V (Rr) = {x1, x′

1, ar, bq, cr} to avoid the cut {x1, ar, bq, cr} in 
G, and we may assume that bqar /∈ E(G) (otherwise, bq, bqx1, bqP2x2, bqP2v1, bqar ∪
arP1v2, P3 give the desired t, Q1, Q2, Q3, Q4, Q5, respectively). Thus, in particular, x1 /∈
{aq, cq} as x1 and x′

1 have the same set of neighbors in Rr.
We may assume that for some j > q, {aj−1, cj−1} ∩ {aj , cj} = ∅. For, otherwise, 

for each j > q, (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) is of type (ii) or of type (i) with 
|V (Ri)| = 4 (as G is 5-connected). Hence, since G′

A has no edge from P2 to P1 − x1
(as bqaq /∈ E(G)), it follows that (GA, x1, x2, v1, v3, v2) is planar; so the assertion follows 
from Lemmas 2.5 and 2.2.

Thus, (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) is of type (i) as in Lemma 3.4.
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If Rj − aj−1 contains disjoint paths S1, S2 from bj , cj−1 to aj , cj , respectively, then bj
and the paths S1∪ajP1v2, x1P3cj−1∪S2∪cjP3v3 contradict the nonexistence of br, S, S′. 
So assume that such S1, S2 do not exist. Then by Lemma 2.10, (Rj−aj−1, aj , cj , bj , cj−1)
is 3-planar. Since G is 5-connected, Rj is (5, {aj−1, aj , cj , bj , cj−1})-connected. So (Rj −
aj−1, aj , cj , bj , cj−1) is in fact planar. By Lemmas 2.5 and 2.2, we may assume |V (Rj −
aj−1)| ≤ 5 as otherwise the desired TK5 or K−

4 exists in G.
If |V (Rj − aj−1)| = 5 then there exists v ∈ V (Rj) − {aj−1, aj , bj , cj−1, cj}. Since G

is 5-connected, NG(v) = {aj−1, aj , bj , cj−1, cj}. Since j > q, by taking r = j we see that 
bj , bjvaj ∪ ajP1v2, P3 contradict the nonexistence of br, S, S′.

Hence, we may assume |V (Rj − aj−1)| = 4. Then, since Rj has no cut of size at most 
3 separating {aj−1, bj−1, cj−1} from {aj , bj , cj}, we must have aj−1cj , ajcj−1 ∈ E(G). 
Note that there exists r ≥ q such that L has a path Z from br to z ∈ V (x1P1aj−1 −
x1) ∪ V (x′

1P3cj−1 − x′
1) and internally disjoint from J ∪ P1 ∪ P2 ∪ P3; for otherwise, 

{aj , bj , cj , x1} would be a cut in G.
Suppose z ∈ V (x1P1aj−1−x1). If r > q then br, Z ∪zP1v2, P3 contradict the nonexis-

tence of br, S, S′. So r = q. Then bq, bqx1, bqP2x2, bqP2v1, Z ∪ zP1v2, P3 give the desired 
t, Q1, Q2, Q3, Q4, Q5, respectively.

So assume z ∈ V (x1P3cj−1 − x1). If r > q then br, Z ∪ zP3cj−1 ∪ cj−1aj ∪
ajP1v2, x1P1aj−1 ∪ aj−1cj ∪ cjP3v3 contradict the nonexistence of br, S, S′. So r = q. 
Then bq, bqx1, bqP2x2, bqP2v1, Z∪zP3cj−1∪cj−1aj ∪ajP1v2, x1P1aj−1∪aj−1cj ∪cjP3v3
give the desired t, Q1, Q2, Q3, Q4, Q5, respectively. �

Now that we have the paths in Claim 2, we turn to GB := G[B+(ST −{x1})]. Choose 
x3 ∈ NG(x) ∩ V (B), let u1 := x3 and let u2 ∈ NG(x) − {x1, x2, x3} be arbitrary. Note 
that u2 ∈ ST ∪ V (B) (as NG(x) ∩ V (A) = ∅). We wish to prove (iii) by attempting to 
find a TK5 in G′ := G −{xv : v /∈ {u1, u2, x1, x2}}. Since G is 5-connected and NG(x1) ∩
V (B) = ∅, GB − x is (4, {x2, v1, v2, v3})-connected and, hence, has four independent 
paths B1, B2, B3, B4 from u1 to v1, v2, v3, x2, respectively. We further choose these paths 
to be induced in GB.

Claim 3. We may assume u2 ∈ V (B).
For, otherwise, we have u2 ∈ ST . If u2 = v1 then T ∪ Q1 ∪ Q2 ∪ (Q3 ∪ v1x) ∪ u1x ∪

B4 ∪ (B2 ∪Q4) ∪ (B3 ∪Q5) is a TK5 in G′ with branch vertices t, u1, x, x1, x2. If u2 = v2
then T ∪Q1 ∪Q2 ∪ (Q4 ∪ v2x) ∪ u1x ∪B4 ∪ (B1 ∪Q3) ∪ (B3 ∪Q5) is a TK5 in G′ with 
branch vertices t, u1, x, x1, x2. Now assume u2 = v3. Then T ∪ Q′

1 ∪ Q′
2 ∪ (Q′

4 ∪ v3x) ∪
u1x ∪B4 ∪ (B1 ∪Q′

3) ∪ (B2 ∪Q′
5) is a TK5 in G′ with branch vertices t′, u1, x, x1, x2. �

Let P be a path in GB − x from u2 to some w2 ∈ V (B1 ∪B2 ∪B3 ∪B4) − {u1} and 
internally disjoint from B1 ∪B2 ∪B3 ∪B4.

Claim 4. We may assume that w2 ∈ V (B4) for every choice of P .
For, if w2 ∈ V (B1) then T ∪Q1 ∪Q2 ∪ (Q3 ∪ v1B1w2 ∪ P ∪ u2x) ∪ u1x ∪B4 ∪ (B2 ∪

Q4) ∪ (B3 ∪Q5) is a TK5 in G′ with branch vertices t, u1, x, x1, x2. If w2 ∈ V (B2) then 
T ∪Q1∪Q2∪(Q4∪v2B2w2∪P ∪u2x) ∪u1x ∪B4∪(B1∪Q3) ∪(B3∪Q5) is a TK5 in G′ with 
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branch vertices t, u1, x, x1, x2. If w2 ∈ V (B3) then T ∪Q′
1∪Q′

2∪(Q′
4∪v3B3w2∪P ∪u2x) ∪

u1x ∪B4 ∪ (B1 ∪Q′
3) ∪ (B2 ∪Q′

5) is a TK5 in G′ with branch vertices t′, u1, x, x1, x2. �
Let U2 denote the (B1∪B2∪B3)-bridge of GB−x containing B4+u2. That is, U2 is the 

subgraph of GB −x induced by the edges in the component of (GB−x) − (B1∪B2∪B3)
containing B4 + u2 and the edges from that component to B1 ∪B2 ∪B3.

Claim 5. We may assume that NG((U2 − x2) − (B1 ∪B2 ∪B3)) ⊆ V (B1) ∪ {x, x2}.
For, otherwise, there exists w ∈ NG((U2 − x2) − (B1 ∪ B2 ∪ B3)) such that w /∈

V (B1) ∪ {x, x2}. By symmetry, we may assume w ∈ V (B2 − u1) and choose w so that 
wB2v2 is minimal.

Then U2 has a path X between x2 to w and internally disjoint from B1 ∪ B2 ∪ B3, 
and a path from u2 to some u′

2 ∈ V (X) and internally disjoint from X ∪B1 ∪B2 ∪B3. 
(Note that u′

2 = u2 is possible.) Since G is 5-connected, U2 is (4, (V (U2) ∩ V (B1 ∪
B2 ∪B3)) ∪ {u2, x2})-connected. Hence, U2 has four independent paths from u′

2 to four 
distinct vertices in (V (U2) ∩ V (B1 ∪ B2 ∪ B3)) ∪ {u2, x2} and internally disjoint from 
B1 ∪B2 ∪B3. Thus, by Lemma 2.11, U2 contains independent paths L1, L2, L3, L4 from 
u′

2 to u2, x2, w, w′, respectively, and internally disjoint from B1 ∪ B2 ∪ B3, where w′ ∈
V (B1 ∪B2 ∪B3).

If w′ ∈ V (B2) then by the minimality of wB2v2, w′ ∈ V (wB2u1 − w); so T ∪ (L1 ∪
u2x) ∪L2 ∪ (L3 ∪wB2v2 ∪P1) ∪ (u1B2w

′ ∪L4) ∪ u1x ∪ (B1 ∪P2) ∪ (B3 ∪P3) is a TK5 in 
G′ with branch vertices u1, u′

2, x, x1, x2. (Recall that we view P3 as a path in GA from 
x1 to v3.)

If w′ ∈ V (B1 − u1) then (using Claim 2) we see that T ∪Q′
1 ∪Q′

2 ∪ (Q′
4 ∪B3 ∪ u1x) ∪

(L1 ∪ u2x) ∪ L2 ∪ (L3 ∪ wB2v2 ∪Q′
5) ∪ (L4 ∪ w′B1v1 ∪Q′

3) is a TK5 in G′ with branch 
vertices t′, u′

2, x, x1, x2.
If w′ ∈ V (B3 − u1) then (using Claim 2) we see that T ∪Q1 ∪Q2 ∪ (Q3 ∪B1 ∪ u1x) ∪

(L1 ∪ u2x) ∪ L2 ∪ (L3 ∪ wB2v2 ∪Q4) ∪ (L4 ∪ w′B3v3 ∪Q5) is a TK5 in G′ with branch 
vertices t, u′

2, x, x1, x2. �
Now let z ∈ NG((U2 − x2) − (B1 ∪ B2 ∪ B3)) with z ∈ V (B1) such that zB1v1 is 

minimal. Since G is 5-connected, {u1, x2, z} cannot be a cut in GB − x (in particular, 
|V (zB1u1)| ≥ 3). So GB − x has a path Y from some y ∈ V (zB1u1) − {u1, z} to some 
y′ ∈ V (B2 ∪B3) − {u1} and internally disjoint from U2 ∪B1 ∪B2 ∪B3.

Claim 6. We may assume that G[(U2 −B1) + z] has no independent paths from u2 to 
x2, z, respectively.

For, suppose G[(U2−B1) +z] (and hence G[U2∪zB1u1]) has independent paths from 
u2 to x2, z, respectively. Since G is 5-connected, it follows from Claim 5 and the choice 
of z that G[U2 ∪ zB1u1] is (4, V (zB1u1) ∪ {x2}})-connected. So by Lemma 2.11, G[U2 ∪
zB1u1] has independent paths L1, L2, L3, L4 from u2 to distinct vertices x2, z, z1, z2, 
respectively, and internally disjoint from B1, where u1, z2, z1, z occur on B1 in the order 
listed. Possibly, u1 = z2.
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If y′ ∈ V (B2 − u1) then (using Claim 2) we see that T ∪Q′
1 ∪Q′

2 ∪ (Q′
4 ∪B3 ∪ u1x) ∪

u2x ∪ L1 ∪ (L2 ∪ zB1v1 ∪ Q′
3) ∪ (L3 ∪ z1B1y ∪ Y ∪ y′B2v2 ∪ Q′

5) is a TK5 in G′ with 
branch vertices t′, u2, x, x1, x2.

If y′ ∈ V (B3 − u1) then (using Claim 2) we see that T ∪Q1 ∪Q2 ∪ (Q4 ∪B2 ∪ u1x) ∪
u2x ∪ L1 ∪ (L2 ∪ zB1v1 ∪ Q3) ∪ (L3 ∪ z1B1y ∪ Y ∪ y′B3v3 ∪ Q5) is a TK5 in G′ with 
branch vertices t, u2, x, x1, x2. �

By Claim 6, G[(U2 −B1) + z] has a 1-separation (U21, U22) such that u2 ∈ V (U21) −
V (U22) and {x2, z} ⊆ V (U22). We choose this separation so that U22 is minimal. Let u′

2
denote the unique vertex in V (U21∩U22). By the definition of z, we see that u′

2 /∈ {x2, z}. 
Also, u′

2 ∈ V (B4) as otherwise by Claim 4, {x, u′
2} would be a cut in G. By the minimality 

of U22, we see that U22 has independent paths L1, L2 from u′
2 to x2, z, respectively.

Claim 7. We may assume that u′
2 has exactly two neighbors in U22.

By the minimality of U22, |NG(u′
2) ∩ V (U22)| ≥ 2. Suppose |NG(u′

2) ∩ V (U22)| ≥ 3. 
Let L be a path in U21 from u2 to u′

2.
We claim that G[U22 ∪ zB1u1] − u1 has three independent paths from u′

2 to three 
distinct vertices in V (zB1u1−u1) ∪{x2}. Otherwise, G[U22∪zB1u1] −u1 has a separation 
(Y1, Y2) such that |V (Y1 ∩ Y2)| ≤ 2, u′

2 ∈ V (Y1) − V (Y2), and V (zB1u1 − u1) ∪ {x2} ⊆
V (Y2). Since |NG(u′

2) ∩V (U22)| ≥ 3, we see that V (Y1 ∩Y2) ∪{x, u1, u′
2} is cut of G and, 

hence, of order 5 (as G is 5-connected). Let V (Y1∩Y2) = {t1, t2} and let T1, T2 be disjoint 
paths in Y2 from t1, t2 to z, x2, respectively. Thus G has a 5-separation (G1, G2) such 
that V (G1 ∩G2) = {t1, t2, x, u1, u′

2}, GA ∪ Y2 ⊆ G1, and Y1 ⊆ G2. Clearly, |V (G1)| ≥ 7. 
We may assume |V (G2)| ≥ 7; for otherwise, |V (G2)| = 6 and the vertex in V (G2 −G1)
together with u′

2, t1, t2 induces a subgraph of G containing K−
4 ((ii) holds). Thus, we 

may further assume that (G2 − x, V (G1 ∩ G2) − {x}) is not planar; as otherwise the 
assertion of this lemma follows from Lemmas 2.5 and 2.2. So by Lemma 2.10, G2 − x

has disjoint paths S1, S2 from t1, t2 to u′
2, u1, respectively. Then L ∪ S1 ∪ T1 is a path 

in GB − x from u2 to B1 and disjoint from the (T2 ∪ S2) ∪ B1 ∪ B2 ∪ B3; so we have a 
contradiction to Claim 4 by replacing B4 with T2 ∪ S2.

So by Lemma 2.11, G[U22 ∪ zB1u1] − u1 has independent paths L′
1, L

′
2, L

′
3 from u′

2 to 
x2, z, z1, respectively, and internally disjoint from B1, where z1 ∈ V (zBu1) − {u1, z}).

If y′ ∈ V (B2 −u1) then T ∪Q′
1 ∪Q′

2 ∪ (Q′
4 ∪B3 ∪u1x) ∪ (L ∪u2x) ∪L′

1∪ (L′
2 ∪ zB1v1 ∪

Q′
3) ∪ (L′

3 ∪ z1B1y∪Y ∪y′B2v2 ∪Q′
5) is a TK5 in G′ with branch vertices t′, u′

2, x, x1, x2.
If y′ ∈ V (B3 − u1) then T ∪ Q1 ∪ Q2 ∪ (Q4 ∪ B2 ∪ u1x) ∪ (L ∪ u2x) ∪ L′

1 ∪ (L′
2 ∪

zB1v1 ∪ Q3) ∪ (L′
3 ∪ z1B1y ∪ Y ∪ y′B3v3 ∪ Q5) is a TK5 in G′ with branch vertices 

t, u′
2, x, x1, x2. �
Since G is 5-connected, it follows from Claim 7 that u′

2 has at least two neighbors in 
U21 ∪ (zB1u1 − z). Moreover, u′

2B4u1 	= u′
2u1 as, otherwise, it follows from Claim 4 that 

{u′
2, u1, x} would be a cut in G. Hence, since B4 is induced, u′

2u1 /∈ E(G).
Then G[U21 ∪ zB1u1] − {z, u1} has two independent paths from u′

2 to two vertices in 
(zB1u1 −{z, u1}) ∪{u2}. For, otherwise, G[U21 ∪ (zB1u1 − z)] has a separation (U ′, U ′′)
such that |V (U ′∩U ′′)| ≤ 2, u1 ∈ V (U ′∩U ′′), u′

2 ∈ V (U ′−U ′′), and (zB1u1−z) +u2 ⊆ U ′′. 
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Since u′
2u1 /∈ E(G) and u′

2 has at least two neighbors in U21∪(zB1u1−z), it follows from 
Claims 4 and 5 that V (U ′∩U ′′) ∪{u′

2, x} is a cut in G of size at most 4, a contradiction.
Hence, by Lemma 2.11, G[U21 ∪ zB1u1] − {z, u1} has independent paths L3, L4 from 

u′
2 to z1, u2, respectively, and internally disjoint from B1, where z1 ∈ V (zB1u1) −{z, u1}.
If y′ ∈ V (B2−u1) then T ∪Q′

1∪Q′
2∪ (Q′

4∪B3∪u1x) ∪ (L4∪u2x) ∪L1∪ (L2∪zB1v1∪
Q′

3) ∪ (L3 ∪ z1B1y∪Y ∪y′B2v2 ∪Q′
5) is a TK5 in G′ with branch vertices t′, u′

2, x, x1, x2.
If y′ ∈ V (B3 − u1) then T ∪ Q1 ∪ Q2 ∪ (Q4 ∪ B2 ∪ u1x) ∪ (L4 ∪ u2x) ∪ L1 ∪ (L2 ∪

zB1v1 ∪ Q3) ∪ (L3 ∪ z1B1y ∪ Y ∪ y′B3v3 ∪ Q5) is a TK5 in G′ with branch vertices 
t, u′

2, x, x1, x2. �
We conclude this section with another technical lemma, which deals with a special 

case that occurs in the proof of Lemma 5.5. It is included in this section because its 
proof also makes use of Lemmas 3.1, 3.3, and 3.4.

Lemma 4.6. Let G be a 5-connected nonplanar graph and x ∈ V (G). Let (T, ST , A, B) ∈
Qx such that |V (A)| is minimum, and suppose there exists (T ′, ST ′ , C, D) ∈ Qx such 
that T ′ ∼= K3, T ′ ∩ A 	= ∅, V (A ∩ C) = ST ∩ V (C) = V (B ∩ D) = V (B) ∩ ST ′ = ∅, 
|V (A) ∩ST ′ | = |V (D) ∩ST | = |V (D∩T )| = 1, A ∩D 	= ∅, and |ST ∩ST ′ | = 5. Suppose that 
for any H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected, 
and that for any (H, SH , AH , BH) ∈ Qx, we have |V (H ∩ A)| ≤ 1, and H ∼= K3 when 
H ∩A 	= ∅. Then one of the following holds:

(i) G has a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist x1, x2, x3 ∈ NG(x) such that, for any distinct y1, y2 ∈ NG(x) −

{x1, x2, x3}, G′ := G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.

Proof. Note that |ST | = |ST ∩ST ′ | + |V (D∩T )| = 6. So T ∼= K3. Let V (T ) = {x, w, x1}
and V (T ′) = {x, a, b} such that V (A) ∩ ST ′ = {a} and V (D) ∩ ST = {w}, and let 
ST ∩ ST ′ = {x, x1, b, z1, z2}. Then |V (D)| = |V (A)| = |V (A ∩D)| + 1. Moreover,

(1) |NG(s) ∩ V (A)| ≥ 2 for s ∈ {b, z1, z2},

for, otherwise, (T, (ST − {s}) ∪ (NG(s) ∩ V (A)), A − NG(s), G[B + s]) ∈ Qx and |A −
NG(s)| ≥ 2 (by Lemma 4.1), contradicting the choice of (T, ST , A, B) that |V (A)| is 
minimum. We may assume that

(2) G has no edge from T − x to T ′ − x,

as otherwise G[T ∪ T ′] contains K−
4 and (ii) holds. We may also assume that

(3) NG(x1) ∩ V (D) 	= {w} and NG(w) ∩ V (A) 	= ∅,
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for, otherwise, if NG(x1) ∩ V (D) = {w} then let S := ST − {x1} and B′ := G[B + x1], 
and if NG(w) ∩ V (A) = ∅ then let S := ST − {w} and B′ := G[B +w]; now |S| = 5 and 
(xw, S, A, B′) ∈ Qx or (xx1, S, A, B′) ∈ Qx and, hence, (ii) follows from Lemma 4.3. We 
may further assume that

(4) for any x′ ∈ NG(x) ∩ V (A ∩D), xx′z1x or xx′z2x is a triangle in G.

For, let x′ ∈ NG(x) ∩V (A ∩D). By Lemma 4.2, we may assume that there exists H ⊆ G

with x, x′ ∈ V (H) and with H ∼= K2 or H ∼= K3. By the assumption of this lemma, 
H ∼= K3 and V (H) ∩ ST 	= {x}. If V (H) ∩ {b, w, x1} 	= ∅ then H ∪ T or H ∪ T ′ contains 
K−

4 , and (ii) holds. So we may assume V (H) ∩{z1, z2} 	= ∅ and, hence, xx′z1x or xx′z2x

is a triangle in G.

We may assume that

(5) |NG(x) ∩ V (A ∩D)| ≤ 2.

For, otherwise, by (4), there exist i ∈ [2] and distinct x′, x′′ ∈ NG(x) ∩V (A ∩D) ∩NG(zi). 
So G[{x, x′, x′′, zi}] contains K−

4 , and (ii) holds.

We now distinguish two cases.

Case 1. zi /∈ NG(x) for i ∈ [2].
Then by (4), NG(x) ∩ V (A ∩ D) = ∅. We prove that (iii) holds with x2 = w and 

x3 = b. Let y1, y2 ∈ NG(x) −{x1, x2, x3}. Since G is 5-connected and z1, z2 /∈ NG(x), we 
may assume y1 ∈ V (B ∩ C). Then GB := G[B + {b, x1, z1, z2}] has independent paths 
Y1, Y2, Y3, Y4 from y1 to z1, z2, x1, b, respectively.

We may assume that wzi /∈ E(G) for i ∈ [2]. For, suppose, by symmetry, wz1 ∈ E(G). 
If G[A + {b, w, x1}] has independent paths Q1, Q2 from b to x1, w, respectively, then 
T∪bx ∪Q1∪Q2∪y1x ∪(Y1∪z1w) ∪Y3∪Y4 is a TK5 in G′ with branch vertices b, w, x, x1, y1. 
So we may assume that such Q1, Q2 do not exist. Then G[A +{b, w, x1}] has a cut vertex v
separating b from {w, x1}. Let K denote the component of G[A +{b, w, x1}] −v containing 
b. Since |NG(b) ∩ V (A)| ≥ 2 (by (1)), |V (K)| ≥ 2. Now {b, v, x, z1, z2} is a cut in G, 
and G has a separation (G1, G2) such that V (G1 ∩ G2) = {b, v, x, z1, z2}, |V (G1)| ≥ 6
and {a, b} ⊆ V (G1), and B + {w, x1} ⊆ G2. By the choice of (T, ST , A, B) with |V (A)|
minimum, it follows that |V (G1)| = 6. Let u ∈ V (G1) − V (G2); then V (G1 ∩ G2) ⊆
NG(u) (since G is 5-connected). If u = a then bv ∈ E(G) (since |NG(b) ∩ V (A)| ≥ 2); 
now G[{a, b, v, x}] contains K−

4 , and (ii) holds. So assume u 	= a. Then v = a and 
G[{b, u, v, x}] contains K−

4 ; so (ii) holds.
We may also assume that GA := G[A + {b, w, x1, z1, z2}] does not contain three 

independent paths, with one from x1 to b, one from b to w, and one from w to zi for 
some i ∈ [2]. For, otherwise, such three paths and T ∪ bx ∪ y1x ∪Yi ∪Y3 ∪Y4 form a TK5

in G′ with branch vertices b, w, x, x1, y1.
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We wish to apply Lemma 3.1. Let G′
A be the graph obtained from GA by identifying 

z1 and z2 as z′, and duplicating w, b with w′, b′, respectively (adding edges from w′ to 
all vertices in NGA

(w), and from b′ to all vertices in NGA
(b)). Then any three disjoint 

paths in G′
A from {w, x1, w′} to {b, z′, b′}, if exist, must contain a path from x1 to z′.

Suppose G′
A has a separation (A1, A2) such that |V (A1 ∩ A2)| ≤ 2, {w, x1, w′} ⊆

V (A1), and {b, z′, b′} ⊆ V (A2). Since w and w′ have the same set of neighbors in G′
A, 

we may assume {w, w′} ⊆ V (A1 ∩ A2) or {w, w′} ∩ V (A1 ∩ A2) = ∅. If {w, w′} ⊆
V (A1 ∩ A2) then V (A1) = {x1} ∪ V (A1 ∩ A2) as {x, x1, w} cannot be a cut in G; 
hence, NG(x1) ∩ V (D) = {w}, contradicting (3). So {w, w′} ∩ V (A1 ∩A2) = ∅. Suppose 
{b, b′, z′} ∩V (A1 ∩A2) = ∅. Then, since wzi /∈ E(G) for i ∈ [2], V (A1 ∩A2) ∪{x1, x} is a 
cut in G separating w from B + {b, z1, z2}, contradicting the fact that G is 5-connected. 
So {b, b′, z′} ∩ V (A1 ∩ A2) 	= ∅. Note that {b, b′} � V (A1 ∩ A2); as otherwise {b, x, x1}
would be a cut in G separating w from B + {z1, z2}. Thus, we may assume that b, b′ /∈
V (A1 ∩ A2) as b and b′ have the same set of neighbors in G′

A. Hence, z′ ∈ V (A1 ∩ A2). 
Now S := {x, x1, z1, z2} ∪ (V (A1 ∩ A2) − {z′}) is a cut in G separating w from B + b. 
Since G is 5-connected, x1 /∈ V (A1 ∩ A2). If |V (A1 − x1 − A2)| ≥ 2 then (xx1, S, A1 −
x1 − A2, G − S − A1) ∈ Qx which contradicts the choice of (T, ST , A, B) with |V (A)|
minimum. So V (A1 − x1 −A2) = {w}. Since G is 5-connected, wzi ∈ E(G) for i ∈ [2], a 
contradiction.

Hence, by Lemma 3.1, G′
A has a separation (J, L) such that V (J ∩L) = {w0, . . . , wn}, 

(J, w0, . . . , wn) is planar (since G is 5-connected), (L, (w, x1, w′), (b, z′, b′)) is a ladder 
along a sequence b0 . . . bm, where b0 = x1, bm = z′, and w0 . . . wn is the reduced sequence 
of b0 . . . bm. Moreover, we may assume that L has disjoint induced paths P1, P2, P3 from 
w, x1, w′ to b, z′, b′, respectively, and J is a connected plane graph with b0, b1, . . . , bm
occurring on the outer walk of J in cyclic order. (For convenience, when (ii) of Lemma 3.1
holds, we let J consist of w0, . . . , wn only.) Note that by Lemmas 3.3 and 3.4, each rung 
of (L, (w, x1, w′), (b, z′, b′)) is of type (i)–(iv) as in Lemma 3.4, with possible exceptions 
of those rungs containing a or z′. Let (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)), j ∈ [m], be 
the rungs in (L, (w, x1, w′), (b, z′, b′)) such that aj ∈ V (P1) and cj ∈ V (P3) for j =
0, 1, . . . , m.

We now show that there exists t ∈ NG′
A
(w) such that t ∈ V (P2) − {x1, z′}. For, 

suppose such t does not exist. Choose the largest j such that {w, w′} ⊆ V (Rj). We 
claim that z′ /∈ V (Rj). For, otherwise, z′ = bj . Then bj−1 	= bj ; as, otherwise, 
{x1, z1, z2} would be a cut in G (since t does not exist and NG(x1) ∩ V (D) 	= {w}). 
Since w, w′ have the same set of neighbors in G′

A and wb /∈ E(G) (by (2)), we see 
that (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) cannot be a rung of type (2)–(7) (see the defi-
nition of rungs in front of Lemma 3.1) and, hence, must be a rung of type (1), with 
{w, w′} = {aj−1, cj−1} = {aj , bj}. This, however, contradicts the maximality of j. Thus, 
we can instead choose the largest j such that {w, w′} ⊆ V (Rj) and (Rj , (aj−1, bj−1, cj−1), 
(aj , bj , cj)) is not of type (ii) in Lemma 3.4, which exists as w 	= b. By the above 
claim we know z′ /∈ V (Rj). Since G is 5-connected and because w and w′ have the 
same set of neighbors in G′

A, (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) cannot be of type (iii)
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as in Lemma 3.4. Moreover, (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) is not of type (iv) as in 
Lemma 3.4, as otherwise G contains K−

4 (obtained from Rj − {bj−1, bj} after identi-
fying w with w′). So (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj)) is of type (i) as in Lemma 3.4. 
Now V (Rj) = {aj , bj , cj , w, w′}, as otherwise {aj , bj , cj , w} would be a cut in G. Then 
wbj ∈ E(G); for otherwise, NG(w) ⊆ {aj , cj , x, x1}, a contradiction as G is 5-connected. 
Hence t := bj is as desired.

Without loss of generality, we may assume that the edge of P2 incident with z′ corre-
sponds to an edge of G incident with z1. We view P3 as a path in GA from b to w.

Then GA−V (P1∪P3) −z2 has independent paths from t to x1, z1, respectively. Recall 
that NG(x) ∩ V (A ∩D) = ∅. So GA is (5, V (P1 ∪P3) ∪ {a, x1, z1, z2})-connected. Hence, 
by Lemma 2.11, GA has five independent paths Q1, Q2, Q3, Q4, Q5 from t and internally 
disjoint from V (P1 ∪ P3) ∪ {a, z2}, with Q1, Q2, Q3 ending at x1, w, z1, respectively, and 
Q4, Q5 ending at distinct vertices in (V (P1∪P3) −{w}) ∪{a, z2}. By symmetry between P1
and P3, we may assume that Q4 ends in V (P3−w) ∪{a}. Then Q4∪(P3−w) ∪ba contains 
a path Q∗

4 from t to b. Let GB = G[B + {b, x, x1, z1, z2}]. Since NG(w) ∩ V (B) = ∅, GB

is (5, {b, x, x1, z1, z2})-connected.
If GB−x contains disjoint paths S1, S2 from z1, b to y1, x1, respectively, then T ∪ bx ∪

P1 ∪S2 ∪Q1 ∪Q2 ∪ (Q3 ∪S1 ∪y1x) ∪Q∗
4 is a TK5 in G′ with branch vertices b, t, w, x, x1. 

Hence, we may assume such S1, S2 do not exist. Then by Lemma 2.10, there exists a 
collection D of subsets of V (GB − x) − {z1, b, y1, x1} such that (GB − x, D, z1, b, y1, x1)
is 3-planar. We choose such D that each D ∈ D is minimal.

If (GB − x, {b, x1, z1, z2}) is planar then the assertion of the lemma follows from 
Lemmas 2.5, with the cut {b, x, x1, z1, z2} giving the required 5-separation (G1, G2).

So we may assume that (GB − x, {b, x1, z1, z2}) is not planar. Then either D = ∅ and 
z2 does not belong to the facial walk of GB − x containing {b, x1, y1, z1}, or D = {D}
for some D ⊆ V (GB − x) − {b, x1, y1, z1} and z2 ∈ D (as G is 5-connected).

In the following three paragraphs, we show that we may assume that GB − x has 
disjoint paths S′

1, S
′
2 from z2, b to y1, x1, respectively, and if b has degree at least two 

in GB − x then GB − x has independent paths Y, Y ′
2 , Y

′
3 , Y

′
4 , with Y from b to z1 and 

Y ′
2 , Y

′
3 , Y

′
4 from y1 to z2, x1, b, respectively.

First, suppose D = ∅ and z2 does not belong to the facial walk F of GB−x containing 
{b, x1, y1, z1} (for every planar drawing of GB−x with b, x1, y1, z1 incident with a common 
face). Let S′

2 denote the path in F − y1 from b to x1, let Y be the path in F − y1 from b
to z1, and let Y ′

3 , Y
′
4 denote the paths in F from y1 to x1, b, respectively, neither of which 

contains S′
2. Note that Y ′

3 is internally disjoint from Y and Y ′
4 , and if b has at least two 

neighbors in GB − x then Y and Y ′
4 are also internally disjoint. We claim that GB − x

contains a path Y ′
2 from y1 to z2 and internally disjoint Y ∪Y ′

3 ∪Y ′
4 ; for otherwise, GB−x

has a cut T with |T | ≤ 2 such that T ⊆ V (Y ∪ Y ′
3 ∪ Y ′

4) and T separates z2 from y1, but 
then T∪{b, x} is a cut in G, a contradiction. Next, we may assume GB−x −S′

2 contains no 
path from z2 to y1 since such a path gives the desired S′

1. Then there exist z′1, z′2 ∈ V (S′
2)

and a separation (H1, H2) in GB −x such that V (H1∩H2) = {z′1, z′2}, z2 ∈ V (H1−H2), 
and y1 ∈ V (H2 − H1). Hence, z1 ∈ V (H1 − H2) as otherwise |V (H1)| = 3 (since G is 
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5-connected) and, hence, (GB − x, {b, x, z1, z2}) is planar, a contradiction. Now G has a 
5-separation (G1, G2) such that V (G1 ∩G2) = {b, x, x1, z′1, z

′
2}, H1 ∪A ⊆ G1, H2 ⊆ G2, 

and (G2 − x, {b, x1, z′1, z
′
2}) is planar. If |V (G2)| ≥ 7 then the assertion of the lemma 

follows from Lemmas 2.5 and 2.2. So |V (G2)| = 6. Hence, G[{b, x, x1, y1}] ∼= K−
4 .

Now suppose that D = {D} for some D ⊆ V (GB − x) − {b, x1, y1, z1} and z2 ∈
D. Note that |NG(D)| = 3; for, otherwise, V (D) = {z2} (as G is 5-connected) and 
(GB − x, {b, x1, y1, z1}) is planar, a contradiction. Moreover, for any partition T1, T2

of NG(D) ∪ {z2} with |T1| = |T2| = 2, D′ := G[D ∪ NG(D)] has two disjoint paths, 
one between the vertices in T1 and the other between the vertices in T2; for, otherwise, 
(D′, T1 ∪ T2) is planar by the minimality of D and, hence, (GB − x, {z1, b, y1, x1}) is 
planar, contradicting the choice of D.

Let H be obtained from GB − x by deleting D − z2 and adding a complete graph 
on NG(D) ∪ {z2}. Then (H, b, z1, x1, y1) is planar and z2 does not belong to the facial 
walk of H containing {b, x1, y1, z1}. Hence, the same argument for the case D = ∅ above 
applied to H (instead of GB − x) shows the existence of the desired paths. (Note that if 
the paths use the K4 on NG(D) ∪ {z2}, we can always replace them with disjoint paths 
in D′.)

Next, we may assume that GA contains a path Z from z2 to some z′2 ∈ V (P1 ∪
P3) −{b, b′} and internally disjoint from P1 ∪P3 ∪ ((J − z′) ∪P2 + {z1, z2}). To see this, 
consider the component F of G′

A − ((J − z′) ∪ P2) − {b, b′} containing z2. If F contains 
(P1 − b) ∪ (P3 − b′) then the desired path Z exists. So all neighbors of F in GA are 
contained in (J − z′) ∪ P2 ∪ {b}. We claim that there exists v ∈ V (tXx1 − x1) such 
that F ′ := G[(J − z′) ∪ P2 ∪ F + w] has three independent paths from v to x1, z2, w, 
respectively. If F ′ − w has independent paths from t to x1, z2, respectively, then these 
two paths and tw show that v := t works. So assume that there exists v ∈ V (tP2x1−x1)
and a separation (A1, A2) in F ′ − w such that V (A1 ∩ A2) = {v}, t ∈ V (A1 − A2), and 
F + x1 ⊆ A2. Choose v and (A1, A2) to minimize A2. Then, since |NG(z2) ∩ V (A)| ≥
2 (by (1)), A2 has independent paths from v to x1, z2, respectively. Now these two 
paths and vP2tw give the desired paths in F ′. Since NG(x) ∩ V (A ∩ D) = ∅, GA is 
(5, V (P1∪P3) ∪{a, x1, z1, z2})-connected. Hence, by Lemma 2.11, GA has five independent 
paths Q′

1, Q
′
2, Q

′
3, Q

′
4, Q

′
5 from t to x1, w, z2, (V (P1 ∪ P3) − {w}) ∪ {a, z1}, respectively, 

with only t in common, and internally disjoint from P1 ∪ P3. By symmetry between P1

and P3, we may assume that Q′
4 ends in V (P3 −w) ∪{a}. So Q′

4 ∪ (P3 −w) ∪ ba contains 
a path Q+

4 from t to b. Now T ∪ bx ∪ P1 ∪ S′
2 ∪Q′

1 ∪Q′
2 ∪ (Q′

3 ∪ S′
1 ∪ y1x) ∪Q+

4 is TK5

in G′ with branch vertices b, t, w, x, x1.
We may further assume that b has only one neighbor in GB − x and, in particular, 

bzi /∈ E(G) for i ∈ [2]. For, otherwise, GB −x has the paths Y ′, Y ′
2 , Y

′
3 , Y

′
4 . By symmetry 

between P1 and P3, we may assume that z′2 ∈ V (P3 − b′). Then T ∪ bx ∪P1 ∪ (Y ∪P2) ∪
y1x ∪ (Y ′

2 ∪ Z ∪ z′2P3w) ∪ Y ′
3 ∪ Y ′

4 is a TK5 in G′ with branch vertices b, w, x, x1, y1.
Thus, since G is 5-connected and bw /∈ E(G) (by (2)) and since P1, P3 are induced 

paths in L, b has a neighbor u ∈ V (A) −V (P1∪P3). Let (Rj , (aj−1, bj−1, cj−1), (aj , bj , cj))
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be the rung containing {b, b′, u}. Since b and b′ have the same set of neighbors in G′
A, 

aj−1 = b if, and only if, cj−1 = b′. Moreover, we must have bj = z′ because of the path Z.
We claim that bj−1 = z′ and, hence, aj−1 	= b and cj−1 	= b′. For suppose bj−1 	= z′. 

Since bj−1 	= bj and since b and b′ have the same set of neighbors in G′
A, we must have 

aj−1 = b and cj−1 = b′. This, however, contradicts the existence of the path Z.
We now show that we may further choose Z so that Z is internally disjoint Rj as well. 

To see this, let F denote the component of G′
A − ((J − z′) ∪ P3) − (Rj − {aj−1, cj−1})

containing z2. If F contains (P1∪P3) −(Rj−{aj−1, cj−1}) then clearly Z may be chosen to 
be internally disjoint from Rj as well. So F is disjoint from (P1∪P3) −(Rj−{aj−1, cj−1}). 
Then F has a neighbor in (J ∪ P2) − {x1, z′}; for otherwise, {aj−1, cj−1, z1} ∪ V (T ) is a 
cut in G separating (J − z′) ∪ P2 ∪wP1aj−1 ∪w′P3cj−1 from B ∪ F ∪Rj , contradicting 
the choice of T (that A is minimal). We claim that there exists v ∈ V (tP2x1 − x1) such 
that F ′ := G[(J − z′) ∪ P2 ∪ F + w] has three independent paths from v to w, x1, z2, 
respectively. Note that we can let v := t if F ′−w has independent paths from t to x1, z2, 
respectively. So assume such paths do not exist in F ′−w. Then there exist v ∈ V (tP2x1)
and a separation (A1, A2) in F ′ − w such that V (A1 ∩ A2) = {v}, t ∈ V (A1 − v), 
and F + x1 ⊆ A2. Choose v and (A1, A2) so that A2 is minimal. Then since F has 
a neighbor in J − {x1, z′}, A2 has independent paths from v to x1, z2, respectively, 
which together with vP2tw gives the desired paths in F ′. Since NG(x) ∩ V (A ∩D) = ∅, 
GA is (5, V (P1 ∪ P3) ∪ {a, x1, z1, z2})-connected. Hence, by Lemma 2.11, GA has five 
independent paths Q′

1, Q
′
2, Q

′
3, Q

′
4, Q

′
5 from v to x1, w, z2, (V (P1 ∪ P3) − {w}) ∪ {a, z1}, 

respectively, with only v in common, and internally disjoint from P1 ∪P3. By symmetry 
between P1 and P3, we may assume that Q′

4 ends in V (P3−w) ∪{a}. So Q′
4∪(P3−w) ∪ba

contains a path Q+
4 from t to b. Now T ∪ bx ∪ P1 ∪ S′

2 ∪Q′
1 ∪Q′

2 ∪ (Q′
3 ∪ S′

1 ∪ y1x) ∪Q+
4

is TK5 in G′ with branch vertices b, v, w, x, x1.
Finally, we show that G[Rj − {b′, z′} + z1] has independent paths P ′

1, P
′
2, S from b to 

aj−1, cj−1, z1, respectively. For, otherwise, G[Rj − {b′, z′} + {z1, z2}] has a 3-separation 
(A1, A2) such that z2 ∈ V (A1∩A2), b ∈ V (A1−A2), and {aj−1, cj−1, z1} ⊆ V (A2). Now 
G has a 5-separation (G1, G2) such that V (G1 ∩G2) = {b, x} ∪ V (A1 ∩ A2), bP1aj−1 ∪
bP3cj−1∪{u} ⊆ G1, and B∪(J−z′) ∪A2 ⊆ G2. Note that u ∈ V (G1−G2). By the choice 
of T (that A is minimal), we have |V (G1)| = 6 and, hence, NG(u) = {b, x} ∪V (A1∩A2). 
Now G[{aj−1, cj−1, b, u}] contains K−

4 .
By symmetry between P1 and P3, we may assume that z′2 ∈ V (P3 − b′). Now T ∪ bx ∪

(P ′
1 ∪ aj−1P1w) ∪ (S ∪ z1P2x1) ∪ y1x ∪ (Y2 ∪ Z ∪ z′2P3w) ∪ Y3 ∪ Y4 is TK5 in G′ with 

branch vertices b, w, x, x1, y1.

Case 2. NG(x) ∩ {z1, z2} 	= ∅.
Without loss of generality, we may assume xz1 ∈ E(G). We may further assume z1 is 

not adjacent to any of {a, b, w, x1}; for otherwise, G[T+z1] or G[T ′+z1] contains K−
4 , and 

(ii) holds. We wish to prove (iii), with x2 = b and x3 = z1. Let y1, y2 ∈ NG(x) −{b, x1, z1}
be distinct.

Subcase 2.1. For some i ∈ [2], yi ∈ V (B) ∪ {z2}.
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Without loss of generality, assume y1 ∈ V (B) ∪ {z2} and, whenever possible, let 
y1 ∈ V (B). Let GB := G[B + {b, x1, z1, z2}]. When y1 ∈ V (B) let t = y1 and let 
Y1, Y2, Y3, Y4, Y5 be independent paths in GB from t to z1, y1, b, x1, z2, respectively. When 
y1 = z2 let t ∈ V (B) be arbitrary and let Y1, Y2, Y3, Y4 be independent paths in GB from 
t to z1, y1, b, x1, respectively. Let GA = G[A + {b, w, x1, z1}].

We may assume that there is no cycle in GA containing {b, x1, z1}. For, such a cycle 
and xb ∪ xx1 ∪ xz1 ∪ Y1 ∪ (Y2 ∪ y1x) ∪ Y3 ∪ Y4 is a TK5 in G′ with branch vertices 
b, t, x, x1, z1.

We may also assume that GA is 2-connected. To see this, we first assume NG(x1) ∩
NG(w) = {x}; for otherwise, letting u ∈ (NG(x1) ∩ NG(w)) − {x} we see that 
G[T + u] contains K−

4 and (ii) holds. Therefore, since NG(w) ∩ V (A) 	= ∅ and 
NG(x1) ∩ V (A) 	= ∅ (by (3)), it suffices to show that G[A + {b, z1}] is 2-connected. 
So assume for a contradiction that there exists a separation (A1, A2) in G[A + {b, z1}]
such that |V (A1 ∩ A2)| ≤ 1. Without loss of generality, let |{b, z1} ∩ V (A1)| ≤ 1. Then 
V (A1) � V (A2) ∪ {b, z1} as |NG(s) ∩ V (A)| ≥ 2 for s ∈ {b, z1} (by (1)). Hence, 
V (T ) ∪ ({b, z1} ∩ V (A1)) ∪ V (A1 ∩ A2) ∪ {z2} is a cut in G of size at most 6 which 
separates A1 from the rest of G, contradicting the choice of (T, ST , A, B) that |V (A)| is 
minimum.

Then, since GA has no cycle containing {b, x1, z1}, it follows that (i), or (ii), or (iii)
of Lemma 2.12 holds for GA and {b, x1, z1}. So for each u ∈ {b, x1, z1}, GA has a 2-cut 
Su separating u from {b, x1, z1} − {u}, and let Du denote a union of components of 
GA − Su such that u ∈ V (Du) for u ∈ {b, x1, z1} and Db, Dx1 , Dz1 are pairwise disjoint. 
We choose Su and Du, u ∈ {b, x1, z1}, to maximize Db ∪ Dx1 ∪ Dz1 . Note that, since 
wx1 ∈ E(G), we have w /∈ V (Db ∪Dz1).

We claim that for u ∈ {b, x1, z1}, V (Du) = {u}. For, otherwise, S := Su ∪
{u, x, z2} is a cut in G separating Du − u from the rest of G. If |V (Du)| ≥ 3 then 
(ux, S, Du − u, G − S −Du) ∈ Qx, contradicting the choice of (T, ST , A, B) with |V (A)|
minimum. So let V (Du) = {u, u′} and let Su = {su, tu}. Since G is 5-connected, 
NG(u′) = {su, tu, u, x, z2}. Since |NG(u) ∩ V (A + w)| ≥ 2 (by (1) and (3)), we may 
assume that usu ∈ E(G). Then G[{su, u, u′, x}] contains K−

4 , and (ii) holds.
For u ∈ {b, x1, z1}, let Su = {su, tu}. Since GA is 2-connected, {usu, utu} ⊆ E(G). 

Note a ∈ {sb, tb}; so we may assume sbtb /∈ E(G) because otherwise G[{x, b, sb, tb}]
contains K−

4 , and (ii) holds. Similarly, w ∈ {sx1 , tx1} and we may assume sx1tx1 /∈ E(G). 
If (i) of Lemma 2.12 occurs then ax1 ∈ E(G), contradicting (2). If (iii) of Lemma 2.12
occurs then let R1, R2 be the components of GA−V (Db∪Dx1∪Dz1) and assume without 
loss of generality that su ∈ V (R1) and tu ∈ V (R2) for u ∈ {b, x1, z1}. By symmetry, 
assume w /∈ V (R1). Hence, (xb, {x, b, x1, sz1 , z2}, R1 − sz1 , G −R1 − {x, b, x1, z2}]) ∈ Qx

with 2 ≤ |V (R1 − sz1)| < |V (A)|, contradicting the choice of (T, ST , A, B).
So we may assume that (ii) of Lemma 2.12 holds. Without loss of generality, let 

z = sb = sx1 = sz1 . By (2), z 	= a and z 	= w. So a = tb and w = tx1 . Thus, we may 
assume xz /∈ E(G) as, otherwise, G[T + z] contains K−

4 and (ii) holds. Moreover, we 
may assume za, zw /∈ E(G) as otherwise G[T ′ + z] or G[T + z] contains K−

4 and (ii)
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holds. Hence, since G is 5-connected, R := GA − {b, x1, z1} is connected. Thus, by (1) 
and by the maximality of Db ∪Dx1 ∪Dz1 , G[R+ z2] is 2-connected as G is 5-connected.

We claim that there exist distinct t1, t2 ∈ {a, w, tz1} such that G[R + z2] contains 
disjoint paths P1, P2 from z, t1 to z2, t2, respectively. For, suppose {a, w} cannot serve as 
{t1, t2}. Then, by Lemma 2.10, (G[R+ z2], a, z2, w, z) is 3-planar. Thus, since G[R+ z2]
is 2-connected, G[R + z2] has a cycle, say C, through a, z, w, z2 in cyclic order. Let 
Ca, Cw denote the paths in C between z and z2 that contain a, w, respectively. Since 
GA is 2-connected, G[R + z2] has a path P from tz1 to a vertex t ∈ V (C) such that P
is internally disjoint from C. If t ∈ V (Ca) then C ∪ P has disjoint paths from z, a to 
z2, tz1 , respectively; and if t ∈ V (Cw) then C ∪ P has disjoint paths from z, w to z2, tz1 , 
respectively.

Suppose z2 	= y1. Recall the definition of t and the paths Y1, Y2, Y3, Y4, Y5. If {t1, t2} =
{a, w} then bxx1zb ∪xz1z∪(x1w∪P2∪ab) ∪(Y2∪y1x) ∪(Y5∪P1) ∪Y3∪Y4 is a TK5 in G′

with branch vertices b, t, x, x1, z. If {t1, t2} = {a, tz1} then bxz1zb ∪ xx1z ∪ (z1tz1 ∪ P2 ∪
ab) ∪ Y1 ∪ (Y2 ∪ y1x) ∪ Y3 ∪ (Y5 ∪ P1) is a TK5 in G′ with branch vertices b, t, x, z, z1. If 
{t1, t2} = {w, tz1} then x1xz1zx1∪xbz∪(x1w∪P2∪tz1z1) ∪Y1∪(Y2∪y1x) ∪Y4∪(Y5∪P1)
is a TK5 in G′ with branch vertices t, x, x1, z, z1.

So assume z2 = y1. Then y2 	= z2; and hence, by the choice of y1, we have y2 ∈
V (A) ∪ {w}. If R− z has independent paths S1, S2, S3 from y2 to a, w, tz1 , respectively, 
then xbzx1x ∪y2x ∪(S1∪ab) ∪(S2∪wx1) ∪Y3∪Y4∪(Y1∪z1tz1∪S3) ∪(Y2∪z2x) is a TK5 in 
G′ with branch vertices b, t, x, x1, y2. So assume such S1, S2, S3 do not exist. This implies 
that y2 /∈ {a, w} by the maximality of Da ∪ Dx1 ∪ Dz1 . Then R − z has a separation 
(A1, A2) such that |V (A1 ∩ A2)| ≤ 2, y2 ∈ V (A1 − A2), and {a, w, tz1} ⊆ V (A2). Thus 
S := {x, z, z2} ∪ V (A1 ∩ A2) is a cut in G separating y2 from B ∪ A2 ∪ {b, x1, z1, z}. 
Since G is 5-connected, |S| = 5. By the choice of (T, ST , A, B) (with |V (A)| minimum), 
V (A1 − A2) = {y2}. Therefore, since G is 5-connected, NG(y2) = S; in particular, 
y2z ∈ E(G). By the maximality of Db ∪Dx1 ∪Dz1 , R2 − {y2, z} has a path Q from a to 
w. Then bxx1zb ∪ (ba ∪Q ∪ wx1) ∪ zy2x ∪ (Y1 ∪ z1z) ∪ (Y2 ∪ z2x) ∪ Y3 ∪ Y4 is a TK5 in 
G′ with branch vertices b, t, x, x1, z.

Subcase 2.2. y1, y2 ∈ V (A) ∪ {w}.
First, we show that we may assume y1 = w. To see this, we explore the symmetry 

betwee a and w by noting that |V (D)| = |V (A)| and the symmetry between (T, ST , A, B)
and (T ′, ST ′ , D, C). Thus, if a ∈ {y1, y2} then we could exchange the roles of a and w
and the roles of (T, ST , A, B) and (T ′, ST ′ , D, C). Hence, we may assume a /∈ {y1, y2}. 
Then by (4), for each i ∈ [2] there exists ji ∈ [2] such that Ti := xyizjix is a triangle 
in G. If j1 = j2 then G[{x, y1, y2, zj1}] contains K−

4 . So assume j1 	= j2, say j1 = 1 and 
j2 = 2. Now ST1 = V (T1) ∪ {b, x1, z1, z2} is a cut in G separating (A −{y1}) ∪ {w} from 
B. Note the symmetry between T1, ST1 and T, ST , and we may choose T1, ST1 as T, ST , 
respectively; so that the assumption of this lemma still holds. Hence, we may assume 
y1 = w (as y1 now plays the role of w and z1 now plays the role of x1).

Let t ∈ V (B), and let L1, L2, L3, L4 be independent paths in GB = G[B +
{b, x1, z1, z2}] from t to z1, z2, b, x1, respectively. Let GA := G[A + {b, w, x1, z2}]. Note 
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that, by the same argument as in Subcase 2.1 (with z2 in place of z1), we may assume 
that GA is 2-connected.

We may assume that GA does not contain independent paths from z2, w, b to w, b, x1, 
respectively; for otherwise, these paths and T ∪ bx ∪ (L1 ∪ z1x) ∪ (L2 ∪ z2w) ∪ L3 ∪ L4
form a TK5 in G with branch vertices b, t, w, x, x1.

We claim that wz2 /∈ E(G). For, suppose wz2 ∈ E(G). Then GA − z2 has no in-
dependent paths from b to w, x1, respectively; as, otherwise, such paths and wz2 give 
independent paths in GA from z2, w, b to w, b, x1, respectively. So GA has a 2-separation 
(A1, A2) such that z2 ∈ V (A1 ∩ A2), b ∈ V (A1 − A2), and {w, x1} ⊆ V (A2). If 
V (A1−A2) � {a, b} then V (T ′) ∪V (A1∩A2) ∪{z1} is a cut in G separating A1−A2−{a, b}
from B∪A2, contradicting the choice of T (that A is minimum). So V (A1−A2) ⊆ {a, b}. 
Thus, by (1), a /∈ V (A1 ∩ A2). Hence, NG(a) = V (A1 ∩ A2) ∪ {b, x}, a contradiction as 
G is 5-connected.

Recall that wz1 /∈ E(G) (see beginning of Case 2) and wa, wb /∈ E(G) (by (2)). 
Therefore, since G is 5-connected, it follows that

|NG(w) ∩ V (A ∩D)| ≥ 3.

Let G′
A be the graph obtained from GA by duplicating w, b with w′, b′, respectively, and 

adding all edges from w′ to NGA
(w), and from b′ to NGA

(b). Then any three disjoint 
paths in G′

A from {b, b′, z2} to {w, w′, x1} must have a path from z2 to x1, and we wish 
to apply Lemma 3.1.

First, we note that G′
A has no cut of size at most 2 separating {x1, w, w′} from 

{b, b′, z2}. For, otherwise, G′
A has a separation (A1, A2) such that |V (A1 ∩ A2)| ≤ 2, 

{x1, w, w′} ⊆ V (A1), and {b, b′, z2} ⊆ V (A2). Note that V (A1 ∩ A2) 	= {w, w′} as, 
otherwise, w would be a cut vertex in GA. Further, {w, w′} ∩ V (A1 ∩ A2) = ∅; for, 
otherwise, since w and w′ have the same set of neighbors in G′

A, it follows from (3) 
that V (A1 ∩ A2) − {w, w′} would be a cut in GA of size at most one. On the other 
hand, V (A1 − A2) ⊆ {x1, w}; as, otherwise (T, V (T ) ∪ {z1} ∪ V (A1 ∩ A2), (A1 − A2) −
w′, G − (T ∪ A1)) ∈ Qx and 1 ≤ |V ((A1 − A2) − {w′})| < |V (A)|, contradicting the 
choice of (T, ST , A, B). However, this implies |NG(w) ∩ V (A ∩D)| ≤ |V (A1 ∩ A2)| ≤ 2, 
a contradiction.

Hence by Lemma 3.1 (and Remark 1 following Lemma 3.1), G′
A has a separation (J, L)

such that V (J ∩L) = {w0, . . . , wn}, (J, w0, . . . , wn) is 3-planar, (L, (b, z2, b′), (w, x1, w′))
is a ladder along some sequence b0 . . . bm, where b0 = z2, bm = x1, and w0 . . . wn is the 
reduced sequence of b0 . . . bm. Let P1, P2, P3 be three disjoint paths in L from b, z2, b′

to w, x1, w′, respectively, and assume that they are induced in G′
A. (For convenience, 

when (ii) of Lemma 3.1 holds, we let L = G′
A and J consist of w0, . . . , wn only.) Let 

(Ri, (ai−1, bi−1, ci−1), (ai, bi, ci)), i ∈ [m], be the rungs in L with ai ∈ V (P1) and ci ∈
V (P3) for i = 0, 1, . . . , m. (We caution that here we may not use Lemma 3.4 as its 
condition on separation (R, R′) is not satisfied because x and z1 can have neighbors 
inside Ri.)
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We show that there exists u ∈ V (P2) −{x1, z2} such that G[GA+{x, z1}] has five inde-
pendent paths Q1, Q2, Q3, Q4, Q5 from u to distinct vertices x1, w, z2, u1, u2, respectively, 
with u1, u2 ∈ V (P1−w) ∪V (P3−{b′, w′}) ∪{x, z1}, and internally disjoint from P1∪(P3−
{b′, w′}). Since |NG(w) ∩V (A ∩D)| ≥ 3 and P1, P3 are induced paths in G′

A, there exists 
w∗ ∈ (NG(w) ∩V (A)) −V (P1∪P3) such that w∗ /∈ {x1, z2}. If w∗ ∈ V (P2) then let u = w∗

and we see that there exist independent paths in GA−(V (P1−w) ∪V (P3−{b′, w′})) from u
to x1, w, z2, respectively; so the paths Q1, . . . , Q5 exist by Lemma 2.11 as G[GA+{x, z1}]
is (5, V (P1 − w) ∪ V (P3 − {b′, w′}) ∪ {x, z1})-connected. Now suppose w∗ /∈ V (P2). Let 
(Ri, (ai−1, bi−1, ci−1), (w, bi, w′)) be the rung in L containing {w, w′, w∗}. Since w and w′

have the same set of neighbors in G′
A, w = ai−1 iff w′ = ci−1. If w = ai−1 and w′ = ci−1

then S∗
T := V (T ) ∪{bi−1, bi, z1} is a cut in G of size at most 6, and G −S∗

T has a compo-
nent of size smaller than |V (A)|, contradicting the choice of (T, ST , A, B). So w 	= ai−1
and w′ 	= ci−1. Therefore, bi−1 = bi by Lemma 3.2. Then bi−1 	= x1; for, otherwise, 
T1 := V (T ) ∪{ai−1, ci−1, z1} is a cut in G such that one component of G −T1 is contained 
in Ri − {ai−1, ci−1, bi−1}, contradicting the choice of T . Suppose Ri has a separation 
(R′, R′′) such that |V (R′ ∩ R′′)| ≤ 2, w ∈ V (R′ − R′′), and {ai−1, ci−1, bi−1} ⊆ V (R′′). 
Then we may assume w′ ∈ V (R′ − R′′) as w and w′ have the same set of neighbors in 
G′

A. Therefore, since |NG(w) ∩ V (A ∩ D)| ≥ 3, S∗
T := V (T ) ∪ V (R′ ∩ R′′) ∪ {z1} is a 

cut in G of size at most 6, and G − S∗
T has a component of size smaller than |V (A)|, 

contradicting the choice of (T, ST , A, B). Thus we may assume, by Lemma 2.11, Ri

contains three independent paths from w to ai−1, ci−1, bi−1, respectively. Again since 
w and w′ have the same set of neighbors in G′

A, the parts of P1, P3 inside R can be 
modified so that the three paths in Ri correspond to wP1ai−1, w′P3ci−1, and a path 
from w to bi−1 and internally disjoint from P1 ∪ P2 ∪ P3. Thus, there exist independent 
paths in GA − (V (P1 − w) ∪ V (P3 − {b′, w′})) from u := bi−1 to x1, w, z2, respectively. 
Note that bi−1 	= z2 as, otherwise, {x, b, w, z1, z2} is a cut in G separating P1 ∪ P3 + a

from (J − z′) ∪ B, contradicting minimality of A. Now the paths Q1, . . . , Q5 exist by 
Lemma 2.11, as G[GA + {x, z1}] is (5, V (P1 −w) ∪V (P3 −{b′, w′}) ∪{x, z1})-connected.

We may assume {u1, u2} = {x, z1} for any choice of Q1, . . . , Q5. For, otherwise, we 
may assume by symmetry that u1 ∈ V (P1−w). If GB−x has disjoint paths B1, B2 from 
z1, b to z2, x1, respectively, then T ∪bx ∪P3∪B2∪Q1∪Q2∪(Q3∪B1∪z1x) ∪(Q4∪u1P1b)
is a TK5 in G with branch vertices b, u, w, x, x1. (Here we view P3 as a path in G by 
identifying b′, w′ with b, w, respectively.) So we may assume that such B1, B2 do not 
exist. Then, since GB −x is (4, {b, x1, z1, z2})-connected (as G is 5-connected), it follows 
from Lemma 2.10 that (GB − x, z1, b, z2, x1) is planar; so the assertion of the lemma 
follows from Lemma 2.5.

We may also assume |NG(b) ∩ V (B)| ≤ 1. For, suppose |NG(b) ∩ V (B)| ≥ 2. Then, 
G[B + {b, x1, z2}] contains independent paths B1, B2 from b to x1, z2, respectively; for, 
otherwise, G[B + {b, x1, z2}] has a cut vertex t separating b from {x1, z2} and, hence, 
{b, t, x, z1} is a cut in G, a contradiction. Hence, T ∪ bx ∪P3∪B1∪Q1∪Q2∪ (Q3∪B2) ∪
(Q4 ∪ z1x) is a TK5 in G with branch vertices b, u, w, x, x1, where we view P3 as a path 
in G′ by identifying b′, w′ with b, w, respectively.
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Then |NG(b) ∩ V (A + z2)| ≥ 3 as bz1 /∈ E(G) (see the beginning of Case 2). Let 
b∗ ∈ (NG(b) ∩ V (A + z2)) − V (P1 ∪ P3). Let (Rj , (b, bj−1, b′), (aj , bj , cj)) be the rung in 
L containing {b, b′, b∗}. Since b and b′ have the same set of neighbors in G′

A, b = aj iff 
b′ = cj .

If b∗ ∈ V (P2) let z = b∗ and let P = bz which is internally disjoint from P1 ∪P2 ∪P3.
Now suppose b∗ /∈ V (P2). If b = aj and b′ = cj then S∗

T := V (T ′) ∪ {bj−1, bj , z1} is a 
cut in G of size 6 (otherwise, a = b∗ and b∗z1 ∈ E(G)) and G − S∗

T has a component of 
size smaller than |V (A)|, contradicting the choice of (T, ST , A, B). So b 	= aj and b′ 	= cj . 
Hence, bj−1 = bj by Lemma 3.2. We claim that P1 ∩Rj and P3 ∩Rj may be modified so 
that GA contains a path P from b to bj and internally disjoint from P1∪P2∪(P3−{b′, w′}). 
If Rj contains three independent paths from b to aj , cj , bj , then P1 ∩Rj , P3 ∩Rj can be 
modified so that the three paths in Rj correspond to bP1aj , b′P3cj , and a path P from 
b to z := bj and internally disjoint from P1 ∪ P2 ∪ (P3 − {b′, w′}). So assume that such 
three paths in Rj do not exist. Then Rj has a separation (A1, A2) with |V (A1∩A2)| ≤ 2, 
V (A1 ∩A2) ⊆ V (P1 ∪P3), b ∈ V (A1 −A2) and {aj , cj , bj} ⊆ V (A2). Since b′ is a copy of 
b in G′

A, we may assume b′ ∈ V (A1 −A2). Now V (A1 ∩A2) ∪ {x, b, z1} is a cut in G; so 
V (A1) = V (A1 ∩A2) ∪ {b, b′, b∗} by the choice of (T, ST , A, B) that |V (A)| is minimum. 
Then b∗x, b∗z1 ∈ E(G) (as G is 5-connected); so G[{x, b∗, b, z1}] contains K−

4 , and (ii)
holds.

Suppose Ri 	= Rj . Since G is 5-connected, G[B + {b, x1}] has a path B1 from b to 
x1. Since {u1, u2} = {x, z1} for any choice of Q1, . . . , Q5, we see that Q1, . . . , Q5 are all 
internally disjoint from P∪P1∪P3. Thus, we can modify Q1, Q3 so that Q1∪Q3 ⊆ J∪P2. 
Hence, because (J ∪ P2, w0, . . . , wn) is 3-planar, we may assume that z ∈ V (Q3). By 
symmetry between Q4 and Q5, we may assume u1 = z1. Then T ∪ bx ∪ P3 ∪ B1 ∪Q1 ∪
Q2 ∪ (uQ3z ∪ P ) ∪ (Q4 ∪ z1x) is a TK5 in G′ with branch vertices b, u, w, x, x1, where 
we view P3 as a path in G by identifying b′, w′ with b, w, respectively.

So Ri = Rj . Then ai−1 = b and ci−1 = b′. Recall bw /∈ E(G) (by (2)). Then bi−1 = bi
by Lemma 3.2. Hence, {b, bi, w, x, z1} is a cut in G separating P1 ∪ (P3 − {b′, w′}) from 
B ∪ J . Since bw /∈ E(G), |V (P1 − {b, w}) ∪ V (P3 − {b′, w′})| ≥ 2. This contradicts the 
choice of (T, ST , A, B) that |V (A)| is minimum. �
5. Interactions between quadruples

In this section, we explore the structure of G by considering a quadruple (T, ST , A, B)
with |V (A)| minimum and a quadruple (T ′, ST ′ , C, D) ∈ Qx with T ′∩A 	= ∅. The lemma 
below allows us to assume that if T ∩ C = ∅ then A ∩ C = ∅.

Lemma 5.1. Let G be a 5-connected nonplanar graph and x ∈ V (G). Suppose for any 
H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. Let 
(T, ST , A, B) ∈ Qx with |V (A)| minimum, and (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩ A 	= ∅. 
Suppose T ∩ C = ∅. Then A ∩ C = ∅, or one of the following holds:
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(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist x1, x2, x3 ∈ NG(x) such that for any y1, y2 ∈ NG(x) − {x1, x2, x3}, 

G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.

Proof. We may assume T ∼= K3 (by Lemma 4.3) and T ′ ∼= K3 (by Lemma 4.4). Suppose 
A ∩ C 	= ∅.

Then |(ST ∪ST ′) −V (B∪D)| ≥ 7; otherwise (T ′, (ST ′ ∪ST ) −V (B∪D), A ∩C, G[B∪
D]) ∈ Qx and 1 ≤ |V (A ∩ C)| ≤ |V (A) − V (T ′ ∩ A)| < |V (A)|, contradicting the 
choice of (T, ST , A, B) that |V (A)| is minimum. Hence |(ST ∪ ST ′) − V (A ∪ C)| ≤ 5, as 
|ST | = |ST ′ | = 6. Since T ∩ C = ∅, V (T ) ⊆ (ST ∪ ST ′) − V (A ∪ C).

Suppose |V (B ∩D)| ≥ 2. Then G has a separation (G1, G2) such that V (G1 ∩G2) =
(ST ∪ ST ′) − V (A ∪C) and |V (Gi)| ≥ 7. Note that G[V (G1 ∩G2)] contains the triangle 
T . So the assertion of this lemma follows from Lemma 2.6.

Hence, we may assume |V (B ∩ D)| ≤ 1. Therefore, by the minimality of |V (A)|, 
|ST ∩ V (D)| ≥ |ST ′ ∩ V (A)|. But this implies that |ST | ≥ |(ST ∪ ST ′) − V (B ∪D)| ≥ 7, 
a contradiction. �

We need a lemma on paths in G[A + ST ] to deal with a special case when A ∩C = ∅
for quadruples (T, ST , A, B), (T ′, ST ′ , C, D) ∈ Qx.

Lemma 5.2. Let G be a 5-connected nonplanar graph and x ∈ V (G), and suppose for 
any H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. 
Let (T, ST , A, B) ∈ Qx with |V (A)| minimum and (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩A 	= ∅. 
Let V (T ) = {x, x1, x2} and V (T ′) = {x, a, b} with a ∈ V (A). Suppose A ∩ C = ∅, 
|ST | = 6 = |ST ′ |, V (T ) ⊆ ST − V (C), |(ST ∪ ST ′) − V (B ∪ C)| = 7, and (ST ∪ ST ′) −
V (B ∪ C ∪ T ∪ T ′) = {x3, x4}. Then G contains K−

4 , or the following statements hold:

(i) NG(b) ∩V (A −a) 	= ∅ and if t ∈ NG(b) ∩V (A −a) then G[(A −a) +{b, x1, x2, x3, x4}]
has independent paths from t to b, x1, x2, x3, x4, respectively, and

(ii) if b ∈ ST then G[A +{b, x1, x2}] has independent paths from b to x1, x2, respectively.

Proof. First, we may assume A − a 	= ∅; for, otherwise, G contains K−
4 by Lemma 4.1. 

Next, NG(b) ∩V (A −a) 	= ∅; otherwise, (T, (ST∪ST ′) −V (B∪C) −{b}, A −a, G[B∪C+b]) ∈
Qx contradicts the choice of (T, ST , A, B) that |V (A)| is minimum.

To complete the proof of (i), let t ∈ NG(b) ∩V (A −a). If G[(A −a) +{x1, x2, x3, x4}] −b

has four independent paths from t to x1, x2, x3, x4, respectively, then these four paths and 
tb give the desired five paths. So we may assume that such four paths do not exist. Then 
G[(A − a) + {x1, x2, x3, x4}] − b has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 3, 
t ∈ V (G1 − G2) and {x1, x2, x3, x4} ⊆ V (G2). Hence, (T ′, V (T ′) ∪ V (G1 ∩ G2), G1 −
G2, G − T ′ −G1) ∈ Qx and 1 ≤ |V (G1 −G2)| ≤ |V (A − a)| < |V (A)|, contradicting the 
choice of (T, ST , A, B).
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To prove (ii), let b ∈ ST and assume that the two paths for (ii) do not exist. Note that 
if b ∈ V (T ) then T∪T ′ contains K−

4 . So we may assume b /∈ V (T ). Then, G[A +{b, x1, x2}]
has a separation (G1, G2) such that |V (G1) ∩ V (G2)| ≤ 1, b ∈ V (G1) − V (G2) and 
{x1, x2} ⊆ V (G2). Since NG(b) ∩V (A −a) 	= ∅ and |V (G1) ∩V (G2)| ≤ 1, |V (G1−G2)| ≥ 2. 
Let Sbx = (ST −{x1, x2}) ∪V (G1∩G2) (which is a cut in G), and let F = G1−Sbx. Then 
|V (F )| ≥ 1 as |V (G1 −G2)| ≥ 2. We may assume x1 and x2 have no common neighbor 
other than x, as otherwise G contains K−

4 . So |V (G2 ∩ A)| ≥ 2 as x1, x2 each have a 
neighbor in A. Thus, |V (F )| < |V (A)|. If |V (F )| ≥ 2 then (bx, Sbx, F, G −Sbx−F ) ∈ Qx

with 2 ≤ |V (F )| < |V (A)|, contradicting the choice of (T, ST , A, B) that |V (A)| is 
minimum. So assume |V (F )| = 1 and let v ∈ V (F ). Since G is 5-connected, v is adjacent 
to all vertices in Sbx. If v 	= a then V (G1∩G2) = {a}; so G[{a, b, v, x}] contains K−

4 . Now 
assume v = a. Let w ∈ V (G1 ∩ G2). Since NG(b) ∩ V (A − a) 	= ∅, we have bw ∈ E(G). 
So G[{a, b, w, x}] contains K−

4 . �
In the next two lemmas, we consider the case when quadruples (T, ST , A, B) and 

(T ′, ST ′ , C, D) may be chosen so that |V (T ′ ∩A)| = 2.

Lemma 5.3. Let G be a 5-connected nonplanar graph and x ∈ V (G). Suppose for any 
H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. Let 
(T, ST , A, B) ∈ Qx with |V (A)| minimum. Suppose there exists (T ′, ST ′ , C, D) ∈ Qx

such that T ′ ∼= K3 and |V (T ′ ∩A)| = 2. Then one of the following holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist x1, x2, x3 ∈ NG(x) such that for any y1, y2 ∈ NG(x) − {x1, x2, x3}, 

G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.
(iv) |ST ∩ ST ′ | = 1, |ST ′ ∩ V (B)| = 2, and either |ST ∩ V (C)| = 2 and T ∩ C = ∅ or 

|ST ∩ V (D)| = 2 and T ∩D = ∅.

Proof. We may assume T ∼= K3 (by Lemma 4.3). We may also assume that |ST | =
|ST ′ | = 6; for, otherwise, (i) or (ii) or (iii) follows from Lemma 2.6. We may further 
assume |V (A)| ≥ 5; as otherwise, by Lemma 4.1, G contains K−

4 and (ii) holds.
Let T ′ = {a, b, x} with a, b ∈ V (A). By symmetry, assume T ∩ C = ∅. Then, by 

Lemma 5.1, we may assume A ∩ C = ∅. Now B ∩ C 	= ∅; for, otherwise, |V (C)| =
|ST ∩ V (C)| ≤ 3 < |V (A)|, contradicting the choice of (T, ST , A, B) that |V (A)| is 
minimum. Hence, ST ∩V (C) 	= ∅ as ST ′ −{a, b} is not a cut in G. Moreover, A ∩D 	= ∅. 
For, otherwise, |V (A) ∩ ST ′ | = 5 and, hence, |ST ′ ∩ ST | = 1 and |ST ′ ∩ V (B)| = 0; so 
(ST ∪ST ′) − V (A ∪D) is a cut in G of size at most 4 and separating B ∩C from A ∪D, 
a contradiction.

We claim that |(ST ∪ ST ′) − V (B ∪ C)| = 7 and |(ST ∪ ST ′) − V (A ∪D)| = 5. First, 
note that |(ST ∪ ST ′) − V (B ∪ C)| ≥ 7; otherwise, (T ′, (ST ∪ ST ′) − V (B ∪ C), A ∩
D, G[B ∪C]) ∈ Qx and 1 ≤ |V (A ∩D)| ≤ |V (A − a)| < |V (A)|, contradicting the choice 
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of (T, ST , A, B) that |V (A) is minimum. Also note that |(ST ∪ ST ′) − V (A ∪ D)| ≥ 5, 
since (ST ∪ ST ′) − V (A ∪D) is a cut in G (as B ∩ C 	= ∅) and G is 5-connected. Thus 
the claim follows from the fact that |(ST ∪ST ′) −V (B∪C)| + |(ST ∪ST ′) −V (A ∪D)| =
|ST | + |ST ′ | = 12.

We may assume that |ST ∩ V (C)| 	= 1 or |ST ′ ∩ V (A)| 	= 2. For, otherwise, let 
ST ∩ V (C) = {c} and ST ′ ∩ V (A) = {a, b}. If a, b ∈ NG(c) then G[T ′ + c] contains K−

4
and (ii) holds. So by the symmetry between a and b, we may assume that ca /∈ E(G). 
Then (T, (ST − c) ∪ {b}, A − b, G[B + c]) ∈ Qx, contradicting the choice of (T, ST , A, B)
that |V (A)| is minimum.

We may also assume T ∩D 	= ∅; for, otherwise, since A ∩D 	= ∅, (i) or (ii) or (iii)
follows from Lemma 5.1. Therefore, ST ∩ V (D) 	= ∅. Note that 1 ≤ |ST ∩ ST ′ | ≤ 4, and 
we distinguish four cases according to |ST ∩ ST ′ |.

Suppose |ST ∩ ST ′ | = 4. Then ST ′ ∩ V (B) = ∅ and |ST ∩ V (C)| = |ST ∩ V (D)| = 1. 
Therefore, by the minimality of |V (A)|, B ∩ D 	= ∅. Hence, ST − V (C) is a 5-cut in 
G and V (T ) ⊆ ST − V (C). By the choice of (T, ST , A, B) that |V (A)| is minimum, 
|V (B ∩D)| ≥ 5. Now (i) or (ii) or (iii) follows from Lemma 2.6.

Consider |ST∩ST ′ | = 3. Suppose for the moment ST ′∩V (B) = ∅. Then |ST∩V (C)| = 2
as |(ST ∪ST ′) −V (A ∪D)| = 5. So B∩D = ∅ as otherwise ST −V (C) would be a 4-cut in 
G. However, this implies |V (D)| < |V (A)|, contradicting the choice of (T, ST , A, B) that 
|V (A)| is minimum. So ST ′∩V (B) 	= ∅. Therefore, since |ST ′ | = 6, we have |ST ′∩V (B)| =
1 and ST ′ ∩ V (A) = {a, b}. Since |(ST ∪ ST ′) − V (A ∪D)| = 5, |ST ∩ V (C)| = 1. This is 
a contradiction, as we have |ST ∩ V (C)| 	= 1 or |ST ′ ∩ V (A)| 	= 2.

Now let |ST ∩ ST ′ | = 2. First, assume |ST ∩ V (C)| = 1. Then |ST ′ ∩ V (B)| = 2 (as 
|(ST ∪ST ′) −V (A ∪D)| = 5) and, hence, |ST ′ ∩V (A)| = 2 (as |ST ′ | = 6), a contradiction. 
So we may assume that |ST ∩V (C)| ≥ 2, which implies |ST ′ ∩V (B)| ≤ 1 as |(ST ∪ST ′) −
V (A ∪D)| = 5. Hence, since |ST | = |ST ′ | = 6, |ST ′ ∩ V (A)| ≥ 3 and |ST ∩ V (D)| ≤ 2. 
Therefore, by the minimality of |V (A)|, B ∩ D 	= ∅. Thus (ST ∩ ST ′) − V (A ∪ C) is a 
5-cut in G and contains V (T ). So |V (B ∩D)| ≥ 5 by the minimality of |V (A)|. Now (i)
or (ii) or (iii) follows from Lemma 2.6.

Finally, assume |ST ∩ ST ′ | = 1. If |ST ′ ∩ V (B)| = 2 then |ST ∩ V (C)| = 2 (as 
|(ST ∪ ST ′) − V (A ∪ D)| = 5); so (iv) holds. If |ST ′ ∩ V (B)| = 3 then |ST ∩ V (C)| =
1 (since |(ST ∪ ST ′) − V (A ∪ D)| = 5) and ST ′ ∩ V (A) = {a, b} (as |ST ′ | = 6), a 
contradiction. Hence, we may assume |ST ′ ∩ V (B)| ≤ 1. Then |ST ∩ V (C)| ≥ 3 (since 
|(ST ∪ ST ′) − V (A ∪ D)| = 5), |ST ′ ∩ V (A)| ≥ 4, and |(ST ∪ ST ′) − V (A ∪ C)| ≤ 4. 
Hence, since G is 5-connected, B∩D = ∅; so |V (D)| < |V (A)|. However, this shows that 
(T ′, ST ′ , D, C) contradicts the choice of (T, ST , A, B). �

Next, we take care of the case when (iv) of Lemma 5.3 holds.

Lemma 5.4. Let G be a 5-connected nonplanar graph and x ∈ V (G), and suppose for 
any H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. Let 
(T, ST , A, B) ∈ Qx with |V (A)| minimum, and (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩ A 	= ∅. 
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Suppose T ∩ C = ∅, ST ∩ ST ′ = {x}, and |ST ∩ V (C)| = |ST ′ ∩ V (B)| = 2. Then one of 
the following holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
(iii) There exist x1, x2, x3 ∈ NG(x) such that, for any y1, y2 ∈ NG(x) − {x1, x2, x3}, 

G′ := G − {xv : v /∈ {x1, x2, x3, y1, y2}} contains TK5.

Proof. We may assume T ∼= K3 (by Lemma 4.3) and T ′ ∼= K3 (by Lemma 4.4). By 
Lemma 4.1, we may assume |V (A)| ≥ 5. We may further assume that |ST | = |ST ′ | = 6; 
for, otherwise, the assertion follows from Lemma 2.6.

Let V (T ) = {x, x1, x2}, V (T ′) = {x, a, b}, ST ∩ V (C) = {p1, p2}, ST ′ ∩ V (A) =
{a, b, q}, and ST ∩ V (D) = {x1, x2, w}. Since T ∩ C = ∅, we may assume by Lemma 5.1
that A ∩ C = ∅. Then B ∩ C 	= ∅ as |V (C)| ≥ |V (A)| ≥ 5.

We may assume NG(p1) ∩V (A) = {a, q} and NG(p2) ∩V (A) = {b, q}. To see this, for 
i ∈ [2], let Si := (ST − {pi}) ∪ (NG(pi) ∩ {a, b, q}) which is a cut in G and containing 
V (T ). If NG(pi) ∩{a, b, q} = ∅ then |Si| = 5 and the assertion of this lemma follows from 
Lemma 2.6. If |NG(pi) ∩{a, b, q}| = 1 then (T, Si, A −(NG(pi) ∩{a, b, q}), Si, G[B+pi]) ∈
Qx, contradicting the choice of (T, ST , A, B) that |V (A)| is minimum. Hence, we may 
assume that |NG(pi) ∩ {a, b, q}| ≥ 2 for i ∈ [2]. We may also assume {a, b} � NG(pi) for 
i ∈ [2]; as, otherwise, G[T ′+pi] contains K−

4 and (ii) holds. Moreover, NG(p1) ∩{a, b, q} 	=
NG(p2) ∩ {a, b, q}, as otherwise, S := (ST − {p1, p2}) ∪ (NG(p1) ∩ {a, b, q}) is a cut in G
containing V (T ); so (T, S, A − (NG(p1) ∩ {a, b, q}), G[B + {p1, p2}]) ∈ Qx, contradicting 
the choice of (T, ST , A, B) with |V (A)| minimum. Hence, we may assume by symmetry 
that NG(p1) ∩ V (A) = {a, q} and NG(p2) ∩ V (A) = {b, q}.

Note that NG(xi) ∩ V (B) 	= ∅ for i ∈ [2]; for, otherwise, S := V (T ′) ∪ {q, x3−i, w} is 
a cut in G, and (T ′, S, G[(A ∩D) + xi], G[B + {p1, p2}]) ∈ Qx, contradicting the choice 
of (T, ST , A, B) that |V (A)| is minimum. Moreover, we may assume NG(w) ∩ V (B) 	= ∅; 
as otherwise, ST − {w} is a 5-cut in G and V (T ) ⊆ ST − {w}, and the assertion of this 
lemma follows from Lemma 2.6.

We wish to prove (iii) with x3 = b. Let y1, y2 ∈ NG(x) − {x1, x2, x3} be distinct. 
Choose v ∈ {y1, y2} −{a}. We may assume v /∈ {p1, p2}, as otherwise G[T ′ + v] contains 
K−

4 and (ii) holds. By Lemma 5.2, we may choose t ∈ NG(b) ∩V (A −a) such that G[(A −
a) + {b, q, x1, x2, w}] has independent paths P1, P2, P3, P4, P5 from t to b, x1, x2, w, q
respectively. We distinguish four cases according to the location of v.

Case 1. v ∈ V (B).
Let W be the component of B containing v. First, suppose NG(xi) ∩W 	= ∅ for i ∈ [2]. 

Then there exists v∗ ∈ V (W ) such that G[W + {x1, x2}] has three independent paths 
from v∗ to v, x1, x2, respectively. Hence by Lemma 2.11, G[W + (ST − {x})] (which is 
(4, ST − {x})-connected) has independent paths Q1, Q2, Q3, Q4 from v∗ to v, x1, x2, u, 
respectively, and internally disjoint from ST , where u ∈ ST − {x, x1, x2}. If u = w then 
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T ∪ (P1 ∪ bx) ∪ P2 ∪ P3 ∪ (Q1 ∪ vx) ∪Q2 ∪Q3 ∪ (Q4 ∪ P4) is a TK5 in G′ with branch 
vertices t, v∗, x, x1, x2. If u = pi for some i ∈ [2] then T ∪ (P1 ∪ bx) ∪ P2 ∪ P3 ∪ (Q1 ∪
vx) ∪Q2 ∪Q3 ∪ (Q4 ∪ piq ∪ P5) is a TK5 in G′ with branch vertices t, v∗, x, x1, x2.

Thus, we may assume that NG(x1) ∩W = ∅. Since G is 5-connected, G[W+(ST−{x1})]
is (5, ST − {x1})-connected; so it has independent paths Q1, Q2, Q3, Q4, Q5 from v to 
x, x2, w, p1, p2, respectively. Clearly, we may assume that Q1 = vx. Since NG(x1) ∩
V (B) 	= ∅, let W ′ be a component of B with NG(x1) ∩V (W ′) 	= ∅. Since G is 5-connected, 
there exists i ∈ [2] such that NG(pi) ∩V (W ′) 	= ∅. Hence, G[W ′ + {x1, pi}] has a path R
from x1 to pi, and, by symmetry, assume R is from x1 to p1. Now T ∪ (P1 ∪ bx) ∪ P2 ∪
P3 ∪Q1 ∪Q2 ∪ (Q3 ∪ P4) ∪ (Q4 ∪R) is a TK5 in G′ with branch vertices t, v, x, x1, x2.

Case 2. v ∈ V (A ∩D).
First, we show that G[(A ∩D) +{q, w, x, x1, x2}] has independent paths P ′

1, P
′
2, P

′
3, P

′
4, 

P ′
5 from v to q, x, x1, x2, w, respectively (and we may assume that P ′

2 = vx). This is clear 
if G[(A ∩D) + {q, w, x1, x2}] has independent paths from v to q, x1, x2, w, respectively. 
So we may assume that G[(A ∩D) + {q, w, x1, x2}] has a separation (G1, G2) such that 
|V (G1 ∩ G2)| ≤ 3, v ∈ V (G1 − G2), and {q, w, x1, x2} ⊆ V (G2). Then S := V (T ′) ∪
V (G1∩G2) is a cut in G, and (T ′, S, G1−G2, G −S−G1) ∈ Qx, contradicting the choice 
of (T, ST , A, B) that |V (A)| is minimum.

Suppose B has a component W such that NG(xi) ∩ W 	= ∅ for i ∈ [2]. Then there 
exists z ∈ V (W ) such that G[W + {x1, x2}] has independent paths from z to x1, x2, 
respectively. Hence by Lemma 2.11, G[W + (ST − {x})] has four independent paths 
Q1, Q2, Q3, Q4 from z to x1, x2, u1, u2, respectively, and internally disjoint from ST , 
where u1, u2 ∈ {w, p1, p2} are distinct. If {u1, u2} = {w, p1} then we may assume u1 = w

and u2 = p1; now T ∪ P ′
2 ∪ P ′

3 ∪ P ′
4 ∪ Q1 ∪ Q2 ∪ (Q3 ∪ P ′

5) ∪ (Q4 ∪ p1abx) is a TK5 in 
G′ with branch vertices v, x, x1, x2, z. If {u1, u2} = {w, p2} then we may assume u1 = w

and u2 = p2; now T ∪ P ′
2 ∪ P ′

3 ∪ P ′
4 ∪ Q1 ∪ Q2 ∪ (Q3 ∪ P ′

5) ∪ (Q4 ∪ p2bx) is a TK5 in 
G′ with branch vertices v, x, x1, x2, z. So assume {u1, u2} = {p1, p2}. We may further 
assume ui = pi for i ∈ [2]. Then T ∪P ′

2∪P ′
3∪P ′

4∪Q1∪Q2∪ (Q3∪p1q∪P ′
1) ∪ (Q4∪p2bx)

is a TK5 in G′ with branch vertices v, x, x1, x2, z.
Hence, we may assume that no component of B contains neighbors of both x1 and 

x2. Since G is 5-connected, we may assume by symmetry that Z is a component of B
such that NG(x1) ∩ V (Z) = ∅ and NG(x2) ∩ V (Z) 	= ∅. Again, since G is 5-connected, 
G[Z + (ST − {x1})] has five independent paths Q1, Q2, Q3, Q4, Q5 from some z ∈ V (Z)
to x2, w, p1, p2, x, respectively. Since NG(x1) ∩ V (B) 	= ∅, let Z ′ be a component of B
with NG(x1) ∩ Z ′ 	= ∅. Then NG(x2) ∩ V (Z ′) = ∅. So G[Z ′ + {x1, p1}] contains a path 
R from x1 to p1. Now T ∪ P ′

2 ∪ P ′
3 ∪ P ′

4 ∪ (Q4 ∪ p2bx) ∪Q1 ∪ (Q3 ∪ R) ∪ (Q2 ∪ P ′
5) is a 

TK5 in G′ with branch vertices v, x, x1, x2, z.

Case 3. v = q.
Suppose B has a component Z such that {w, x1, x2} ⊆ NG(Z). Then there exists z ∈

V (Z) such that G[Z+{w, x1, x2}] has independent paths from z to w, x1, x2, respectively. 
By Lemma 2.11, G[Z + (ST − {x})] has independent paths Q1, Q2, Q3, Q4 from z to 
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x1, x2, w, u, respectively, and internally disjoint from ST , where u ∈ {p1, p2}. Let S =
Q4 ∪ p1abx if u = p1, and let S = Q4 ∪ p2bx if u = p2. Then T ∪ Q1 ∪ Q2 ∪ S ∪ (P4 ∪
Q3) ∪ P2 ∪ P3 ∪ (P5 ∪ qx) is a TK5 in G′ with branch vertices t, x, x1, x2, z.

So we may assume that no component of B is adjacent to all of x1, x2 and w. Since 
NG(w) ∩ V (B) 	= ∅, there exists a component Z of B such that NG(w) ∩ V (Z) 	= ∅. 
Since G is 5-connected, we may assume by symmetry that NG(x2) ∩ V (Z) 	= ∅. Then 
NG(x1) ∩ V (Z) = ∅. Since G is 5-connected, G[Z + (ST − {x1})] has independent paths 
Q1, Q2, Q3, Q4, Q5 from some z ∈ V (Z) to x2, w, p1, p2, x, respectively. Since NG(x1) ∩
V (B) 	= ∅, there exists some component Z ′ of B with NG(x1) ∩ V (Z ′) 	= ∅. Hence, 
NG(x2) ∩ V (Z ′) = ∅ or NG(w) ∩ V (Z ′) = ∅; so G[Z ′ + {x1, p1}] contains a path R from 
x1 to p1. Now T ∪ Q1 ∪ (Q3 ∪ R) ∪ (Q4 ∪ p2bx) ∪ (P4 ∪ Q2) ∪ P2 ∪ P3 ∪ (P5 ∪ qx) is a 
TK5 in G′ with branch vertices t, x, x1, x2, z.

Case 4. v = w.
Suppose B has a component Z such that {w, x1, x2} ⊆ NG(Z). Then there ex-

ists z ∈ V (Z) such that G[Z + {w, x1, x2}] has three independent paths from z to 
w, x1, x2, respectively. Hence, by Lemma 2.11, G[Z +(ST −{x})] has independent paths 
Q1, Q2, Q3, Q4 from z to x1, x2, w, u, respectively, and internally disjoint from ST , where 
u = pi for some i ∈ [2]. Then T ∪Q1∪Q2∪(Q3∪wx) ∪(P1∪bx) ∪P2∪P3∪(P5∪qpi∪Q4)
is a TK5 in G′ with branch vertices t, x, x1, x2, z.

Hence, we may assume that no component of B is adjacent to all of w, x1, x2. Since 
NG(w) ∩ V (B) 	= ∅, B has a component Z such that NG(w) ∩ V (Z) 	= ∅. Since G is 
5-connected, we may assume by symmetry that NG(x2) ∩ V (Z) 	= ∅. Then NG(x1) ∩
V (Z) = ∅. Since G is 5-connected, G[Z + (ST − {x1})] has five independent paths 
Q1, Q2, Q3, Q4, Q5 from z to x2, w, p1, p2, x, respectively. Since NG(x1) ∩ V (B) 	= ∅, 
B has a component Z ′ such that NG(x1) ∩ V (Z ′) 	= ∅. Then NG(x2) ∩ V (Z ′) = ∅
or NG(w) ∩ V (Z ′) = ∅; so G[Z ′ + {x1, p1}] contains a path R from x1 to p1. Now 
T ∪ Q1 ∪ (Q2 ∪ wx) ∪ (Q3 ∪ R) ∪ (P1 ∪ bx) ∪ P2 ∪ P3 ∪ (P5 ∪ qp2 ∪ Q4) is a TK5 in G′

with branch vertices t, x, x1, x2, z. �
We end this section with the following lemma which deals with another special case 

when (T, ST , A, B) ∈ Qx with |V (A)| minimum, (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩ A 	= ∅, 
and A ∩ C = ∅.

Lemma 5.5. Let G be a 5-connected nonplanar graph and x ∈ V (G) such that for any 
H ⊆ G with x ∈ V (H) and with H ∼= K2 or H ∼= K3, G/H is not 5-connected. Let 
(T, ST , A, B) ∈ Qx with |V (A)| minimum, and (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩ A 	= ∅. 
Suppose A ∩C = ∅, |ST | = 6, |ST ′ | = 6, V (T ′) ∩ST = {x, b}, V (T ′∩A) = ST ′ ∩V (A) =
{a} and V (C) ∩ ST = ∅. Then, one of the following holds:

(i) G contains a TK5 in which x is not a branch vertex.
(ii) G contains K−

4 .
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(iii) There exist distinct x1, x2 ∈ NG(x) such that for any distinct y1, y2 ∈ NG(x) −
{b, x1, x2}, G′ := G − {xv : v /∈ {x1, x2, b, y1, y2}} contains TK5.

Proof. By assumption, V (T ′) = {a, b, x} with a ∈ V (A) and b, x ∈ ST ∩ ST ′ . Let 
V (T ) = {x, x1, x2} and ST = {b, x, x1, x2, x3, x4}. We wish to prove (iii); so let y1, y2 ∈
NG(x) − {b, x1, x2} be distinct. Let v ∈ {y1, y2} − {a}.

We may assume by Lemma 4.1 that B∩C 	= ∅ as ST ′ is a cut in G and ST ∩V (C) = ∅. 
So |(ST ∪ ST ′) − V (A ∪D)| ≥ 5 (as (ST ∪ ST ′) − V (A ∪D) is a cut in G). Moreover, we 
may assume A ∩D 	= ∅ by Lemma 4.1. So |(ST ∪ ST ′) − V (B ∪ C)| ≥ 7; for otherwise 
(T, (ST ∪ST ′) − V (B ∪C), A ∩D, G[B ∪C]) contradicts the choice of (T, ST , A, B) that 
|V (A)| is minimum. Since |ST | = |ST ′ | = 6, we have

|(ST ∪ ST ′) − V (A ∪D)| = 5 and |(ST ∪ ST ′) − V (B ∪ C)| = 7.

We may assume that NG(xi) ∩ V (B) 	= ∅ for i ∈ [2]. For, suppose this is not true 
and by symmetry assume NG(x1) ∩ V (B) = ∅. Let S = (ST − {x1}) ∪ {a}, C ′ = B, 
and D′ = G[(A − a) + x1]. Then (T ′, S, C ′, D′) ∈ Qx. We now apply Lemma 4.6 to 
(T, ST , A, B) and (T ′, S, C ′, D′). Note that |S ∩ ST | = 5, V (A ∩ C ′) = ST ∩ V (C ′) =
S ∩V (B) = V (B ∩D′) = ∅, and |S ∩V (A)| = |ST ∩V (D′)| = |V (T ∩D′)| = 1. To verify 
the other condition in Lemma 4.6, let (H, SH , CH , DH) ∈ Qx. By Lemma 4.4, we may 
assume that H ∼= K3 when H ∩ A 	= ∅. By Lemmas 5.3 and 5.4, we may assume that 
|V (H ∩A)| ≤ 1. Therefore, the assertion of this lemma follows from Lemma 4.6. Hence, 
we may assume NG(xi) ∩B 	= ∅ for i ∈ [2].

We may also assume that for any component W of B, NG(b) ∩W 	= ∅; for, otherwise, 
ST − {b} is a 5-cut in G, and the assertion of this lemma follows from Lemma 2.6. We 
consider three cases according to the location of v.

Case 1. v ∈ V (B).
Let Bv be the component of B containing v. First, suppose NG(xi) ∩ V (Bv) 	= ∅

for i ∈ [2]. Then G[Bv + {x1, x2}] has independent paths from some v∗ ∈ V (Bv) to 
v, x1, x2, respectively. Thus, by Lemma 2.11, G[Bv + (ST −{x})] has independent paths 
P1, P2, P3, P4 from v∗ to v, x1, x2, u, respectively, and internally disjoint from ST , where 
u ∈ {b, x3, x4}. Suppose u = b. By Lemma 5.2, we may assume that G[A + {b, x1, x2}]
contains independent paths R1, R2 from b to x1, x2, respectively. Then T ∪R1∪R2∪bx ∪
(P1 ∪ vx) ∪ P2 ∪ P3 ∪ P4 is a TK5 in G′ with branch vertices b, v∗, x, x1, x2. So we may 
assume by symmetry that u = x3. By Lemma 5.2 again, we may choose t ∈ NG(b) ∩V (A −
a) and let Q1, Q2, Q3, Q4, Q5 be independent paths in G[(A −a) +{b, x1, x2, x3, x4}] from 
t to b, x1, x2, x3, x4, respectively. Then, T∪(Q1∪bx) ∪Q2∪Q3∪(P1∪vx) ∪P2∪P3∪(P4∪Q4)
is a TK5 in G′ with branch vertices t, v∗, x, x1, x2.

Therefore, we may assume by symmetry that NG(x1) ∩ V (Bv) = ∅. Since G is 
5-connected, G[Bv + (ST − {x1})] has independent paths P1, P2, P3, P4, P5 from v to 
x, b, x2, x3, x4, respectively, and we may assume that P1 = vx. Since NG(x1) ∩V (B) 	= ∅, 
B has a component Bx1 such that NG(x1) ∩ V (Bx1) 	= ∅. Again, since G is 5-connected, 
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NG(xj) ∩ V (Bx1) 	= ∅ for some j ∈ {3, 4}, and we may assume j = 3. Then 
G[Bx1 + {x1, x3}] contains a path Q from x1 to x3. Let t ∈ NG(b) ∩ V (A − a). By 
Lemma 5.2, we may assume that G[(A − a) + {b, x1, x2, x3, x4}] has independent paths 
Q1, Q2, Q3, Q4, Q5 from t to b, x1, x2, x3, x4, respectively. Then T ∪ (Q1∪ bx) ∪Q2 ∪Q3 ∪
(P5 ∪Q5) ∪ (P4 ∪Q) ∪ P1 ∪ P3 is a TK5 in G′ with branch vertices t, v, x, x1, x2.

Case 2. v ∈ V (A ∩D).
We claim that G[(A −a) + {x, x1, x2, x3, x4}] has independent paths P1, P2, P3, P4, P5

from v to x, x1, x2, x3, x4, respectively (and we may assume P1 = vx). This is clear if 
G[(A − a) + {x1, x2, x3, x4}] has independent paths from v to x1, x2, x3, x4, respectively; 
so we may assume such paths do not exist. Then there exists a separation (G1, G2)
in G[(A − a) + {x1, x2, x3, x4}] such that |V (G1 ∩ G2)| ≤ 3, v ∈ V (G1 − G2), and 
{x1, x2, x3, x4} ⊆ V (G2). Let S := V (G1∩G2) ∪V (T ′), which is a cut in G of size at most 
6. Since G is 5-connected, |V (G1 ∩G2)| ≥ 2. Then, (T ′, S, G1 −G2, (G − S) −G1) ∈ Qx

and 1 ≤ |V (G1 −G2)| ≤ |V (A − a)| < |V (A)|, contradicting the choice of (T, ST , A, B)
that |V (A)| is minimum.

Suppose that B has a component W such that NG(xi) ∩ V (W ) 	= ∅ for i ∈ [2]. Then 
there exists w ∈ V (W ) such that G[W + b] has independent paths from w to x1, x2, b, 
respectively. By Lemma 2.11, G[B+ST ] has independent paths Q1, Q2, Q3, Q4, Q5 from w
to x1, x2, b, u1, u2, respectively, and internally disjoint from ST , where u1, u2 ∈ {x, x3, x4}
are distinct. By symmetry, we may assume u1 = x3. Then T ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪Q2 ∪
(Q3 ∪ bx) ∪ (Q4 ∪ P4) is a TK5 in G′ with branch vertices v, w, x, x1, x2.

Hence, we may assume that no component of B is adjacent to both x1 and x2. Let 
W be a component of B such that NG(x2) ∩ V (W ) 	= ∅. Then NG(x1) ∩ V (W ) = ∅. 
Since G is 5-connected, G[W + (ST − {x1})] has independent paths Q1, Q2, Q3, Q4, Q5

from some w ∈ V (W ) to b, x2, x3, x4, x, respectively. Since NG(x1) ∩ V (B) 	= ∅, B
has a component Bx such that NG(x1) ∩ V (Bx) 	= ∅. Then NG(x2) ∩ V (Bx) = ∅. 
Again, since G is 5-connected, G[Bx + {x1, x3}] contains a path R from x1 to x3. Now 
T ∪ P1 ∪ P2 ∪ P3 ∪ (Q1 ∪ bx) ∪ Q2 ∪ (Q3 ∪ R) ∪ (Q4 ∪ P5) is a TK5 in G′ with branch 
vertices v, w, x, x1, x2.

Case 3. v ∈ ST .
We may assume that v = x3. By Lemma 5.2, we may assume t ∈ NG(b) ∩ V (A − a)

and G[(A − a) + {b, x1, x2, x3, x4}] has independent paths P1, P2, P3, P4, P5 from t to 
b, x1, x2, x3, x4, respectively, with P1 = tb. Also by Lemma 5.2, we may assume that 
G[A + {b, x1, x2}] has independent paths Q1, Q2 from b to x1, x2, respectively.

Suppose B has a component W such that {x1, x2} ⊆ NG(W ). Then there exists 
w ∈ V (W ) such that G[W + {b, x1, x2}] has independent paths from w to b, x1, x2, 
respectively. So by Lemma 2.11, G[B + ST ] has independent paths R1, R2, R3, R4, R5

from w to x1, x2, b, u1, u2, respectively, and internally disjoint from ST , where u1, u2 ∈
{x, x3, x4} are distinct. Assume by symmetry that u1 ∈ {x3, x4}. If u1 = x3, then 
T ∪ bx ∪ Q1 ∪ Q2 ∪ R1 ∪ R2 ∪ R3 ∪ (R4 ∪ x3x) is a TK5 in G′ with branch vertices 
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b, w, x, x1, x2. If u1 = x4, then T ∪ (P4 ∪x3x) ∪P2 ∪P3 ∪R1 ∪R2 ∪ (R3 ∪ bx) ∪ (R4 ∪P5)
is a TK5 in G′ with branch vertices t, w, x, x1, x2.

Thus, we may assume that no component of B is adjacent to both x1 and x2. Since 
G is 5-connected, we may assume by symmetry that W is a component of B such that 
NG(x2) ∩ V (W ) 	= ∅ and NG(x1) ∩ V (W ) = ∅. Let w ∈ V (W ). Since G is 5-connected, 
G[W + (ST − {x1})] has independent paths R1, R2, R3, R4, R5 from w to x, x2, x3, x4, b, 
respectively. Since NG(x1) ∩B 	= ∅, B has a component Bx such that NG(x1) ∩V (Bx) 	= ∅. 
Then NG(x2) ∩ V (Bx) = ∅. Since G is 5-connected, G[Bx + {x1, x4}] contains a path R
from x1 to x4. Now T ∪ bx ∪Q1 ∪Q2 ∪R2 ∪ (R3 ∪ x3x) ∪R5 ∪ (R4 ∪R) is a TK5 in G′

with branch vertices b, w, x, x1, x2. �
6. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1, using the lemmas we have 
proved so far. Let G be a 5-connected nonplanar graph. We proceed to find a TK5 in G. 
By Lemma 2.1, we may assume that

(1) G contains no K−
4 .

Let M denote a maximal connected subgraph of G such that

H := G/M is 5-connected and nonplanar, and contains no K−
4 .

Note that |V (M)| = 1 (i.e., H = G) is possible. Let x denote the vertex of H resulting 
from the contraction of M . Then, for any T ⊆ H with x ∈ V (T ) and with T ∼= K2 or 
T ∼= K3, one of the following holds:

H/T contains K−
4 , or H/T is planar, or H/T is not 5-connected.

For convenience, we will use xT to denote the vertex of H/T resulting from the contrac-
tion of T (for any such T ). We may assume that

(2) for any T ⊆ H with x ∈ V (T ) and with T ∼= K2 or T ∼= K3, if F is a TK5 in H/T

then xT is a branch vertex of F .

For, suppose that F is a TK5 in H/T in which xT is not a branch vertex. If xT /∈ V (F )
then F is also TK5 in G. So assume xT ∈ V (T ). Let u, v ∈ V (F ) such that xTu, xT v ∈
E(F ). Since M is connected, G[M +{u, v}] has a path P from u to v. Thus, (F −xT ) ∪P

is a TK5 in G. So we may assume (2).

Suppose there exists T ⊆ V (H) with x ∈ V (T ) and T ∼= K2 or T ∼= K3, such that 
H/T is 5-connected and planar. Then by Lemma 2.9, H −T contains K−

4 , contradicting 
(1). So
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(3) for any T ⊆ H with x ∈ V (T ) and with T ∼= K2 or T ∼= K3, if H/T is 5-connected 
then H/T is nonplanar.

We now show that

(4) if T ⊆ H with x ∈ V (T ) and with T ∼= K2 or T ∼= K3 and if there exist x1, x2, x3 ∈
NH/T (xT ) such that H/T − {xT v : v /∈ {u1, u2, x1, x2, x3}} contains TK5 for every 
choice of distinct u1, u2 ∈ NH/T (xT ) − {x1, x2, x3}, then G contains TK5.

To prove (4), let A = NG(M ∪ T ) = NH/T (xT ). Consider the subgraph G[(M ∪ T ) +
A]. Since M ∪ T is connected, there is a vertex v ∈ V (M ∪ T ) such that G[(M ∪
T ) + {x1, x2, x3}] has independent paths from v to x1, x2, x3, respectively. Since G is 
5-connected, G[(M ∪T ) +A] is (5, A)-connected; so it has five independent paths from v
to A with only v in common and internally disjoint from A. Hence, by Lemma 2.11, there 
exist distinct u1, u2 ∈ A − {x1, x2, x3} such that G[(M ∪ T ) + A] has five independent 
paths P1, P2, P3, P4, P5 from v to x1, x2, x3, u1, u2, respectively, and internally disjoint 
from A. Now suppose F is a TK5 in H/T − {xT v : v /∈ {x1, x2, x3, u1, u2}}. If xT /∈
V (F ) then F is also a TK5 in G. So we may assume xT ∈ V (F ). Since F ⊆ H/T −
{xT v : v /∈ {x1, x2, x3, u1, u2}}, each edge of F incident with xT is one of {xT v : v ∈
{x1, x2, x3, u1, u2}}. Hence, F − xT and the (two or four) paths among P1, P2, P3, P4, P5
corresponding to the edges of F at xT form a TK5 in G. So we may assume (4).

We have two cases by (3): For some T ⊆ H with x ∈ V (T ) and with T ∼= K2 or 
T ∼= K3, H/T is 5-connected and nonplanar but, due to maximality of M , contains K−

4 ; 
or for every T ⊆ H with x ∈ V (T ) and with T ∼= K2 or T ∼= K3, H/T is not 5-connected.

Case 1. There exists T ⊆ H with x ∈ V (T ) and with T ∼= K2 or T ∼= K3 such that 
H/T is 5-connected and nonplanar, and H/T contains K−

4 .
Let K ⊆ H/T such that K ∼= K−

4 , and let V (K) = {x1, x2, y1, y2} with y1y2 /∈ E(H). 
By (1), xT ∈ V (K).

Subcase 1.1. xT has degree 2 in K.
Then we may assume that the notation is chosen so that xT = y2. By Lemma 2.2, 

one of the following holds:

(i) H/T contains a TK5 in which xT is not a branch vertex.
(ii) H/T − xT contains K−

4 .
(iii) H/T has a 5-separation (G1, G2) such that V (G1∩G2) = {xT , a1, a2, a3, a4}, and G2

is the graph obtained from the edge-disjoint union of the 8-cycle a1b1a2b2a3b3a4b4a1
and the 4-cycle b1b2b3b4b1 by adding xT and the edges xT bi for i ∈ [4].

(iv) For any distinct w1, w2, w3 ∈ NH/T (xT ) − {x1, x2}, H/T − {xT v : v /∈
{w1, w2, w3, x1, x2}} contains TK5.

Note that (i) does not occur because of (2), and (ii) does not occur because of (1).
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Now suppose (iii) occurs. First, assume |V (G1)| ≥ 7. Then by Lemma 2.3, for any 
distinct u1, u2 ∈ N(xT ) − {b1, b2, b3}, H/T − {xT v : v /∈ {b1, b2, b3, u1, u2}} contains 
TK5. Hence, by (4) (with xi as bi for i ∈ [3]), G contains TK5. So we may assume that 
|V (G1)| = 6, and let v ∈ V (G1 −G2). By (1), aiai+1 /∈ E(G) for i ∈ [4], where a5 = a1. 
Hence, since G is 5-connected, a1a3, a2a4 ∈ E(G). Now (H−xT ) −{a1v, a1b4, a4v, a4b4}
is a TK5 with branch vertices a2, a3, b1, b2, b3, contradicting (2).

Finally, suppose (iv) holds. Then, by (4) (with w1, w2, w3 as x3, u1, u2, respectively), 
we see that G contains TK5.

Subcase 1.2. xT has degree 3 in K.
Then we may assume that the notation is chosen so that xT = x1. By Lemma 2.4, 

one of the following holds:

(i) H/T contains a TK5 in which xT is not a branch vertex.
(ii) H/T − xT contains K−

4 , or H/T contains a K−
4 in which xT is of degree 2.

(iii) x2, y1, y2 may be chosen so that for any distinct z0, z1 ∈ NH/T (xT ) − {x2, y1, y2}, 
H/T − {xT v : v /∈ {z0, z1, x2, y1, y2}} contains TK5.

By (2), (i) does not occur. If (ii) holds then, by (1), H/T contains K−
4 in which xT is 

of degree 2; and we are back in Subcase 1.1. If (iii) holds then G contains TK5 by (4).

Case 2. H/T is not 5-connected for every T ⊆ H with x ∈ V (T ) and with T ∼= K2 or 
T ∼= K3.

Let Qx denote the set of all quadruples (T, ST , A, B), such that

• T ⊆ V (H), x ∈ V (T ), and either T ∼= K2 or T ∼= K3,
• ST is a cut in H with V (T ) ⊆ ST , A is a nonempty union of components of H−ST , 

and B = H − ST −A 	= ∅,
• if T ∼= K3 then 5 ≤ |ST | ≤ 6, and
• if T ∼= K2 then |ST | = 5, |V (A)| ≥ 2, and |V (B)| ≥ 2.

We choose a quadruple (T, ST , A, B) from Qx such that |V (A)| is minimum. By 
Lemma 4.3, T ∼= K3 (as K−

4 � H). By Lemma 4.5 and by (2) and (4), we may as-
sume NG(x) ∩ V (A) 	= ∅. So let a ∈ V (A) such that ax ∈ E(H). Then by Lemma 4.2, 
there exists (T ′, ST ′ , C, D) ∈ Qx such that {a, x} ⊆ V (T ′), and either T ′ ∼= K2 or 
T ′ ∼= K3. Again since K−

4 � H, T ′ ∼= K3 by Lemma 4.4 and by (2) and (4).
Note that T ∩ C = ∅ or T ∩D = ∅. We may assume, without loss of generality, that 

T ∩C = ∅. So |V (C) ∩ST | ≤ 3. Hence, by Lemma 5.1 and by (2) and (4), A ∩C = ∅ (since 
K−

4 � H). We may assume B∩C 	= ∅; for otherwise, |V (A)| ≤ |V (C)| = |V (C) ∩ST | ≤ 3
and, by Lemma 4.1, H contains K−

4 , a contradiction.
We may assume that |V (T ′) ∩ ST | = 2 for any choice of (T ′, ST ′ , C, D) ∈ Qx with 

T ′ ∩ A 	= ∅; otherwise, by Lemmas 5.3 and 5.4, we derive a contradiction to (2), or (4), 
or the fact K−

4 � H. Hence, since K−
4 � H, we have A ∩D 	= ∅ by Lemma 4.1.
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Note that |ST | = |ST ′ | = 6; for otherwise, by Lemma 2.6, we derive a contradiction 
to (2), or (4), or the fact K−

4 � H. We claim that

|(ST ∪ ST ′) − V (B ∪ C)| = 7 and |(ST ∪ ST ′) − V (A ∪D)| = 5.

First, note that |(ST ∪ST ′) −V (B ∪C)| ≥ 7; otherwise, (T ′, (ST ∪ST ′) −V (B ∪C), A ∩
D, G[B∪C]) ∈ Qx and 1 ≤ |V (A ∩D)| < |V (A)|, contradicting the choice of (T, ST , A, B)
with |V (A)| minimum. Since H is 5-connected and B∩C 	= ∅, |(ST∪ST ′) −V (A ∪D)| ≥ 5. 
So the claim follows from the fact that |(ST ∪ST ′) −V (B∪C)| + |(ST ∪ST ′) −V (A ∪D) =
|ST | + |ST ′ | = 12.

If ST ∩ V (C) = ∅ for some choice (T ′, ST ′ , C, D) then |ST ′ ∩ V (A)| = 1 as |ST ′ | = 6
and |(ST ∪ ST ′) − V (A ∪D)| = 5; so by Lemma 5.5, we derive a contradiction to (2), or 
(4), or the fact K−

4 � H.
Hence, we may assume that

ST ∩ V (C) 	= ∅

for any choice of (T ′, ST ′ , C, D) ∈ Qx with T ′ ∩ A 	= ∅. Then 2 ≤ |ST ∩ ST ′ | ≤ 4 as 
|(ST ∪ ST ′) − V (A ∪D)| = 5.

Suppose |ST ∩ST ′ | = 4. Then |ST ′ ∩V (B)| = 0 and |ST ∩V (C)| = 1, as |(ST ∪ST ′) −
V (A ∪D)| = 5. Since |ST | = |ST ′ | = 6, |ST ∩ V (D)| = 1 and |ST ′ ∩ V (A)| = 2. Hence, 
B∩D 	= ∅ (since |V (D)| ≥ V (A)|). So ST −V (C) is a 5-cut in H and V (T ) ⊆ ST −V (C). 
Note |V (B ∩ D)| ≥ 2; for otherwise, since H is 5-connected, H[T ∪ (B ∩ D)] contains 
K−

4 , a contradiction. Hence, by Lemma 2.6, we derive a contradiction to (2), or (4), or 
the fact K−

4 � H.
Now assume |ST ∩ ST ′ | = 3. Then, |ST ′ ∩ V (B)| ≤ 1 as |(ST ∪ ST ′) − V (A ∪D)| = 5

and |ST ∩ V (C)| > 0. Suppose |ST ′ ∩ V (B)| = 0. Then |ST ′ ∩ V (A)| = 3 as |ST ′ | = 6. So 
|ST∩V (D)| = 1 since |(ST∪ST ′) −V (B∪C)| = 7. Thus, since H is 5-connected, B∩D = ∅. 
However, this implies that |V (D)| < |V (A)|, a contradiction. So |ST ′ ∩ V (B)| = 1. Then 
|ST ′ ∩ V (A)| = 2 as |ST ′ | = 6, and |ST ∩ V (C)| = 1 as |(ST ∪ ST ′) − V (A ∪D)| = 5. Let 
q ∈ ST ′ ∩ V (A − T ′), S′ := (ST ′ −{q}) ∪ (ST ∩ V (C)), C ′ := B ∩C, and D′ = G[D + q]. 
Then (T ′, S′, C ′, D′) ∈ Qx with T ′ ∩A 	= ∅ and T ∩C ′ = ∅. However, ST ∩ V (C ′) = ∅, a 
contradiction.

Finally, assume |ST ∩ ST ′ | = 2. Suppose |ST ∩ V (C)| ≥ 2. Then |ST ′ ∩ V (B)| ≤ 1 (as 
|(ST ∪ ST ′) − V (A ∪ D)| = 5), and |ST ′ ∩ V (A)| ≥ 3 (as |ST ′ | = 6). So B ∩ D 	= ∅ as 
|V (D)| ≥ |V (A)|. Hence, (ST ∪ ST ′) − V (A ∪ C) is a 5-cut in H and contains V (T ). If 
|V (B∩D)| = 1 then, since H is 5-connected, H[T∪(B∩D)] contains K−

4 , a contradiction. 
So |V (B ∩D)| ≥ 2. Then, by Lemma 2.6, we derive a contradiction to (2), or (4), or the 
fact K−

4 � H. Therefore, we may assume |ST ∩ V (C)| = 1. Hence, |ST ∩ V (D)| = 3 (as 
|ST | = 6), |ST ′ ∩ V (B)| = 2 (as |(ST ∪ ST ′) − V (A ∪D)| = 5), and |ST ′ ∩ V (A)| = 2 (as 
|ST ′ | = 6). Let q ∈ ST ′ ∩ V (A − T ′), S′ := (ST ′ − {q}) ∪ (ST ∩ V (C)), C ′ := B ∩C, and 
D′ = G[D + q]. Then (T ′, S′, C ′, D′) ∈ Qx with T ′ ∩ A 	= ∅ and T ∩ C ′ = ∅. However, 
ST ∩ V (C ′) = ∅, a contradiction. �
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7. Concluding remarks

We have shown that every 5-connected nonplanar graph contains TK5. Thus, if a 
graph contains no TK5 then it is planar, or admits a cut of size at most 4. This is a step 
towards a more useful structural description of the class of graphs containing no TK5. 
There is a nice result for graphs containing no TK3,3 due to Wagner [37]: Every such 
graph is planar, or is a K5, or admits a cut of size at most 2.

Mader [22] conjectured that every simple graph with minimum degree at least 5 and 
no K−

4 contains TK5, and he also asked the following.

Question 7.1. Does every simple graph on n ≥ 4 vertices with more than 12(n − 2)/5
edges contain K−

4 , K2,3, or TK5?

In a recent paper [13], it is shown that an affirmative answer to Question 7.1 implies 
the Kelmans-Seymour conjecture. As an independent approach to resolve the Kelmans-
Seymour conjecture, Kawarabayashi, Ma, and Yu considered a contractible cycle in a 
5-connected nonplanar graph containing no K−

4 or K2,3, and then use such a cycle to 
find a TK5 by applying augmenting path arguments. This plan (if successful), combined 
with the results in [21,13], would give an alternative solution to the Kelmans-Seymour 
conjecture.

One of the motivations for us to work on the Kelmans-Seymour conjecture was the 
following conjecture of Hajós (see e.g., [35]) which, if true, would generalize the Four 
Color Theorem.

Conjecture 7.2. Graphs containing no TK5 are 4-colorable.

It is known that Conjecture 7.2 holds for graphs with large girth (see Kühn and Osthus 
[17]). Let G be a possible counterexample to Conjecture 7.2 with |V (G)| minimum. Then 
our result on the Kelmans-Seymour conjecture implies that G has connectivity at most 4. 
By a standard coloring argument, it is easy to show that G must be 3-connected. It is 
shown in [42] that G must be 4-connected. It is further shown in [29] that for every 4-cut 
T of G, G − T has exactly two components. The work in [42,29] suggests that G should 
be “close” to being 5-connected.

Hajós actually made a more general conjecture in the 1950s: For any positive integer k, 
every graph containing no TKk+1 is k-colorable. This is easy to verify for k ≤ 3 (see [4]), 
and disproved in [2] for k ≥ 6. However, it remains open for k = 4 (Conjecture 7.2) and 
k = 5. Thomassen [35] pointed out connections between Hajós’ conjecture and Ramsey 
numbers, maximum cuts, and perfect graphs. We refer the reader to [35] for other work 
and references related to Hajós’ conjecture and topological minors.

In fact, Erdős and Fajtlowicz [6] showed that the above general Hajós’ con-
jecture for k ≥ 6 fails for almost all graphs. Let H(n) := max{χ(G)/σ(G) :
G is a graph with |V (G)| = n}, where χ(G) denotes the chromatic number of G and 



356 D. He et al. / Journal of Combinatorial Theory, Series B 144 (2020) 309–358
σ(G) denotes the largest t such that G contains TKt. Erdős and Fajtlowicz [6] showed 
that H(n) = Ω(

√
n/ logn), and conjectured that H(n) = Θ(

√
n/ logn). This conjecture 

was verified by Fox, Lee, and Sudakov [8], by studying σ(G) in terms of independence 
number α(G). The following conjecture of Fox, Lee, and Sudakov [8] is interesting.

Conjecture 7.3. There is a constant c > 0 such that every graph G with χ(G) = k satisfies 
σ(G) ≥ c

√
k log k.

A key idea in [20,21,9–11] for finding TK5 in graphs containing K−
4 is to find a 

nonseparating path in a graph that avoids two given vertices. Let G be a 5-connected 
nonplanar graph and x1, x2, y1, y2 ∈ V (G) such that {x1, x2, y1, y2} induces a K−

4 in 
which x1, x2 are of degree 3. We used an induced path X in G between x1 and x2 such 
that G − X is 2-connected and {y1, y2} � V (X), and in certain cases we need X to 
contain a special edge at x1 (for example, in Section 6, x1 = x is the special vertex 
representing the contraction of M). If we could find such X that G −X is 3-connected 
then our proofs would have been much simpler. This is related to the following conjecture 
of Lovász [19].

Conjecture 7.4. There exists an integer valued function f(k) such that for any f(k)-con-
nected graph G and for any A ⊆ V (G) with |A| = 2, there exist vertex disjoint subgraphs 
G1, G2 of G such that V (G1) ∪ V (G2) = V (G), G1 is a path between the vertices in A, 
and G2 is k-connected.

A classical result of Tutte [36] implies f(1) = 3. That f(2) = 5 was proved by Kriesell 
[16] and, independently, by Chen, Gould and Yu [3]. Despite much effort from the research 
community, Conjecture 7.4 remains open for k ≥ 3. Variations of Conjecture 7.4 for k = 2
are used in [20,21,9–11] to resolve the Kelmans-Seymour conjecture.

An edge version of Conjecture 7.4 was conjectured by Kriesell and proved by 
Kawarabayashi et al. [12]. Thomassen [32] conjectured a statement that is more gen-
eral than Conjecture 7.4 by allowing |A| ≥ 2 and requiring that A ⊆ V (G1) and G1 be 
k-connected.
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