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1. Introduction

The classical Liouville’s theorem tells us that the complex plane C has no
bounded nonconstant holomorphic functions, while, by contrast, the unit disk D has
plenty of bounded nonconstant holomorphic functions. From a geometric viewpoint,
the complex plane does not admit any metric of negative bounded-away-from-zero
curvature, while the unit disk admits a metric, the Poincaré metric, of constant
negative curvature.

In a higher dimensional analogue, the unit disk is replaced by the simply-
connected complete Kähler manifold. It is believed that a simply-connected com-
plete Kähler manifold M with sectional curvature bounded above by a negative
constant has many nonconstant bounded holomorphic functions (cf. [Yau82, p. 678,
Problem 38]). In fact, it is conjectured that such a manifold is biholomorphic to a
bounded domain in Cn (cf. [SY77, p. 225], [Wu83, p. 98]; see also [Wu67, p. 195,
(1)] for a related problem with regard to the holomorphic sectional curvature).

The negatively curved complex manifolds are naturally associated with the in-
variant metrics. An invariant metric is a metric LM defined on a complex man-
ifold M such that every biholomorphism F from M to itself gives an isometry
F ∗LM = LM . Thus, the invariant metric depends only on the underlying complex
structure of M .
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There are four classical invariant metrics, the Bergman metric, the Carathéodory-
Reiffen metric, the Kobayashi-Royden metric, and the complete Kähler-Einstein
metric of negative scalar curvature. It is known that on a bounded, smooth, strictly
pseudoconvex domain in Cn, all four classical invariant metrics are uniformly equiv-
alent to each other (see, for example, [Die70, Gra75, CY80, Lem81, BFG83,Wu93]
and the references therein). The equivalences do not extend to weakly pseudoconvex
domains (see, for example, [DFH84] and the references therein for the inequivalence
of the Bergman metric and the Kobayashi-Royden metric).

On Kähler manifolds, R. E. Greene and H. Wu have posted two remarkable
conjectures concerning the uniform equivalences of the Kobayashi-Royden metric
and the Bergman metric. Their first conjecture is stated below.

Conjecture 1 ([GW79, p. 112, Remark (2)]). Let (M,ω) be a simply-connected
complete Kähler manifold satisfying −B ≤ sectional curvature ≤ −A for two posi-
tive constants A and B. Then, the Kobayashi-Royden metric K satisfies

C−1|ξ|ω ≤ K(x, ξ) ≤ C|ξ|ω for all x ∈ M and ξ ∈ T ′
xM.

Here C > 0 is a constant depending only on A and B.

As pointed out in [GW79, p. 112], it is well known that the left inequality in
the conjecture follows from the Schwarz lemma and the hypothesis of sectional
curvature bounded above by a negative constant (see also Lemma 19).

Our first result confirms this conjecture. In fact, we prove a stronger result, as
we relax the sectional curvature to the holomorphic sectional curvature, and remove
the assumption of simply-connectedness.

Theorem 2. Let (M,ω) be a complete Kähler manifold whose holomorphic sec-
tional curvature H(ω) satisfies −B ≤ H(ω) ≤ −A for some positive constants A
and B. Then, the Kobayashi-Royden metric K satisfies

C−1|ξ|ω ≤ K(x, ξ) ≤ C|ξ|ω for all x ∈ M and ξ ∈ T ′
xM.

Here C > 0 is a constant depending only on A, B, and dimM .

Under the same condition as Theorem 2, we construct a unique complete Kähler-
Einstein metric of negative Ricci curvature, and show that it is uniformly equivalent
to the background Kähler metric.

Theorem 3. Let (M,ω) be a complete Kähler manifold whose holomorphic sec-
tional curvature H(ω) satisfies −κ2 ≤ H(ω) ≤ −κ1 for constants κ1, κ2 > 0. Then
M admits a unique complete Kähler-Einstein metric ωKE with Ricci curvature equal
to −1, satisfying

C−1ω ≤ ωKE ≤ Cω on M

for some constant C > 0 depending only on dimM , κ1, and κ2. Furthermore, the
curvature tensor Rm,KE of ωKE and all its covariant derivatives are bounded; that
is, for each l ∈ N,

sup
x∈M

∣∣∇lRm,KE(x)
∣∣
ωKE

≤ Cl,

where Cl > 0 depends only on l, dimM , κ1, and κ2.

Theorem 3 differs from the previous work on complete noncompact Kähler-
Einstein metrics such as [CY80, CY86, TY87,Wu08] in that we put no assump-
tion on the sign of Ricci curvature Ric(ω) of metric ω, nor on Ric(ω) − ω. The
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proof makes use of a new complex Monge-Ampère-type equation, which involves
the Kähler class of tω −Ric(ω) rather than that of ω. This equation is inspired by
our recent work [WY16a]. Theorem 3 can be viewed as a complete noncompact gen-
eralization of [WY16a, Theorem 2] (for its generalizations on compact manifolds,
see for example [TY17,DT19,WY16b,YZ19]).

We now discuss the second conjecture of Greene-Wu concerning the Bergman
metric. Greene-Wu has obtained the following result, motivated by the work of the
second author and Y. T. Siu [SY77].

Theorem 4 ([GW79, p. 144, Theorem H (3)]). Let (M,ω) be a simply-connected
complete Kähler manifold such that −B ≤ sectional curvature ≤ −A for some
positive constants A and B. Then, M possesses a complete Bergman metric ωB

satisfying
ωB ≥ Cω on M

for some constant C > 0 depending only on dimM , A, and B. Moreover, the
Bergman kernel form B on M satisfies

(1.1) A1ω
n ≤ B ≤ A2ω

n on M

for some positive constants A1, A2 depending only on dimM , A, and B.

It is shown in [GW79, p. 144, Theorem H (2)] that if a simply-connected com-
plete Kähler manifold M satisfies −B/r2 ≤ sectional curvature ≤ −A/r2 outside
a compact subset of M , then M possesses a complete Bergman metric, where r is
the distance from a fixed point. Greene-Wu proposed two conjectures concerning
their Theorem H. The first conjecture is that the lower bound −B/r2 in the hy-
pothesis of Theorem H (2) can be removed. This has been settled by B.-Y. Chen
and J. H. Zhang [CZ02]. The second conjecture is as below.

Conjecture 5 ([GW79, p. 145, Remark (3)]). The Bergman metric ωB obtained
in Theorem 4 satisfies

ωB ≤ C1ω on M

for some constant C1 > 0. As a consequence, the Bergman metric ωB is uniformly
equivalent to the background Kähler metric ω.

Conjecture 5 now follows from the following result.

Theorem 6. Let (M,ω) be a complete, simply-connected, Kähler manifold such
that −B ≤ sectional curvature ≤ −A < 0 for some positive constants A and B.
Then, Bergman metric ωB has bounded geometry, and satisfies

ωB ≤ C1ω on M,

where the constant C1 > 0 depending only on A, B, and dimM . As a consequence,
the Bergman metric ωB is uniformly equivalent to the Kähler metric ω.

The simple connectedness assumption is necessary for the equivalence of ωB and
ω. For example, let M = P1 \ {0, 1,∞}. Then, M has a complete Kähler-Einstein
metric with curvature equal to−1; however,M admits no Bergman metric. Another
example is the punctured disk D∗ = D \ {0} together with the complete Poincaré
metric ωP =

√
−1dz ∧ dz̄/(|z| log |z|2)2. Note that the Bergman metric on D∗ is

ωB =
√
−1dz ∧ dz̄/(1− |z|2)2, which cannot dominate ωP at the origin.

The equivalence of ωB and ω in Theorem 6 has been known in several cases:
For instance, when M is a bounded strictly pseudoconvex domain with smooth
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boundary, this can be shown by using the asymptotic expansion of a Monge-Ampère
equation (see [BFG83] for example). The second author with K. Liu and X. Sun
[LSY04] has proved the result for M being the Teichmüller space and the moduli
space of Riemann surfaces, on which they in fact show that several classical and
new metrics are all uniformly equivalent (see also [Yeu05]); compare Corollary 7
below.

As a consequence of the above theorems, we obtain the following result on a
complete, simply-connected, Kähler manifold with negatively pinched sectional cur-
vature.

Corollary 7. Let (M,ω) be a complete, simply-connected, Kähler manifold satisfy-
ing −B ≤ sectional curvature ≤ −A for two positive constants A and B. Then, the
Kähler-Einstein metric ωKE, the Bergman metric ωB, and the Kobayashi-Royden
metric K all exist, and are all uniformly equivalent to ω on M , where the equivalence
constants depend only on A, B, and dimM .

Corollary 7 in particular implies that the smoothly bounded weakly pseudocon-
vex domain Ω constructed in [DFH84] and [JP13, p. 491], given by

Ω = {(z1, z2, z3) ∈ C3; Re z1 + |z1|2 + |z2|12 + |z3|12 + |z2|4|z3|2 + |z2|2|z3|6 < 0},

cannot admit a complete Kähler metric with negative pinched sectional curvature.
In this paper we provide a unifying treatment for the invariant metrics, through

developing the techniques of effective quasi-bounded geometry. The quasi-bounded
geometry was originally introduced to solve the Monge-Ampère equation on the
complete noncompact manifold with injectivity radius zero. By contrast to solving
equations, the holomorphicity of a quasi-coordinate map is essential for our ap-
plications to invariant metrics. It is crucial to show the radius of quasi-bounded
geometry depends only on the curvature bounds. Then, a key ingredient is the
pointwise interior estimate. Several arguments, such as Lemmas 12, 15, and 20 and
Corollary 24, may have interests of their own.

Notation and Convention. We interchangeably denote a hermitian metric by
tensor gω =

∑
i,j gij̄dz

i ⊗ dz̄j and its Kähler form ω = (
√
−1/2)

∑
i,j gij̄dz

i ∧ dz̄j .

The curvature tensor Rm = {Rij̄kl̄} of ω is given by

Rij̄kl̄ = R
( ∂

∂zi
,

∂

∂z̄j
,

∂

∂zk
,
∂

∂z̄l

)
= −

∂2gij̄
∂zk∂z̄l

+

n∑
p,q=1

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

.

Let x be a point in M and let η ∈ T ′
xM be a unit holomorphic tangent vector at x.

Then, the holomorphic (sectional) curvature of ω at x in the direction η is

H(ω, x, η) = H(x, η) = R(η, η, η, η) =
∑
i,j,k,l

Rij̄kl̄η
iη̄jηkη̄l.

We abbreviate H(ω) ≤ κ (resp., H(ω) ≥ κ) for some constant κ if H(ω, x, η) ≤ κ
(resp., H(ω, x, η) ≥ κ) at every point x of M and for each η ∈ T ′

xM . We denote

ddc logωn = ddc log det(gij̄) =

√
−1

2
∂∂̄ log det(gij̄) = −Ric(ω),

where dc =
√
−1(∂̄ − ∂)/4.
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We say that two pseudometrics L1 and L2 are uniformly equivalent or quasi-
isometric on a complex manifold M if there exists a constant C > 0 such that

C−1L1(x, ξ) ≤ L2(x, ξ) ≤ CL1(x, ξ) for all x ∈ M , ξ ∈ T ′
xM,

which is often abbreviated as C−1L1 ≤ L2 ≤ CL1 on M .

In many estimates, we give quite explicit constants mainly to indicate their
dependence on the parameters such as dimM and the curvature bounds.

2. Effective quasi-bounded geometry

The notions of bounded geometry and quasi-bounded geometry were introduced by
the second author and S. Y. Cheng, originally to adapt the Schauder-type estimates
to solve the Monge-Ampère-type equation on complete noncompact manifolds (see,
for example, [Yau78b], [CY80,CY86], [TY87,TY90,TY91], and [WL97, Appendix]).

We use the following formulation (compare [TY90, p. 580] for example). Let
(M,ω) be an n-dimensional complete Kähler manifold. For a point P ∈ M , let
Bω(P ; ρ) be the open geodesic ball centered at P in M of radius ρ; sometimes we
omit the subscript ω when there is no confusion. Denote by BCn(0; r) the open ball
centered at the origin in Cn of radius r with respect to the standard metric ωCn .

Definition 8. An n-dimensional Kähler manifold (M,ω) is said to have quasi-
bounded geometry, if there exist two constants r2 > r1 > 0, such that for each point
P of M , there is a domain U in Cn and a nonsingular holomorphic map ψ : U → M
satisfying the following properties:

(i) BCn(0; r1) ⊂ U ⊂ BCn(0; r2) and ψ(0) = P ;
(ii) there exists a constant C > 0 depending only on r1, r2, n such that

(2.1) C−1ωCn ≤ ψ∗ω ≤ CωCn on U ;

(iii) for each integer l ≥ 0, there exists a constant Al depending only on l,
n, r1, r2 such that

(2.2) sup
x∈U

∣∣∣∣∂|ν|+|μ|gij̄
∂vμ∂v̄ν

(x)

∣∣∣∣ ≤ Al for all |μ|+ |ν| ≤ l,

where gij̄ is the component of ψ∗ω on U in terms of the natural coordinates

(v1, . . . , vn), and μ, ν are the multiple indices with |μ| = μ1 + · · ·+ μn.

The map ψ is called a quasi-coordinate map and the pair (U,ψ) is called a quasi-
coordinate chart of M . We call the positive number r1 a radius of quasi-bounded
geometry. The Kähler manifold (M,ω) is of bounded geometry if in addition each
ψ : U → M is biholomorphic onto its image. In this case, the number r1 is called
radius of bounded geometry.

The following theorem is fundamental on constructing the quasi-coordinate charts.

Theorem 9. Let (M,ω) be a complete Kähler manifold.

(1) The manifold (M,ω) has quasi-bounded geometry if and only if for each
integer q ≥ 0, there exists a constant Cq > 0 such that

(2.3) sup
P∈M

|∇qRm| ≤ Cq,

where Rm = {Rij̄kl̄} denotes the curvature tensor of ω. In this case, the
radius of quasi-bounded geometry depends only on C0 and dimM .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

108 DAMIN WU AND SHING-TUNG YAU

(2) If (M,ω) has positive injectivity radius and the curvature tensor Rm of ω
satisfies (2.3), then (M,ω) has bounded geometry. The radius of bounded
geometry depends only on C0, dimM , and also the injectivity radius rω of
ω unless rω is infinity.

Theorem 9(1) is especially useful for a complete Kähler manifold with injectivity
radius zero. Compare, for example, [TY87, pp. 602–605], [Wu08], [GW16] for the
explicit construction of quasi-bounded geometry on the quasi-projective manifolds;
compare also [Shi97, p. 212, Lemma 9.2] for the construction using the Ricci flow,
under the additional assumption of positive bisectional curvature.

The Riemannian version of quasi-bounded geometry was constructed by the sec-
ond author in 1980 (cf. [WL97, Appendix]), by taking the exponential map expP
as the smooth quasi-coordinate map, with its domain U being the ball B(0;R) in
the tangent space at P . The radius R can be chosen to depend only on the upper
bound of the curvature. The real quasi-bounded geometry is sufficient to adapt
the Schauder estimates to solve equations on a Riemann manifold, regardless of its
injectivity radius.

One can solve the holomorphic functions {vj} out of the normal coordinates
on B(0;R), by using the L2-estimate of ∂̄-operator. By Siu-Yau’s inequality, one
applies the singular L2-weight to ensure that {dvj} are independent at P . Then,
the holomorphic functions {vj} form a coordinate system in a smaller ball B(0; r),
by the inverse function theorem. This result is classic; see [SY77, pp. 247–248],
[GW79, pp. 160–161], and [TY90, p. 582].

A subtlety is that the radius r could depend on P a priori. Indeed, the complex
structure on B(0;R) is pulled back from the complex manifold by expP . Con-
sequently, for different P , the corresponding B(0;R) is in general different as a
complex manifold. Thus, the ∂̄-operator is different on different balls; so is the
radius r obtained from the L2 estimate of ∂̄ and the inverse function theorem.

We remark that the subtlety is not addressed in the classical works, as they do
not need to be. Either the Riemannian version of quasi-bounded geometry, or the
explicit construction on quasi-projective manifolds, is sufficient for applications in
[TY90].

The subtlety is settled in Lemma 12, an indispensable ingredient in the proof
of Theorem 9, which is, in turn, crucial for proving the Greene-Wu conjectures.
We first reformulate the classical result into the form of the following Lemma 10,
from which we can proceed further. In the proof of Lemma 12, we transform the ∂̄-
equation into the Laplace equation for functions (in contrast to those [FK72, (1.1.1)]
for (0, 1)-forms); this allows us to apply maximum principles. In this approach, the
constants of estimates depend only on the curvature bounds; so does the radius.

Lemma 10. Let (Nn, g) be an n-dimensional Kähler manifold, and let B(P ; δ0)
be an open geodesic ball of radius δ0 centered at a point P in N . Suppose that
B(P ; δ0) is contained in a coordinate chart in N with smooth, real-valued, coordinate
functions {x1, . . . , xn, xn+1, . . . , x2n}. Assume that the following conditions hold,
where each Aj denotes a positive constant:

(i) No cut point of P is contained in B(P ; δ0).
(ii) The sectional curvature K(g) of g satisfies −A2 ≤ K(g) ≤ A1 on B(P ; δ0).
(iii) For each j = 1, . . . , n,

|∂̄(xj +
√
−1xn+j)|g(Q) ≤ φ(r), for all Q ∈ B(P ; δ0).
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Here r = r(Q) denotes the geodesic distance d(P,Q), and φ ≥ 0 is a con-
tinuous function on [0,+∞) satisfying

(2.4)

ˆ 1/2

0

φ2(t)

t3
dt < +∞.

Then, there exists a system of holomorphic coordinates {v1, . . . , vn} defined on a
smaller geodesic ball B(P ; δ1) such that

(2.5) vj = xj +
√
−1xn+j , dvj = d(xj +

√
−1xn+j) at P

for all j = 1, . . . , n.

Proof. Let h be a real-valued smooth function on [0,+∞) and let ωg be the Kähler
form of g. By conditions (i) and (ii), we apply the Hessian Comparison Theorem
(see, for example, [SY77, p. 231] and [SY94, p. 4, Theorem 1.1]) to h(r) to obtain

4ddch(r) ≥ min
{
2h′(r)

√
A1 cot(

√
A1 r), h

′(r)
√
A1 cot(

√
A1 r) + h′′(r)

}
ωg

for all x ∈ B(P ; δ0), where r = r(x) = d(x, P ). Letting h(r) be r2 and log(1 + r2),
respectively, yields

ddcr2 ≥ π

4
ωg,(2.6)

ddc log(1 + r2) ≥ 4π

17
ωg

for all x ∈ B(P ; δ), where δ is a constant satisfying

(2.7) 0 < δ ≤ min
{
δ0,

1

4
,

π

4
√
A1

}
.

Inequality (2.6) in particular implies that B(P ; δ) is a Stein manifold. On the other
hand, by (ii), the Ricci curvature Ric(ωg) of g satisfies

|Ric(ωg)|g ≤
√
n|Rm|g ≤ 34

3
n3/2(A1 +A2).

Pick a constant l > 0 such that
4π

17
l ≥ 34

3
n3/2(A1 +A2) + 1,

and let
ϕ1 = l log(1 + r2), ϕ2 = (2n+ 2) log r, ϕ = ϕ1 + ϕ2.

Then,
ddcϕ1 +Ric(ωg) ≥ ωg on B(P ; δ).

Let 0 ≤ χ ≤ 1 be a smooth function on R such that χ ≡ 1 on the closed interval
[0, δ/6] and χ ≡ 0 on [δ/3,+∞). Let

wj = xj +
√
−1xn+j , j = 1, . . . , n.

It follows from [SY77, Proposition 2.1, pp. 244–245] (see also [MSY81, Lemma 4
and Remark, p. 208] for Stein Kähler manifolds) that there is a smooth function
βj on B(P ; δ) such that

(2.8) ∂̄βj = ∂̄[(χ ◦ r)wj ] on B(P ; δ)

and satisfies

(2.9)

ˆ
B(P ;δ)

|βj |2e−ϕdVg ≤
ˆ
B(P ;δ)

|∂̄((χ ◦ r)wj)|2ge−ϕdVg, j = 1 . . . , n.
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By condition (iii),ˆ
B(P ;δ/6)

|∂̄((χ ◦ r)wj)|2ge−ϕdVg =

ˆ
B(P ;δ/6)

|∂̄wj |2ge−ϕdVg

≤ C(n,A1, A2)

ˆ δ/6

0

φ2(r)

r3
dr(2.10)

≤ C(n,A1, A2) < +∞,

where we use the standard volume comparison dVg ≤ C(n,A1, A2)r
2n−1drdVS2n−1

for r ≤ δ ≤ 1/4, and C(n,A1, A2) > 0 denotes a generic constant depending only
on n, A1, A2. This together with (2.9) imply

βj = 0, dβj = 0 at P .

Let

(2.11) vj = (χ ◦ r)wj − βj , j = 1, . . . , n.

Then vj is holomorphic and satisfies (2.5) for each j. By the inverse function
theorem, the set of functions {v1, . . . , vn} forms a holomorphic coordinate system
in a smaller ball B(P ; δ1) where 0 < δ1 < 1

6 min{ δ0, 1/4, π/(4
√
A1 )}. �

Remark 11. Condition (2.5) in particular includes two cases, φ(t) = t1+a with
constant a > 0, and φ(t) = tk(− log t)−l with k, l ≥ 1. The former is sufficient for
our current application. For clarity, we specify φ(t) = t1+a in the lemma below.

Lemma 12. Let (Nn, g) and B(P ; δ0) be given as in Lemma 10, satisfying condi-
tions (i), (ii), and (iii) with φ(r) = A3r

1+σ for some constant σ > 0. Assume, in
addition, that the metric component {gij} of g with respect to {x1, . . . , x2n} satisfies

A−1
4 (δij) ≤ (gij)(Q) ≤ A4(δij), 1 ≤ i, j ≤ 2n,(2.12) ∣∣∣∂gij

∂xk
(Q)

∣∣∣ ≤ A5, 1 ≤ i, j, k ≤ 2n(2.13)

for all Q ∈ B(P ; δ0). Then, there is a holomorphic coordinate system {v1, . . . , vn}
defined on a smaller geodesic ball B(P ; δ1), for which

(a) the radius δ1 depends only on δ0, n, Aj, 1 ≤ j ≤ 5, and also σ if σ < 1;
(b) the coordinate function vj satisfies (2.5) and

|vj − wj | ≤ 1

2
r1+

σ1
2 ,(2.14) ∣∣∣ ∂vi

∂wj
− δij

∣∣∣ ≤ 1

2
r

σ1
2 ,

∣∣∣ ∂vi
∂wj

∣∣∣ ≤ 1

2
r

σ1
2 ,(2.15)

on B(P ; δ1) for all 1 ≤ i, j ≤ n, where wj = xj +
√
−1xn+j, r = r(Q) =

d(P,Q), and σ1 ≡ min{σ, 1}.

Proof. It remains to show (a) and (2.14). We start from (2.8) to obtain

∂̄∗∂̄βj = ∂̄∗∂̄[(χ ◦ r)wj ] on B(P ; δ).

where δ > 0 is a constant satisfying (2.7) and wj = xj +
√
−1xn+j . Since (N, g) is

Kähler, the Laplace-Beltrami operator Δg is equal to the ∂̄-Laplacian � = ∂̄∗∂̄+∂̄∂̄∗

up to a constant factor (−2) (i.e., Δg = −2� ). It follows that

(2.16) Δgβ
j = Δgw

j ≡ f on B(P ; δ/6).
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One can write

Δg =
1
√
g

∂

∂xa

(
gab

√
g

∂

∂xb

)
on B(0; δ) using the given single coordinate system {x1, . . . , x2n}, where the sum-
mation notation is used and 1 ≤ a, b ≤ 2n. It follows that Δg is of the divergence
form, and is uniformly elliptic by (2.12).

Applying the standard interior estimate [GT01, p. 210, Theorem 8.32] to equa-
tion (2.16) yields

|dβj |0;B(P ;δ/24) ≤ C(n,A)
[
δ−1|βj |0;B(P ;δ/12) + δ|f |0;B(P ;δ/12)

]
.

Here | · |0;U ≡ |· |C0(U) for a domain U , and we denote by C(n,A) a generic constant
depending only on n and Aj , 1 ≤ j ≤ 5.

To estimate the C0-norm, we use the local maximum principle ([GT01, Theorem
8.17, p. 194] with ν = 0) to get

(2.17) |βj |0;B(P ;δ/12) ≤ C(n,A)
[
δ−n|βj |L2(B(P ;δ/6)) + δ2|f |0;B(P ;δ/6)

]
.

Combining these two estimates yields

|dβj |0;B(P ;δ/24) ≤ C(n,A)
[
δ−n−1|βj |L2(B(P ;δ/6)) + δ|f |0;B(P ;δ/6)

]
.

To estimate the L2-norm, we apply (2.9) and (2.10) to obtain

|βj |2L2(B(P ;δ/6)) =

ˆ
B(P ;δ/6)

|βj |2e−ϕeϕdVg

≤ δ2n+2

ˆ
B(P ;δ/6)

∣∣∂̄((χ ◦ r)wj)
∣∣2
g
e−ϕdVg

≤ C(n,A1, A2, A3)δ
2n+2

ˆ δ/6

0

r2σ−1dr

≤ C(n,A1, A2, A3)σ
−1δ2n+2+2σ.

On the other hand, it follows from (2.12) and (2.13) that

|f |0;B(P ;δ/6) ≤ C(n,A4, A5).

Hence,

|dβj |0;B(P ;δ/24) ≤ C(n,A)[σ−1δσ + δ]

≤ C(n,A)σ−1
1 δσ1 , σ1 ≡ min{1, σ}(2.18)

for all 1 ≤ j ≤ n. It follows that

|βj(Q)| ≤ C(n,A)σ−1
1 r1+σ1 for any Q ∈ B(P ; δ/24),

where r = d(P,Q).
As in (2.11) we let

vi = wi − βi on B(P ; δ).

Then, for any Q ∈ B(P ; δ/24),

|dv1 ∧ · · · ∧ dvn|g(Q) ≥ |dw1 ∧ · · · ∧ dwn|g(Q)− C(n,A)σ−1
1 δσ1

≥ A
−n/2
4 − C(n,A)σ−1

1 δσ1 ,
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where we use (2.18) and (2.12). Moreover,

|vj − wj | = |βj | ≤ C(n,A)σ−1
1 r1+σ1 .

Fix now a constant δ satisfying (2.7) and

C(n,A)σ−1
1 δ

σ1
2 ≤ A

−n/2
4

2
≤ 1

2
.

Denote δ1 = δ/24. It follows that dv1, . . . , dvn form an independent set at every
point in B(P ; δ1); hence, {v1, . . . , vn} forms a coordinate system on B(P ; δ1) sat-
isfying (2.14). Estimates (2.15) follow from |dβi(∂/∂wk)| ≤ |dβi||∂/∂wk|, (2.12),
and (2.18). �

Proof of Theorem 9. If (M,ω) has quasi-bounded geometry, then by definition the
coordinate map ψ is a local biholomorphism. It then follows from (2.2) that the
curvature Rm of ω and all its covariant derivatives are all bounded.

Conversely, if |Rm| ≤ C0, then in particular the sectional curvature K(ω) ≤ C0.
It follows from the standard Rauch Comparison Theorem (see, for example, [dC92,
p. 218, Proposition 2.4]) that for each P ∈ M , Bω(P ;R) contains no conjugate
points of P for R < π/

√
C0. Fix R = π/(2

√
C0). Then, the exponential map

(2.19) expP : B(0;R) ⊂ TR,PM −→ M

is nonsingular, and hence, a local diffeomorphism. The exponential map then pulls
back a Kähler structure on B(0;R) with Kähler metric exp∗P ω so that expP is a
locally biholomorphic isometry. In particular, every geodesic in B(0;R) through
the origin is a straight line. Hence, B(0;R) contains no cut point of the origin.

Pick an orthonormal basis {e1, . . . , e2n} of TR,PM with respect to g ≡ exp∗P ω,
such that the associated smooth coordinate functions {x1, . . . , x2n} on TR,PM sat-
isfies

∂̄(xj +
√
−1xn+j) = 0 at x = 0

for each j = 1, . . . , n. The complex-valued function wj ≡ xj +
√
−1xn+j need

not be holomorphic. Nevertheless, we have the crucial Siu-Yau’s inequality: If the
sectional curvature K(g) of g satisfies −A2 ≤ K(g) ≤ A1 with constant A1, A2 > 0,
then

(2.20) |∂̄wj |g ≤ n5/2Ar2eA2r
2/6 on B(0;R),

where
r = d(0, x) = |x| =

√
(x1)2 + · · ·+ (x2n)2, x ∈ B(0;R),

and A > 0 is a constant depending only on A1 and A2. In fact, inequality (2.20) fol-
lows the same procedure of estimating the dual vector field as in [SY77, pp. 246–247]
(its local version is also observed by [GW79, p. 159, (8.22)]), with two modifica-
tions given below, due to the different upper bounds for the sectional curvature.
The inequality in [SY77, p. 246, line 11, i.e., p. 235, Proposition (1.5)] is replaced
by

(2.21)
∣∣∣∇∂/∂r∇∂/∂r

(
r

∂

∂xl

)∣∣∣
g
≤ n2AreA2r

2/6, 1 ≤ l ≤ 2n,

and the inequality |X|2 ≥ 1
2

∑n
j=1(|λj |2 + |μj |2) in [SY77, p. 247] is replaced by

(2.22) |X|2 ≥ 1

2
min

{
1,

sin(
√
A1r)√

A1r

} n∑
j=1

(|λj |2 + |μj |2),
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under the curvature condition −A2 ≤ K(g) ≤ A1; both (2.21) and (2.22) follow
readily from the standard comparison argument ((2.22) is indeed half of (2.23)
below).

Let {gij} be the components of metric g ≡ exp∗P ω with respect to {xj}. If the
sectional curvature satisfies −A2 ≤ K(g) ≤ A1, then again by the standard Rauch
Comparison Theorem we obtain

A−1(δij) ≤ gij(x) ≤ A(δij), 1 ≤ i, j ≤ 2n,(2.23) ∣∣∣∂gij
∂xk

(x)
∣∣∣ ≤ n4Ar exp

(A2

3
r2
)
, 1 ≤ i, j, k ≤ 2n(2.24)

for each x ∈ B(0;R), where r(x) = d(0, x) and A > 0 is a constant depending only
on A1 and A2.

Thus, we can apply Lemma 12 with B(P ; δ0) = B(0;R) and φ(r) = C(n,C0)r
2

to obtain a smaller ball B(0; δ1), on which there is a holomorphic coordinate system
{v1, . . . , vn} such that vj(0) = 0, dvj(0) = dwj(0), |vj(x) − wj(x)| ≤ δ1/(2

√
n ),

and ∣∣∣ ∂vi
∂wj

(x)− δij

∣∣∣ ≤ δ1
2
,

∣∣∣ ∂vi
∂wj

(x)
∣∣∣ ≤ δ1

2
(2.25)

for all x ∈ B(0; δ1), 1 ≤ i, j ≤ n. Here the radius 1/24 ≥ δ1 > 0 depends only on n
and C0. Since v ≡ (v1, . . . , vn) is biholomorphic from B(0; δ1) onto its image U in
Cn, the image U satisfies

BCn(0; δ1/2) ⊂ U ⊂ BCn(0; 3δ1/2).

It is now standard to verify that the composition expP ◦v−1 is the desired quasi-
coordinate map for P on U . Denote by {gij̄} the components of exp∗P ω with respect

to coordinates {vj}, by a slight abuse of notation. By (2.23) and (2.25), we obtain

C−1(δij) ≤ (gij̄) ≤ C(δij),

where C > 0 is a generic constant depending only on C0 and n. This proves (2.1).
The estimate of first order term |∂gij̄/∂vk| follows from (2.24) and (2.25). The
higher order estimate (2.2) follows from applying the standard Schauder estimate
to the Ricci and scalar curvature equations [TY90, p. 582] (see also [DK81, p. 259,
Theorem 6.1]).

For the second statement, fix a positive number 0 < R < rω, where rω denotes
the injectivity radius of (M,ω). Then, for every P ∈ M , the exponential map given
by (2.19), i.e., expP : B(0;R) ⊂ TR,PM → M , is a diffeomorphism onto its image.
From here the same process implies (M,ω) has bounded geometry. �

We remark that the proof of Theorem 9 yields the following result: A complete
Kähler manifold (M,ω) of bounded curvature has quasi-bounded geometry of order
zero, i.e., (M,ω) satisfies Definition 8 except (iii); furthermore, the radius of quasi-
bounded geometry depends only on dimM and the curvature bounds. If in addition
ω has positive injectivity radius, then (M,ω) has bounded geometry of order zero,
and the radius of bounded geometry depends only on the curvature bounds, dimM ,
and the injectivity radius of ω. This result is sufficient for the sake of proving Con-
jectures 1 and 5. Our proof of Theorem 3 requires the full strength of Theorem 9,
and hence, Lemma 13 in the next section.
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3. Wan-Xiong Shi’s lemmas

The following lemma is useful to construct the quasi-bounded geometry.

Lemma 13. Let (M,ω) be an n-dimensional complete noncompact Kähler manifold
such that

(3.1) −κ2 ≤ H(ω) ≤ −κ1 < 0

for two constants κ1, κ2 > 0. Then, there exists another Kähler metric ω̃ such that
satisfying

C−1ω ≤ ω̃ ≤ Cω,(3.2)

− κ̃2 ≤ H(ω̃) ≤ −κ̃1 < 0,(3.3)

sup
x∈M

|∇̃qR̃αβ̄γσ̄| ≤ Cq,(3.4)

where ∇̃qR̃m denotes the qth covariant derivative of the curvature tensor R̃m of ω̃
with respect to ω̃, and the positive constants C = C(n), κ̃j = κ̃j(n, κ1, κ2), j = 1, 2,
Cq = Cq(n, q, κ1, κ2) depend only on the parameters in their parentheses.

Lemma 13, (3.2), and (3.4) are contained in W.-X. Shi [Shi97]. We provide below
the details for the pinching estimate (3.3) of the holomorphic sectional curvature.
Of course, if the manifold were compact, then (3.3) would follow trivially from the
usual uniform continuity of a continuous function. However, this does not hold for
a general bounded smooth function on a complete noncompact manifold. Here the
maximum principle (Lemma 15 in Appendix A) has to be used.

In this section and Appendix A, we adopt the following convention: We denote
by ω = (

√
−1/2)gαβ̄dz

α ∧ dz̄β the Kähler form of a hermitian metric gω. The

real part of the hermitian metric gω = gαβ̄dz
α ⊗ dz̄β induces a Riemannian metric

g = gijdx
i⊗dxj on TRM which is compatible with the complex structure J . Extend

g linearly over C to TRM⊗RC = T ′M⊕T ′M , and then restricting it to T ′M recovers
(1/2)gω; that is,

g(v, w) = Re(gω(η, ξ)), gω(η, ξ) = 2g(η, ξ).

Here v, w are real tangent vectors, and η, ξ are their corresponding holomorphic tan-
gent vectors under the R-linear isomorphism TRM → T ′M , i.e., η =
1
2 (v −

√
−1Jv), ξ = 1

2 (w −
√
−1Jw). Then, the curvature tensor Rm satisfies

R(η, η, ξ, ξ) =
1

2
R(v, Jv, Jw,w).

It follows that

H(x, η) = R(η, η, η, η) =
1

2
R(v, Jv, Jv, v).

Unless otherwise indicated, the Greek letters such as α, β are used to denote the
holomorphic vectors ∂/∂zα, ∂/∂zβ and range over {1, . . . , n}, while the Latin in-
dices such as i, j, k are used to denote real vectors ∂/∂xi, ∂/∂xj and range over
{1, . . . , 2n}.

Proof of Lemma 13. The assumption (3.1) on H implies the curvature tensor Rm

is bounded; more precisely,

sup
x∈M

|Rm(x)| ≤
34

3
n2(κ2 − κ1).
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Here and in many places of the proof, the constant in an estimate is given in certain
explicit form, mainly to indicate its dependence on the parameters such as κi and
n. Applying [Shi97, p. 99, Corollary 2.2] yields that the equation⎧⎨

⎩
∂

∂t
gij(x, t) = −2Rij(x, t),

gij(0, t) = gij(x),

admits a smooth solution {gij(x, t)} > 0 for 0 ≤ t ≤ θ0(n)/(κ2 − κ1), where
θ0(n) > 0 is a constant depending only on n. Furthermore, the curvature Rm(x, t) =
{Rijkl(x, t)} of {gij(x, t)} satisfies that, for each nonnegative integer q,

(3.5) sup
x∈M

|∇qRm(x, t)|2 ≤ C(q, n)(κ2 − κ1)
2

tq
for all 0 < t ≤ θ0(n)

κ2 − κ1
≡ T ,

where C(q, n) > 0 is a constant depending only on q and n. In particular, the
metric gij(x, t) satisfies Assumption A in [Shi97, p. 120]. Then, by [Shi97, p. 129,
Theorem 5.1], the metric gij(x, t) is Kähler, and satisfies⎧⎨

⎩
∂

∂t
gαβ̄(x, t) = −4Rαβ̄(x, t),

gαβ̄(x, 0) = gαβ̄(x)

for all 0 ≤ t ≤ T . It follows that

(3.6) e−tC(n)(κ2−κ1)gαβ̄(x) ≤ gαβ̄(x, t) ≤ etC(n)(κ2−κ1)gαβ̄(x)

for all 0 ≤ t ≤ T = θ0(n)/(κ2 − κ1). Here and below, we denote by C(n) and
Cj(n) generic positive constants depending only on n. Then, for an arbitrary

0 < t ≤ T , the metric ω(x, t) = (
√
−1/2)gαβ̄(x, t)dz

α∧dz̄β satisfies (3.2) and (3.4);
in particular, the constant C in (3.2) depends only on n, since tC(n)(κ2 − κ1) ≤
θ0(n)C(n).

Next we show that there exists a small 0 < t0 ≤ T so that ω(x, t) also satisfies
(3.3) whenever 0 < t ≤ t0. Recall that the curvature tensor satisfies the evolution
equation (see, for example, [Shi97, p. 143, (122)])

∂

∂t
Rαβ̄γσ̄ = 4ΔRαβ̄γσ̄ + 4gμν̄gρτ̄ (Rαβ̄μτ̄Rγσ̄ρν̄ +Rασ̄μτ̄Rγβ̄ρν̄ −Rαν̄γτ̄Rμβ̄ρσ̄)

− 2gμν̄(Rαν̄Rμβ̄ρτ̄ +Rμβ̄Rαν̄ρτ̄ +Rγν̄Rαβ̄μσ̄ +Rμσ̄Rαβ̄ρν̄),

where Δ ≡ Δω(x,t) =
1
2g

αβ̄(x, t)(∇β̄∇α +∇α∇β̄). It follows that( ∂

∂t
Rαβ̄γσ̄

)
ηαη̄βηγ η̄σ

≤ 4
(
ΔRαβ̄γσ̄

)
ηαη̄βηγ η̄σ + C1(n)|η|4gαβ̄(x,t)

|Rm(x, t)|2ω(x,t)

≤ 4
(
ΔRαβ̄γσ̄

)
ηαη̄βηγ η̄σ + C1(n)(κ2 − κ1)

2|η|4ω(x,t)(3.7)

by (3.5) with q = 0. Let

H(x, η, t) =
Rαβ̄γσ̄η

αη̄βηγ η̄σ

|η|4ω(x,t)

.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

116 DAMIN WU AND SHING-TUNG YAU

Then, by (3.1) and (3.5),

H(x, η, 0) ≤ −κ1,

|H(x, η, t)| ≤ |Rm(x, t)|ω(x,t) ≤ C0(n)(κ2 − κ1).

To apply the maximum principle (Lemma 15 in Appendix A), we denote

h(x, t) = max{H(x, η, t); |η|ω(x,t) = 1}

for all x ∈ M and 0 ≤ t ≤ θ0(n)/(κ2 − κ1). Then, h with (3.7) satisfy the three
conditions in Lemma 15. It follows that

h(x, t) ≤ C2(n)(κ2 − κ1)
2t− κ1,

where C2(n) = C1(n) + 8
√
nC0(n)

2 > 0. Let

t0 = min
{ κ1

2C2(n)(κ2 − κ1)2
,

θ0(n)

κ2 − κ1

}
> 0.

Then, for all 0 < t ≤ t0,

H(x, η, t) ≤ h(x, t) ≤ −κ1

2
< 0.

Since the curvature tensor is bounded (by (3.5) with q = 0), we have

H(x, η, t) ≥ −C0(n)(κ2 − κ1).

Thus, for an arbitrary t ∈ (0, t0], the metric ω(x, t) = (
√
−1/2)gαβ̄(x, t)dz

α ∧ dz̄β

is a desired metric satisfying (3.3), and also (3.2) and (3.4). �

Lemma 14. Let (Mn, ω) be a complete noncompact Kähler manifold whose Rie-
mannian sectional curvature is pinched between two negative constants, i.e.,

−κ2 ≤ K(ω) ≤ −κ1 < 0.

Then, there exists another Kähler metric ω̃ satisfying

C−1ω ≤ ω̃ ≤ Cω,

− κ̃2 ≤ K(ω̃) ≤ −κ̃1 < 0,

sup
x∈M

|∇̃qR̃αβ̄γσ̄| ≤ Cq,

where ∇̃qR̃αβ̄γσ̄ denotes the qth covariant derivatives of {R̃αβ̄γσ̄} with respect to
ω̃, and the positive constants C = C(n), κ̃j = κ̃j(n, κ1, κ2), j = 1, 2, Cq =
Cq(n, q, κ1, κ2) depend only on the parameters inside their parentheses.

The proof of Lemma 14 is entirely similar to that of Lemma 13, with the following
modification: The function ϕ is now given by

ϕ(x, v, w, t) = Rijkl(x, t)v
iwjwkvl

for any x ∈ M and v, w ∈ TR,xM , and

h(x, t) = max{ϕ(x, η, ξ, t); |η ∧ ξ|g(x,t) = 1}
= max{ϕ(x, η, ξ, t); |η|g(x,t) = |ξ|g(x,t) = 1, 〈η, ξ〉g(x,t) = 0}.

Here |η ∧ ξ|2 = |η|2|ξ|2 − 〈η, ξ〉2. The result then follows from Lemma 16.
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Appendix A. Maximum principles

The proof of Lemma 13 uses the following maximum principle, which extends
[Shi97, p. 124, Lemma 4.7] to tensors; compare [Shi97, pp. 145–147], [Ham82,
Theorem 9.1], and [CCCY03, pp. 139–140], for example.

Let (M, ω̃) be an n-dimensional complete noncompact Kähler manifold. Suppose
for some constant T > 0 there is a smooth solution ω(x, t) > 0 for the evolution
equation

(A.1)

⎧⎨
⎩

∂

∂t
gαβ̄(x, t) = −4Rαβ̄(x, t) on M × [0, T ],

gαβ̄(x, 0) = g̃αβ̄(x), x ∈ M,

where gαβ̄(x, t) and g̃αβ̄ are the metric components of ω(x, t) and ω̃, respectively.
Assume that the curvature Rm(x, t) = {Rαβ̄γσ̄(x, t)} of ω(x, t) satisfies

(A.2) sup
M×[0,T ]

|Rm(x, t)|2 ≤ k0

for some constant k0 > 0.

Lemma 15. With the above assumption, suppose a smooth tensor {Wαβ̄γσ̄(x, t)}
on M with complex conjugation Wαβ̄γσ̄(x, t) = Wβᾱσγ̄(x, t) satisfies

(A.3)
( ∂

∂t
Wαβ̄γσ̄

)
ηαη̄βηγ η̄σ ≤

(
ΔWαβ̄γσ̄

)
ηαη̄βηγ η̄σ + C1|η|4ω(x,t)

for all x ∈ M , η ∈ T ′
xM , 0 ≤ t ≤ T , where Δ ≡ 2gαβ̄(x, t)(∇β̄∇α +∇α∇β̄) and C1

is a constant. Let

h(x, t) = max
{
Wαβ̄γσ̄η

αη̄βηγ η̄σ; η ∈ T ′
xM, |η|ω(x,t) = 1

}
for all x ∈ M and 0 ≤ t ≤ T . Suppose

sup
x∈M,0≤t≤T

|h(x, t)| ≤ C0,(A.4)

sup
x∈M

h(x, 0) ≤ −κ(A.5)

for some constants C0 > 0 and κ. Then,

h(x, t) ≤ (8C0

√
nk0 + C1)t− κ

for all x ∈ M , 0 ≤ t ≤ T .

Proof. We prove by contradiction. Denote

(A.6) C = 8C0

√
nk0 + C1 > 0.

Suppose

(A.7) h(x1, t1)− Ct1 + κ > 0

for some (x1, t1) ∈ M × [0, T ]. Then, by (A.5) we have t1 > 0.
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Under the above conditions (A.1) and (A.2), by [Shi97, p. 124, Lemma 4.6],
there exists a function θ(x, t) ∈ C∞(M × [0, T ]) satisfying that

0 < θ(x, t) ≤ 1 on M × [0, T ],(A.8)

∂θ

∂t
−Δω(x,t)θ + 2θ−1|∇θ|2ω(x,t) ≤ −θ on M × [0, T ],(A.9)

C−1
2

1 + d0(x0, x)
≤ θ(x, t) ≤ C2

1 + d0(x0, x)
on M × [0, T ],(A.10)

where x0 is a fixed point in M , d0(x, y) is the geodesic distance between x and y
with respect to ω(x, 0), and C2 > 0 is a constant depending only on n, k0, and T .

Let

m0 = sup
x∈M,0≤t≤T

([
h(x, t)− Ct+ κ

]
θ(x, t)

)
.

Then, 0 < m0 ≤ C0 + |κ|, by (A.7) and (A.8). Denote

Λ =
2C2(C0 + CT + |κ|)

m0
> 0.

Then, for any x ∈ M with d0(x, x0) ≥ Λ,

∣∣∣(h(x, t)− Ct+ κ)θ(x, t)
∣∣∣ ≤ C2(C0 + CT + |κ|)

1 + d0(x, x0)
≤ m0

2
.

It follows that the function (h − Ct + κ)θ must attain its supremum m0 on the

compact set B(x0; Λ) × [0, T ], where B(x0; r) denotes the closure of the geodesic
ball with respect to ω(x, 0) centered at x0 of radius r. Let

f(x, η, t) =
Wαβ̄γσ̄η

αη̄βηγ η̄σ

|η|4ω(x,t)

− Ct+ κ

for all (x, t) ∈ M × [0, T ], η ∈ T ′
xM \ {0}. Then, there exists a point (x∗, η∗, t∗)

with x∗ ∈ B(x0; Λ), 0 ≤ t∗ ≤ T , η∗ ∈ T ′
x∗M and |η∗|ω(x∗,t∗) = 1, such that

m0 = f(x∗, η∗, t∗)θ(x∗, t∗) = max
St×[0,T ]

(fθ),

and t∗ > 0 by (A.5), where St = {(x, η) ∈ T ′M ;x ∈ M, η ∈ T ′
xM, |η|ω(x,t) = 1}.

We now employ a standard process to extend η∗ to a smooth vector field, denoted
by η with a slight abuse of notation, in a neighborhood of (x∗, t∗) in M × [0, T ]
such that η is nowhere vanishing on the neighborhood, and

(A.11)
∂

∂t
η = 0, ∇η = 0, Δη = 0 at (x∗, t∗).

This extension can be done, for example, by parallel transporting η∗ from x∗ to each
point y in a small geodesic ball centered at x∗, with respect to metric ω(·, t∗), along
the unique minimal geodesic joining x∗ to y; this extension is made independent of
t and so ∂η/∂t ≡ 0 in the geodesic ball.
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Since f(x, η(x), t) is smooth in a neighborhood of (x∗, t∗), we can differentiate f
and evaluate the derivatives at the point (x∗, t∗) to obtain

∂

∂t
f =

( ∂

∂t
Wαβ̄γσ̄

)
ηαη̄βηγ η̄σ + 8

(
Wαβ̄γσ̄η

αη̄βηγ η̄σ
)(

Rαβ̄η
αη̄β

)
− C

≤
( ∂

∂t
Wαβ̄γσ̄

)
ηαη̄βηγ η̄σ + 8C0

√
nk0 − C

(
by (A.4) and (A.2)

)
≤ Δf + C1 + 8C0

√
nk0 − C

(
by (A.3) and (A.11)

)
≤ Δf (by (A.6)).

Since fθ = f(x, η(x), t)θ(x, t) attains its maximum at (x∗, t∗), we have

(A.12)
∂

∂t
(fθ) ≥ 0, ∇(fθ) = 0, Δ(fθ) ≤ 0 at (x∗, t∗).

It follows that, at the point (x∗, t∗),

0 ≤ ∂

∂t
(fθ) = θ

∂

∂t
f + f

∂

∂t
θ

≤ θΔf + f
∂

∂t
θ

= Δ(fθ)− 2θ−1∇θ · ∇(fθ) + f
[∂θ
∂t

−Δθ + 2θ−1|∇θ|2
]

≤ −fθ
(
by (A.12) and (A.9)

)
= −m0 < 0.

This yields a contradiction. The proof is therefore completed. �

In the proof of Lemma 13, we apply Lemma 15 with Wαβ̄γσ̄ = Rαβ̄γσ̄ to estimate
the holomorphic sectional curvature. For the Riemannian sectional curvature, we
apply the similar result given below with Wijkl = Rijkl.

Lemma 16. Assume (A.1) and (A.2). Suppose a smooth real tensor {Wijkl(x, t)}
on M satisfies( ∂

∂t
Wijkl

)
viwjwkvl ≤

(
ΔWijkl

)
viwjwkvl + C1|v|2ω(x,t)|w|2ω(x,t)

for all x ∈ M , v, w ∈ TR,xM , where Δ ≡ gij(x, t)∇i∇j and C1 > 0 is a constant.
Let

k(x, t) = max
{
Wijklv

iwjwkvl; v, w ∈ TR,xM, |v ∧ w|g(x,t) = 1
}

for all x ∈ M and 0 ≤ t ≤ T . Suppose

sup
x∈M,0≤t≤T

|k(x, t)| ≤ C0,

sup
x∈M

k(x, 0) ≤ −κ

for some constants C0 > 0 and κ. Then,

k(x, t) ≤ (8C0

√
nk0 + C1)t− κ

for all x ∈ M , 0 ≤ t ≤ T . �
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4. Kobayashi-Royden metric and holomorphic curvature

The Kobayashi-Royden pseudometric, denoted by K, is the infinitesimal form of
the Kobayashi pseudodistance. Let us first recall the definition (see, for example,
[Roy71] or [Kob98, Section 3.5]).

Let M be a complex manifold and let T ′M be its holomorphic tangent bundle.
Define KM : T ′M → [0,+∞) as below: For any (x, ξ) ∈ T ′M ,

KM (x, ξ) = inf
R>0

1

R
,

where R ranges over all positive numbers for which there is a φ ∈ Hol(DR,M) with
φ(0) = x and φ∗(∂/∂z|z=0) ≡ dφ(∂/∂z|z=0) = ξ. Here Hol(X,Y ) denotes the set
of holomorphic maps from X to Y , and

DR ≡ {z ∈ C; |z| < R} and D ≡ D1.

Equivalently, one can verify that (cf. [GW79, p. 82]), for each (x, ξ) ∈ T ′M ,

KM (x, ξ) = inf{|V |P ;V ∈ T ′D there is f ∈ Hol(D,M) with f∗(V ) = ξ}
= inf{|V |C;V ∈ T ′

0D there is f ∈ Hol(D,M) such that

f(0) = x, f∗(V ) = ξ}.
(4.1)

Here | · |P and | · |C are, respectively, the norms with respect to the Poincaré metric
ωP = (

√
−1/2)(1− |z|2)−2dz ∧ dz̄ and Euclidean metric ωC = (

√
−1/2)dz ∧ dz̄.

The following decreasing property of KM follows immediately from definition.

Proposition 17 ([Roy71, Proposition 1]). Let M and N be complex manifolds and
Ψ : M → N be a holomorphic map. Then,

(Ψ∗KN )(x, ξ) ≡ KN (Ψ(x),Ψ∗(ξ)) ≤ KM (x, ξ)

for all (x, ξ) ∈ T ′M . In particular, if Ψ : M → N is a biholomorphism, then the
equality holds; if M is a complex submanifold of N , then

KN (x, ξ) ≤ KM (x, ξ).

Example 18. Let M be the open ball B(r) = {z ∈ Cn; |z| < r}. Then,

(4.2) KB(r)(a, ξ) =

[
|ξ|2

Cn

r2 − |a|2 +
|ξ · a|2

Cn

(r2 − |a|2)2

]1/2
for all a ∈ Bn

r and ξ ∈ T ′
aB

n
r ; see [JP13, p. 131, Example 3.5.6] for example. �

The result below is well known. We include a proof here for completeness.

Lemma 19. Let (M,ω) be a hermitian manifold such that the holomorphic sec-
tional curvature H(ω) ≤ −κ < 0. Then,

KM (x, ξ) ≥
√

κ

2
|ξ|ω for each x ∈ M , ξ ∈ T ′

xM.

Proof. Let ψ ∈ Hol(D,M) such that ψ(0) = x and ψ∗(v) = ξ. It follows from the
second author’s Schwarz Lemma [Yau78a, p. 201, Theorem 2′] that

ψ∗ω ≤ 2

κ
ωP on D,
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where ωP = (
√
−1/2)(1− |z|2)−2dz ∧ dz̄. It follows that

|ξ|2ω = ω(x; ξ) = (ψ∗ω)(0; v) ≤ 2

κ
ωP(0; v) =

2

κ
|v|2C.

Hence, |v|C ≥
√
κ/2 |ξ|ω. By (4.1), we obtain KM (x, ξ) ≥

√
κ/2 |ξ|ω. �

The quasi-bounded geometry is essential in the following estimate.

Lemma 20. Suppose a complete Kähler manifold (M,ω) has quasi-bounded geom-
etry. Then, the Kobayashi-Royden pseudometric K satisfies

KM (x, ξ) ≤ C|ξ|ω, for all x ∈ M, ξ ∈ T ′
xM,

where C depends only on the radius of quasi-bounded geometry of (M,ω).

Proof. Let (ψ,B(r)) be the quasi-coordinate chart of (M,ω) centered at x; that is,
B(r) = {z ∈ Cn; |z| < r} and ψ : B(r) → M is a nonsingular holomorphic map
such that ψ(0) = x. Denote U = ψ(B(r)). Then, by Proposition 17,

KM (x, ξ) ≤ KU (x, ξ) = KU (ψ(0), ψ∗(v)) ≤ KB(r)(0, v),

where v ∈ T ′
0(B(r)) such that φ∗(v) = ξ. It follows from (4.2) that

KM (x, ξ) ≤ KB(r)(0, v) =
|v|Cn

r
.

By virtue of the quasi-bounded geometry of (M,ω), more precisely, (2.1), we have

C−1|v|2Cn ≤ (ψ∗ω)(0; v) = ω(x; ξ) ≡ |ξ|2ω ≤ C|v|2Cn ,

where C > 0 is a constant depending only on r. Hence,

KM (x, ξ) ≤
√
C

r
|ξ|ω.

This completes the proof. �

Proof of Theorem 2. Since −B ≤ H(ω) ≤ −A, we can assume (M,ω) has quasi-
bounded geometry, by Lemma 13 and Theorem 9. Then, the radius of quasi-
bounded geometry depends only on A, B, and dimM . The desired result then
follows from Lemmas 20 and 19. �

5. Bergman metric and sectional curvature

Let M be an n-dimensional complex manifold. We follow [GW79, Section 8]
for some notation. Let Λ(n,0)(M) ≡ An,0(M) be the space of smooth complex
differential (n, 0) forms on M . For ϕ, ψ ∈ Λ(n,0), define

(5.1) 〈ϕ, ψ〉 = (−1)n
2/2

ˆ
M

ϕ ∧ ψ

and
‖ϕ‖ =

√
〈ϕ, ϕ〉.

Let L2
(n,0) be the completion of

{ϕ ∈ Λ(n,0); ‖ϕ‖ < +∞}
with respect to ‖·‖. Then L2

(n,0) is a separable Hilbert space with the inner product

〈·, ·〉. Define

H = {ϕ ∈ L2
(n,0) | ϕ is holomorphic}.
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Suppose H �= {0}. Let {ej}j≥0 be an orthonormal basis of H with respect to the
inner product 〈·, ·〉. Then, the 2n form defined on M ×M given by

B(x, y) =
∑
j≥0

ej(x) ∧ ej(y), x, y ∈ M,

is the Bergman kernel of M . The convergence of this series is uniform on every
compact subset of M ×M (see also Lemma 21 below). The definition of B(x, y) is
independent of the choice of the orthonormal basis of H. Let

B(x) = B(x, x) =
∑
j≥0

ej(x) ∧ ej(x) for all x ∈ M.

Then B(x) is a smooth (n, n)-form on M , which is called the Bergman kernel form
of M . Suppose for some point P ∈ M , B(P ) �= 0. Define

ddc logB = ddc log b

where we write B(z) = b dz1∧· · ·∧dzn∧dz̄1∧· · ·∧dz̄n in terms of local coordinates
(z1, . . . , zn). It is easy to check that this definition is well-defined. If ddc logB is
everywhere positive on M , then we call ddc logB ≡ ωB the Bergman metric on M .

We would like to prove Theorem 6. We shall use the notion of bounded geometry,
together with the following results, specifically Corollary 24. In fact, we only need
the case of Ω being a bounded domain in Cn. Lemmas 21 and 23 may have interests
of their own. In the following, when the boundary ∂Ω of Ω is empty, i.e., Ω = Cn,
we set dist(E, ∂Ω) = +∞.

Lemma 21. Let Ω be a domain in Cn. Let {fj}j≥0 be a sequence of holomorphic
functions on Ω satisfying the following property: There is an integer N0 ≥ 0 such
that, for all N ≥ N0,

(5.2)

ˆ
Ω

∣∣∣ N∑
j=0

cjfj(z)
∣∣∣2dV ≤

N∑
j=0

|cj |2 for all cj ∈ C, 0 ≤ j ≤ N .

Then, the series
∞∑
j=0

fj(z)fj(w) ≡ b(z, w)

converges uniformly and absolutely on every compact subset of Ω×Ω. Furthermore,
for every compact subset E of Ω,

(5.3) max
z,w∈E

|b(z, w)| ≤ C(n)

dist(E, ∂Ω)2n
,

where C(n) > 0 is a constant depending only on n.

Proof. First, suppose that ∂Ω is nonempty. We assert that, for any z ∈ Ω,

(5.4)
N∑
j=0

|fj(z)|2 ≤ C(n)

dist(z, ∂Ω)2n
for all N ≥ N0.
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Here and below, we denote by C(n) > 0 a generic constant depending only on n.
Assume (5.4) momentarily. By the Cauchy-Schwarz inequality,

N∑
j=0

∣∣∣fj(z)fj(w)∣∣∣ ≤
√√√√ N∑

j=0

|fj(z)|2
√√√√ N∑

j=0

|fj(w)|2

≤ C(n)

dist(z, ∂Ω)n · dist(w, ∂Ω)n

≤ C(n)

dist(E, ∂Ω)2n

for all z, w in the given compact subset E and for all N ≥ N0. Then, letting
N → +∞ yields (5.3).

To show the first statement, by the Cauchy-Schwarz inequality it is sufficient to
show that the uniform convergence of

∑∞
j=0 |fj(z)|2 on every compact subset E of

Ω. (This is not an immediate consequence of (5.4), however.) Let us denote by
B(z; r) the open ball in Cn centered at z of radius r. Let δ = dist(E, ∂Ω)/4 > 0.
Then, for each z0 ∈ E, B(z0; 2δ) ⊂ Ω. By (5.4),

∞∑
j=1

ˆ
B(z0;δ)

|fj(z)|2dV ≤ C(n)

δ2n
Vol(B(z0; δ)) ≤ C(n) < +∞.

It follows that, for each ε > 0, there exists a constant L, depending only on ε, such
that

l+m∑
j=l

ˆ
B(z0;δ)

|fj(z)|2dV < ε for all l ≥ L, and m ≥ 1.

On the other hand, applying the mean value inequality to subharmonic function∑l+m
j=l |fj(z)|2 on B(z0; δ) yields

l+m∑
j=l

|fj(z)|2 ≤ C(n)

δ2n

ˆ
B(z0;δ)

l+m∑
j=l

|fj(w)|2dVw.

Hence,

sup
B(z0;δ)

l+m∑
j=l

|fj(z)|2 ≤ C(n)

δ2n
ε.

Since E can be covered by finitely many balls such as B(z0; δ), we have proven the
uniform convergence of

∑
|fj(z)|2 on E.

To show (5.4), fix an arbitrary z ∈ Ω and N ≥ N0. We can assume, without loss
of generality, that |f0(z)|2 + |f1(z)|2 + · · ·+ |fN (z)|2 �= 0. Denote

ε =
dist(z, ∂Ω)

4
> 0.
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Applying the mean value inequality to the subharmonic function |
∑N

j=0 cjfj(z)|2
yields

∣∣∣∣
N∑
j=0

cjfj(z)

∣∣∣∣
2

≤ 1

Vol(B(z; ε))

ˆ
B(z;ε)

∣∣∣ N∑
j=0

cjfj(ζ)
∣∣∣2dζ

≤ C(n)

ε2n

ˆ
Ω

∣∣∣ N∑
j=0

cjfj(ζ)
∣∣∣2dζ

≤ C(n)

dist(z, ∂Ω)2n

N∑
j=0

|cj |2 by (5.2).

Letting

cj =
fj(z)

(|f0(z)|2 + · · ·+ |fN (z)|2)1/2 , 0 ≤ j ≤ N,

yields (5.4). This proves the result for Ω with nonempty boundary.
If ∂Ω is empty, then Ω = Cn. We can replace Ω in the previous proof by a large

open ball B(0;R) which contains the compact subset E. The same process yields

max
z,w∈E

|b(z, w)| ≤ C(n)

dist(E, ∂B(0;R))2n
→ 0 as R → +∞.

This shows (5.3), and hence, b ≡ 0, for the case dist(E, ∂Ω) = +∞. �

Remark 22. An example of b(z, w) in Lemma 21 is the classical Bergman kernel
function, for which the equality in (5.2) holds for all N ≥ 0 and cj , 0 ≤ j ≤ N . The
arguments are well known and standard (compare, for example, [BM48, pp. 121–
122]). For our applications on a manifold, however, we have to state and derive the
estimate under the weaker inequality hypothesis (5.2), and our estimate constant
needs to be explicit on dist(E, ∂Ω).

Lemma 23. Let Ω be a domain in Cn. Let b(z, w) be a continuous function which

is holomorphic in z and w, and satisfies b(z, w) = b(w, z) for all z, w ∈ Ω. If
Ω �= Cn, then, for each compact subset E ⊂ Ω,

(5.5)
∣∣∂α

z ∂
β
wb(z, w)

∣∣ ≤ C(n)α!β!

dist(E, ∂Ω)|α|+|β| max
x,y∈EΩ

|b(x, y)|, for all z, w ∈ E.

Here C(n) > 0 is a constant depending only on n, α and β are multi-indices with
α! ≡ α1! · · ·αn!, |α| ≡ α1 + · · ·+ αn, ∂

α
z ≡ (∂z1)α1 · · · (∂zn)αn , and

EΩ = {z ∈ Ω; dist(z, E) ≤ dist(E, ∂Ω)/2}.

If Ω = Cn, then (5.5) continues to hold with EΩ replaced by any closed ball whose
interior contains E.

Proof. It is sufficient to show (5.5) for the case Ω � Cn; the case Ω = Cn follows
similarly. The inequality clearly holds when α = β = 0, since E is contained in EΩ.
Consider the case β = 0 but α �= 0. Let δ = 1

4
√
n
dist(E, ∂Ω) > 0. Pick z, w ∈ E.
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By Cauchy’s integral formula,

∂α
z b(z, w) =

α1! · · ·αn!

(2π
√
−1)n

ˆ
{|ζ1−z1=δ|}

· · ·
ˆ
{|ζn−zn|=δ}

b(ζ, w) dζ1 · · · dζn
(ζ1 − z1)α1+1 · · · (ζn − zn)αn+1

.

It follows that

|∂α
z b(z, w)| ≤

C(n)α!

δ|α|
sup

ζ∈Dn(z;δ)

|b(ζ, w)|(5.6)

≤ C(n)α!

δ|α|
max

ζ,y∈EΩ

|b(ζ, y)|.

Here Dn(z; δ) ≡ {ζ ∈ Cn; |ζ1 − z1| < δ, . . . , |ζn − zn| < δ} satisfies Dn(z; δ) ⊂ EΩ.
Consider the general case α, β �= 0. Applying (5.6) with b(z, w) replaced by

∂β
wb(z, w) yields

|∂α
z ∂

β
wb(z, w)| ≤

C(n)α!

δ|α|
sup

ζ∈Dn(z;δ)

|∂β
wb(ζ, w)|

=
C(n)α!

δ|α|
sup

ζ∈Dn(z;δ)

|∂β
wb(w, ζ)|

(
since b(ζ, w) = b(w, ζ)

)

≤ α!β!C(n)

δ|α|+|β| max
x,y∈EΩ

|b(x, y)| by (5.6).

Here C(n) > 0 denotes a generic constant depending only on n. �

Corollary 24. Let Ω be a domain in Cn, and let b(z, w) be the function given in
Lemma 21. For each compact subset E ⊂ Ω,∣∣∂α

z ∂
β
wb(z, w)

∣∣ ≤ α!β!C(n)

dist(E, ∂Ω)2n+|α|+|β| for all z, w ∈ E.

Here C(n) > 0 is a constant depending only on n, and α, β ∈ (Z≥0)
n are multi-

indices, ∂α
z ≡ (∂z1)α1 · · · (∂zn)αn , α! ≡ α1! · · ·αn!, and |α| ≡ α1 + · · ·+ αn.

Remark 25. Corollary 24 in particular implies a pointwise interior estimate for the
Bergman kernel. This may be compared with the global estimates of the Bergman
kernel function in the smooth bounded domain satisfying certain boundary condi-
tion such as Bell’s Condition R (see, for example, [Ker72], [BB81], and [CS01, p. 144]
and the references therein). Those estimates are based on the pseudolocal estimate
of the ∂̄-Neumann operator. The method here is entirely elementary, without as-
suming any boundary condition.

Lemma 26. Let (Mn, ω) be a complete, simply-connected, Kähler manifold satis-
fying

(5.7) −κ2 ≤ K(ω) ≤ −κ1 < 0

for two positive constants κ2 > κ1 > 0. Let B(z, z) and ωB be the Bergman kernel
form and Bergman metric on M . Assume that B/ωn ≥ c0 on M for some constant
c0 > 0. Then, ωB has bounded geometry, and satisfies

(5.8) ωB ≤ C(n, c0, κ1, κ2)ω on M,

where C(n, c0, κ1, κ2) > 0 is a constant depending only on n, c0, κ1, and κ2.
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Proof. By (5.7) and Lemma 14 we can assume, without loss of generality, that the
curvature tensor of ω and all its covariant derivatives are bounded. On the other
hand, it follows from (5.7) and the standard Cartan-Hadamard theorem that, for
a point P ∈ M , the exponential map expP : TR,PM → M is a diffeomorphism.
This, in particular, implies that the injectivity radius of M is infinity. Thus, the
manifold (M,ω) is of bounded geometry, by the second statement of Theorem 9.

Since ω has bounded geometry, there exists a constant r > 0, depending only
on n, κ1, κ2, such that for each point p ∈ M , there is a biholomorphism ψp from
the open ball B(r) ≡ BCn(0; r) onto its image in M such that ψp(0) = p and ψ∗

p(ω)
is uniformly equivalent to the Euclidean metric on B(r) up to infinite order. In
particular, let gij̄ be the metric component of ψ∗

p(ω) with respect to holomorphic

coordinates v1, . . . , vn centered at p; then

(5.9) C−1(δij) ≤ (gij̄) ≤ C(δij)

on B(r). Here B(r) denotes a ball in Cn centered at the origin of radius r > 0, and
C > 0 is a generic constant depending only on κ1, κ2, and n.

Let {φj}j≥0 be an orthonormal basis of the Hilbert space H with respect to the
inner product 〈·, ·〉 given in (5.1). Then, by definition

B(P,Q) =
∑
j≥0

φj(P ) ∧ φj(Q) for all P,Q ∈ M.

Write φj = fj(v)dv
1 ∧ · · · ∧ dvn in the chart (B(r), ψp, v

j), for which we mean, as
a standard convention, ψ∗

pφj(v) = fj(v)dv
1 ∧ · · · ∧ dvn for v ∈ B(r). Then, each fj

is holomorphic on B(r), j ≥ 0.
We claim that the domain B(r) and sequence {fj} satisfy the requirement,

(5.2), in Lemma 21. Indeed, for each φ ∈ H with ψ∗
pφ = h dv1 ∧ · · · ∧ dvn on B(r),

we haveˆ
B(r)

|h(v)|2dV = (−1)n
2/2

ˆ
B(r)

|h(v)|2dv1 ∧ · · · ∧ dvn ∧ dv̄1 ∧ · · · ∧ dv̄n

= (−1)n
2/2

ˆ
ψp(B(r))

φ ∧ φ

≤ (−1)n
2/2

ˆ
M

φ ∧ φ ≡ 〈φ, φ〉.

Now for any N ≥ 0 and any cj ∈ C, 0 ≤ j ≤ N , substituting

φ =
N∑
j=0

cjφj with h(v) =
N∑
j=0

cjfj in B(r)

yields ˆ
B(r)

∣∣∣ N∑
j=0

cjfj(v)
∣∣∣2dV ≤ 〈φ, φ〉 =

N∑
j=0

|cj |2.

This verifies (5.2); hence, the claim is proved. Therefore, we have

ψ∗
pB(v, w) = b(v, w)dv1 ∧ · · · ∧ dvn ∧ dw1 ∧ · · · ∧ dwn, v, w ∈ B(r),

in which

b(v, w) =
∑
j≥0

fj(v)fj(w)
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is a continuous function in B(r), holomorphic in v and w, and satisfying the interior
estimate in Corollary 24. Applying Corollary 24, with Ω = B(r) and E being the

closure B(r/2) of B(r/2), yields

|∂α
v ∂

β
v b(v, v)| ≤

α!β!C(n)

r2n+|α|+|β| for all v ∈ B(r/2).

On the other hand, by the hypothesis B(P, P )/ωn(P ) ≥ c0 for all P ∈ M ; hence,

b(v, v) ≥ c0 det(gij̄) ≥ c0C
−n > 0,

where (5.9) is used. Write ωB = (
√
−1/2)gB,ij̄dv

i ∧ dv̄j . Then,

gB,ij̄ = b−1∂vi∂vj b− b−2∂vib ∂vjb

satisfies that

(5.10) (gB,ij̄) ≤
C(c0, n)

r2n+2
(δij) ≤

C(n, c0, κ1, κ2)

r2n+2
(gij̄),

by (5.9) again, and that ∣∣∣∂μ
v ∂

ν
v gB,ij̄

∣∣∣ ≤ C(n, c0)

r2n+2+|μ|+|ν| .

This proves that ωB has bounded geometry. The desired inequality (5.8) (or equiv-
alently, trω ωB ≤ C) follows from (5.10). �

Note that the hypothesis B ≥ c0ω
n in Lemma 26 is guaranteed by the left

inequality in Theorem 4 (1.1), whose local version is contained in [SY77, p. 248,
line -4]. Thus, Theorem 6 follows from the left inequality of (1.1) and Lemma 26.

Remark 27. A consequence of Theorem 6 is the following technical fact on the
L2-estimate, originally proposed (conjectured) by [GW79, p. 145] to show Con-
jecture 5. Fix arbitrary x ∈ M and η ∈ T ′

xM . For any ϕ ∈ H with ϕ(x) = 0,
define

η(ϕ) = η(f),

where ϕ is locally represented by f(z)dz1 ∧ · · · ∧ dzn near x. It is well-defined.
Denote

Eη(x) = {ϕ ∈ H;ϕ(x) = 0, η(ϕ) = 1}.

Corollary 28. Let (M,ω) be a simply-connected complete Kähler manifold whose
sectional curvature is bounded between two negative constants −B and −A. Then,
there exists a constant C > 0 depending only on dimM , A, and B, such that

min
ϕ∈Eη(x)

‖ϕ‖ ≥ C for any x ∈ M , η ∈ T ′
xM.

Corollary 28 follows immediately from Lemma 8.17 (A) and Lemma 8.19 in
[GW79] and Theorem 6.

Remark 29. Theorem 6 can also be compared with a different direction, proposed
by the second author, concerning the asymptotic behavior of the Bergman metric
on the higher multiple mKM of the canonical bundle for large m. The difference
lies not only in the fact that M is noncompact here, but also the situation that one
has to consider all terms for the case m = 1, rather than the leading order terms
for the case m → +∞.
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6. Kähler-Einstein metric and holomorphic curvature

The goal of this section is to prove Theorem 3. We shall use the continuity
method (Lemma 31). Theorem 3 follows immediately from Lemmas 13 and 31.

The proof of Lemma 31 differs from that of Cheng-Yau [CY80] and others mainly
in the complex Monge-Ampère-type equation. The equation used here is inspired
by the authors’ work [WY16a]. This new equation is well adapted to the negative
holomorphic sectional curvature and the Schwarz-type lemma.

As in Cheng-Yau [CY80], we define the Hölder space Ck,α(M) based on the quasi-
coordinates. Let (M,ω) be a complete Kähler manifold of quasi-bounded geometry,
and let {Vj , ψj}∞j=1 be a family of quasi-coordinate chats in M such that

M =
⋃
j≥1

ψj(Vj).

Let k ∈ Z≥0 and 0 < α < 1. For a smooth function f on M , define

|f |Ck,α(M) = sup
j≥1

(
|ψ∗

j f |Ck,α(Vj)

)
,

where | · |Ck,α(Vj) is the usual Hölder norm on Vj ⊂ Cn. Then, we define Ck,α(M)
to be the completion of {f ∈ C∞(M); |f |Ck,α(M) < +∞} with respect to | · |Ck,α(M).

Lemma 30. Let (M,ω) be an n-dimensional complete Kähler manifold of quasi-
bounded geometry, and let Ck,α(M) be an associated Hölder space. For any function
f ∈ Ck,α(M), there exists a unique solution u ∈ Ck+2,α(M) satisfying{

(ω + ddcu)n = eu+fωn,

C−1ω ≤ ω + ddcu ≤ Cω,

on M . Here the constant C > 1 depends only on infM f , supM f , infM (Δωf), n,
and ω, in which Δωf denotes the Laplacian of f with respect to ω.

The proof of Lemma 30 follows from [CY80, p. 524, Theorem 4.4], with their
bounded geometry replaced by the quasi-bounded geometry, which is used in the
openness argument, and the bootstrap argument from the third order estimate to
Ck,α(M) estimate.

Lemma 31. Let (M,ω) be an n-dimensional complete Kähler manifold such that

H(ω) ≤ −κ1 < 0

for some constant κ1 > 0. Assume that for each integer q ≥ 0, the curvature tensor
Rm of ω satisfying

(6.1) sup
x∈M

|∇qRm| ≤ Bq

for some constant Bq > 0, where ∇q denotes the qth covariant derivative with
respect to ω. Then, there exists a smooth function u on M such that ωKE ≡
ddc logωn + ddcu is the unique Kähler-Einstein metric with Ricci curvature equal
to −1, and satisfies

(6.2) C−1ω ≤ ωKE ≤ Cω,

where the constant C > 0 depends only on n and ω. Furthermore, the curvature
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tensor Rm,KE of ωKE and its qth covariant derivative satisfies

sup
x∈M

|∇q
KERm,KE| ≤ Cq

for some constant Cq depending only on n, and B0, . . . , Bq.

Proof. By hypothesis (6.1) and Theorem 9, the complete manifold (M,ω) has quasi-
bounded geometry. Denote by Ck,α(M) the associated Hölder space, k ≥ 0, 0 <
α < 1.

Consider the Monge-Ampère equation

(MA)t

{
(tω + ddc logωn + ddcu)n = euωn,

c−1
t ω ≤ tω + ddc logωn + ddcu ≤ ct ω,

on M with t > 0, where the constant ct > 1 may depend on t. First, we claim that
for a sufficiently large t, (MA)t has a smooth solution u such that

(6.3) C−1ω ≤ tω + ddc logωn + ddcu ≤ Cω on M,

where C > 0 is a constant depending only on n and ω. To see this, note that
−ddc logωn is precisely the Ricci curvature of ω. By (6.1) the curvature tensor of
ω is bounded; then, for an arbitrary t1 >

√
nB0,

t1ω > −ddc logωn on M.

It follows that
tω + ddc logωn > t1ω for all t ≥ 2t1 > 0.

This implies that tω+ddc logωn defines a complete Kähler metric on M ; moreover,
since ω is of quasi-bounded geometry, so is tω+ddc logωn for t ≥ 2t1. In particular,

F = log
ωn

(tω + ddc logωn)n
∈ Ck,α(M) for all k ≥ 0, 0 < α < 1.

It then follows from Lemma 30 that for t ≥ 2t1, equation

(tω + ddc logωn + ddcu)n = eu+F (tω + ddc logωn)n

admits a solution u ∈ Ck+2,α(M) for all k ≥ 0 and 0 < α < 1 and satisfies (6.3).
This proves the claim.

Let

T = {t ∈ [0, 2t1]; system (MA)t admits a solution u ∈ Ck+2,α(M)}.
Then T is nonempty, since 2t1 ∈ T . We would like to show T is open in [0, 2t1]. Let
t0 ∈ T with ut0 ∈ Ck+2,α(M) satisfying (MA)t0 . The linearization of the operator

M(t, v) = log
(tω + ddc logωn + ddcv)n

ωn
− v

with respect to v at t = t0, v = ut0 is given by

Mut0
(t0, ut0)h =

d

ds
M(t0, ut0 + sh)

∣∣∣∣
s=0

= (Δt0 − 1)h.

Here Δt0 denotes the Laplacian with respect to metric ωt0 ≡ t0ω + ddc logωn +
ddcut0 . Note that c−1

t0 ω ≤ ωt0 ≤ ct0ω. In particular, ωt0 is complete. Further-
more, ωt0 has quasi-bounded geometry up to order (k, α), that is, ωt0 has quasi-
coordinates satisfying (2.1), and (2.2) with the norm | · |Cl(U) replaced by | · |Ck,α(U).

Then, Δt0 − 1 : Ck+2,α(M) → Ck,α(M) is a linear isomorphism, which follows from
the same process as that in [CY80, pp. 520–521], with their bounded geometry
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replaced by the quasi-bounded geometry. Thus, T is open, by the standard implicit
function theorem.

To show T is closed, we shall derive the a priori estimates. Applying the
arithmetic-geometry mean inequality to the equation in (MA)t yields

neu/n ≤ nt− sω +Δωu ≤ C +Δωu,

where sω ≡ − trω ddc log ωn is precisely the scalar curvature of ω. Henceforth,
we denote by C and Cj generic positive constants depending only on n and ω.
Applying the second author’s generalized maximum principle (see, for example,
[CY80, Proposition 1.6]) yields

(6.4) sup
M

u ≤ C.

Next, observe that (MA)t implies

(6.5) Ric(ωt) = −ddc logωn
t = −ωt + tω,

where ωt ≡ tω + ddc logωn + ddcu > 0. Applying [WY16a, Proposition 9] with
ω′ = ωt yields

Δ′ log S ≥
[ (n+ 1)κ1

2n
+

t

n

]
S − 1,

where S = trωt
ω. Again by the second author’s generalized maximum principle,

(6.6) sup
M

S ≤ 2n

(n+ 1)κ1
.

Combining (6.4) and (6.6) yields the estimates of u up to the complex second order
(cf. [WY16a,WY16b]). In fact, by (6.6),

e−
u
n =

(ωn

ωn
t

) 1
n ≤ S

n
≤ 2

(n+ 1)κ1
.

This implies

inf
M

u ≥ −n log
(n+ 1)κ1

2
.

Moreover, by (6.4) we have sup(ωn
t /ω

n) ≤ C. This together with (6.6) implies

trω ωt ≤ n
(S
n

)n−1(ωn
t

ωn

)
≤ C.

Hence, Δωu ≤ C and

(6.7)
(n+ 1)κ1

2n
ω ≤ ωt ≤ (trω ωt)ω ≤ Cω.

One can apply [Yau78c, pp. 360, 403–406] to the third order term

Ξ ≡ g′ij̄;kg
′
r̄s;t̄g

′ir̄g′sj̄g′kt̄

to get

Δ′(Ξ + CΔωu) ≥ C1(Ξ + CΔωu)− C2,

where g′
ij̄

is the metric component of ωt and the subscript ; k in g′
ij̄;k

denotes

the covariant derivative along ∂/∂zk with respect to ω. Thus, supM Ξ ≤ C by
the second author’s generalized maximum principle. Now applying the standard
bootstrap argument (see [Yau78c, p. 363]) to the equation in (MA)t with the quasi-
local coordinate charts yields ‖u‖Ck+2,α(M) ≤ C. The desired closedness of T then
follows immediately from the standard Ascoli-Arzelà theorem and (6.7).
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Hence, we have proven t = 0 ∈ T with u ∈ Ck,α(M). Then, formula (6.5) tells us
that ddc logωn+ddcu is the Kähler-Einstein metric. The uniform equivalence (6.2)
and boundedness of covariant derivatives of its curvature tensor follow immediately
from the above uniform estimates on u. The uniqueness of a complete Kähler-
Einstein metric of negative curvature follows immediately from the second author’s
Schwarz Lemma ([Yau78a, Theorem 3]; see also [CY80, Proposition 5.5]). �
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